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One of the aims of information theory is to determine what is the
capacity of a noisy communication channel.

Capacity is defined as the highest communication rate that can be
sent across a communication channel reliably [Shannon, 1948].

Shannon theory has been applied to the quantum case and one can
define the capacity as the upper limit on the qubits that can be
transferred across a quantum channel reliably.
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Since Shannon’s work, capacity of various channels has been
determined and for many channels (both classical and quantum)
capacity is still unknown.

A zoo of capacities exists under different assumptions such as with
or without shared entanglement between Alice (sender) and Bob
(receiver), for sending classical and/or quantum data, point to
point or network scenarios etc.



On some special cases of the Entropy Photon-Number Inequality

Some examples of the quantum channels whose capacities are not
known

1. Bosonic thermal noise channel [Giovannetti et al, 2004]

2. Bosonic broadcast channel [Guha et al, 2007]

If the entropy photon-number inequality (EPnI) is true, then it
implies certain conjectures that would establish the capacity of
above two channels.

What is EPnI and what conjectures it implies?
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Entropy Photon number inequality

The Entropy Photon Number Inequality (EPnI) was conjectured by
Guha, Shapiro and Erkmen (2008).

EPnI has a classical analogue called the Entropy power inequality
which is stated as follows.

Let X and Y be independent random variables with densities and
h(X ) be the differential entropy of X , then for η ∈ [0, 1],

e2h(
√
ηX+

√
1−ηY ) > η e2h(X ) + (1− η) e2h(Y ).

First stated by Shannon [1948] and the proof was given by Stam
[1959] and Blachman [1965].

e2h(X ) is the power (variance) of a Gaussian random variable
having the same entropy as X .
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Entropy Photon number inequality

For bosonic channels, we need to look at the creation and
annihilation operators for bosons.

Same as the ladder operators of the quantum harmonic oscillator.

a is the annihilation operator given by

a =


0
√

1 0 0 · · ·
0 0

√
2 0 · · ·

0 0 0
√

3 · · ·
...

...
...

...
. . .


The creation operator is a†.

The number operator is N = a†a.
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Entropy Photon number inequality

[A,B] := AB − BA.

[a, a†] = 1, [N, a†] = a†, [N, a] = −a.

Fock/number states {|0〉, |1〉, |2〉, ...} form an orthonormal basis of
the underlying Hilbert space and

N|n〉 = n|n〉,
a†|n〉 =

√
n + 1|n + 1〉,

a|n〉 =
√
n|n − 1〉, a|0〉 = 0,

|n〉 =
1√
n!

(a†)n|0〉.

A thermal state with mean photon-number µ is given by

ρT =
∞∑
i=0

µi

(1 + µ)i+1
|i〉〈i |.
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Entropy Photon number inequality

Consider a beam-splitter with two inputs and two outputs.

For simplicity, we shall assume that each input has one boson each
and let the annihilation operators for inputs 1 and 2 be given by a
and b respectively.

The joint state associated with a and b is the product state
ρAB = ρA ⊗ ρB .

Let the annihilation operators associated with the outputs be c
and d and (

c
d

)
=

( √
η
√

1− η
−
√

1− η √
η

)(
a
b

)
.

η, 1− η are the transmissivity and reflectivity of the beam splitter.
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Entropy Photon number inequality

Calculation of the state at the output is outlined as follows. |i〉Z
are the Fock number states for Z ∈ {A,B,C ,D}.

Note

|i〉A|j〉B =
(a†)i√

i !

(b†)j√
j!
|0〉A|0〉B ,

|i〉A|j〉B
B.S.−−→

(
√
ηc† +

√
1− ηd†)i

√
i !

(
√

1− ηc† −√ηd†)j
√
j!

|0〉C |0〉D .

B.S. indicates the action of the beam splitter.
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Entropy Photon number inequality

c† and d† commute. Using the binomial expansion, we get

|i〉A|j〉B
B.S.−−→ 1√

i !
√
j!

i∑
k=0

j∑
l=0

(−1)l
(
i

k

)(
j

l

)
η

i−k+l
2 (1− η)

j−l+k
2

√
[(i + j)− (k + l)]!(k + l)! |(i + j)− (k + l)〉C |k + l〉D .

