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Main thread of earlier work: 

 

1) Einstein Locality is strictly valid in nature, even in those phenomena  involving 

several particles that share a common past of interactions. 

 

2) All correlations observed  by  measurement  with spatially separated (or any)  

detectors  can be understood as due to local correlations set up at the source of 

multiple particles (point of interaction) and encoded  as a fixed relative phase on 

the different particles . (2000-2002) 

 

3) While classical correlations obey Einstein locality by encoding  on dynamical 

variables (energy, momentum etc.) quantum correlations are encoded on  

phases induced by the dynamical variables, at source. What is encoded is 

simply a conservation law, in both cases. (2005-06) 

 

4) Quantum correlation functions are direct consequence of a fundamental 

conservation law or a constraint  applicable on the average over the ensemble 

of systems – therefore,  a theory of correlations   with a different correlation 

function (LHVT, super-correlations etc.) are incompatible with conservation laws 

and are physically invalid theories. 
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Plan: 

 

Demonstrate explicitly how quantum correlations result due to prior encoding  of a 

conservation law at source, obeying strict Einstein locality. 

 

  

Start from a situation of „multi-detector correlations‟ in classical optics  - the Hanbury 

Brown-Twiss interferometer -  to see the origin of „fringes‟ and coherence. Strict 

Einstein locality is valid in this case , being classical wave phenomena. 

 

Show how exactly the same considerations give rise to „correlation fringes‟  when the 

system is „quantum mechanical‟ .   

 

Explain how individual measurements give random results and a spatially separated 

multi-point measurement returns a perfect correlation without violating Einstein 

locality.    
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The case of two „spin-half‟ particles: 

a b

S = 0

A B

 1 2 1 2

1
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S      
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N
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Quantum Mechanics: ( , ) cosP a b a b     

Important input 
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Bell‟s scheme of trying to get correlations local realistically: 

a b 

Outcome: Sign( ) and Sign( )a b  

This  prescription will  reproduce P(a,b) for some angles, and the perfect 

correlation at zero relative angle.  But, this does not reproduce the QM 

correlation.   

2 2( , ), ( , ) : 1A A a B B b A B    
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correlation

angle

0

-1

1 2( , )QM S sP a b a b a b         

( , ) ( , ) ( , ) ( )BellP a b A a h B b h h dh 
The essence of Bell‟s theorem is that these two correlation functions have 

distinctly different dependences on the angle between the settings of the 

apparatus (difference of about 30% at specific angles). 
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So, what does the experimental confirmation of the violation of Bell‟s inequality 

imply as valid theoretical statements that are logically rigorous? 

 

 

1) Quantum mechanics is validated as a good theory of correlations… 

 

2) OR…a classical hidden variable theory in which statistically distributed valued 

of the HV determine measurement outcomes is validated as a good theory of 

correlations  to replace QM  provided there is violation of Einstein locality. 

The  common mistake is to mix the two and claim that experiments prove nonlocality or 

that Experiments prove QM is nonlocal !  

Correlations measured in experiments do exceed the bound specified for 

LHVTs and they agree well with QM predictions.  
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EPR argument as described by Einstein? 
Excerpts from Einstein‟s letter to Popper  

 

“Should we regard the wave-function whose time dependent changes are, according to 

Schrödinger equation, deterministic, as a complete description of physical reality,…? 

The answer at which we arrive is the wave-function should not be regarded as a complete 

description of the physical state of the system. 

We consider a composite system, consisting of the partial systems A and B which interact for 

a short time only. 

We assume that we know the wave-function of the composite system before the interaction 

– a collision of two free particles, for example – has taken place. Then Schrodinger 

equation will give us the wave-function for the composite system after the interaction. 

Assume that now (after the interaction) an optimal measurement is carried out upon the partial 

system A, which may be done in various ways, however depending on the variables which one 

wants to measure precisely – for example, the momentum or the position co-ordinate. Quantum 

mechanics will then give us the wave-function for the partial system B, and it will give us 

various wave-functions that differ, according to the kind of measurement which we have chosen 

to carry out upon A.  
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Now it is unreasonable to assume that the physical state of B may depend upon 

some measurement carried out upon a system A which by now is separated from 

B (so that it no longer interacts with B); and this means that the two different 

wave-functions belong to one and the same physical state of B. Since a complete 

description of a physical state must necessarily be an unambiguous description 

(apart from superficialities such as units, choice of the co-ordinates etc.) it is 

therefore not possible to regard the wave-function as the complete description of 

the state of the system.” 

