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A novel construction of symmetric MUBs using the generators of the Clifford
algebra.

New lower bounds on the average min-entropy for any set of 2 < L ≤ d+ 1
MUBs in d dimensions.
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First formulated by Heisenberg (1927) in terms of variances, for canonically
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Uncertainty relations

First formulated by Heisenberg (1927) in terms of variances, for canonically
conjugate variables.

Generalized by Robertson (1929), for any two observables A and B :-
Prepare many copies of the state |ψ〉, on each of them measure either A or
B, then,

∆A∆B ≥ 1

2
|〈ψ|[A,B]|ψ〉|

∆A =
√

〈ψ|A2|ψ〉 − 〈ψ|A|ψ〉2.
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First formulated by Heisenberg (1927) in terms of variances, for canonically
conjugate variables.

Generalized by Robertson (1929), for any two observables A and B :-
Prepare many copies of the state |ψ〉, on each of them measure either A or
B, then,

∆A∆B ≥ 1

2
|〈ψ|[A,B]|ψ〉|

∆A =
√

〈ψ|A2|ψ〉 − 〈ψ|A|ψ〉2.
Other measures quantifying the spread of the distribution - entropy

An entropic uncertainty relation for canonically conjugate variables :-

H(X ||ψ〉) +H(P ||ψ〉) ≥ log(eπ)

Formulated by Everett and Hirschmann (1957); established by Beckner and
Bialynicki-Birula and Mycielski (1975).
This implies the Hiesenberg uncertainty relation.
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Measures of entropy

Renyi entropies: If PX(x) is a probability distribution over the set
X = {x1, x2, ..., xd}, Renyi entropy of order α is

Hα(PX) :=
1

1− α
log

(

∑

x∈X
(PX(x))α

)

.
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Measures of entropy

Renyi entropies: If PX(x) is a probability distribution over the set
X = {x1, x2, ..., xd}, Renyi entropy of order α is

Hα(PX) :=
1

1− α
log

(

∑

x∈X
(PX(x))α

)

.

Shannon entropy:

H(PX) := lim
α→1

Hα(PX) = −
∑

x∈X
PX(x) logPX(x).

Collision entropy: H2(PX) = − log
∑

x∈X (PX(x))2.

Min-entropy: H∞(PX) = − logmaxx∈X PX(x).

Renyi entropies are monotonically decreasing in α : H∞(.) ≤ H2(.) ≤ H(.)

Prabha Mandayam (IMSc) HRI(IWQI’12) 26 Feb 2012 4 / 23



Entropic uncertainty relations1

For a set of measurements {M1,M2, ...,ML} on the space H with a finite
set of outcomes, an EUR is of the form

1

L

L
∑

j=1

Hα(Mj |ρ) ≥ c{Mj}, ∀ ρ ∈ S(H).

where c{Mj} is independent of the choice of state ρ.

1For a recent review, see S.Wehner and A.Winter, New Journal of Phys, 12 (2010)
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1

L

L
∑

j=1

Hα(Mj |ρ) ≥ c{Mj}, ∀ ρ ∈ S(H).

where c{Mj} is independent of the choice of state ρ.

Captures the extent of mutual incompatibility of the set of measurements
{M1,M2, ...,ML}.
There always exists ρ such that Hα(Mj |ρ) = 0 for one of the measurements
Mj (an eigenstate!). ⇒
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1− 1
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For a set of measurements {M1,M2, ...,ML} on the space H with a finite
set of outcomes, an EUR is of the form

1

L

L
∑

j=1

Hα(Mj |ρ) ≥ c{Mj}, ∀ ρ ∈ S(H).

where c{Mj} is independent of the choice of state ρ.

Captures the extent of mutual incompatibility of the set of measurements
{M1,M2, ...,ML}.
There always exists ρ such that Hα(Mj |ρ) = 0 for one of the measurements
Mj (an eigenstate!). ⇒

(

1− 1
L

)

log |X | ≥ c{Mj} ≥ 0.

