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Description of Quantum Entanglement

I Description of quantum correlations in finite-dimensional composite quantum
systems in terms of (differential, symplectic) geometry rather than linear algebra

I Problem 1: Construction of entanglement measures

I Problem 2: Local transformations (transforming a state of the total to another by
means of local operations)

I Problem 3: States with symmetries: symmetric ("bosons"), antisymmetric
("fermions") where the Hilbert space is not the full tensor product but rather a
subspace of states with the given symmetry



Symplectic geometry and classical mechanics
I Dynamics
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I Flow (classical dynamics in the phase space M)

M 3 x 7→ φH
t (x) =: x(t) ∈ M

I Hamilton function
H : M → R

I Vector field (tangent to trajectories in the phase space = "velocity" in M)

XH(x) =
d
dt
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Symplectic geometry and classical mechanics

I (M, ω) - symplectic manifold,

I dω = 0, ω - nondegenerate

I To find XH for a given H we need ω:

dH = ω(XH , ·)

I Dynamics (flow)
d
dt

x(t) = XH(x(t))

I The Poisson bracket of two functions F,G on M

{F,G} = ω(XF,XG) = XF(G)



Symplectic group actions
I K – (compact, semisimple) Lie group + symplectic action on M

(i.e. preserves the symplectic form ω = "canonical transformation")

K × M 3 (g, x) 7→ Φg(x) ∈ M, Φg1g2 = Φg1 (Φg2 (x)), Φ
∗
g ω = ω

I k – Lie algebra of K
I Let ξ ∈ k, then
• exp tξ – a one parameter subgroup of K
• Φexp tξ – a one parameter group of symplectomorphisms ("canonical transformations") of M

I Define a fundamental vector field ξ̂ (= tangent to Φexp tξ(x)atx)

ξ̂(x) =
d
dt
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I Is there a Hamilton function corresponding to the obtained vector field?



Symplectic group actions

I The answer is "yes"
I Locally there exists a Hamilton function µξ : M → R for ξ̂, i.e.

dµξ(·) = ω(ξ̂, ·)

I This function can be chosen to be linear in ξ, i.e.

µξ(x) = 〈µ(x), ξ〉, µ(x) ∈ k∗,

where k∗ is the space dual to the Lie algebra k, i.e. the (linear) space of all linear
functions on k (remember k is a vector space), and 〈 , 〉 is the pairing between k
and k∗.

I In this way we obtain a map µ : M → k∗.

M 3 x 7→ µ(x) ∈ k∗

called the moment (or momentum) map



Coadjoint action. Symplectic structure on coadjoint orbits

I The group K acts in a natural way on its algebra k

AdgX = gXg−1
.

I The coadjoint action Ad∗g on k∗ is the dual one

〈Ad∗g α, X〉 = 〈α,Adg−1 X〉 = 〈α, g−1Xg〉,

I Coadjoint orbits Ωα = {Ad∗g α, g ∈ K}, are symplectic manifolds

I The symplectic form ω at β ∈ Ωα is

ω(X̃, Ỹ)(β) = 〈β, [X, Y]〉

where X̃ is the fundamental vector field of the coadjoint action Ad∗exp tXβ by the one-parameter
group exp tX

X̃(β) :=
d
dt
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I µ can be chosen equivariant with respect to the coadjoint action of K, i.e.

µ (Φg(x)) = Ad∗g µ(x),



Geometric Structure



Orbits of group actions and the moment map
I Two symplectic structures connected by the moment map:

I on M
I on coadjoint orbits

I An orbit Ox of K action on M is mapped onto a coadjoint orbit Ωµ(x) w k∗ via
momentum map µ.
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Orbits of group actions and the moment map
I In general, however, it is not a diffeomorphism between Ox and Ωµ(x).

I There exist two interesting subgroups of K to consider

I stabilizer of the points on the orbit of the action on M (i.e. a subgroup which does not
move them), Stab(x)

I stabilizer of the elements of the coadjoint action on the corresponding coadjoint orbit,
Stab(µ(x))

I An orbit Ox on M is diffeomorphic to the corresponding coadjoint orbit Ωµ(x) iff
both stabilizers are equal.

