Quantum States: A Pictorial Representation

You Qu

Young Quantum - 2017

February 27 - March 01, 2017

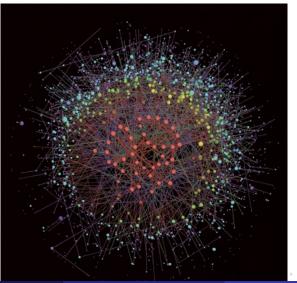
Harish-Chandra Research Institute, Allahabad, India

Supriyo Dutta

Department of Mathematics Indian Institute of Technology Jodhpur

Supriyo Dutta (IIT Jodhpur)

Combinatorial graph is the foundational stone of complex network



Friendship network is practically useful in everyday life.



Combinatorial graphs in quantum

Quantum graph [BK13]

Introduction to quantum graphs by G. Berkolaiko and P. Kuchment.

Continuous time quantum walk [Kon08]

"Quantum walks" by "N. Konno".

Quantum state transfer on graphs [God12]

"State transfer on graphs" by "Chris Godsil".

Quantum probability on graph [HO07]

"Quantum probability and spectral analysis of graphs" by "A. Hora, and "N. Obata".

Graph states: [HEB04]

"Multiparty entanglement in graph states" by Marc et.al.

1 How does a graph correspond a quantum state?

2 Can we represent unitary evolution graph-theoretically?

- How the structure of a graph may infer properties of the corresponding quantum states?
 - Entanglement and separability of a state
 - Quantum discord

How does a graph correspond a quantum state?

個 と く ヨ と く ヨ と

Adjacency matrix $A(G) = \overline{(a_{i,j})_{n \times n}}$

Usual definition of simple graph G [Bap14]

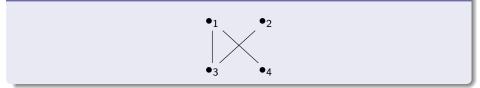
$$\mathsf{a}_{ij} = \begin{cases} 1 & \text{If } (i,j) \in E(G) \\ 0 & \text{if } (i,j) \notin E(G) \end{cases}$$

Degree matrix

Degree d_i of a vertex $i \in V$ is given by $d_i = \sum_{j=1}^n |a_{ij}|$ Degree matrix of a graph G is $D(G) = diag\{d_1, d_2 \dots d_n\}$.

Example

Consider the following graph



æ

イロト イヨト イヨト イヨト

Example

Consider the following graph

Adjacency matrix and degree matrix

$$A(G) = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}, D(G) = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Image: Image:

- 4 3 6 4 3 6

Laplacian and Signless Laplacian Matrix

Laplacian matrix of a graph is L(G) = D(G) - A(G). Signless Laplacian matrix of a graph is Q(G) = D(G) + A(G). [CS09]

(日) (同) (三) (三)

Laplacian and Signless Laplacian Matrix

Laplacian matrix of a graph is L(G) = D(G) - A(G). Signless Laplacian matrix of a graph is Q(G) = D(G) + A(G). [CS09]

Examples

$$L(G) = \begin{bmatrix} 2 & 0 & -1 & -1 \\ 0 & 1 & -1 & 0 \\ -1 & -1 & 2 & 0 \\ -1 & 0 & 0 & 1 \end{bmatrix}, Q(G) = \begin{bmatrix} 2 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 2 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$

Quantum states represented by Laplacian matrices [BGS06, ABAK17]

Density matrix generated by Laplacian matrix

$$\rho_I(G) = \frac{1}{\operatorname{trace}(L(G))} L(G).$$

Density matrix generated by signless Laplacian matrix

$$\rho_q(G) = \frac{1}{\operatorname{trace}(Q(G))}Q(G).$$

Quantum states represented by Laplacian matrices [BGS06, ABAK17]

