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First motivation: a recent ion experiment

Entangle four ions and switch on artificial decoherence.

Entanglement dissappears somehow ...

At some point, A vs. BCD is entangled, but AB vs. CD not.

J. Barreiro et al., Nature Physics 6, 943 (2010)



Questions for a theorist

How can we prove that a state is entangled?

How can we prove that a state is separable?

What about statistical errors? (see the talk by Matthias Kleinmann)

Is the reconstruction of a density matrix correct? (see the talk by
Matthias Kleinmann)



Second motivation: a recent photon experiment

Step 1: Generate GHZ states |ψ〉 = |00...0〉+ |11...1〉 with up to five
photons using polarization.

Step 2: Use hyperentanglement ⇒ Up to ten qubits.

W.B. Gao et al., Nature Physics 6, 331 (2010)



Analysis of the data

Determining the fidelity

The fidelity needs N + 1 measure-
ments, especially for θ = kπ/N

Mk =
[

cos(θ)σx + sin(θ)σy

]⊗N
.

Experimental fidelity:

FGHZ10 = 0.561 ± 0.019
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Determining the fidelity

The fidelity needs N + 1 measure-
ments, especially for θ = kπ/N

Mk =
[

cos(θ)σx + sin(θ)σy

]⊗N
.

Experimental fidelity:

FGHZ10 = 0.561 ± 0.019

Theoretical issues

The fidelity exceeds the
critical value of 1/2 by 3
standard deviations only.

The observable (σx)
⊗10 has

210 = 1024 possible results,
but 〈(σx )

⊗10〉 is determined
from ca. 350 copies only.

Similarly: Throw a die four
times, and estimate the
probability distribution....
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What is entanglement?

The situation

Alice and Bob share a quantum state |ψ〉.

Definition: A pure state |ψ〉 is separable iff it is a product state:

|ψ〉 = |a〉A|b〉B = |a, b〉.

Otherwise it is called entangled.



What is entanglement?

The situation

Alice and Bob share a quantum state |ψ〉.

Definition: A pure state |ψ〉 is separable iff it is a product state:

|ψ〉 = |a〉A|b〉B = |a, b〉.

Otherwise it is called entangled.

Mixed states: Ask for convex combinations. ̺ is separable iff

̺ =
∑

i
pi |ai 〉〈ai | ⊗ |bi 〉〈bi |, with pi ≥ 0,

∑

i
pi = 1.

Interpretation: Entanglement cannot be produced by local operations and
classical communication (LOCC).
R. Werner, PRA 40, 4277 (1989).



The separability problem

Open question: Given a state ̺ is it entangled or not?

Geometrical picture: The set of separable states is a convex set.



The PPT criterion

Are there simple criteria to prove that a state is entangled?
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The PPT criterion

Are there simple criteria to prove that a state is entangled?

Transposition and partial transposition

Transposition: The usual transposition X 7→ XT does not change
the eigenvalues of the matrix X

For a product space one can also consider the partial transposition.
If X = A ⊗ B :

XTB = A ⊗ BT

Partial transposition and separability

Theorem. If a state is separable, then its partial transposition has no ne-
gative eigenvalues (“the state is PPT” or ̺TB ≥ 0).
Proof:

̺TB
sep =

∑

k
pk̺A ⊗ ̺T

B =
∑

k
pk̺A ⊗ ˜̺B ≥ 0.

Remark: For two qubits: ̺ is PPT ⇔ ̺ is separable.

A. Peres, PRL 77, 1413 (1996)



Entanglement witnesses

An observable W is an entanglement witness, if

Tr(W̺)

{

≥ 0 for all separable ̺s ,
< 0 for one entangled ̺e .

If Tr(W̺) is measured:

Tr(W̺)

{

< 0 ⇒ ̺ is entangled,

≥ 0 ⇒ no detection.

