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Quantum Phase Transitions

e Zero-temperature transition: driven by quantum fluctuations

Paradigmatic model: Transverse Ising Model

H=—J, Z 00T — hZU,-Z

<ij>

Exactly solved in one dimension

For h/J, > 1, spins are all aligned in the z

(o¥) = 0; Paramagnetic

For h/J, < 1, cooperative term dominates
(0¥) # 0; Ferromagnetic

e Quantum phase transitions at A = h/J, — 1 =0.



Quantum Phase Transitions: Critical Exponents

e Notion of Universality:
Exponents depend on i) Symmetry ii) Dimensionality

e Diverging length Scale: ~ \™"
e Diverging time Scale: £, ~ &7
e Energy gap scales as \"?

e At the quantum critical point gap scales kZ.



QPT and Quantum Information theoretic Measures:

Concurrence, negativity, entanglement entropy ...

The Quantum fidelity: The modulus of overlap of the wave
function: Connected to....
e Scaling of the geometric phase near a QCP

e Sudden Quench of Small amplitude starting from a QCP
e Quantum Critical Environment and Loschmidt Echo

Quantum Discord
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The Quantum Fidelity

We consider the Hamiltonian

H(A) = Ho + AH;; - H(A)[¥o(A)) = Eolto(N))
where [1)g(\) is the ground state wave function.

e )\ is the driving term. The QCP is at A = 0.

eThe quantum fidelity: modulus of the overlap between two
grouns state corresponding to parameters A and A + §

F(X,6) = [(@o(A)[¢o(A + )]

e In the limit N — oo, the fidelity vanishes in the
thermodynamic limit. Anderson’s Orthogonality Catastrophe

e What happens for finite N7 Indicator of Quantum Criticality



Finite N and 6 — 0 limit: Fidelity Susceptibility

In this limit, one can express fidelity in the form

1
F(\d0)=1-— 552Ld><F(A)

The quantity xr = —% lims_.o "(‘S—QF = _fld%% is the fidelity
susceptibility.

e XF ~ X972 away from the QCP |\ << L.

e While at the QCP (& >> L): yp ~ L2/v=4.
Quantum Critical Scaling: vd > 2
Points to Note:

e The parameter § is factored out. xr depends on A only.
e The quantum fidelity is close to unity; Can not describe
Anderson’s Orthogonality Catastrophe
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Scaling of Fidelity Susceptibility close to a QCP

Using the perturbation expansion:

Z [(¥m (A) [Hiltho () ’2_
L 7o [Em(\) = B (VP
X F shows a scaling behavior with exponent given in terms of some

of the critical exponents.
Compare xr with the ground state specific heat density

1 8E |1/1m ’H/WJO()’
XE=~[a g =~ Z En(Y) ()

We note the difference in the denominator. Stronger divergence is
expected.

Close to a QCP: xg ~ |A|~® and the hyperscaling relation
2—a=v(d+z).



Verification for a transverse Ising Chain

We consider the transverse Ising Chain Hamiltonian

— X X z
H==> ofofi—hYy o
i i

QCP at h=h, =1, exponents v = z = 1.
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When does Fidelity suceptibility approach fail?

Recall the expansion

F(\6)=1- %52dep()\)
Close to the QCP:
XF(A 2 0) ~ [2/"=9 so that 62L9xF(\ ~ 0) ~ §2L%/¥
8117 <« 1, the fidelity susceptibility approach works!
SLY/7 > 1, one can not truncate the series at the order 62
Away from QCP, L952)¥9=2 > 1, one can not truncate

What about the other limit?



Fidelity in the thermodynamic limit

large N and ¢ small but finite: xfF approach is not useful.
Fidelity per site F(\, ) = limy_oo FY/N(X, 6) is finite.
Proposed Scaling Relation:

In F(\,8) ~ —L9]5|7 A (%)

Limiting situations
e At the QCP A =0, InF(A =0,6) ~ —L9|5|%.
Captures the ground state singularity
o || << A << 1, InF(\ )~ —L952\9v—2
Crossover to xr limit
o [§]"L << 1; xF ~ §2L%/v—d
o If LI2N 2 1, Fv1— 6219 p ~ 1 — L952)\9v—2
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How to arrive at the scaling realtion in the thermodynamic

limit ?

Fidelity per site: F(A+ 6, A —9) = —lim;_ /'L’T',:

The Scaling Ansatz
o F(A+68,\—08)=b"9f (\+38)b/¥ (X = §)bY).

e \ = cd and set the scale of renormalization |§|b'/" = 1:
e F(A+6,A—08) =16|%f(c+1,c—1).
e A\ =0 implies c = 0,In F(A = 0,0) ~ —L9|§|%

e For A\ #0, set (A + 6)b1/” =1, and expand the scaling
function.



