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Description of Quantum Entanglement

» Description of quantum correlations in finite-dimensional composite quantum
systems in terms of (differential, symplectic) geometry rather than linear algebra

» Problem 1: Construction of entanglement measures

» Problem 2: Local transformations (transforming a state of the total to another by
means of local operations)

» Problem 3: States with symmetries: symmetric ("bosons"), antisymmetric
("fermions") where the Hilbert space is not the full tensor product but rather a
subspace of states with the given symmetry



Symplectic geometry and classical mechanics
» Dynamics

» Flow (classical dynamics in the phase space M)
M3x— ¢ll(x)=x(r) eM

» Hamilton function
H:M—R

» Vector field (tangent to trajectories in the phase space = "velocity" in M)

I g

Xu(x) = AN



Symplectic geometry and classical mechanics

> (M,w) - symplectic manifold,

» dw =0, w-nondegenerate

v

To find Xy for a given H we need w:

dH = (:,)(XH7 )

» Dynamics (flow)
(1) = Xn(x(0)

v

The Poisson bracket of two functions F, G on M

{F7 G} = w(Xp,XG) = XF(G)



Symplectic group actions
> K — (compact, semisimple) Lie group + symplectic action on M
(i.e. preserves the symplectic form w = "canonical transformation")

KXM3 (g,x) = Qg(x) EM, Dy = Dy, (P, (%)), ‘b;W =w

> ¢ —Lie algebra of K
> Let¢ € ¢ then
e exp & —a one parameter subgroup of K
o O, ¢ —a one parameter group of symplectomorphisms ("canonical transformations”) of M

» Define a fundamental vector field £ (= tangent to Dexp re (x)atx)
N d

> Is there a Hamilton function corresponding to the obtained vector field?



Symplectic group actions

» The answer is "yes"
> Locally there exists a Hamilton function p¢ : M — R for e

dpe(-) = w(é, )

» This function can be chosen to be linear in &, i.e.

e (x) = (u(x),€),  px) €€,
where t* is the space dual to the Lie algebra ¢, i.e. the (linear) space of all linear

functions on ¢ (remember ¢ is a vector space), and () is the pairing between ¢
and ¢£*.

» In this way we obtainamap p : M — ¢*.
M 3> x— p(x) €t*

called the moment (or momentum) map



Coadjoint action. Symplectic structure on coadjoint orbits

> The group K acts in a natural way on its algebra ¢
AdX = gXg ™.

> The coadjoint action Ad; on ¢* is the dual one

(Ad; @, X) = (o, Ad, 1 X) = (o, ¢ 'Xg),

> Coadjoint orbits 2, = {Ad; @, ¢ € K}, are symplectic manifolds
> The symplectic form w at 8 € Q,, is
w(X, V)(B) = (8, X, Y])

where X is the fundamental vector field of the coadjoint action Ad
group exp X

:xp rxﬁ by the one-parameter
- d _
X(B) = E 1:06 ’Xﬁelx

> 1 can be chosen equivariant with respect to the coadjoint action of K, i.e.

B (Pg(x)) = Ady p(x),



Geometric Structure
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Orbits of group actions and the moment map

» Two symplectic structures connected by the moment map:

> onM
> on coadjoint orbits

» An orbit O, of K action on M is mapped onto a coadjoint orbit 2

momentum map .

£

(%)

H(x)

w(x

y WEr via



Orbits of group actions and the moment map

>

In general, however, it is not a diffeomorphism between O, and ().

There exist two interesting subgroups of K to consider

> stabilizer of the points on the orbit of the action on M (i.e. a subgroup which does not
move them), Stab(x)

> stabilizer of the elements of the coadjoint action on the corresponding coadjoint orbit,
Stab (p1(x))

An orbit Oy on M is diffeomorphic to the corresponding coadjoint orbit €2, iff
both stabilizers are equal.

If this is the case the orbit on M is symplectic (since the corresponding coadjoint
orbit is), i.e. the symplectic form on M restricted to this orbit is nondegenerate
(Kostant-Sternberg).

Otherwise the orbit O, is not symplectic, the symplectic form is degenerate and
the dimension of the degeneracy can be a useful characterization of orbits.

D(x) = dim(Ox) — dim(,, () = dim(Stab(41(x))) — dim(Stab(x))

In general coadjoint orbits encode only partial information about orbits in M.



Quantum mechanics

v

Pure states - points in the projective space P(H), where H - underlying Hilbert
space

» The projective space M = P(H) is a symplectic manifold

> Any vector from T,)P(H) (tangent space at the point [v]) can be written as [Av], where
A € su(H) and
i([A, Blv|v)
AV, [BY]) = — ~—2 "/
w([av], [Bv) X

» The unitary group SU(H) acts on M = P(H) preserving w.

v

The moment map for this action



Quantum mechanics. Separable and entangled states

» Composite (L-partite) systems
He=H1® - QHL

(for simplicity, let's assume all #; are the same, say H ~ CN)
Quantum state is separable (not entangled) iff it is simple tensor

v

v=v Qv Qvr, v EH;

otherwise it is entangled.