Horodecki⊗3 , PLA 223 (1996); B.M. Terhal, PLA 271 (2000); O. Gühne, G. Tóth, Phys. Rep. 474 (2009).



Entanglement witnesses

An observable W is an entanglement witness, if

Tr(W̺)

{

≥ 0 for all separable ̺s ,
< 0 for one entangled ̺e .

If Tr(W̺) is measured:

Tr(W̺)

{

< 0 ⇒ ̺ is entangled,

≥ 0 ⇒ no detection.

Horodecki⊗3 , PLA 223 (1996); B.M. Terhal, PLA 271 (2000); O. Gühne, G. Tóth, Phys. Rep. 474 (2009).



Entanglement witnesses

An observable W is an entanglement witness, if

Tr(W̺)

{

≥ 0 for all separable ̺s ,
< 0 for one entangled ̺e .

If Tr(W̺) is measured:

Tr(W̺)

{

< 0 ⇒ ̺ is entangled,

≥ 0 ⇒ no detection.

Horodecki⊗3 , PLA 223 (1996); B.M. Terhal, PLA 271 (2000); O. Gühne, G. Tóth, Phys. Rep. 474 (2009).

For any entangled ̺ there is a
witness.

Witnesses can be optimized
(W(1) optimal, W(2) not!).

One can construct nonlinear
entanglement witnesses
O. Gühne, N. Lütkenhaus, PRL 96, 170502 (2006)



Three parties

There are different possibilities of states

|ψfs〉 = |000〉 |ψbs〉 = |000〉+ |110〉 = (|00〉 + |11〉) ⊗ |0〉

|ψme〉 = |000〉+ |111〉



Multipartite entanglement

Definition

A pure N-qubit state |ψ〉 is k-separable, if we can write

|ψ(n)〉 = |φ1〉 ⊗ |φ2〉 ⊗ ...⊗ |φk 〉,

that is, the system can be divided into k uncorrelated parts.

Mixed states: Ask for convex combinations ̺(k) =
∑

i pi |ψ
(k)
i 〉〈ψ

(k)
i |.



Multipartite entanglement

Definition

A pure N-qubit state |ψ〉 is k-separable, if we can write

|ψ(n)〉 = |φ1〉 ⊗ |φ2〉 ⊗ ...⊗ |φk 〉,

that is, the system can be divided into k uncorrelated parts.

Mixed states: Ask for convex combinations ̺(k) =
∑

i pi |ψ
(k)
i 〉〈ψ

(k)
i |.

Examples for four qubits:

|ψfs〉 = |0000〉 is fully separable,

|ψts〉 = |00〉 ⊗ (|00〉 + |11〉) is 3-separable,

|ψbs〉 = |0〉 ⊗ (|000〉 + |111〉) is biseparable,

|GHZ4〉 = |0000〉+ |1111〉 is truly multipartite entangled.
A. Acin, D. Bruß, M. Lewenstein, A. Sanpera, PRL 87, 040401 (2001).



What are the interesting multiqubit states?

The GHZ states violate Bell inequalities maximally:

|GHZ 〉 = |0000〉+ |1111〉

The W-states are robust against qubit loss:

|W 〉 = |1000〉+ |0100〉+ |0010〉+ |0001〉

The cluster states are useful for the one-way quantum computer:

|CL〉 = |0000〉+ |1100〉+ |0011〉 − |1111〉

The Dicke states are often easy to prepare:

|D〉 = |0011〉+ |0101〉+ |1001〉+ |0110〉+ |1010〉+ |1100〉

The singlet states are U ⊗ ...⊗ U invariant:

|ψ(4)〉 = |0011〉+ |1100〉 −
1

2
(|10〉 + |10〉) ⊗ (|10〉 + |10〉)



Classification of mixed three-qubit states

Consider convex combinations of all possible states:

A. Acin, D. Bruß, M. Lewenstein, A. Sanpera, PRL 87, 040401 (2001).



Generalizing the PPT criterion to
multiparticle entanglement



The problem

Separability criteria

There are simple criteria, which can be used to show entanglement
for two particles.

