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Combinatorial graph is the foundational stone of complex
network

Supriyo Dutta (IIT Jodhpur) 2 / 42



Friendship network is practically useful in everyday life.
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Combinatorial graphs in quantum

Quantum graph [BK13]

Introduction to quantum graphs by G. Berkolaiko and P. Kuchment.

Continuous time quantum walk [Kon08]

”Quantum walks” by ”N. Konno”.

Quantum state transfer on graphs [God12]

”State transfer on graphs” by ”Chris Godsil”.

Quantum probability on graph [HO07]

”Quantum probability and spectral analysis of graphs” by ”A. Hora, and
”N. Obata”.

Graph states: [HEB04]

”Multiparty entanglement in graph states” by Marc et.al.
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Problems to attempt

1 How does a graph correspond a quantum state?

2 Can we represent unitary evolution graph-theoretically?

3 How the structure of a graph may infer properties of the corresponding
quantum states?

Entanglement and separability of a state
Quantum discord
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Question 1:

How does a graph correspond a
quantum state?
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Matrices related to graphs [Wes96, Bap14]

Adjacency matrix A(G ) = (ai ,j)n×n

Usual definition of simple graph G [Bap14]

aij =

{
1 If (i , j) ∈ E (G )

0 if (i , j) /∈ E (G )

Degree matrix

Degree di of a vertex i ∈ V is given by di =
∑n

j=1 |aij |
Degree matrix of a graph G is D(G ) = diag{d1, d2 . . . dn}.
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Example

Consider the following graph

•1 •2

•3 •4

Adjacency matrix and degree matrix

A(G ) =


0 0 1 1
0 0 1 0
1 1 0 0
1 0 0 0

 ,D(G ) =


2 0 0 0
0 1 0 0
0 0 2 0
0 0 0 1


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Laplacian and signless Laplacian matrix

Laplacian and Signless Laplacian Matrix

Laplacian matrix of a graph is L(G ) = D(G )− A(G ).
Signless Laplacian matrix of a graph is Q(G ) = D(G ) + A(G ). [CS09]

Examples

L(G ) =


2 0 −1 −1
0 1 −1 0
−1 −1 2 0
−1 0 0 1

 ,Q(G ) =


2 0 1 1
0 1 1 0
1 1 2 0
1 0 0 1


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Quantum states represented by Laplacian matrices
[BGS06, ABAK17]

Density matrix generated by Laplacian matrix

ρl(G ) =
1

trace(L(G ))
L(G ).

Density matrix generated by signless Laplacian matrix

ρq(G ) =
1

trace(Q(G ))
Q(G ).

Examples

ρl(G ) =
1

6


2 0 −1 −1
0 1 −1 0
−1 −1 2 0
−1 0 0 1

 , ρq(G ) =
1

6


2 0 1 1
0 1 1 0
1 1 2 0
1 0 0 1


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Example: Bell states

Representation with state vectors

|φ〉 =
1√
2

(|00〉 ± |11〉)

.

Density matrix representation

ρ = |φ〉 〈φ| =
1

2


1 0 0 ±1
0 0 0 0
0 0 0 0
±1 0 0 1


Representation with graphs

•1
±1

,,•2 •3 •4rr
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Some remarks

This graph theoretic representation is beneficial to represent mixed
quantum states.

Corresponding to every graphs there is a quantum state.

But, a general quantum state may not be represented as a density
matrix corresponding to a graph.

Density matrix corresponding to a graph is not unique.

Different vertex labellings on a graph generates different quantum
states.
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An example of a mixed state

Consider the following graph

•1,1 •1,2 •1,3

•2,1 •2,2 •2,3

•3,1 •3,2 •3,3

a

a

a

b

b

b

b

b

b

c

c

c

a = 2 + 2x
b = 3 - x

c = 3x - 1

It represents the Werner state

ρx ,3 =
3− x

33 − 3
I +

3x − 1

33 − 3
F , where F =

3∑
i ,j=1

|i〉 〈j | ⊗ |j〉 〈i | .
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Question 2:

Can we represent unitary
evolutions graph theoretically?
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Why may it be important?

Three fundamentals of quantum computation [Fey82, D+00]

Initialization of the system.

Unitary evolution of the system

Measurement with respect to a number of observables.
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Graphs theoretic counterparts of quantum gates [DAB16]

A number of questions regarding unitary operations of graph

Given two graphs G = (V (G ),E (G )) and H = (V (H),E (H)) we have
density matrices ρ(G ) and ρ(H).

When there exists a unitary operator U such that ρ(H) = U†ρ(G )U?

When U is a local unitary operator?

Given an unitary operator U and a graph G how to construct another
graph H such that ρ(H) = U†ρ(G )U?

Graph Switching

G = (V (G ),E (G )) and H = (V (H),E (H)) are switching equivalent
graphs if V (H) = V (G ) and E (H) is constructed from E (G ) after
removing/adding some weighted edges and/or altering weights of the
edges in G .
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Graph theoretic procedure for generating Bell state

|10〉 H1−→ 1√
2

(|00〉 − |10〉) CNOT−−−−→ 1√
2

(|00〉 − |11〉).

Graph, corresponding to state |10〉 〈10|

•0 •1 •21
2 77 •3 .

Graph after completing Hadamard operation

•0
−1

++•1 •2ss •3 .

Applying CNOT operation we get a graph representing
1√
2
(|00〉 − |11〉)

•0
−1

,,•1 •2 •3rr
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Question 3.1:

How structure of a graph may infer
properties of the corresponding

quantum states?

