Symplectic Methods in the Theory of Quantum Correlations

<u>Marek Kuś</u> Adam Sawicki Alan Huckleberry

Center for Theoretical Physics PAS, Poland University of Bristol, UK Ruhr-Universität Bochum, Germany

Description of Quantum Entanglement

 Description of quantum correlations in finite-dimensional composite quantum systems in terms of (differential, symplectic) geometry rather than linear algebra

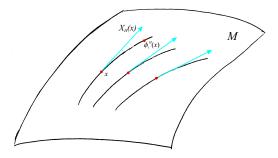
Problem 1: Construction of entanglement measures

 Problem 2: Local transformations (transforming a state of the total to another by means of local operations)

Problem 3: States with symmetries: symmetric ("bosons"), antisymmetric ("fermions") where the Hilbert space is not the full tensor product but rather a subspace of states with the given symmetry

Symplectic geometry and classical mechanics

Dynamics



Flow (classical dynamics in the phase space M)

 $M \ni x \mapsto \phi_t^H(x) =: x(t) \in M$

Hamilton function

$$H: M \to \mathbb{R}$$

Vector field (tangent to trajectories in the phase space = "velocity" in M)

$$X_H(x) = \frac{d}{dt}\Big|_{t=0} \phi_t^H(x)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Symplectic geometry and classical mechanics

- (M, ω) symplectic manifold,
- $d\omega = 0, \ \omega$ nondegenerate
- To find X_H for a given H we need ω :

 $dH = \omega(X_H, \cdot)$

Dynamics (flow)

$$\frac{d}{dt}x(t) = X_H(x(t))$$

The Poisson bracket of two functions F, G on M

$$\{F,G\} = \omega(X_F,X_G) = X_F(G)$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

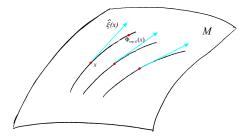
Symplectic group actions

K – (compact, semisimple) Lie group + symplectic action on M (i.e. preserves the symplectic form ω = "canonical transformation")

$$K \times M \ni (g, x) \mapsto \Phi_g(x) \in M, \quad \Phi_{g_1g_2} = \Phi_{g_1}(\Phi_{g_2}(x)), \quad \Phi_g^* \omega = \omega$$

- t Lie algebra of K
- Let $\xi \in \mathfrak{k}$, then
 - $\exp t\xi$ a one parameter subgroup of K
 - $\Phi_{\exp t\xi}$ a one parameter group of symplectomorphisms ("canonical transformations") of M
- Define a fundamental vector field $\hat{\xi}$ (= tangent to $\Phi_{\exp t\xi}(x)atx$)

$$\hat{\xi}(x) = \frac{d}{dt}\Big|_{t=0} \Phi_{\exp t\xi}(x).$$



► Is there a Hamilton function corresponding to the obtained vector field?

Symplectic group actions

The answer is "yes"

▶ Locally there exists a Hamilton function $\mu_{\xi} : M \to \mathbb{R}$ for $\hat{\xi}$, i.e.

 $d\mu_{\xi}(\cdot) = \omega(\hat{\xi}, \cdot)$

• This function can be chosen to be linear in ξ , i.e.

```
\mu_{\xi}(x) = \langle \mu(x), \xi \rangle, \quad \mu(x) \in \mathfrak{k}^*,
```

where \mathfrak{k}^* is the space dual to the Lie algebra \mathfrak{k} , i.e. the (linear) space of all linear functions on \mathfrak{k} (remember \mathfrak{k} is a vector space), and \langle , \rangle is the pairing between \mathfrak{k} and \mathfrak{k}^* .

• In this way we obtain a map $\mu: M \to \mathfrak{k}^*$.