Isolated Critical Points:

e For transverse Ising Spin Chain: One observes the crossover
to small size limit 6L << 1.

e Away from the QCP F(h,d) ~ exp(—L&%/16|)|); this
reduces to the fidelity susceptibility result in the when L finite
and § — 0.

e verified for massless Dirac fermions
Two dimensional Kitaev Model allows us to study

e Anistropic Quantum Critical Point

e Extended Gapless Region
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Kitaev Model on a honeycomb lattice
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H=3% (ag b}) HE<

i)
P K
HE = og ol + ﬁl? 0'2,
ap = 2[4 sin(k - My) — Jysin(k - My)],
By = 2[h+4h cos(k - My) + Jo cos(k - My)].
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Phase Diagram: Gapless Phase for |J; — | < J3 < (J1 + )
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Anisotropic Quantum Critical Point

Oé; = \/§(J2 — J]_)dkx + 3(.]1 + J2)dkya

2 2
3.3 3.3
B: = 4 ({dkx—zdky> + ({dkx+2dky> ,

oy varies linearly in one particular direction in the plane of
(dkx, dky ), while 3} varies quadratically in any direction.

e A: Anisotropic QCP d =2, m=1. y = 1/2and v, = 1.

Hickichi, Suzuki and Sengupta, Phys. Rev. B 82, 174305 (2010)



Anisotropic Quantum Critical Point

Phase Diagram: Gapless Phase for |J; — Jh| < J3 < (J1 + %)
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GAPLESS

GAPPED GAPPED

e Case I: One state in the gapped phase and other at the
gapless phase

e Case II: Both in the gapless phase

e Case Ill: Both in the gapped phase.



How to calculate the Fidelity:

Ground State: [W) = T[] {% (aj?— e'fx bj?) ( ag +i bg)] |D).

o 3 0T —6=
Ground State Fidelity: F2 = [, [(WF|W™)|? = ], cos? < sk >,

|WE) = [W(\ £ 6) with A = S50 — Js.

+ O‘;?t ot ﬁ%
cos 9/? ll=: and sin 0/? = —7,
K k

r—n/L pr—m/L a2
InF ~ 52L2/ / dkxdk, ——~—
w/L T os+



Generalized Scaling: AQCP

The QCP is characterized by two set of critical exponents: 1|, and
V.

S+ 0,4 —0) =L@

YO ) LY (= o)L

1/I/H

F((A+ 6)L |

(A =)L,
Rescaling L (L) to by (by) with (A+8)b"" = (A+ )b/ =1,

A—9
_ — I/Hm—f—ljl(d—m) s .
SN+ 86, —08) = (\+96) f(l,)\+6>

Expand in the limit, 6/\ — 0



Modified Scaling Relation

o At the critical point In F(8, —8) ~ —LmLI Mg imH(d=m.

eFor1>A>4, InF(J,—9) ~ _52L|'|77Lj’_*m)\l’\|m+(d—m)u—2

For the AQCP in the Kitaev model:

e A: Anisotropic QCP d =2, m=1. y = 1/2and v, =1.
e For \=J3 — J30=0, InF ~ 63212, Thermodynamic limit:
e Small system size limit: In F ~ —62L%xg(\ = 0) ~ —62L5/2

© A#0, InF(5,=8) ~ §2LTLL A2



One state in the gapped phase and other in the gapless
phase along the vertical line

;;;;;
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Fidelity
Thermodynamic Susceptibility
limit 6L >> 1 limit 0L << 1
InF ~ —§3/2]2 In F ~ —15%/252

The scaling behavior for both the limits is dictated by
the AQCP.

Crossover: §LY/VL = §L ~ 1.



Both states in the gapless phase: Surprise Emerges

Consider the limit §LY/¥L = §L > 1and A > L1/t
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o InF ~ —52L2X"1/2In A
e A\1/2 is the signature of the AQCP

e In A correction due to the fact that we are in the gapless
phase!



Both states in the gapless phase: Surprise Emerges

The other limit §LY/7L =§L < 1 and A > L~1/vL
1.110%
In Fj2 L

10*107

940"

810"}
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oInF ~ —82L22"12nLIn ),
e An additional In L correction term
e When \ < L~1/vL — [ =1 crossover to In F ~ L%/2,



Is it a thermodynamic to non-thermodynamic crossover?

Apparently yes

o for 6L >> 1, In F ~ L% Thermodynamic limit?
efordL << 1, InF~L2InL non-Thermodynamic limit?
e The crossover is dictated by §L1/¥1 ~ 1

e AQCP is the dominant critical point dictating the scaling
with X in the gapless phase.

But...

e one can not extend the derivation to arrive at the scaling to
the gapless phase!!

e Scaling with § is identical.

At the moment the situation is murky.



Inside the gapped phase

A < 0 and choose A > L™t and A > §

InF ~ _62Ld)\l/”m+IJL(d—m)—2 ~ 62L2)\_1/2,

It is the same as the scaling of the fidelity susceptibility!

When A\ < [~ — L1 crossover to In F ~ 15/2



Concluding Comments

e Fidelity: Indicator of Quantum Criticality

e Small size and § — 0 limit: Fidelity Susceptibility xr
e Displays quantum critical scaling with critical exponents
e Thermodynamic limit; Large N, finite

e Scaling with 6 near QCP and AQCP
o Crosses over to small size limit

e There is possibly a crossover even in the gapless phase!