I If this is the case the orbit on M is symplectic (since the corresponding coadjoint
orbit is), i.e. the symplectic form on M restricted to this orbit is nondegenerate
(Kostant-Sternberg).

I Otherwise the orbit Ox is not symplectic, the symplectic form is degenerate and
the dimension of the degeneracy can be a useful characterization of orbits.

D(x) = dim(Ox)− dim(Ωµ(x)) = dim(Stab(µ(x)))− dim(Stab(x))

I In general coadjoint orbits encode only partial information about orbits in M.



Quantum mechanics

I Pure states - points in the projective space P(H), where H - underlying Hilbert
space

I The projective space M = P(H) is a symplectic manifold

I Any vector from T[v]P(H) (tangent space at the point [v]) can be written as [Av], where
A ∈ su(H) and

ω([Av], [Bv]) = −
i〈[A , B]v|v〉

2〈v|v〉

I The unitary group SU(H) acts on M = P(H) preserving ω.

I The moment map for this action

µ
(
[v]
)
(X) = −

i
2
〈v|X|v〉
〈v|v〉

,



Quantum mechanics. Separable and entangled states

I Composite (L-partite) systems

Hc = H1 ⊗ · · · ⊗ HL

(for simplicity, let’s assume all Hi are the same, say H ' CN )
I Quantum state is separable (not entangled) iff it is simple tensor

v = v1 ⊗ v2 · · · ⊗ vL, vj ∈ Hj

otherwise it is entangled.

I Separability (entanglement) of states is invariant under the direct product (local
unitary operations)

K = SU(N)× · · · × SU(N)

I Using our machinery we can attack some interesting problems
I How the degeneracy of the symplectic form of an orbit is connected with entanglement

properties of the states on it?
I How to check that two states are locally unitary equivalent (i.e., they belong to the same

orbit of K)
I How to define quantum correlations if there is no tensor product structure

(indistinguishable particles)



Geometric structure - Quantum Entanglement



Two-partite systems

I Hilbert space H = CN ⊗ CN with the natural action of K = SU(N)× SU(N),
k = SpanR{X1 ⊗ I, I ⊗ X2}, where X1, X2 ∈ su(N)

I Quantum state |Ψ〉

|Ψ〉 =
N∑

i,j=1

Cij|i〉 ⊗ |j〉, Cij ∈ C.

can be transformed by the K-action to the canonical (’Schmidt’) form

|u〉 =
∑

i

λi|i〉 ⊗ |i〉

I Let mi = the multiplicity of distinct λi, and m0 corresponds to λ0 = 0
I Dimension of degeneracy

D(|Ψ〉) = dim(O|Ψ〉)− dim(µ(O|Ψ〉)) =
r∑

n=1

m2
n − 1.

I Separable states form the only symplectic orbit D(|Ψ〉) = 0

I The degree of degeneracy is a well defined entanglement measure



Maximally entangled state

I Maximally entangled state

|Ψ〉 =
1
√

N

N∑
i=1

|i〉 ⊗ |i〉.

I The restriction of symplectic form ω to O|Ψ〉 is zero and

dimO|Ψ〉 =
1
2

dimP(H)

I The orbit through the maximally entangled state is lagrangian (maximally
"non-symplectic")



Symplectic geometry of entanglement - many particles

I L-particles, H = CN ⊗ . . .⊗ CN , K = SU(N)×L

I The orbit of separable states is symplectic (the degeneracy of ω equals 0,
D(|Ψ〉) = 0). Moreover it is the only symplectic orbit

I It is an orbit of the Perelomov coherent states for the irreducible representation of
K on H (the orbit through the highest weight vector of the representation).