 $M \ni x \mapsto \mu(x) \in \mathfrak{k}^*$

A D F A 同 F A E F A E F A Q A

called the moment (or momentum) map

Coadjoint action. Symplectic structure on coadjoint orbits

The group K acts in a natural way on its algebra t

 $\operatorname{Ad}_{g}X = gXg^{-1}.$

The coadjoint action Ad^{*}_g on t^{*} is the dual one

$$\langle \operatorname{Ad}_{g}^{*} \alpha, X \rangle = \langle \alpha, \operatorname{Ad}_{g^{-1}} X \rangle = \langle \alpha, g^{-1} X g \rangle,$$

- Coadjoint orbits $\Omega_{\alpha} = \{ \operatorname{Ad}_{e}^{*} \alpha, g \in K \}$, are symplectic manifolds
- The symplectic form ω at $\beta \in \Omega_{\alpha}$ is

$$\omega(\tilde{X}, \tilde{Y})(\beta) = \langle \beta, [X, Y] \rangle$$

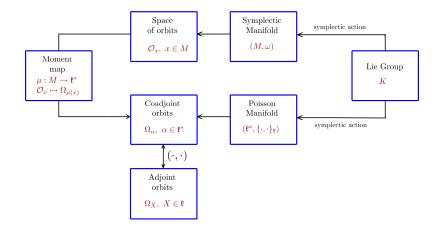
where \tilde{X} is the fundamental vector field of the coadjoint action $\operatorname{Ad}_{\exp tX}^*\beta$ by the one-parameter group $\exp tX$

$$\tilde{X}(\beta) := \left. \frac{d}{dt} \right|_{t=0} e^{-tX} \beta e^{tX}$$

• μ can be chosen equivariant with respect to the coadjoint action of K, i.e.

$$\mu\left(\Phi_g(x)\right) = \operatorname{Ad}_g^* \mu(x),$$

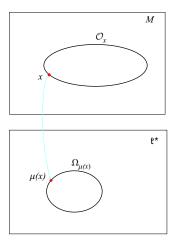
Geometric Structure



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Orbits of group actions and the moment map

- Two symplectic structures connected by the moment map:
 - on M
 - on coadjoint orbits
- An orbit O_x of K action on M is mapped onto a coadjoint orbit Ω_{μ(x)} w t* via momentum map μ.



Orbits of group actions and the moment map

- ▶ In general, however, it is not a diffeomorphism between \mathcal{O}_x and $\Omega_{\mu(x)}$.
- There exist two interesting subgroups of K to consider
 - stabilizer of the points on the orbit of the action on *M* (i.e. a subgroup which does not move them), Stab(x)
 - stabilizer of the elements of the coadjoint action on the corresponding coadjoint orbit, Stab(µ(x))
- An orbit O_x on M is diffeomorphic to the corresponding coadjoint orbit Ω_{μ(x)} iff both stabilizers are equal.
- If this is the case the orbit on M is symplectic (since the corresponding coadjoint orbit is), i.e. the symplectic form on M restricted to this orbit is nondegenerate (Kostant-Sternberg).
- Otherwise the orbit O_x is not symplectic, the symplectic form is degenerate and the dimension of the degeneracy can be a useful characterization of orbits.

 $D(x) = \dim(\mathcal{O}_x) - \dim(\Omega_{\mu(x)}) = \dim(\operatorname{Stab}(\mu(x))) - \dim(\operatorname{Stab}(x))$

► In general coadjoint orbits encode only partial information about orbits in *M*.

Quantum mechanics

- Pure states points in the projective space P(H), where H underlying Hilbert space
- The projective space $M = \mathbb{P}(\mathcal{H})$ is a symplectic manifold

• Any vector from $T_{[\nu]}\mathbb{P}(\mathcal{H})$ (tangent space at the point $[\nu]$) can be written as $[A\nu]$, where $A \in \mathfrak{su}(\mathcal{H})$ and

$$\omega([Av], [Bv]) = -\frac{i\langle [A, B]v|v\rangle}{2\langle v|v\rangle}$$

- The unitary group $SU(\mathcal{H})$ acts on $M = \mathbb{P}(\mathcal{H})$ preserving ω .
- The moment map for this action

$$\mu([v])(X) = -\frac{i}{2} \frac{\langle v|X|v \rangle}{\langle v|v \rangle},$$

Quantum mechanics. Separable and entangled states

Composite (*L*-partite) systems

 $\mathcal{H}_c = \mathcal{H}_1 \otimes \cdots \otimes \mathcal{H}_L$

(for simplicity, let's assume all \mathcal{H}_i are the same, say $\mathcal{H} \simeq \mathbb{C}^N$)

Quantum state is separable (not entangled) iff it is simple tensor

 $v = v_1 \otimes v_2 \cdots \otimes v_L, \quad v_j \in \mathcal{H}_j$

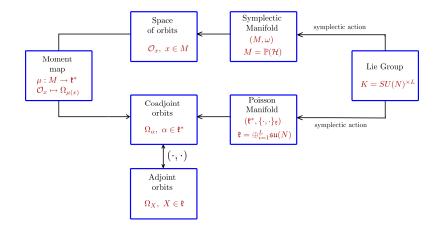
otherwise it is entangled.

