
SIGNIFICANCE OF CLASSICAL RULES IN PENNY FLIP GAME 
 S. Balakrishnana#  and  R. Sankaranarayananb 

Department of Physics 
National Institute of Technology 

Tiruchirappalli 620015, India 
a. physicsbalki@gmail.com   b.   sankar@nitt.edu 

INTERNATIONAL WORKSHOP ON QUANTUM INFORMATION  
20 – 26 February 2012 

Harish-Chandra Research Institute,  Allahabad,  India  1 

# Present Address: Centre for Nonlinear Dynamics  
             School of Physics 

                 Bharathidasan University 
               Tiruchirappalli 620024, India 

 We study the quantum single penny flip game under various classical rules of the 
game. For every rule of the game, there exist unitary transformations which ensure 
the winning for quantum player. With the aim to understand the role of 
entanglement, we propose a quantization method for two penny flip problem in 
which quantum player is allowed to employ two-qubit entangling gate. While 
entangling gates are found to be not useful, local gates are necessary and sufficient 
to win the game. Further, importance of one qubit operations is indicated. 
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CLASSICAL PENNY FLIP PROBLEM 

Bob 

Alice 

Bob 

Same State of the coin               Bob wins  
Otherwise              Alice wins 
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QUANTUM PENNY FLIP PROBLEM 

Bob 

Alice 

Bob 

Bob always wins irrespective of Alice moves 

OR 

OR Hadamard gate 

Hadamard gate 



GENERALIZATION OF QUANTUM PENNY FLIP  

Game set up: 
 
Head :   Tail:     
In the density matrix formalism,       and  

Allowed strategies for Alice: 
Convex sum of flipping (F) the coin using the transformation   with 
probability p  and leaves the coin as it is (in other words, no flip (N)) using 
identity transformation   with probability (1-p). 

Allowed strategies for Bob: 

Pure quantum strategy  

where               ,            is the phase factor,                       and                             
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Case 1: Initial state of the coin is head and final state is head. 
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Initial state of the coin: 

Action of Bob: 

Action of Alice: 

Action of Bob: 

If the final state of the coin is head, that is,  then Bob is the 
winner. Therefore, we have  
 
 This is possible, iff   
 (1) 

and 
(2) 

Eqn. (2) can be rewritten as                           , where             represents usual 

commutation relation. Since                                , we have  

(3) 
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While the first commutation is obviously zero, the second commutation can 

be zero for                                           where                     . Therefore,                               

By substituting this in Eqn. (2), we have 

(4) 

 Second term is zero for                                            where                        .  Using the 

general form of    ,  we have 

(5) 
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From (i) and (ii), we have                   or             , implying that                         . With 

this, the above simultaneous equations can be satisfied for                      and  

                  or                . Using this, we have found that 

 The well known Meyer’s strategy of Hadamard transformation can be 

obtained as a special case for the values of                     ,                        and             . 

 

Case 2: Initial state of the coin is tail and final state is tail. 

Replacing       with        and proceeding as earlier, and noting                           ,  

the solution is the same as that of the previous one.  

 



Case 3: Initial state of the coin is head and final state is tail. 
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In this case, we have 

 This is possible, iff 

and 

The above equation implies that                                    .  

Since                                and                            , we have  

 

(6) 

(7) 

where             represents anti-commutation relation. Similarly, Eqn. (6) becomes 

(8) 

(9) 
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While the commutation relations are zero, anti-commutations can be zero for 

suitable operators and can be identified from the following argument. 

 We may note that the action of Alice have no effect on the superposition state 

of the coin. In order to identify the quantum strategy in favour of Bob, he should 

transform the initial state of head into a superposition state by employing the 

operator        as 

 

This state is unaffected by Alice’s move and, in his next turn Bob should change 

the state to tail. Equivalently, it is necessary to find an operator such that 

                                       

 Using the general form of unitary operator, the required operator is found to be 

 



Case 4: Initial state of the coin is tail and final state is head. 
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Recognizing                   and                 , it is simple to check that Eqns. (8) and (9) 

are satisfied. Hence, Bob can beat the classical Alice by employing the operators       

         followed by        . 

 

In this case, we have 

This is satisfied, iff 
 

and 

 Since the above conditions are the same as that of Eqns. (8) and (9), 

the winning strategies of Bob are the same as that of the previous case.  

 

(11) 

(10) 



 For every rule of the game, there exist unitary operators which 

ensure the winning of quantum player.  

 This observation in the penny flip problem demonstrates that 

classical rule of the game is insignificant. 
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QUANTUM TWO PENNY PROBLEM 

Game set up 
1) Set the state of the coins 
2) Bob will employ nonlocal two-qubit operation      (thereby he can produce 

entanglement between the coins) 
3)  Alice employs her classical probabilistic operations on the coins  
4) And finally Bob employs two-qubit operation      
5)  If the final state of the coins is the same as that of initial state, then Bob is 

declared as a winner.  

Where        and  

Here,                      are the geometrical points of a two qubit gate  

No Flip 

Flip 12 
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Initial state of the coins: 

Action of Bob: 

Action of Alice: 

Action of Bob: 

 For Bob to win, the final state of the coins should be       . That is,  

The above equation is satisfied, iff 

For the initial state of          as well as          , the above conditions read as 

and 

It is clear that the above conditions cannot be satisfied simultaneously 
for any entangling operators. 



 However, quantum Bob can still win by employing suitable local operations 
on the two coins. From the analysis of single penny problem, we have identified 
suitable unitary operations (refer Table 1) employing which Bob can win the two 
penny problem as well.  Table 2 indicates that Bob can employ appropriate local 
operations on the coins to win the classical player. Therefore, local operations 
are necessary and sufficient for the quantum player to beat the classical 
opponent in the penny flip problem.  
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For the initial state of          as well as          , we have 

and 

It is clear that the above conditions cannot be satisfied simultaneously. 



CONCLUSION 

 General unitary operations, for the given classical rule, are derived and 
employing  which quantum player can always win the single penny game. 
Thus we have shown the winning strategies for quantum player irrespective 
of the  classical rule of the game. 
 
  With the aim to understand the role of entanglement, we propose a 
quantization method for two penny flip problem.  However, we demonstrate 
that entanglement does not help the quantum player to produce the 
desired final state. 
 
 Nevertheless, by employing local operations quantum player can win 
against the classical player. Therefore, local gates are necessary and 
sufficient to win the  two penny game. 
 
 While one qubit operations are critically important in the quantum circuit 
constructions, penny flip problem is yet another instance where importance 
of one qubit operations is revealed. In this context, one qubit operations 
deserve  detailed investigations in game theory.  
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