Can we derive some simple separability criteria for genuine
multipartite entanglement?

The problem are mixtures of different bipartitions:

̺bs = p1̺
sep

A|BC
+ p2̺

sep

B|AC
+ p3̺

sep

C |AB
.



The task

Idea

Replace separable states by PPT states. Instead of biseparable states,

̺bs = p1̺
sep

A|BC
+ p2̺

sep

B|AC
+ p3̺

sep

C |AB
,

consider PPT mixtures

̺pmix = p1̺
ppt

A|BC
+ p2̺

ppt

B|AC
+ p3̺

ppt

C |AB
.



The resulting method

Classification via witnesses

A state ̺ is not a PPT mixture, if and only if Tr(̺W) < 0 for

W = PA + QTA

A = PB + QTB

B = PC + QTC

C

with Pi ,Qi ≥ 0.



The resulting method

Classification via witnesses

A state ̺ is not a PPT mixture, if and only if Tr(̺W) < 0 for

W = PA + QTA

A = PB + QTB

B = PC + QTC

C

with Pi ,Qi ≥ 0.

Main advantages

This problem can be solved efficiently via semidefinite programming.

In practice, it requires only few lines of code in Matlab.
(⇒ the program PPTmixer on the web)

Numerically, it works for ≤ 7 qubits. Analytically, up to “∞” qubits.

One can also solve it, if only some expectation values (and not the
whole ̺) are known.

The amount of the violation is an entanglement monotone.



Results

Noise robustness

The noise robustness increases
drastically: Consider

̺(p) = p1/8 + (1 − p)|ψ〉〈ψ|

and compute maximal ptol :

state tolerances ptol

new before
|GHZ3〉

⋆ 0.571 0.571
|GHZ4〉

⋆ 0.533 0.533
|W3〉

⋆ 0.521 0.421
|W4〉 0.526 0.444
|Cl4〉

⋆ 0.615 0.533
|D2,4〉 0.539 0.381
|ΨS,4〉 0.553 0.317
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Cluster states

For cluster states of N qubits, the
noise robustness is at least:

ptol =
1

1 − 1
2N−1 + (N/3 + 1) 1

2N/3

N→∞
−−−−→ 1

⇒ An exponential improvement
compared with existing results!

B. Jungnitsch et al., PRL 106, 190502 (2011).



Graph-diagonal states

Graph-diagonal states

For any graph, there is a graph-state basis |Gi 〉; e.g. the GHZ basis:
|000〉 ± |111〉, |001〉 ± |110〉, etc.

Consider states diagonal in this basis:

̺ =
∑

i

γi |Gi 〉〈Gi |

Results

For GHZ diagonal states: ̺ is separable ⇔ γi ≤ 1/2
O. Gühne, M. Seevinck, NJP 12, 053002 (2010).

For four-qubit cluster diagonal states, the approach of PPT mixtures
solves the problem.
O. Gühne et al., arXiv:1107.4863

Its also a solution for all five-qubit graph states mixed with white
noise and some other graphs.



Is the criterion necessary und sufficient?

Permutation invariant states

For permutation invariant states of three qubits

̺ = πij̺πij

the PPT mixer is necessary and sufficient for multiparticle entanglement.



Is the criterion necessary und sufficient?

Permutation invariant states

For permutation invariant states of three qubits

̺ = πij̺πij

the PPT mixer is necessary and sufficient for multiparticle entanglement.

X-states

For X-states with many qubits

̺ =





. . . . .
.

. .
. . . .





the PPT mixer is necessary and sufficient for multiparticle entanglement.

But...

... some entangled five-qubit states are not detected by the PPT mixer!



Incomplete information

Consider a Dicke state mixed with white noise:

̺(p) = p1/16 + (1 − p)|D4〉〈D4|

with |D4〉 = |0011〉+ |0101〉+ |1001〉+ |0110〉.