 Separability (entanglement) of states is invariant under the direct product (local unitary operations)

 $K = SU(N) \times \cdots \times SU(N)$

- Using our machinery we can attack some interesting problems
 - How the degeneracy of the symplectic form of an orbit is connected with entanglement properties of the states on it?
 - How to check that two states are locally unitary equivalent (i.e., they belong to the same orbit of K)
 - How to define quantum correlations if there is no tensor product structure (indistinguishable particles)

Geometric structure - Quantum Entanglement



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Two-partite systems

- ► Hilbert space $\mathcal{H} = \mathbb{C}^N \otimes \mathbb{C}^N$ with the natural action of $K = SU(N) \times SU(N)$, $\mathfrak{k} = \operatorname{Span}_{\mathbb{R}} \{X_1 \otimes I, I \otimes X_2\}$, where $X_1, X_2 \in \mathfrak{su}(N)$
- Quantum state $|\Psi\rangle$

$$|\Psi
angle = \sum_{i,j=1}^{N} C_{ij} |i
angle \otimes |j
angle, \ \ C_{ij} \in \mathbb{C}.$$

can be transformed by the K-action to the canonical ('Schmidt') form

$$|u\rangle = \sum_{i} \lambda_{i} |i\rangle \otimes |i\rangle$$

- Let m_i = the multiplicity of distinct λ_i , and m_0 corresponds to $\lambda_0 = 0$
- Dimension of degeneracy

$$D(|\Psi\rangle) = \dim(\mathcal{O}_{|\Psi\rangle}) - \dim(\mu(\mathcal{O}_{|\Psi\rangle})) = \sum_{n=1}^{r} m_n^2 - 1.$$

- Separable states form the only symplectic orbit $D(|\Psi\rangle) = 0$
- The degree of degeneracy is a well defined entanglement measure

Maximally entangled state

Maximally entangled state

$$|\Psi\rangle = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} |i\rangle \otimes |i\rangle.$$

• The restriction of symplectic form ω to $\mathcal{O}_{|\Psi\rangle}$ is zero and

$$\mathrm{dim}\mathcal{O}_{|\Psi\rangle} = \frac{1}{2}\mathrm{dim}\mathbb{P}(\mathcal{H})$$

(ロ)、

 The orbit through the maximally entangled state is lagrangian (maximally "non-symplectic") Symplectic geometry of entanglement - many particles

• *L*-particles, $\mathcal{H} = \mathbb{C}^N \otimes \ldots \otimes \mathbb{C}^N$, $K = SU(N)^{\times L}$

• The orbit of separable states is symplectic (the degeneracy of ω equals 0, $D(|\Psi\rangle) = 0$). Moreover it is the only symplectic orbit

lt is an orbit of the Perelomov coherent states for the irreducible representation of K on \mathcal{H} (the orbit through the highest weight vector of the representation).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

> The degree of degeneracy is again a well defined entanglement measure

$|GHZ_L\rangle$ state

• The $|GHZ_L\rangle$ state of *L*-qubits

$$|GHZ_L\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle^{\otimes L} + |1\rangle^{\otimes L} \right)$$

For $|GHZ_L\rangle$ we have

$$\omega|_{\mathcal{O}_{|GHZ_L\rangle}} = 0$$

- Dimension dim $\mathcal{O}_{|GHZ_L\rangle} = 2L + 1$, when L > 2 and dim $\mathcal{O}_{|GHZ_2\rangle} = 3$
- When L = 2 or L = 3 then an orbit $\mathcal{O}_{|GHZ_I\rangle}$ is lagrangian
- When L > 3 the dimension of the orbit O_{|GHZL⟩} is too small to be lagrangian (although the degeneracy is maximal). It is a matter of taste whether we can call such states maximally entangled (there other with the same property of maximal degeneracy)