Density matrix generated by Laplacian matrix

$$\rho_I(G) = \frac{1}{\operatorname{trace}(L(G))} L(G).$$

Density matrix generated by signless Laplacian matrix

$$\rho_q(G) = \frac{1}{\operatorname{trace}(Q(G))}Q(G).$$

Examples

$$\rho_{I}(G) = \frac{1}{6} \begin{bmatrix} 2 & 0 & -1 & -1 \\ 0 & 1 & -1 & 0 \\ -1 & -1 & 2 & 0 \\ -1 & 0 & 0 & 1 \end{bmatrix}, \rho_{q}(G) = \frac{1}{6} \begin{bmatrix} 2 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 2 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$

Supriyo Dutta (IIT Jodhpur)

Example: Bell states

٠

Representation with state vectors

$$|\phi
angle = rac{1}{\sqrt{2}}(|00
angle \pm |11
angle)$$

Supriyo Dutta (IIT Jodhpur)

æ

(日) (周) (三) (三)

Example: Bell states

.

Representation with state vectors

$$|\phi
angle = rac{1}{\sqrt{2}}(|00
angle \pm |11
angle)$$

Density matrix representation

$$\rho = \left|\phi\right\rangle \left\langle\phi\right| = \frac{1}{2} \begin{bmatrix} 1 & 0 & 0 & \pm 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \pm 1 & 0 & 0 & 1 \end{bmatrix}$$

Image: Image:

- **∢ ∃** ►

- ∢ ∃ ▶

Supriyo Dutta (IIT Jodhpur)

Example: Bell states

Representation with state vectors

$$|\phi
angle = rac{1}{\sqrt{2}}(|00
angle \pm |11
angle)$$

Density matrix representation

$$ho = \ket{\phi}ra{\phi} = rac{1}{2} egin{bmatrix} 1 & 0 & 0 & \pm 1 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \ \pm 1 & 0 & 0 & 1 \end{bmatrix}$$

Representation with graphs

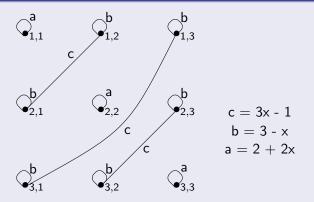
< 152 ▶

- This graph theoretic representation is beneficial to represent mixed quantum states.
- Corresponding to every graphs there is a quantum state.
- But, a general quantum state may not be represented as a density matrix corresponding to a graph.
- Density matrix corresponding to a graph is not unique.
- Different vertex labellings on a graph generates different quantum states.

- < A > < B > < B >

An example of a mixed state

Consider the following graph



It represents the Werner state

$$\rho_{x,3} = \frac{3-x}{3^3-3}I + \frac{3x-1}{3^3-3}F, \text{ where } F = \sum_{i=1}^{3} |i\rangle \langle j| \otimes |j\rangle \langle i|.$$

0

Supriyo Dutta (IIT Jodhpur)

Can we represent unitary evolutions graph theoretically?

伺下 イヨト イヨト

Three fundamentals of quantum computation [Fey82, D⁺00]

- Initialization of the system.
- Unitary evolution of the system
- Measurement with respect to a number of observables.

A number of questions regarding unitary operations of graph

Given two graphs G = (V(G), E(G)) and H = (V(H), E(H)) we have density matrices $\rho(G)$ and $\rho(H)$.

- When there exists a unitary operator U such that $\rho(H) = U^{\dagger}\rho(G)U$?
- When U is a local unitary operator?
- Given an unitary operator U and a graph G how to construct another graph H such that $\rho(H) = U^{\dagger}\rho(G)U$?

Graph Switching

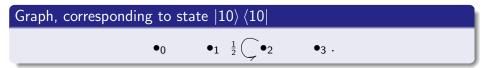
G = (V(G), E(G)) and H = (V(H), E(H)) are switching equivalent graphs if V(H) = V(G) and E(H) is constructed from E(G) after removing/adding some weighted edges and/or altering weights of the edges in G.