If c{Mj} =
(

1− 1
L

)

log |X |, the set {Mj} is maximally incompatible,
implying a maximally strong uncertainty relation.

1For a recent review, see S.Wehner and A.Winter, New Journal of Phys, 12 (2010)
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EURs for two measurement bases

The Massen and Uffink bound (1988) :-
For state ρ ∈ H (dim H = d) and observables A and B with orthonormal
eigenbases A = {|a1〉, ..., |ad〉} and B = {|b1〉, ..., |bd〉},

1

2
(H(A||ψ〉) +H(B||ψ〉)) ≥ − log c(A,B)

where2 c(A,B) := max | 〈a|b〉 |, ∀ |a〉 ∈ A, |b〉 ∈ B.

2Shannon entropy: H(PX ) := −

∑
x∈X

PX(x) logPX(x)
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The Massen and Uffink bound (1988) :-
For state ρ ∈ H (dim H = d) and observables A and B with orthonormal
eigenbases A = {|a1〉, ..., |ad〉} and B = {|b1〉, ..., |bd〉},

1

2
(H(A||ψ〉) +H(B||ψ〉)) ≥ − log c(A,B)

where2 c(A,B) := max | 〈a|b〉 |, ∀ |a〉 ∈ A, |b〉 ∈ B.

Maximum value of RHS is attained when | 〈a|b〉 | = 1√
d
, ∀|a〉, |b〉, so that

1

2
(H(A||ψ〉) +H(B||ψ〉)) ≥ 1

2
log d

Strongest possible uncertainty relation is obtained when the bases are
mutually unbiased .

2Shannon entropy: H(PX ) := −

∑
x∈X

PX(x) logPX(x)
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EURs for two measurements

Massen-Uffink bound is not tight for general pairs of observables3 – eg.
components of spin along non-orthogonal directions.

3Shown to be tight for Stabilizer Basis States: Niekamp et al. JMP 53 (2012)
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Massen-Uffink bound is not tight for general pairs of observables3 – eg.
components of spin along non-orthogonal directions.

Massen-Uffink bound for the min-entropy4

1

2
(H∞(A||ψ〉) +H∞(B||ψ〉)) ≥ − log

[

1 + c(A,B)
2

]

3Shown to be tight for Stabilizer Basis States: Niekamp et al. JMP 53 (2012)
4Min-entropy: H∞(PX) = − logmaxx∈X PX(x)
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EURs for two measurements

Massen-Uffink bound is not tight for general pairs of observables3 – eg.
components of spin along non-orthogonal directions.

Massen-Uffink bound for the min-entropy4

1

2
(H∞(A||ψ〉) +H∞(B||ψ〉)) ≥ − log

[

1 + c(A,B)
2

]

Tight for some choices of A and B, in particular, for 2 mutually unbiased
bases in d = 2.

3Shown to be tight for Stabilizer Basis States: Niekamp et al. JMP 53 (2012)
4Min-entropy: H∞(PX) = − logmaxx∈X PX(x)
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Mutually unbiased bases6
Definition and examples

Definition:- Two orthonormal bases B(1) = {|b11〉, |b12〉, ..., |b1d〉} and
B(2) = {|b21〉, |b22〉, ..., |b2d〉} in Cd are mutually unbiased if

|
〈

b1k|b2l
〉

| = 1√
d
, ∀ k, l = 1, ..., d

6For a recent review, see T.Durt et al. Int. J. Quant Info, 8, 535-640 (2010)
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| = 1√
d
, ∀ k, l = 1, ..., d

Examples:- Eigenvectors of σx and σz in d = 2.
In general, the computational basis and Hadamard basis. (Eigenbases of I⊗k

and H
⊗k in dimension d = 2k, where H is the Hadamard matrix.)
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Definition:- Two orthonormal bases B(1) = {|b11〉, |b12〉, ..., |b1d〉} and
B(2) = {|b21〉, |b22〉, ..., |b2d〉} in Cd are mutually unbiased if

|
〈

b1k|b2l
〉

| = 1√
d
, ∀ k, l = 1, ..., d

Examples:- Eigenvectors of σx and σz in d = 2.
In general, the computational basis and Hadamard basis. (Eigenbases of I⊗k

and H
⊗k in dimension d = 2k, where H is the Hadamard matrix.)