If the observables O1 = XXXX and O2 = YYYY are measured:
p = 0.29 can be tolerated.

If in addition O3 = ZZZZ is measured: p = 0.38 can be tolerated.

If in addition O4 = XXZZ and O5 = XXYY (& permutations) are
measured: p = 0.45 can be tolerated.

If one has complete knowledge on ̺: p = 0.54 can be tolerated.

Experimentalists can learn during their experiment, whether further
measurements are necessary.



The multiparticle negativity

The entanglement monotone

The quantity
E(̺) = |min[Tr(̺W)]|

with W = PA + QTA

A = PB + QTB

B = PC + QTC

C and Pi ,Qi ≥ 0 is a com-
putable entanglement monotone for genuine multiparticle entanglement.

Application to the Ising model

Investigate the scaling of the measure in the ground state:
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Proving separability of quantum states



The task

There are many criteria for proving that a state is entangled...

But given a density matrix, how can we prove that it is separable?



The task

There are many criteria for proving that a state is entangled...

But given a density matrix, how can we prove that it is separable?

We have to write it as

̺exp =
∑

i

pi |ai 〉〈ai | ⊗ |bi〉〈bi |.

For experimental density matrices this is a hopeless task.



Two facts

Convexity

Let ̺sep be separable, and let

̺1 = ̺2 + ε̺sep

⇔ ̺2 = ̺1 − ε̺sep

Then, if ̺2 is separable, ̺1 is
separable, too.

Highly mixed states

If a state is close to the maximally mi-
xed state, then it is separable. For in-
stance, in an N × M system:

Tr(̺2) ≤
1

NM − 1
⇒ ̺ is separable.

L. Gurvits, L., H. Barnum, PRA 66, 062311 (2002)
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3 Find an εi ≥ 0 such that

̺i+1 := (1 + εi)̺i − εi |φi 〉〈φi |

has no negative eigenvalues and Tr(̺2
i ) ≥ Tr(̺2

i+1) holds.

|〈φi |̺i |φi 〉| large ⇒ overlap with the biggest eigenvector large.

So λmax(̺i+1) ≤ λmax(̺i ), and from normalization λmin(̺i+1) ≥ λmin(̺i ).

Hence, ̺i+1 is closer to the maximally mixed state than ̺i .



The algorithm

1 Take the given data ̺exp as ̺i with i = 1.

2 Consider the optimization problem

max
|φ〉=|a〉|b〉

|〈φ|̺i |φ〉|

and find |φi 〉 = |ai〉|bi 〉 with a high overlap with ̺i .

3 Find an εi ≥ 0 such that

̺i+1 := (1 + εi)̺i − εi |φi 〉〈φi |

has no negative eigenvalues and Tr(̺2
i ) ≥ Tr(̺2

i+1) holds.

|〈φi |̺i |φi 〉| large ⇒ overlap with the biggest eigenvector large.

So λmax(̺i+1) ≤ λmax(̺i ), and from normalization λmin(̺i+1) ≥ λmin(̺i ).

Hence, ̺i+1 is closer to the maximally mixed state than ̺i .

4 Check, whether ̺i+1 is sufficiently mixed. If yes, then ̺i+1 is
separable, and also ̺i and finally ̺exp separable. If no, iterate.



Practical issues

The algorithm can be implemented with few lines of code

Usually ca. 50 - 100 iterations.

Calculations up to 6 qubits easy.

Its also possible to extend it to prove full separability or W-class
entanglement.

J. Barreiro et al., Nature Physics 6, 943 (2010), H. Kampermann et al., in preparation



Conclusion

Conclusion

The PPT criterion can be extended to the multipartite case.

Separability can be proven with a simple algorithm.

Open Questions

Is the multipartite PPT criterion necessary and sufficient for three
qubits?

What states are robust under decoherence, if the multipartite
entanglement monotone is considered?
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