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What is the problem?
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|0〉, |1〉 are eigenkets of σz . 
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We need to discriminate between ε1 and ε2 .  
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Collective control - Nonselective operations((non)U)
Cannot address and control each of the N qubits in the
ensemble separately:
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Individual control - Selective operations((non)U)
Can address and control each of the N qubits in the ensemble
separately (≡ going to 2N -D Hilbert space):
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E.g., by measuring σz 
selectively on an ensemble of 

N identical copies of |+〉. 

E.g., by measuring σx 
selectively on an ensemble of 

N identical copies of |0〉. 
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No interaction b/w qubits. Hence we call ensemble. 
Information loss: Individual to collective control. 



Discrimination via variance of sample mean

I 〈σz〉|ψ〉 = p+ × (+1) + p− × (−1),
(∆σz)2

|ψ〉 = 〈σ2
z 〉|ψ〉 − 〈σz〉2|ψ〉.

I S = (T+ − T−)/M, 〈S〉 = 〈σz〉|ψ〉, ∆S2 = (∆σz)2
|ψ〉/M. As

M increases, ∆S2 decreases, and hence S approaches
〈σz〉|ψ〉.

I Hence we implicitly neglect variance ∆S2.
I We will show that, even though variances got via E1 and E2

tends to zero, their ratio does not tend to one, due to
reduction of variance got via E1.

I N|0〉 does not converge to N/2 (but may diverge, we exploit
this), where as N|0〉/N converges to 1/2 as N increases.
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Hypothetical extreme case
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Reduction in variance of sample mean (σz)
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Technical details: Notation and definition
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2S. Ross, A first course in probability (Pearson, 2012).
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I Note that even though no change in mean upon applying
(θq)xs, variance has reduced.

I Measuring σz selectively on |θq〉s and |θq⊥〉s is equivalent
to tossing differently biased coins (i.e., independently
distributed (id) random variables).

I Applying central limit theorem to independently distributed
(id) random variables 3, we obtain effective mean

µeff =
∑

q

(pq〈σz〉|θq〉 + pq⊥〈σz〉|θq⊥〉)

=
∑

q

(pq − pq⊥) cos θq. (1)

where pq = M ′q(T+
1 ,pθq )/M (pq⊥ = M ′q⊥(T−1 ,pθq )/M),

M ′q (M ′q⊥) is the total number of |θq〉s (|θq⊥〉s).∑
q(M ′q + M ′q⊥) = M.

3S. Ross, A first course in probability (Pearson, 2012).
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I Using Bayes rule

pq = p+
1 pθq ,pq⊥ = p−1 pθq , (2)

where p±1 = T±1 /M, and pθq = mq/M, mq is the total
number of times (θq)x is applied,

∑
q mq = M.

I

⇒ µeff = S1〈cos θq〉pθq
(3)

where 〈cos θq〉pθq
=
∑

q pθq cos θq.
I S1 → ND : 0,1/M,

p±1 → ND : 1/2,1/(4M)(∵ T±1 → ND : M/2,M/4), and
pθq → ND : po

θq
, σ2

mq/M
2(∵ mq → ND : po

θq
M, σ2

mq ) where
σ2

mq ∼ M. Hence we need to take care of the variance
(however small) present in them.
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I Applying central limit theorem to id random variables, we
obtain effective variance 4

(∆σz)2
eff =

∑
q

(pq(∆σz)2
|θq〉 + pq⊥(∆σz)2

|θq⊥〉)

=
∑

q

(pq + pq⊥) sin2 θq = 1− 〈cos2 θq〉pθq
,(4)

where (∆σz)2
|θq〉 = 〈σ2

z 〉|θq〉 − 〈σz〉2|θq〉,
〈cos2 θq〉pθq

=
∑

q pθq cos2 θq.
I (∆σz)2

eff 6= 〈σ
2
z 〉ρ′1j

− 〈σz〉2ρ′1j
where

ρ′1j =
∑

q(pq|θq〉〈θq|+ pq⊥|θq⊥〉〈θq⊥|), because in going
from E ′1j to ρ′1j , there is information loss.