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト ・

$$|10
angle \xrightarrow{H_1} rac{1}{\sqrt{2}} (|00
angle - |10
angle) \xrightarrow{CNOT} rac{1}{\sqrt{2}} (|00
angle - |11
angle).$$

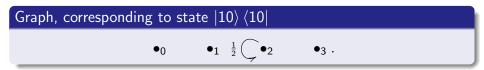
17 / 42

$$|10
angle \xrightarrow{H_1} rac{1}{\sqrt{2}} (|00
angle - |10
angle) \xrightarrow{CNOT} rac{1}{\sqrt{2}} (|00
angle - |11
angle).$$



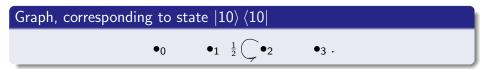
- 本間 と 本語 と 本語 と

$$|10
angle \xrightarrow{H_1} rac{1}{\sqrt{2}} (|00
angle - |10
angle) \xrightarrow{CNOT} rac{1}{\sqrt{2}} (|00
angle - |11
angle).$$

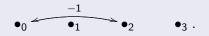


|本間 と 本語 と 本語 と

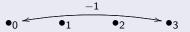
$$|10
angle \xrightarrow{H_1} rac{1}{\sqrt{2}} (|00
angle - |10
angle) \xrightarrow{CNOT} rac{1}{\sqrt{2}} (|00
angle - |11
angle).$$



Graph after completing Hadamard operation



Applying CNOT operation we get a graph representing $\frac{1}{\sqrt{2}}(|00\rangle-|11\rangle)$



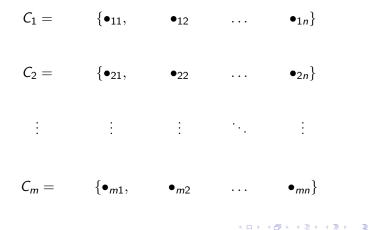
How structure of a graph may infer properties of the corresponding quantum states?

Quantum separability and entanglement

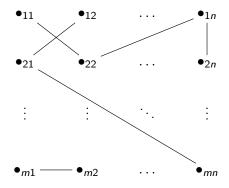
Supriyo Dutta (IIT Jodhpur)

Partition on the vertex set

Organize the $m \times n$ vertices into vertex clusters as follows.



Horizontal, vertical and tilled edges



Partition of the adjacency matrix into blocks

$$A(G) = \begin{bmatrix} A_{1,1} & A_{1,2} & \dots & A_{1,m} \\ A_{2,1} & A_{2,2} & \dots & A_{2,m} \\ \vdots & \vdots & \vdots & \vdots \\ A_{m,1} & A_{m,2} & \dots & A_{m,m} \end{bmatrix}$$

 $A_{i,j}$ are matrices of order $n \times n$, corresponds to C_i .

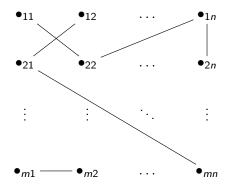
Partial transpose on $A(\overline{G})$ wrt second subsystem

$$A(G) = \begin{bmatrix} A_{1,1}^{t} & A_{1,2}^{t} & \dots & A_{1,m}^{t} \\ A_{2,1}^{t} & A_{2,2}^{t} & \dots & A_{2,m}^{t} \\ \vdots & \vdots & \vdots & \vdots \\ A_{m,1}^{t} & A_{m,2}^{t} & \dots & A_{m,m}^{t} \end{bmatrix}$$

イロト イヨト イヨト イヨト

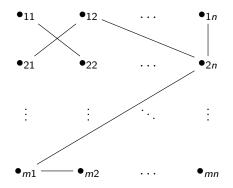
Partial transpose on graph [Wu06]

Modify the tilled edges only! Here is the original graph:



Partial transpose on graph [Wu06]

Modify the tilled edges only! Here is the graph after partial transpose:



Some examples of locally symmetric graph [DABS16]

Complete bipartite graph

A path of even order

- E > - E >

Some examples of locally symmetric graph [DABS16]

Complete bipartite graph

A path of even order

How to construct?

Tensor product of two graphs are locally symmetric.

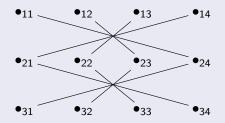
Supriyo Dutta (IIT Jodhpur)

Separability condition for general bipartite system [DABS16]

$\rho(G)$ is separable if the following holds

- There is no Horizontal edge.
- Either there is no edge between layers of C_i and C_j or pattern of edge distribution is same.
- Degree of all the vertices of a layer are equal.