# of summations is 4 when looking at the action of the beam
splitter on the states of the form |i〉A|j〉B 〈́i |A〈́j |B .
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Entropy Photon number inequality

If ρA and ρB have eigenvectors as the Fock number states,
expression for ρC involves 5 summations (9 otherwise) - one
summation disappears due to orthogonality of the number states.

ρA =
∞∑
i=0

xi |i〉A〈i |A, ρB =
∞∑
i=0

yi |i〉B〈i |B ,

ρC =
∞∑
i=0

∞∑
j=0

xiyj
1

i !j!

i∑
k=0

j∑
l=0

i∑
k ′=0

j∑
l ′=0

(−1)l+l ′
(
i

k

)(
j

l

)(
i

k ′

)(
j

l ′

)
ηi−

k+k′
2

+ l+l′
2 (1− η)j−

l+l′
2

+ k+k′
2 δk+l ,k ′+l ′

[(i + j)− (k + l)]!(k + l)! |(i + j)− (k + l)〉〈(i + j)− (k + l)|.
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Entropy Photon number inequality

The EPnI is now stated as

g−1 [S(ρC )] > ηg−1 [S(ρA)] + (1− η)g−1 [S(ρB)] ,

S(ρ) = −Tr(ρ log ρ) is the von Neumann entropy.

g(x) = (x + 1) log(x + 1)− x log(x) is the von Neumann entropy
of the thermal state with mean photon-number x .

g−1[S(ρ)] is the mean photon-number of the thermal state having
the same entropy as ρ.
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Entropy Photon number inequality

EPnI implies minimum output entropy conjectures that can be
used to find the capacity of certain channels.

Minimum Output Entropy Conjecture 1: If ρA is a pure state
(ρA = |ψ〉〈ψ|) and ρB is a thermal state, then S(ρC ) is minimized
by choosing ρA = |0〉〈0| (the vacuum state).

Minimum Output Entropy Conjecture 2: If ρA is a pure state
(ρA = |ψ〉〈ψ|) and S(ρB) = g(K ) for some K > 0, then S(ρC ) is
minimized by choosing ρB to be a thermal state with mean
photon-number K .

These conjectures are corollaries of EPnI and are yet to be proved
independently.
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Special cases

We examine if EPnI holds for some special cases.

ρB = |0〉〈0| is a vacuum state.

P - set of all probability distributions defined on nonnegative
integers.

Let the eigenvalues of ρA be given by the probability vector xxx ∈ P.

ρA =
∞∑
i=0

xi |i〉A〈i |A,

ρC =
∞∑
i=0

zi |i〉C 〈i |C ,

where zzz = Mη(xxx), M : [0, 1]× P→ P is a transformation given by

zi =
∞∑
k=i

(
k

i

)
ηi (1− η)k−ixk .
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Special cases

EPnI reduces to

g−1 {H[Mη(xxx)]} > ηg−1 [H(xxx)] .

Holds trivially for η = 0, 1.

We concentrate on this special inequality for most part.

One might think that with > 60 years of information theory, one
would just pick an inequality from an information theory book
whose corollary (if not a corollary of a corollary) would be the
above inequality.
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Special cases

Mη(x) =


1 (1− η) (1− η)2 (1− η)3 · · ·
0 η 2η(1− η) 3η(1− η)2 · · ·
0 0 η2 3η2(1− η) · · ·
0 0 0 η3 · · ·
...

...
...

...
. . .




x0
x1
x2
x3
...


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Special cases

Suppose the eigenvalues of ρA given by the probability vector
xxx = [1− α, α, 0, 0, ...], α ∈ [0, 1].

For p ∈ [0, 1], binary entropy is
Hb(p) := −p log(p)− (1− p) log(1− p).

EPnI is now equivalent to showing that for all η ∈ [0, 1] and
α ∈ [0, 1], we have

g−1 [Hb(ηα)] > ηg−1 [Hb(α)] .

with equality if and only if η ∈ {0, 1} or α = 0.