I According to central limit theorem, in the large M limit,
probability distribution of effective sample mean S′1, for
given values of pθq s and S1 (i.e., for given values of mqs
and T+

1 i.e., for a given E ′1j ), tends to normal distribution4

i.e, S′1 → ND : µeff , (∆σz)2
eff/M.

4S. Ross, A first course in probability (Pearson, 2012).
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I Resultant probability density of S′1 is given by

f (S′1) =

∫ ∏
i,i 6=l

{dpθi (Nd(pθi ) : po
θi
, σ2

mi
/M2)}

×dS1(Nd(S1) : 0,1/M)

×
(

Nd(S′1) : S1〈cos θq〉pθq
, (1− 〈cos2 θq〉pθq

)/M
)
, (5)

where (Nd(x) : µ, σ2) = 1√
2πσ

exp(−(x − µ)2/(2σ2)) (i.e.,
Normal probability density function with mean µ and
variance σ2), dx(Nd(x) : µ, σ2) is the probability of
obtaining value x of normally distributed random variable x .

I Integrating out S1 we get

f (S′1) =

∫ ∏
i,i 6=l

{dpθi (Nd(pθi ) : po
θi
, σ2

mi
/M2)}

×(Nd(S′1) : 0, (1− (∆ cos θq)2
pθq

)/M), (6)

where (∆ cos θq)2
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I Consider θq = θ0, ∀q (i.e., no randomness). Then Eq. (6)
reduces to f (S′1) = (Nd(S′1) : 0, (1− 0)/M) = g(S′2), hence
no discrimination.

I Consider the simplest case: {θ1, θ2} → {po
θ1
,po
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}.
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×(Nd(S′1) : 0, (1− pθ1(1− pθ1)(cos θ1 − cos θ2)2)/M)

= (Nd(S′1) : 0, (1− (∆ cos θq)2
po
θq

)/M), (7)

where ε > 0 (∵ no swaying of center of Gaussian in Eq.
(6)).
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Nonlinearity in action

I We will show how nonlinearity is reducing the variance.
We have ∆S′21 u (1− (∆ cos θq)2

po
θq

)/M =

(〈cos θq〉2po
θq

+ 〈sin2 θq〉po
θq

)/M (Eq. (7)).

I Let {θ1(= 0), θ2(= π/2)} → {po
0 ,p

o
π/2}.

I ⇒ ∆S′21 u [(po
0 cos 0 + po

π/2 cos(π/2))2 + po
0 sin2 0 +

po
π/2 sin2(π/2)]/M = (po

0
2 + po

π/2)/M < 1/M.
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Smoothing out nonuniformities

● 

● 

● 

● 

●   ●     ●    ● 

1M M N 

0 1 0 1 0 1 0 1
, , ,T T T T T T T T  0 1 0 1

,T T T T    

   0 /
x x



0 1 1

0 1 0

1 1 1

0 0 0

0

0

0

1

0 1 1

1 0 1

0 1 0

1 0 1

0

0

1

1

● 

● 

● 

● 

● 

● 

● 

● 

● 

● 

● 

● 

● 

● 

● 

● 

●   ●    ●   ● 

● 

● 

● 

● 

● 

● 

● 

● 

● 

● 

● 

● 

1M M N 

(variable) L 

COM lies at 
 L ≡ (T|0〉 ≥T|1〉 , T|0〉 <T|1〉 ,  
T|0〉 ≫T|1〉 , T|0〉 ≪T|1〉 ) 

0 

Time averaged COM  
lies at 0, ≅0 ≡ (T’|0〉 =T’|1〉 , T’|0〉 ≅T’|1〉) 

Fast rotation  
≡ (0)x /(𝜋)x 

Beha
ves 
as if 
COM 
lies 
at 0 

1 1
2 2

/

1 1
2 2

/

( ) ( )

1 10(1) 0(1)
,T T T T     

2

1

0 /

S

M

 

   1 1
2 2

0, , 

1 1 



MATLAB simulation results

I MATLAB generates standard uniformly distributed Pseudo
Random Numbers (PRN) drawn from the open interval
(0,1).

I We want to simulate σz measurement on
|χ〉 = cos(θ/2)|0〉+ eiφ sin(θ/2)|1〉.