Maximal number of MUBs5 in dimension d is N(d) ≤ d+ 1.
If d = pk, N(d) = d+ 1 – explicit construction is known using generalized
Pauli operators.

5S.Bandyopadhyay et al. Algorithmica, 34(4), 512, 2002
6For a recent review, see T.Durt et al. Int. J. Quant Info, 8, 535-640 (2010)
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Uncertainty relations for MUBs
The general case of more than two measurements

MUBs give rise to maximally strong uncertainty relations for the case of two
measurements.
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Uncertainty relations for MUBs
The general case of more than two measurements

MUBs give rise to maximally strong uncertainty relations for the case of two
measurements.

For measurements involving more than 2 bases, to obtain strong uncertainty
relations, the bases must be mutually unbiased -
MUBs are a necessary condition to achieve maximal incompatibility with
multiple bases.

When the complete set of d+ 1 MUBs exist, EURs are known7

1

d+ 1

d+1
∑

j=1

H2(Bj |ρ) ≥ log(d+ 1)− 1

Tight for states invariant under U : B1 → B2 → . . .Bd → B1.

7I.D.Ivanovic, J. Phys. A: Math. Gen.25(7), 363, 1992;
J.Sanchez, Physic Letters A 173, 233, 1993
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Uncertainty relations for MUBs
The general case of more than two measurements

MUBs give rise to maximally strong uncertainty relations for the case of two
measurements.

For measurements involving more than 2 bases, to obtain strong uncertainty
relations, the bases must be mutually unbiased -
MUBs are a necessary condition to achieve maximal incompatibility with
multiple bases.

When the complete set of d+ 1 MUBs exist, EURs are known7

1

d+ 1

d+1
∑

j=1

H2(Bj |ρ) ≥ log(d+ 1)− 1

Tight for states invariant under U : B1 → B2 → . . .Bd → B1.

For less than d+ 1 MUBs, such relations have not been obtained.

7I.D.Ivanovic, J. Phys. A: Math. Gen.25(7), 363, 1992;
J.Sanchez, Physic Letters A 173, 233, 1993
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Uncertainty relations for MUBs

In square prime power dimensions (d = p2l) there exist upto pl + 1 MUBs
derived from generalized Pauli matrices, which satisfy weak uncertainty
relations8 :-

min
ρ

1

L

∑

j

H(Bj|ρ) =
log d

2

8M.Ballester and S.Wehner, PRA, 75 022319, 2007
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1

L
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log d
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This is infact the trivial lower bound obtained by combining pairwise, the
Massen-Uffink bound for multiple MUBs!

8M.Ballester and S.Wehner, PRA, 75 022319, 2007
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In square prime power dimensions (d = p2l) there exist upto pl + 1 MUBs
derived from generalized Pauli matrices, which satisfy weak uncertainty
relations8 :-

min
ρ

1

L

∑

j

H(Bj|ρ) =
log d

2

This is infact the trivial lower bound obtained by combining pairwise, the
Massen-Uffink bound for multiple MUBs!

For 3 MUBs in prime power dimension, it has been shown9 that the lower
bound cannot exceed

(

1
2 +O(1)

)

log d for large dimensions (assuming the
Generalized Riemann Hypothesis!!).