» Separability (entanglement) of states is invariant under the direct product (local
unitary operations)
K = SU(N) x --- x SU(N)

» Using our machinery we can attack some interesting problems
> How the degeneracy of the symplectic form of an orbit is connected with entanglement
properties of the states on it?
> How to check that two states are locally unitary equivalent (i.e., they belong to the same
orbit of K)
> How to define quantum correlations if there is no tensor product structure
(indistinguishable particles)



Geometric structure - Quantum Entanglement
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Two-partite systems

» Hilbert space # = CY ® CN with the natural action of K = SU(N) x SU(N),
t = Spanp{X; ® I, I ® X»}, where X;, X, € su(N)

» Quantum state | )

)y = > cyliy @), CjecC.

iyj=1

can be transformed by the K-action to the canonical ('Schmidt’) form

CEDBRIETY

» Let m; = the multiplicity of distinct \;, and m( corresponds to Ao = 0
» Dimension of degeneracy

D(|¥)) = dim(O)y)) — dim(1(O|g))) Zmn 1

» Separable states form the only symplectic orbit D(|¥)) = 0

» The degree of degeneracy is a well defined entanglement measure



Maximally entangled state

» Maximally entangled state

N
W) = Z )& i),

> The restriction of symplectic form w to O,y is zero and

1
dimO‘\m = EdimP(H)

» The orbit through the maximally entangled state is lagrangian (maximally
"non-symplectic")



Symplectic geometry of entanglement - many particles

v

L-particles, H =C" ® ... ® CV, K = SU(N)**

v

The orbit of separable states is symplectic (the degeneracy of w equals 0,
D(|¥)) = 0). Moreover it is the only symplectic orbit

\4

It is an orbit of the Perelomov coherent states for the irreducible representation of
K on H (the orbit through the highest weight vector of the representation).

\4

The degree of degeneracy is again a well defined entanglement measure



|GHZ;,) state

v

The |GHZ;) state of L-qubits

e e
(GHZ.) = 2(|0>® +|1>®)

» For |GHZ;) we have
=0

W|O|quL>

» Dimension dimO)gpz,) = 2L + 1, when L > 2 and dimO|gpz,) = 3
» When L =2 or L = 3 then an orbit O|gyz,) is lagrangian

» When L > 3 the dimension of the orbit O|s, ) is too small to be lagrangian
(although the degeneracy is maximal). It is a matter of taste whether we can call
such states maximally entangled (there other with the same property of maximal
degeneracy)



Local Unitary Equivalence
» Two states are Locally Unitary equivalent (LU-equivalent) iff

|V1> =U1®...Q0 UL‘V2>.

» Or equivalently
b =1 ®...® ULy

» A pure state of a bipartite system
W) = ciler) ® Ify)
ij
can be transformed by local unitary transformations to the canonical ('Schmidt’)

form
) =" Ailai) @ |bi)

» Two states are locally unitary equivalent iff they have the same Schmidt
decomposition

» There is no direct analog of the Schmidt decomposition for systems with more
than 2 components.



Canonical forms

> In general an orbit O, does not contain any distinguished point, but corresponding coadjoint
orbit ©2,,(.) has such a point

» Each orbit of the coadjoint action intersects the subspace t* in £* which is dual to the
maximal commutative subalgebra of ¢

> Letx € M, then p(x) € ¢" and there is ¢ € K such that Ad; (u(x)) € t".
Let us call x" = ®,(x) - canonical form of x (up to a factor — the collection of reduced density
matrices in their diagonal forms)

x':q)g(x)

-t




Canonical form

Properties of canonical form

> It is given up to the action of G = Stab(u(x’))/Stab(x)
» Points on the same orbit have the same (modulo G) canonical forms
» For x,y on the same orbit u(x') = u(y’) (x',y" are in the same fiber of 1)

> In other words, if |v) and |u) are LU-equivalent then their canonical forms belong
to the same fiber of the moment map, p([v']) = p([«']), but this can happen also
for LU-nonequivalent states

» The problem arises since there might be different orbits in M which are mapped by
w on the same coadjoint orbit



LU-equivalence and fibers of momentum map

v

... but if the fiber of the moment map lies entirely in the orbit (i.e., the tangent
space to the fiber is a subspace of the tangent space of the orbit) then all states in
the fiber are LU-equivalent

» Fact: the tangent space to the fiber of x over [v] is contained in the w-orthogonal
complement of the tangent space at [v] to the orbit through [v]

» If the orbit is coisotropic (i.e., at each point the tangent space to it contains its w -
orthogonal complement) then the states in the same fiber are LU-equivalent

» Example: The orbit through |GHZ3) is coisotropic - using this fact we find simple
solution of LU-equivalence problem for any three qubit states



LU-equivalence and fibers of momentum map

» It turns out that even in two-partite case not all orbits are coisotropic although
fibers are contained in them.

» We need some more subtle analysis of the structure of the fiber - this can give
some information whether the canonical form gives sufficient information about
LU-equivalence or what we should know in addition to decide whether two states
are LU-equivalent

» Example (Brion’s theorem)
> Together with the group K = SU(N) ** we consider its complexification K* = SL(N, C)

» K contains a group B of upper-triangular matrices (Borel group — can be defined more
abstractly)

> If B has an open orbit in M = P(H the fibers of p are fully contained in single orbits

> Conclusion: the canonical form determines LU-equivalence — this is the case, eg., of
bipartite systems of arbitrary dimensions or GHZ; states



Summary and other applications

The presented construction works for

» arbitrary number of subsystems
» arbitrary (finite) dimensions of subsystems

» for systems without the full tensor product structure by adapting appropriately the
group K

» mutatis mutandis can be adapted to mixed states (but this is another just begun
story ...)
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