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Introduction: Why dynamics 

1. Progress with experiments: ultracold atoms can be used to study dynamics of  
       closed interacting quantum systems. 
 
2. Finding systematic ways of understanding dynamics of model systems and  
       understanding its relation with dynamics of more complex models: concepts  
       of universality out of equilibrium?  
 
3. Understanding similarities and differences of different ways of taking systems 
       out of equilibrium: reservoir versus closed dynamics and protocol dependence.  
 
4.    Key questions to be answered:  
        
       What is universal in the dynamics of a system following a quantum quench ? 
         
       What are the characteristics of the asymptotic, steady state reached after a  
       quench ? When is it thermal ? 



Nearly adiabatic dynamics: Scaling  
laws for  defect production 



Landau-Zenner dynamics in two-level systems 

Consider a generic time-dependent  
Hamiltonian for a two level system 

The instantaneous energy levels 
have an avoided level crossing at 
t=0, where the diagonal terms vanish.  

The dynamics of the system  
can be exactly solved. 

The probability of the system to 
make a transition to the excited state 
of the final Hamiltonian starting from 
The ground state of the initial  
Hamiltonian can be exactly computed 



Defect production and quench dynamics 

Kibble and Zurek: Quenching a system across a thermal phase  
transition: Defect production in early universe.  

Ideas can be carried over to T=0  
quantum phase transition. The  
variation of a system parameter  
           which takes the system 
across a quantum critical point 
at  

QCP 

The simplest model to demonstrate 
such defect production is  
 

Describes many well-known 
1D and 2D models. 

For adiabatic evolution, the  
system would stay in the 
ground states of the phases  
on both sides of the critical 
point. 



 Jordan-Wigner transformation: 

 

 

 

 

 

 

 

 

 

Hamiltonian in term of the fermions: [J=1] 
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Specific Example: Ising model in transverse field 

Spin Hamiltonian  
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Defect formation occurs mostly between a finite interval near the 
quantum critical point.  

Impulse region 

Adiabatic 
region 
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Exactly solvable problem:  
A Landau-Zenner problem  
for each k 

The probability to end up in  
the excited state after the  
time evolution: 

    k

k

pdk kpn
Density of defects: sum probabilities 
over all k modes 

For slow enough dynamics or large enough  
quench time, the maximum contribution to  
the defect density comes around k=0.  

Scaling of defect density 



Generic critical points: A phase space argument 

The system enters the impulse region when 
rate of change  of the gap is the same order 
as the square of the gap.  

For slow dynamics, the impulse region is a  
small region near the critical point where 
scaling works 

The system thus spends a time T  
in the impulse region which 
depends on the quench time  

In this region, the energy gap scales as  

Thus the scaling law for the defect density turns out to be 



Moving through a gapless line: Kitaev model 



Kitaev Model in d=2 

Jordan-Wigner  
transformation 

a and b represents Majorana  
Fermions living at the end  
sites of the vertical bonds  
of the lattice.  

Dn is independent of a 
and b and hence  
commutes with HF:  
Special property of  
the Kitaev model 

Ground state 
corresponds to 
Dn=1 on all links. 



Solution in momentum space 

z z 
3J 3J

Off-diagonal  
element 

Diagonal 
element 



J1 J2 

Quenching J3 linearly  
takes the system  
through a critical line in  
parameter space and  
hence through the line  
 
 
in momentum space.  
 
 

In general a quench of d dimensional  
system can take the system through a  
d-m dimensional gapless surface  in  
momentum space. 
 
For Kitaev model: d=2, m=1 
 
For quench through critical point: m=d 

Gapless phase when J3 lies  
between(J1+J2) and |J1-J2|. The  
bands touch each other at  
special points in the Brillouin  
zone whose location depend  
on values of Ji s.   

Question: How would the defect density scale with quench rate? 

J3 



Defect density for the Kitaev model 

Solve the Landau-Zenner problem corresponding  
to HF  by taking   

For slow quench, contribution to nd  
comes from momenta near the line                                                   .  

For the general case where quench of d 
dimensional system can take the system 
through a d-m dimensional 
gapless surface with z=    =1 

It can be shown that if the surface  
has arbitrary dynamical and correlation  
length  exponents , then the  defect density  
scales as  

Generalization of Polkovnikov’s result for critical surfaces Phys. Rev. Lett. 100, 077204 (2008) 



Correlation functions in the Kitaev model 

The non-trivial correlation as a  
function of spatial distance  
r is given in terms of Majorana 
fermion operators 

For the Kitaev model 

Plot of the defect correlation  
function  sans the delta function  
peak for J1=J  and  Jt =5 as a  
function of J2=J. Note the change  
in the anisotropy direction as a  
function of J2. 