This holds.
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Special cases

What about the ternary input?

Try proving that the following holds for all probability vectors
[x0, x1, x2]T and η ∈ (0, 1)

g−1
[
H
(
[x0 + (1− η)x1 + (1− η)2x2, ηx1 + 2η(1− η)x2, η

2x2]T
)]

> ηg−1
[
H([x0, x1, x2]T)

]
.

We can show this for some cases but not in full generality.
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Special cases

Let ρA have number states as eigenvectors and the number is
arbitrary.

Can show that Mη

[
Mη′(xxx)

]
= Mηη′(xxx) ∀ η, η′ ∈ [0, 1] and xxx ∈ P.

Define

H(η,xxx) := H(Mηx)

h(η,xxx) := g−1 [H(η,xxx)] .

Then EPnI can be rewritten as h(η,xxx) > ηh(1,xxx).

Can be shown to be equivalent to h(η,xxx)/η is a decreasing
function in η ∈ (0, 1] or

d

dη

h(η,xxx)

η
6 0.
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EPnI as an entropic inequality

By using the above multiplicative property, we could just look at
η = 1 to show that EPnI is equivalent to

d

dη

h(η,xxx)

η

∣∣∣
η=1

6 0.

d

dη

h(η,xxx)

η
= η

dH(η,xxx)

dη
− H(η,xxx) + log

[
1 + g−1 [H(η,xxx)]

]
6 0.

Rewrite as

g

[
e
H(η,xxx)−η dH(η,xxx)

dη − 1

]
> H(η,xxx).

H(η,xxx) 6
Hb

[
e
−H(η,xxx)+η dH(η,xxx)

dη

]
e
−H(η,xxx)+η dH(η,xxx)

dη

.
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EPnI as an entropic inequality

Easy to check that for the 2-dim case with η = 1,
xxx = [α, 1− α, 0, ...], α ∈ [0, 1], the above reduces to

Hb(α) 6
Hb(α)

α
.

Some more properties

η
dH(η,xxx)

dη
< 1,

η
dH(η,xxx)

dη
6 H(η,xxx).
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EPnI as an entropic inequality

Recall that EPnI would hold if

g

[
e
H(η,xxx)−η dH(η,xxx)

dη − 1

]
> H(η,xxx).

Using the fact that for all z > 0,

g (ez − 1) > z ,

we arrive at the following sufficient condition for the EPnI to hold

dH(η,xxx)

dη
6 0.

Note
dH(η,xxx)

dη

∣∣∣∣∣
η=1

= −
∞∑
i=1

i xi log

(
xi
xi−1

)
.
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EPnI as an entropic inequality

Holds surely for the following distributions

1. The non-zero entries of x are non-increasing, i.e., xi+1 > xi ∀
i > 0.

2. x has some zero entries in its interior, i.e., xi = 0 and
xi+1 6= 0 for some i .

3. If x has finite non-zero entries of the form
x = [x0, x1, ..., xL−1, 0, ...] and xL−1 > 1/L.
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EPnI as an entropic inequality

EPnI holds if H(xxx) is sufficiently large.

Outline of the proof:

The following holds

g(ex − 1) > x + 1− e−x

∃ a δ > 0 such that ηdH(η,xxx)/dη < 1− δ.

H(η,xxx) > 1− log(δ) if H(xxx) is large enough.
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EPnI as an entropic inequality

Using the above claims, we get

g
[
eH(η,xxx)−ηdH(η,xxx)/dη − 1

]
> H(η,xxx) + δ − e−H(η,xxx)+ηdH(η,xxx)/dη

> H(η,xxx) + δ − e−H(η,xxx)+1

> H(η,xxx),

which proves EPnI.
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EPnI as an entropic inequality

Thus far we have shown that EPnI holds only for special cases.

Say EPnI holds for ρA and ρB with strict inequality.

Suppose we work with states (finite dimensional) that are close
(say in trace distance) to ρA and ρB . Would EPnI hold for these
states as well?

We can invoke the continuity of entropy (Fannes’ inequality) and
that beam splitter output is a continuous function of the inputs to
claim that it would hold for these states as well.
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