I The degree of degeneracy is again a well defined entanglement measure



|GHZL〉 state

I The |GHZL〉 state of L-qubits

|GHZL〉 =
1
√

2

(
|0〉⊗L + |1〉⊗L

)

I For |GHZL〉 we have
ω|O|GHZL〉

= 0

I Dimension dimO|GHZL〉 = 2L + 1, when L > 2 and dimO|GHZ2〉 = 3

I When L = 2 or L = 3 then an orbit O|GHZL〉 is lagrangian

I When L > 3 the dimension of the orbit O|GHZL〉 is too small to be lagrangian
(although the degeneracy is maximal). It is a matter of taste whether we can call
such states maximally entangled (there other with the same property of maximal
degeneracy)



Local Unitary Equivalence
I Two states are Locally Unitary equivalent (LU-equivalent) iff

|v1〉 = U1 ⊗ . . .⊗ UL|v2〉.

I Or equivalently
[v1] = [U1 ⊗ . . .⊗ ULv2].

I A pure state of a bipartite system

|Ψ〉 =
∑

ij

cij|ei〉 ⊗ |fj〉

can be transformed by local unitary transformations to the canonical (’Schmidt’)
form

|u〉 =
∑

i

λi|ai〉 ⊗ |bi〉

I Two states are locally unitary equivalent iff they have the same Schmidt
decomposition

I There is no direct analog of the Schmidt decomposition for systems with more
than 2 components.



Canonical forms
I In general an orbit Ox does not contain any distinguished point, but corresponding coadjoint

orbit Ωµ(x) has such a point
I Each orbit of the coadjoint action intersects the subspace t∗ in k∗ which is dual to the

maximal commutative subalgebra of k
I Let x ∈ M, then µ(x) ∈ k∗ and there is g ∈ K such that Ad∗g (µ(x)) ∈ t∗.

Let us call x′ = Φg(x) - canonical form of x (up to a factor – the collection of reduced density
matrices in their diagonal forms)
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Canonical form

Properties of canonical form

I It is given up to the action of G = Stab(µ(x′))/Stab(x′)

I Points on the same orbit have the same (modulo G) canonical forms

I For x, y on the same orbit µ(x′) = µ(y′) (x′, y′ are in the same fiber of µ)

I In other words, if |v〉 and |u〉 are LU-equivalent then their canonical forms belong
to the same fiber of the moment map, µ([v′]) = µ([u′]), but this can happen also
for LU-nonequivalent states

I The problem arises since there might be different orbits in M which are mapped by
µ on the same coadjoint orbit



LU-equivalence and fibers of momentum map

I ... but if the fiber of the moment map lies entirely in the orbit (i.e., the tangent
space to the fiber is a subspace of the tangent space of the orbit) then all states in
the fiber are LU-equivalent

I Fact: the tangent space to the fiber of µ over [v] is contained in the ω-orthogonal
complement of the tangent space at [v] to the orbit through [v]

I If the orbit is coisotropic (i.e., at each point the tangent space to it contains its ω -
orthogonal complement) then the states in the same fiber are LU-equivalent

I Example: The orbit through |GHZ3〉 is coisotropic - using this fact we find simple
solution of LU-equivalence problem for any three qubit states



LU-equivalence and fibers of momentum map

I It turns out that even in two-partite case not all orbits are coisotropic although µ
fibers are contained in them.

I We need some more subtle analysis of the structure of the fiber - this can give
some information whether the canonical form gives sufficient information about
LU-equivalence or what we should know in addition to decide whether two states
are LU-equivalent

I Example (Brion’s theorem)

I Together with the group K = SU(N)×L we consider its complexification KC = SL(N,C)

I KC contains a group B of upper-triangular matrices (Borel group – can be defined more
abstractly)

I If B has an open orbit in M = P(H the fibers of µ are fully contained in single orbits

I Conclusion: the canonical form determines LU-equivalence – this is the case, eg., of
bipartite systems of arbitrary dimensions or GHZ3 states



Summary and other applications

The presented construction works for

I arbitrary number of subsystems

I arbitrary (finite) dimensions of subsystems

I for systems without the full tensor product structure by adapting appropriately the
group K

I mutatis mutandis can be adapted to mixed states (but this is another just begun
story ...)
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