Only non-trivial correlation function   
of the model 



Non-integrable systems: a specific case study 



Dynamics of the Bose-Hubbard model Bloch 2001 

Transition described by the  
Bose-Hubbard model: 



Mott-Superfluid transition:  preliminary analysis 

Mott state with 1 boson per site 

Stable ground state for 0 < m < U 

Adding a particle to the Mott state 
Mott state is destabilized when  
the excitation energy touches 0. 

Removing a particle from the Mott state 

Destabilization of the Mott state via addition  of particles/hole: onset of superfluidity 



Beyond this simple picture 

Higher order energy calculation 
by Freericks and Monien: Inclusion 
of up to O(t3/U3) virtual processes. 

Mean-field theory (Fisher 89,  
Seshadri 93) 

Phase diagram for n=1 and d=3 

MFT 

O(t2/U2) theories 

Predicts a quantum phase  
transition with z=2 (except at 
the tip of the Mott lobe where  
z=1). 

Mott 

Superfluid 

Quantum Monte Carlo studies for  
2D & 3D systems: Trivedi and Krauth, 
B. Sansone-Capponegro  

No method for studying dynamics beyond mean-field theory 



Distinguishing between hopping processes 

Distinguish between two  types of hopping processes  
using a projection operator  technique 

Define a projection operator  

Divide the hopping to classes (b) and  (c) 

Mott state 



Building fluctuations over MFT 

Design a transformation which eliminate hopping 
processes of class (b) perturbatively in J/U.  

Obtain the effective Hamiltonian 

Use the effective Hamiltonian  
to compute the ground state  
energy and hence the phase  
diagram 



Equilibrium phase diagram  

Reproduction of the phase  diagram with remarkable accuracy in d=3: much better 
than standard mean-field or strong coupling expansion in d=2 and 3.  

Allows for straightforward generalization for treatment of dynamics 



Non-equilibrium dynamics 

Consider a linear ramp of J(t)=Ji +(Jf - Ji) t/t.  
For dynamics, one needs to solve the Sch. Eq. 

Make a time dependent transformation  
to address the dynamics by projecting on 
the instantaneous low-energy sector.  
 
The method provides an accurate description 
of the ramp if J(t)/U <<1 and hence can  
treat slow and fast ramps at equal footing.   

Takes care of particle/hole production  
due to finite ramp rate  



Absence of critical scaling: may  
be understood as the inability of  
the system to access the critical 
(k=0) modes.  

Fast quench from the Mott to the SF  
phase; study of superfluid dynamics. 
 
Single frequency pattern near the critical  
Point; more complicated deeper in the SF 
phase.  
 
Strong quantum fluctuations near the QCP; 
justification of going beyond mft. 



Entanglement generation 



Entanglement generation in transverse field anisotropic XY model 

Quench the magnetic field h from  
large negative to large positive values. PM PM FM 

h 

One can compute all correlation functions for this dynamics in this model. (Cherng and Levitov). 

1 -1 

No non-trivial correlation between  
the odd neighbors. 

What’s the bipartite entanglement generated  
due to the quench between spins at i and i+n? 

Single-site entanglement:  
the linear entropy or the  
Single site concurrence 

Finite for all 
finite  non-zero 
quench rate 



Measures of bipartite entanglement in spin ½ systems 

Concurrence Negativity (Hill and Wootters) (Peres) 

Consider a wave function for two spins  
and its spin-flipped counterpart 

C is 1 for singlet and 0 for separable states 
Could be a measure of entanglement 

Use this idea to get a measure for mixed state  
of two spins : need to use density matrices 

Consider a mixed state of two  
spin ½  particles and write the  
density matrix for the state. 

Take partial transpose with respect 
to one of the spins and check for  
negative eigenvalues. 

Note: For separable density matrices, 
negativity is zero by construction 



Steps: 
1. Compute the two-body density matrix 

2. Compute concurrence and  
negativity as measures of two-site 
entanglement from this density matrix 



 Properties of bipartite entanglement 

a.    Finite only between even neighbors 
 
b.   Requires  a critical quench rate above which 
       it is zero.  
 
 
c. Ratio of entanglement between even  
       neighbors can be tuned by tuning the quench  
       rate. 
 
d. The entanglement necessarily involves N>2 spins 
        for sufficiently fast quench rates.  
 
e. Analogous study for the 2D Kitaev model shows 
       that the bipartite entanglement vanishes for  
       any quench rate.  

Results 