I If we get a PRN in the interval (0, cos2(θ/2)), then it is
equivalent to getting outcome +1. Else −1.

I We simulated the case
{θ1(= 0), θ2(= π)} → {po

θ1
(= 1/2),po

θ2
(= 1/2)}.

I ⇒ ∆S′21 u 0/M.
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(a)Ag = 0.6795 (theory 0.6826895). Af = 0.7445 (theory 1).
A′g = 0.6795, and A′f = 0.785.
(b)Ag = 0.6787,Af = 0.739,A′g = 0.6793,A′f = 0.777.
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MATLAB simulation results-True random numbers
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Dj is the difference in area under the Gaussians ×105 i.e.,
Dj = (
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S′

1=−aj
f (S′1)−

∑aj
S1=−aj

g(S1))δS × 105 where δS is the
smallest element (step size) on x-axis (sample mean)
considered for plotting, and aj = j × δS, j = 1,2, .... Theoretical
curve: (Dj)thoery/10,∆S′21 → 0.12/M instead of 0/M.
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where r = 1,2, ...,M1.
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Conclusion

I We showed that, if we have individual control, then we can
discriminate between two ensembles via selective random
rotations, which otherwise (i.e., without individual control)
cannot be discriminated, as both are maximally mixed.

I Numerical simulation results support theoretical
predictions.

I However the origin of nonlinear effect (reduction in
variance) which leads to discrimination is not clear.

I It is interesting to explore whether it is genuine nonlinear
effect perhaps due to projective measurement or it is just a
consequence of statistical data analysis technique.
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Single copy picture in 2N-D Hilbert space

There are two sets: F1 = {|0〉⊗N , |0〉⊗N−1|1〉, ..., |1〉⊗N}, and
F2 = {|+〉⊗N , |+〉⊗N−1|−〉, ..., |−〉⊗N}.
Fi is a complete set of orthonormal basis states in 2N

dimensional (2N -D) Hilbert space, i = 1,2. E.g., for N = 2,
F1 = {|0〉|0〉, |0〉|1〉, |1〉|0〉, |1〉|1〉}, and
F2 = {|+〉|+〉, |+〉|−〉, |−〉|+〉, |−〉|−〉}.
Let |φij〉 ∈ Fi , i = 1,2, j = 1,2, ...,2N . Even though |〈φ1j |φ2k 〉|
tends to zero in the limit N →∞, |φ1j〉 can never become
perfectly orthogonal to |φ2k 〉, because the set Fi is already
complete, i = 1,2. Hence F1 and F2 together constitute a set
of nontrivial nonorthogonal states.
Alice gives Bob, a single copy of |φij〉 chosen with probability
1/2N (i.e., all the states are equally likely to be chosen) from Fi ,
i = 1 or 2.



Hence |φ1j〉 (|φ2j〉) is nothing but the renormalized post
measurement state of measuring σz (σx ) selectively (i.e.,
locally) on each of the N qubits in the state |+〉⊗N (|0〉⊗N ),
|0〉 = (|+〉+ |−〉)/

√
2.

Alice tells Bob the way she chose the state from one of F1,F2,
but she do not tell him exactly from which set she chose the
state. Hence Bob is aware of F1,F2, and Alice’s state choosing
procedure.
Bob has a single copy of the unknown state |φij〉, i = 1 or 2. We
are going to show that, in the limit N →∞, even though Bob
cannot know the unknown state exactly, still he can know
deterministically whether it was chosen from F1 or F2 (and
hence it is deterministic but inexact nonorthogonal state
discrimination).



In density matrix formulation, Bob’s unknown state is given by:

ρi =
2N∑
j=1

1
2N |φij〉〈φij | =

12N

2N , i = 1 or 2 (9)

where 1n is n × n identity matrix. Note that ρi represents the
state of a single copy of one of |φij〉s, j = 1,2, ...,2N , which Bob
has got, taking into consideration the probability (1/2N ) with
which he obtains it. ρi represents the state of an ensemble with
individual control, but not collective control. Mixedness of ρi
represents Bob’s ignorance about the single copy of the state
he has got. Hence it can be purified by selective projective
measurement unlike in nonselective ensemble measurement
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