
Introduction: Random numbers are crucial for various tasks, among them 

generating cryptographic secret keys, authentication, Monte-Carlo simulations, 

digital signatures, statistical sampling, etc. Random number generators can be 

classified into two types: pseudo-random number generators (PRNG) and true 

random number generators (TRNG). A PRNG is an algorithm, computational 

or physical, for generating a sequence of numbers that approximates the 

properties of random numbers. A physical or hardware version is typically 

based on stochastic noise or chaotic dynamics in a suitable physical system. 

Computational PRNGs are based on computational algorithms that generate 

sequences of numbers of very long periodicity, making them look like true 

random numbers for sufficiently short sequences. Careful observation over long 

periods will in principle reveal some kind of pattern or correlation, suggestive 

of non-randomness. As far as is known today, the inherent indeterminism or 

fluctuations in quantum phenomena is the only source of true randomness, an 

essential ingredient in quantum cryptography. Various proposed underlying 

physical processes for quantum random number generators (QRNGs) include: 

quantum measurement of single photons, an entangled system, coherent states 

or vacuum states; phase noise, spin noise, or radioactive decay or photonic 

emission. In this work, we propose a novel method of QRNG that is a quite 

different indeterministic paradigm from the above two. It uses bosonic 

stimulation to randomly amplify weak coherent pulses to intense pulses that 

can be easily detected by a conventional APDs.  
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A Generator for Unique Quantum Random Numbers 

Based on Bosonic Stimulation  

Abstract : Conventional methods for random number generation are based on deterministic computational algorithms and an 

initial seed, and are technically only pseudo-random. Quantum indeterminacy provides the possibility for generating genuine 

randomness, guaranteed by the very laws of Physics. Here we propose a method to realize a quantum random number generator 

based on bosonic stimulation, that requires only weak coherent pulses and conventional avalanche photo-diode detectors.  

Bosonic Stimulation: If there are N particles in a given quantum state then 

the probability that an incoming boson makes a transition into that state is 

proportional to N+1. Bosons obey B-E statistics which entails that the 

transition probability of a boson is enhanced by the presence of identical 

particles in that state. 

 

Polya-Urn Problem : Let the initial population of two states labelled as 

“blue" and red" be b(0) and r(0), respectively. As the incoming balls start 

populating the two states, the subsequent growth in population of the modes 

exhibits Polya urn behavior.The probabilistic law of evolution of the fractional 

population at ith instance is given by bosonic stimulation to be, 

 
{ b(i), r(i) }                   ( b(i)+1, r(i) ) with probability  b(i) +1 / [ b(i) + r(i) +2] 

 

 

 

 

The limiting value t ≡ b(i)/*b(i)+r(i)+ for a large I itself varies randomly in the 
range [0,1] from run to run having a beta distribution, 
    
   f (t; β, ρ) =  

 

     where B is the beta function that normalizes f, β= b’/c, ρ= r’/c, b’≡ b(0)+S b, 

     r’≡ r(0)+ Sr. For bosonic stimulation shifts Sb = Sr = 1.  
 

Depending on the number of trial runs, the final state can have an arbitrarily 

large number of bosons. Depending on whether t > 0:5 (blue dominates) or t < 

0:5 (red dominates), one generates a random bit 0 or 1. This can serve as the 

basis of generating random bits at a rate determined by the frequency with 

which each run can be repeated. Thus, the phenomenon of bosonic stimulation 

acts as a macroscopic QRNG.                                 

 

 

( b(i), r(i) +1) with probability  r(i) +1 / [ b(i) + r(i) +2] 
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Practical Realization: A concrete idea for realizing a random bosonic 

stimulator is to use a lasing medium that supports two radiation modes, for 

example by vertical and horizontal polarization of the same frequency . A 

scheme of the proposed experiment is given in figure. Two equal intensity, 

highly attenuated modes of coherent states are input into a lasing medium. To 

ensure that the two inputs are synchronized and of equal intensity, a calibrated 

Mach-Zehnder set-up is used with an attenuated coherent laser pulse fed into 

one of its input ports. This results in an output consisting of two (un-entangled) 

coherent pulses with half the intensity. A half wave plate in one of the arms 

ensures that the polarization in one arm rotated to be 90 ̊with respect to the 

other. Each mode in a pulse corresponds to a ball color in the Polya urn 

problem. Because of bosonic stimulation, the output intensity will randomly 

favor  vertical or horizontal polarization. Let IH (IV) denote the intensity of the 

outcoming light in the horizontal (vertical) polarization mode. The production 

of intensities can be approximated as a two  stage process: 1. Poisson process 

that  produces a distribution of photon numbers from the de-excited atoms. 2. 

Within each number , there is a Polya process that determines the distribution 

into the two modes.   The Poisson process creates laser light entangled states of 

atoms in the lasing medium, which can be described as, 
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Conclusion: We have proposed a novel QRNG principle, based on bosonic stimulation, in which, while 

the state preparation procedure presents experimental challenges, the detection and read-out parts are 

easier to implement. In an actual experiment, it is possible that systematic experimental biases might 

introduce correlations into the sequence of bits produced, thereby degrading the randomness. Statistical 

analyses like the Diehard tests and National Institute of Standards and Testing (NIST) suite of tests for 

randomness have to be carried out to know the quality of randomness and improve upon it. 
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 Two bit generation per run : 

 

           t < t ¼                    x = 00 

      t ¼  ≤ t < t ½              x = 01 

      t ½   ≤ t < t ¾             x = 10 

           t ≥ t ¾                    x = 11 

Experimental Set-Up and Results: 
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The joint system of the modes and atoms evolves in a manner given by,  