Local Unitary Equivalence

Two states are Locally Unitary equivalent (LU-equivalent) iff

 $|v_1\rangle = U_1 \otimes \ldots \otimes U_L |v_2\rangle.$

Or equivalently

$$[v_1] = [U_1 \otimes \ldots \otimes U_L v_2].$$

A pure state of a bipartite system

$$|\Psi
angle = \sum_{ij} c_{ij} |e_i
angle \otimes |f_j
angle$$

can be transformed by local unitary transformations to the canonical ('Schmidt') form

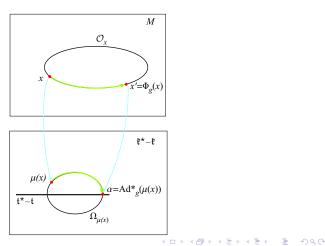
$$|u
angle = \sum_i \lambda_i |a_i
angle \otimes |b_i
angle$$

- Two states are locally unitary equivalent iff they have the same Schmidt decomposition
- There is no direct analog of the Schmidt decomposition for systems with more than 2 components.

Canonical forms

- In general an orbit O_x does not contain any distinguished point, but corresponding coadjoint orbit Ω_{μ(x)} has such a point
- Each orbit of the coadjoint action intersects the subspace t* in t* which is dual to the maximal commutative subalgebra of t
- Let $x \in M$, then $\mu(x) \in \mathfrak{k}^*$ and there is $g \in K$ such that $\operatorname{Ad}_{\mathfrak{g}}^*(\mu(x)) \in \mathfrak{t}^*$.

Let us call $x' = \Phi_{g}(x)$ - canonical form of x (up to a factor – the collection of reduced density matrices in their diagonal forms)



Canonical form

Properties of canonical form

- It is given up to the action of $G = \text{Stab}(\mu(x'))/\text{Stab}(x')$
- ▶ Points on the same orbit have the same (modulo *G*) canonical forms
- For x, y on the same orbit $\mu(x') = \mu(y')(x', y')$ are in the same fiber of μ)
- ► In other words, if $|v\rangle$ and $|u\rangle$ are LU-equivalent then their canonical forms belong to the same fiber of the moment map, $\mu([v']) = \mu([u'])$, but this can happen also for LU-nonequivalent states
- The problem arises since there might be different orbits in *M* which are mapped by μ on the same coadjoint orbit

A D F A 同 F A E F A E F A Q A

LU-equivalence and fibers of momentum map

- ... but if the fiber of the moment map lies entirely in the orbit (i.e., the tangent space to the fiber is a subspace of the tangent space of the orbit) then all states in the fiber are LU-equivalent
- <u>Fact</u>: the tangent space to the fiber of μ over $[\nu]$ is contained in the ω -orthogonal complement of the tangent space at $[\nu]$ to the orbit through $[\nu]$
- If the orbit is coisotropic (i.e., at each point the tangent space to it contains its ω orthogonal complement) then the states in the same fiber are LU-equivalent
- ► Example: The orbit through |*GHZ*₃⟩ is coisotropic using this fact we find simple solution of LU-equivalence problem for any three qubit states

LU-equivalence and fibers of momentum map

It turns out that even in two-partite case not all orbits are coisotropic although µ fibers are contained in them.

We need some more subtle analysis of the structure of the fiber - this can give some information whether the canonical form gives sufficient information about LU-equivalence or what we should know in addition to decide whether two states are LU-equivalent

- Example (Brion's theorem)
 - ► Together with the group $K = SU(N)^{\times L}$ we consider its complexification $K^{\mathbb{C}} = SL(N, \mathbb{C})$
 - K^C contains a group B of upper-triangular matrices (Borel group can be defined more abstractly)
 - If B has an open orbit in $M = \mathbb{P}(\mathcal{H}$ the fibers of μ are fully contained in single orbits
 - Conclusion: the canonical form determines LU-equivalence this is the case, eg., of bipartite systems of arbitrary dimensions or GHZ₃ states

Summary and other applications

The presented construction works for

- arbitrary number of subsystems
- arbitrary (finite) dimensions of subsystems
- for systems without the full tensor product structure by adapting appropriately the group K
- mutatis mutandis can be adapted to mixed states (but this is another just begun story ...)
- A Sawicki, A Huckleberry, M Kuś Symplectic Geometry of Entanglement Commun. Math. Phys Volume 305, Number 2, 441-468 (2011)
- A Sawicki, M Kuś Geometry of the local equivalence of states J. Phys. A: Math. Theor. 44 495301 (2011),