Anything beyond this in the EPR Phys. Rev. paper is superfluous and irrelevant 

as far as Einstein‟s point is concerned. No statement of violation of uncertainty 

relation. The validity of QM and superposition  is assumed for the proof. 

 

In particular there is no reference or wish regarding a possible completion of QM 

using some classical statistical hidden variables.  

In condensed form, the argument is just that locality implies no instant change in a 

physical  state possible after the particle is spatially separated whereas QM implies 

instant changes in the description of the physical state. Therefore it is not a 

complete  unambiguous description. 
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Simultaneous definite values for quantum mechanically non-commuting 

observables 

 

 

Clearly not part of a program to complete QM by adding additional features 

to QM. 

 

A physically correct program of completing QM should never have 

simultaneous values for „conjugate‟ observables before measurement – that 

is not consistent with even basic wave-particle duality.   

( , ) ( ) ( , ) ( , ), ( ) 1
B

P a b h dh A a h B b h h dh   
Since ( ) ( ) and ( , ) 1,   Bell wrote

( , ) ( ) ( , ) ( , )
B

BA a B a P a a

P a b h dh A a h A b h

   

 

CSU, Proc. SPIE Photonics 2007 
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Quantum correlations and Classical Conservation Laws 

Assumption: Fundamental conservation laws related to space-time symmetries 

are valid on the average over the quantum ensemble and measurements are 

made  with finite number of discrete outcomes.  (conservation  check  is not 

possible event-wise) 

 

Result:  Unique two-particle and multi-particle correlation  functions can be derived 

from the assumption of validity of conservation laws alone. Interestingly, they are 

identical  to the ones derived using formal quantum mechanics with appropriate 

operators and states.   

 

 

CSU,  Europhys. Lett, 2005, Pramana-J.Phys (2006) 
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1) Correlation functions of quantum mechanics are direct consequence of the 

CLASSICAL conservation laws arising in space-time symmetries (fundamental 

conservation laws), applied to ensembles.  

 

2) Any theory that has a correlation function different from the ones in QM is 

incompatible with the fundamental conservation laws and space-time symmetries, 

and therefore it is unphysical. Local hidden variable theories fall in this class. 

Bell‟s inequalities can be obeyed (in the general case) only by violating a 

fundamental conservation law, making them redundant in physics. 

 

CSU,  Europhys. Lett, 2006, Pramana-J.Phys (2006) 

1) No less, no more 

 

2) Closing loopholes will improve agreement with QM!  

  (better tally with conservation principle) 
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1) No experiment to date  proves   violation of Einstein locality 

 

2) Quantum correlations functions are direct consequence of conservation 

laws applicable at source ,  just as in the case of classical correlations. 

 

Now I  proceed to demonstrate that the observed correlations of microscopic  

physical systems (like the spin-1/2 singlet in QM) are realized in nature 

preserving strictly Einstein locality. 
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My approach to address the issues  (2000-2004): 

 

1) Notice that conservation constraints and wave-particle duality hold the key. 

 

2) Notice that the conservation constraint directly reflects as a phase constraint  

for multi-particle systems 

The assertion was that a local phase constraint (relative phase being fixed, while 

individual  phases are random)  at the source or interaction point determines the 

correlations, and that Einstein locality is preserved.  

 

Unnikrishnan,  Current Science (2000), Found. Phys. Lett 15, 1-25 (2002), 

Ann. Fondation L. de Broglie (2002)… 

1 2 1 1 2 2Conservation law: 0 exp ( )
i

p p p x p x   
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Bell‟s scheme of trying to get correlations local realistically: 

a b 

Outcome: Sign( ) and Sign( )a b  

1 2 1 1 2 2Contrast with conservation law: s 0 exp ( )
i

s s s    
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a b 

Outcomes: A=( ) and B=( )a b   

Correlations with Einstein locality  

Correlation: ( ) ( )a b


   

( ) 1, ( ) 0d     

2 2( , ), ( , ) : 1A A a B B b A B    

2 2( ) ( ) 1a b    

End of Several Quantum Mysteries, C. S. Unnikrishnan, arXiv:1102.1187 
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How is it possible to get correlations  that vary as cos(theta) between 

spatially separated measurements, which by themselves are totally 

random  between different realizations, with strict Einstein locality? 