Quantum separability and entanglement
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Partition on the vertex set

Organize the m × n vertices into vertex clusters as follows.

C1 = {•11, •12 . . . •1n}

C2 = {•21, •22 . . . •2n}

...
...

...
. . .

...

Cm = {•m1, •m2 . . . •mn}
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Classification on the edge set

Horizontal, vertical and tilled edges

•11 •12 . . . •1n

•21 •22 . . . •2n

...
...

. . .
...

•m1 •m2 . . . •mn
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Partial transpose on matrices

Partition of the adjacency matrix into blocks

A(G ) =


A1,1 A1,2 . . . A1,m

A2,1 A2,2 . . . A2,m
...

...
...

...
Am,1 Am,2 . . . Am,m

 ,
Ai ,j are matrices of order n × n, corresponds to Ci .

Partial transpose on A(G ) wrt second subsystem

A(G ) =


At
1,1 At

1,2 . . . At
1,m

At
2,1 At

2,2 . . . At
2,m

...
...

...
...

At
m,1 At

m,2 . . . At
m,m

 .
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Partial transpose on graph [Wu06]

Modify the tilled edges only! Here is the original graph:

•11 •12 . . . •1n

•21 •22 . . . •2n

...
...

. . .
...

•m1 •m2 . . . •mn
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Partial transpose on graph [Wu06]

Modify the tilled edges only! Here is the graph after partial transpose:

•11 •12 . . . •1n

•21 •22 . . . •2n

...
...

. . .
...

•m1 •m2 . . . •mn
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Some examples of locally symmetric graph [DABS16]

Complete bipartite graph

•1 •2 •3

•4 •5 •6

A path of even order

•1 •2 •3

•4 •5 •6

How to construct?

Tensor product of two graphs are locally symmetric.
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Separability condition for general bipartite system
[DABS16]

ρ(G ) is separable if the following holds

There is no Horizontal edge.

Either there is no edge between layers of Ci and Cj or pattern of edge
distribution is same.

Degree of all the vertices of a layer are equal.

Example

•11 •12 •13 •14

•21 •22 •23 •24

•31 •32 •33 •34
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Separability condition for general bipartite system
[DABS16]

m copies of any graph taken together is separable

mG = G +G + . . .G (m− times). ρ(mG ) is a separable state in Hn ⊗Hm.

Example

•11 •12 •13 •14

•21 •22 •23 •24

•31 •32 •33 •34
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Sufficient conditions for separability for general bipartite
system [DABS16]

The following composition of two graphs is separable

H is a locally symmetric graph with m clusters representing a separable
state. Graph G ./ H is constructed by placing m different copies of G on
m layers of H. Then the state related to G ./ H is separable.

Example

•11 •12 •13 •14

•21 •22 •23 •24

•31 •32 •33 •34
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Question 3.2:

How structure of a graph may infer
properties of the corresponding

quantum states?

Quantum discord
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Quantum discord and state with zero quantum discord

Quantum discord of ρ acting on H(A) ⊗H(B)

D{kB}(ρ) = S(
∑
k

pkBS(ρkB ))−
[
S(ρ)− S(ρB)

]
.

where, pkB = traceA(〈kB | ρ |kB〉).

Pointer state [HWZ11]

ρ =
∑
i

piρ
(a)
i ⊗ |kb〉 〈kb| .
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Relationship with the block matrices and bipartite
subgraphs

Adjacency matrix of a bipartite graph

A(〈Cµ,Cν〉) =

[
0 A
At 0

]

An example

A =

0 1 1
1 0 0
1 0 0

 Cµ : •µ,1 •µ,2 •µ,3

Cν : •ν,1 •ν,2 •ν,3
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Graphical representation of commutative matrices [DAB17]

Commutative matrix

AB = BA

Graphical alternative

Let G (A) = 〈Cµ,Cν〉 and G (B) = 〈Cα,Cβ〉, respectively. Then AB = BA
if and only if,

#(nbd(vµi ) ∩ nbd(vβj)) = #(nbd(vνj) ∩ nbd(vαi )).
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Graphical representation of Normal matrices [DAB17]

Normal matrix

AA† = A†A

Graphical alternative

Let A = [aij ] ∈ {0, 1}n×n and GA = 〈Cµ,Cν〉 be the bipartite graph
corresponding to A. Then A is normal if and only if for every i and j with
1 ≤ i , j ≤ n,

#(nbd(vµi ) ∩ nbd(vµj)) = #(nbd(vνi ) ∩ nbd(vνj)).
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Graph theoretical perspective to quantum discord [DAB17]

Graph theoretic zero discord states can be identified by comparing the
neighborhoods of the vertices.

A measure of graph theoretic discord is constructed for all quantum
states related to graphs.
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Separable state with non-zero discord

•1,1 •1,2

•2,1 •2,2

ρl(G ) =
1

6


2 0 −1 −1
0 1 −1 0
−1 −1 2 0
−1 0 0 1

 .
Note that

[
2 0
0 1

]
and

[
−1 −1
−1 0

]
do not commute, hence QD(G ) 6= 0

although ρ(G ) =
1

5
L(G ) represents a 2-qubit separable state.
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Significant concluding remarks

1 Combinatorial properties are useful in the investigation of the
properties of mixed quantum states.

2 A model of quantum computation may be proposed with graphs.
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