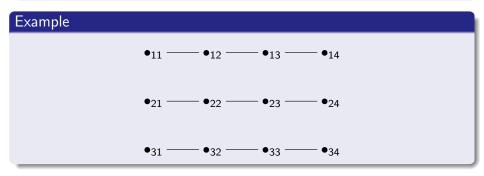
Example



Separability condition for general bipartite system [DABS16]

m copies of any graph taken together is separable

 $mG = G + G + \ldots G(m - \text{times})$. $\rho(mG)$ is a separable state in $\mathcal{H}^n \otimes \mathcal{H}^m$.



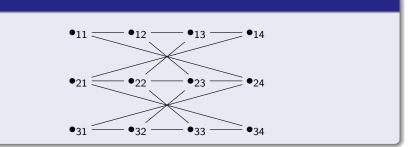
・ロト ・個ト ・ ヨト ・ ヨトー

Sufficient conditions for separability for general bipartite system [DABS16]

The following composition of two graphs is separable

H is a locally symmetric graph with *m* clusters representing a separable state. Graph $G \bowtie H$ is constructed by placing *m* different copies of *G* on *m* layers of *H*. Then the state related to $G \bowtie H$ is separable.

Example



How structure of a graph may infer properties of the corresponding quantum states?

Quantum discord

Supriyo Dutta (IIT Jodhpur)

Quantum discord of ρ acting on $\mathcal{H}^{(A)} \otimes \mathcal{H}^{(B)}$

$$\mathcal{D}_{\{k_B\}}(\rho) = S(\sum_{k} p_{k_B} S(\rho_{k_B})) - [S(\rho) - S(\rho_B)].$$

where, $p_{k_B} = \operatorname{trace}_A(\langle k_B | \rho | k_B \rangle).$

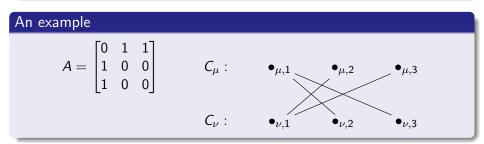
Pointer state [HWZ11]

$$\rho = \sum_{i} p_{i} \rho_{i}^{(a)} \otimes |k_{b}\rangle \langle k_{b}|.$$

|本間 と 本語 と 本語 と

Relationship with the block matrices and bipartite subgraphs

Adjacency matrix of a bipartite graph $A(\langle C_{\mu}, C_{\nu} \rangle) = \begin{bmatrix} 0 & A \\ A^{t} & 0 \end{bmatrix}$



イロン イ理 とく ヨン ト ヨン・

Graphical representation of commutative matrices [DAB17]

Commutative matrix

$$AB = BA$$

Graphical alternative

Let $G(A) = \langle C_{\mu}, C_{\nu} \rangle$ and $G(B) = \langle C_{\alpha}, C_{\beta} \rangle$, respectively. Then AB = BA if and only if,

$$\#(\mathsf{nbd}(v_{\mu i})\cap\mathsf{nbd}(v_{eta j}))=\#(\mathsf{nbd}(v_{
u j})\cap\mathsf{nbd}(v_{lpha i})).$$

Normal matrix

$$AA^{\dagger} = A^{\dagger}A$$

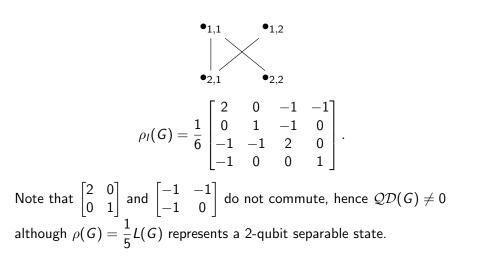
Graphical alternative

Let $A = [a_{ij}] \in \{0,1\}^{n \times n}$ and $G_A = \langle C_{\mu}, C_{\nu} \rangle$ be the bipartite graph corresponding to A. Then A is normal if and only if for every i and j with $1 \le i, j \le n$,

$$\#(\mathsf{nbd}(v_{\mu i}) \cap \mathsf{nbd}(v_{\mu j})) = \#(\mathsf{nbd}(v_{\nu i}) \cap \mathsf{nbd}(v_{\nu j})).$$

- Graph theoretic zero discord states can be identified by comparing the neighborhoods of the vertices.
- A measure of graph theoretic discord is constructed for all quantum states related to graphs.