No phase information retained in local individual measurements and no 

stable phase in the physical system, and yet, there is a coherent correlation.  
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Hanbury Brown – Twiss Interferometry  

(2)Second Order  or Intensity-Intensity Correlator ( 1, 2)g x x

1 2(2)

1 2

( 1) ( 2)
( 1, 2) 1

( 1) ( 2)

I x I x
g x x

I x I x
 

Random photocurrents in individual detectors, but perfect correlations possible 

in the averaged product. Indeed, this is a two-photon correlation when the 

detectors are single photon sensitive. 

< > 

*

1 1iI E E

*

2 2 2I E E

2iI I
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The physics content of HBT correlations: 

 

1) Spectral content of the source is directly related to Intensity fluctuations 

 

2) If  light from a spatially coherent region of the source is sampled by two 

squaring detectors (Intensity) they will detect the same fluctuations sampled  

at different times determined by the separation of the detectors. In particular 

they detect the same fluctuations with zero time delay.  So, perfect correlation 

while individual intensity fluctuations are random. 

 

3) The first order interference visibility (square)  is related to the Intensity-

Intensity correlation.  There are interference fringes in I-I correlations. 



Nonlocality…HBT Vantage HRI –  February 2012 

< > 

*

1 1iI E E

*

2 2 2I E E

2iI I
2iI I

2iI I

1 2x x

V

1 2x x



Nonlocality…HBT Vantage HRI –  February 2012 

S1 

S2 

D1 

D2 

11 1 21 2

1

ikr i ikr i

DE ae be   

12 1 22 2

2

ikr i ikr i

DE ae be   

2 2 * ( ) * ( )

1

ik r ik r

DI a b a be ab e        

2 2

1 2D DI I a b  

4 4 2 2

1 2 1 22 (1 cos ( ))D DI I a b a b k r r     



Nonlocality…HBT Vantage HRI –  February 2012 

2 2
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Maximum Visibility =50% 
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S1 

S2 

D1 

D2 

Component Fundamental Processes: 

S1 

S2 

D1 

D2 
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D2 
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Clearly, local restriction on source that 

remove these two will give 100% visibility 

in Int-Int correlations! 
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Now I apply these ideas to quantum correlations: 

x1 
x 

x2 

1) No single photon fringes on S1 and S2, when x1 and x2 are scanned. 

 

2) Two-photon Correlations  (fringes)  as  (x1-x2) is varied, with 100% visibility 

 

3) If source is made very small, the situation reverses. 
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x1 
x 

x2 

In this case, out of the 4 fundamental processes , each of which respect Einstein 

locality, only two can operate BECAUSE the conservation law imposes a correlation 

right at source (oppositely directed momenta).  Therefore,  correlations exceed 

classical bound, and there is 100% visibility (maximal violation).  
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Now this local causal analysis  can be applied to spin-singlet and similar cases 

x1 
x 

x2 

a b 
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a b 
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Summary of Results Discussed: 

 

1) Brown Twiss correlations in classical optics respects Einstein locality. 

 

2) Fundamental restrictions on the source due to conservation requirements 

can increase the HBT two-particle  correlations  beyond the classical bound, 

up to 100% visibility.  Einstein locality continues to be valid. 

 

3) Exactly same thing happens in two particle correlations of entangled 

systems. The correlation is the result of the product of two local amplitudes 

with random phases, with all phases contributing simultaneously . 

 

4) This results in correlation that depends on the cosine of the difference in the 

settings of the measurement apparatus, all obeying Einstein locality. The 

entire phase information is at the source and no nonlocal effects are 

required. 

We have demonstrated  how quantum correlations arise from conservation 

constraint encoded a priori in relative phases at source.  The „hidden variable‟ 

was hiding in the theory itself – the correlated  random phases reflecting the 

nature of  the source.  Einstein locality is strictly valid in quantum correlations. 
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The trio, EPR, argued that the outcome of a measurement on any physical 

system is determined prior to and independent of the measurement 

(realism) and that the outcome cannot depend on any actions in space-like 

separated regions (Einstein's locality). They used the perfect correlations of 

entangled states (thus often called EPR states) to define  elements of reality, a 

notion which according to them was missing in quantum theory.  

 

Elements of reality are deterministic predictions for a measurement result, which 

can be established without actually performing the measurement, and without 

physically disturbing the (sub- )system to which they pertain. As elements of 

reality in the studied case were argued to exist necessarily even for pairs of non-

commuting observables, they claimed they are contradicting the Heisenberg 

uncertainty relation. 