8M.Ballester and S.Wehner, PRA, 75 022319, 2007
9A.Ambainis, arXiV:0909.3720
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Uncertainty relations for MUBs

In square prime power dimensions (d = p2l) there exist upto pl + 1 MUBs
derived from generalized Pauli matrices, which satisfy weak uncertainty
relations8 :-

min
ρ

1

L

∑

j

H(Bj|ρ) =
log d

2

This is infact the trivial lower bound obtained by combining pairwise, the
Massen-Uffink bound for multiple MUBs!

For 3 MUBs in prime power dimension, it has been shown9 that the lower
bound cannot exceed

(

1
2 +O(1)

)

log d for large dimensions (assuming the
Generalized Riemann Hypothesis!!).

Thus, for more than two measurements with multiple outcomes, whether
there exist maximally strong uncertainty relations remains an interesting open
question.

8M.Ballester and S.Wehner, PRA, 75 022319, 2007
9A.Ambainis, arXiV:0909.3720
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Some practical motivations!

Apart from their significance in understanding the foundations of quantum
mechanics, EURs play a central role in cryptography.
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mechanics, EURs play a central role in cryptography.

Applications of Shannon entropic uncertainty relations: security proof of
QKD10, phenomenon of information locking11.

10M. Koashi, e-print arXiv:quant-ph/0505108.
11D. DiVincenzo et al., Phys. Rev. Lett. 92, 067902 (2004).
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Apart from their significance in understanding the foundations of quantum
mechanics, EURs play a central role in cryptography.

Applications of Shannon entropic uncertainty relations: security proof of
QKD10, phenomenon of information locking11.

Application of min-entropic uncertainty relations: noisy-storage model12.
The security of two-party protocols in this model is directly related to a lower
bound on the average min-entropy.

10M. Koashi, e-print arXiv:quant-ph/0505108.
11D. DiVincenzo et al., Phys. Rev. Lett. 92, 067902 (2004).
12P.Mandayam and S.Wehner, PRA, 83 (2012)
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Applications of Shannon entropic uncertainty relations: security proof of
QKD10, phenomenon of information locking11.

Application of min-entropic uncertainty relations: noisy-storage model12.
The security of two-party protocols in this model is directly related to a lower
bound on the average min-entropy.

There exists a direct correspondence between the lower bounds on the
average min-entropy and the extrema of discrete Wigner functions.

10M. Koashi, e-print arXiv:quant-ph/0505108.
11D. DiVincenzo et al., Phys. Rev. Lett. 92, 067902 (2004).
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Some practical motivations!

Apart from their significance in understanding the foundations of quantum
mechanics, EURs play a central role in cryptography.

Applications of Shannon entropic uncertainty relations: security proof of
QKD10, phenomenon of information locking11.

Application of min-entropic uncertainty relations: noisy-storage model12.
The security of two-party protocols in this model is directly related to a lower
bound on the average min-entropy.

There exists a direct correspondence between the lower bounds on the
average min-entropy and the extrema of discrete Wigner functions.

Separability criteria based on EURs are known13.

10M. Koashi, e-print arXiv:quant-ph/0505108.
11D. DiVincenzo et al., Phys. Rev. Lett. 92, 067902 (2004).
12P.Mandayam and S.Wehner, PRA, 83 (2012)
13O.Guehne, M.Lewenstein, PRA, 70(2004)
Prabha Mandayam (IMSc) HRI(IWQI’12) 26 Feb 2012 11 / 23



Symmetric MUBs from Clifford generators14

Given the 2n generators of the Clifford algebra {Γ0,Γ1, ...,Γ2n−1} in
dimension d = 2n,

14P.Mandayam, N.Balachandran and S.Wehner, J Math Phys. 51, 082201 (2010)
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Symmetric MUBs from Clifford generators14

Given the 2n generators of the Clifford algebra {Γ0,Γ1, ...,Γ2n−1} in
dimension d = 2n,

{Γ0,Γ1, ....,Γ2n−1} can be viewed as 2n orthogonal vectors forming a basis

for R2n.