Separable state with non-zero discord



<<u>□→ <</u>=→ <=→ ==

- Combinatorial properties are useful in the investigation of the properties of mixed quantum states.
- A model of quantum computation may be proposed with graphs.

· · · · · · · · ·

Bibhas Adhikari, Subhashish Banerjee, Satyabrata Adhikari, and Atul Kumar.

Laplacian matrices of weighted digraphs represented as quantum states.

Quantum information processing, 2017. doi: 10.1007/s11128-017-1530-1, arXiv: 1205.2747.

Ravindra B. Bapat.

Graphs and matrices.

Universitext. Springer, London; Hindustan Book Agency, New Delhi, second edition, 2014.

Samuel L Braunstein, Sibasish Ghosh, and Simone Severini. The laplacian of a graph as a density matrix: a basic combinatorial approach to separability of mixed states.

Annals of Combinatorics, 10(3):291–317, 2006.

< 注入 < 注入

- Gregory Berkolaiko and Peter Kuchment. Introduction to quantum graphs. Number 186. American Mathematical Soc., 2013.
- Dragoš Cvetković and Slobodan K Simić. Towards a spectral theory of graphs based on the signless laplacian, i. *Publications de l'Institut Mathmatique (Beograd)*, 85(99):19–33, 2009.
- David P DiVincenzo et al.

The physical implementation of quantum computation. *arXiv preprint quant-ph/0002077*, 2000.

Supriyo Dutta, Bibhas Adhikari, and Subhashish Banerjee.
 A graph theoretical approach to states and unitary operations.
 Quantum Information Processing, 15(5):2193–2212, 2016.

イロト イポト イヨト イヨト

- Supriyo Dutta, Bibhas Adhikari, and Subhashish Banerjee. Quantum discord of states arising from graphs. *arXiv preprint arXiv:1702.06360*, 2017.
- Supriyo Dutta, Bibhas Adhikari, Subhashish Banerjee, and R Srikanth. Bipartite separability and nonlocal quantum operations on graphs. *Physical Review A*, 94(1):012306, 2016.

Richard P Feynman.

Simulating physics with computers.

International journal of theoretical physics, 21(6/7):467–488, 1982.

Chris Godsil.

State transfer on graphs.

Discrete Mathematics, 312(1):129–147, 2012.

Marc Hein, Jens Eisert, and Hans J Briegel. Multiparty entanglement in graph states. *Physical Review A*, 69(6):062311, 2004.

Akihito Hora and Nobuaki Obata. *Quantum probability and spectral analysis of graphs.* Springer Science & Business Media, 2007.

Jie-Hui Huang, Lei Wang, and Shi-Yao Zhu. A new criterion for zero quantum discord. *New Journal of Physics*, 13(6):063045, 2011.

Norio Konno.

Lecture notes in mathematics.

In Quantum walks. 2008.

Douglas B. West.

Introduction to graph theory. Prentice Hall, Inc., Upper Saddle River, NJ, 1996.

Chai Wah Wu.

Conditions for separability in generalized laplacian matrices and diagonally dominant matrices as density matrices. *Physics Letters A*, 351(1):18–22, 2006.

- Dr. Subhashish Banerjee, Department of Physics, Indian Institute of Technology Jodhpur.
- Dr. Bibhas Adhikari, Department of Mathematics, Indian Institute of Technology Kharagpur.
- Dr. R. Srikanth, Poornaprajna Institute of Scientific Research, Bangalore.

Funding agencies

- "Graph theoretical aspects in quantum information processing" [Grant No. 25(0210)/13/EMR-II] funded by Council of Scientific and Industrial Research.
- Ministry of Human Resource Development via Indian Institute of Technology Jodhpur.