⇒ There exists a unitary U that cyclically permutes the Γ-operators.
This symmetry can be extended to SO(2n+1), including Γ2n = iΓ0Γ1..Γ2n−1

The set of operators S = {I,Γj , iΓiΓj ,ΓiΓjΓk, ...,Γ2n = iΓ0Γ1..Γ2n−1}
forms an orthogonal basis for d× d Hermitian matrices, where d = 2n.

14P.Mandayam, N.Balachandran and S.Wehner, J Math Phys. 51, 082201 (2010)
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{Γ0,Γ1, ....,Γ2n−1} can be viewed as 2n orthogonal vectors forming a basis

for R2n.

⇒ There exists a unitary U that cyclically permutes the Γ-operators.
This symmetry can be extended to SO(2n+1), including Γ2n = iΓ0Γ1..Γ2n−1

The set of operators S = {I,Γj , iΓiΓj ,ΓiΓjΓk, ...,Γ2n = iΓ0Γ1..Γ2n−1}
forms an orthogonal basis for d× d Hermitian matrices, where d = 2n.

To construct MUBs, we group the elements of S into classes
{C1, C2, . . . , CL | Cj ⊂ S} of size |Cj | = d such that (i) the elements of Cj
commute for all j = 1, 2, ..., L and (ii) Cj ∩ Ck = {I}∀j 6= k.

14P.Mandayam, N.Balachandran and S.Wehner, J Math Phys. 51, 082201 (2010)
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Symmetric MUBs from Clifford generators14

Given the 2n generators of the Clifford algebra {Γ0,Γ1, ...,Γ2n−1} in
dimension d = 2n,

{Γ0,Γ1, ....,Γ2n−1} can be viewed as 2n orthogonal vectors forming a basis

for R2n.

⇒ There exists a unitary U that cyclically permutes the Γ-operators.
This symmetry can be extended to SO(2n+1), including Γ2n = iΓ0Γ1..Γ2n−1

The set of operators S = {I,Γj , iΓiΓj ,ΓiΓjΓk, ...,Γ2n = iΓ0Γ1..Γ2n−1}
forms an orthogonal basis for d× d Hermitian matrices, where d = 2n.

To construct MUBs, we group the elements of S into classes
{C1, C2, . . . , CL | Cj ⊂ S} of size |Cj | = d such that (i) the elements of Cj
commute for all j = 1, 2, ..., L and (ii) Cj ∩ Ck = {I}∀j 6= k.

The common eigenbases of such classes are MUBs that get cyclically
permuted under the action of U .

14P.Mandayam, N.Balachandran and S.Wehner, J Math Phys. 51, 082201 (2010)
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Constructing symmetric MUBs from Clifford generators

A simple example in d = 4. For k = 3 MUBs, the classes are given by

C0 = {Γ0, iΓ1Γ4, iΓ3Γ2}
C1 = {Γ1, iΓ2Γ4, iΓ3Γ0}
C2 = {Γ2, iΓ0Γ4, iΓ3Γ1}
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A simple example in d = 4. For k = 3 MUBs, the classes are given by

C0 = {Γ0, iΓ1Γ4, iΓ3Γ2}
C1 = {Γ1, iΓ2Γ4, iΓ3Γ0}
C2 = {Γ2, iΓ0Γ4, iΓ3Γ1}

U that transforms Γ0 → Γ1 → Γ2 → Γ0, but leaves Γ3 and Γ4 invariant,
cyclically permutes the corresponding bases.

Since each class can contain only 1 Clifford generator, maximum number of
such classes possible is 2n+ 1.

Imposing the additional constraint that U : Ci → Ci+1, we show by an explicit
construction that there exist 2 < k ≤ 2n+ 1 such classes in dimension
d = 2n whenever

k is prime, and

k divides n or k = 2n+ 1.
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New lower bounds on the average min-entropy

Let {B(b), b = 0, ..., L− 1} be a set of MUBs in a d−dimensional space H.
Then, we show,

1

L

L−1
∑

b=0

H∞(B(b)|ρ) ≥ − log

[

1

L

(

1 +
L− 1√

d

)]

, ∀ρ ∈ H.
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Corresponds to the Massen-Uffink bound for 2 observables in d = 2.
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, ∀ρ ∈ H.

Corresponds to the Massen-Uffink bound for 2 observables in d = 2.
For any less-than-maximal set of MUBs (2 < L < d), our bound is stronger
than previously obtained bounds.
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For any less-than-maximal set of MUBs (2 < L < d), our bound is stronger
than previously obtained bounds.
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Let {B(b), b = 0, ..., L− 1} be a set of MUBs in a d−dimensional space H.
Then, we show,
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H∞(B(b)|ρ) ≥ − log

[

1
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1 +
L− 1√

d

)]

, ∀ρ ∈ H.

Corresponds to the Massen-Uffink bound for 2 observables in d = 2.
For any less-than-maximal set of MUBs (2 < L < d), our bound is stronger
than previously obtained bounds.

For the complete set of L = d+1 MUBs, we obtain a slightly stronger bound,

1

L

L−1
∑

b=0

H∞(B(b)|ρ) ≥ − log

[

1

d

(

1 +
d− 1√
L

)]

, ∀ρ ∈ H.

An optimal and tight uncertainty relation in some cases, but not always.
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An optimal EUR for 4 MUBs in d = 4

4 MUBs in d = 4 via our construction:-

C1 = {Γ1,Γ2Γ0, iΓ3Γ4}
C2 = {Γ2,Γ3Γ0, iΓ4Γ1}
C3 = {Γ3,Γ4Γ0, iΓ1Γ2}
C4 = {Γ4,Γ1Γ0, iΓ2Γ3}
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There exists a unitary U : Γ1 → Γ2 → Γ3 → Γ4 → Γ1, leaving Γ0 invariant.
U cyclically permutes the corresponding bases.

The EUR 1
4

∑4
b=1H∞(B(b)|ρ) ≥ − log

[

1
4

(

1 + 3
2

)]

is tight.
The minimum value is attained for a state that is an invariant of U .
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4 MUBs in d = 4 via our construction:-

C1 = {Γ1,Γ2Γ0, iΓ3Γ4}
C2 = {Γ2,Γ3Γ0, iΓ4Γ1}
C3 = {Γ3,Γ4Γ0, iΓ1Γ2}
C4 = {Γ4,Γ1Γ0, iΓ2Γ3}

There exists a unitary U : Γ1 → Γ2 → Γ3 → Γ4 → Γ1, leaving Γ0 invariant.
U cyclically permutes the corresponding bases.

The EUR 1
4

∑4
b=1H∞(B(b)|ρ) ≥ − log

[

1
4

(

1 + 3
2

)]

is tight.
The minimum value is attained for a state that is an invariant of U .

However, for 3 MUBs in d = 4, numerical estimates show our bound is not
tight.
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EUR bounds for MUBs in d = 4
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EUR bounds for MUBs in d = 8
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Summary of results

We outline a new construction of symmetric MUBs using the generators of
the Clifford algebra, that are cyclically permuted under the action of a unitary
transformation U .
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We demonstrate new lower bounds for the average min-entropy for any set of
MUBs, stronger than existing lower bounds.
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Summary of results

We outline a new construction of symmetric MUBs using the generators of
the Clifford algebra, that are cyclically permuted under the action of a unitary
transformation U .

We show explicit constructions of 2 ≤ L ≤ 2n+ 1 such MUBs in dimension
d = 2n, whenever (a) L is prime and (b) L|n or L = 2n+ 1.

We demonstrate new lower bounds for the average min-entropy for any set of
MUBs, stronger than existing lower bounds.

Using our construction, we can explicitly write down a set of 4 MUBs in
d = 4 and show that they satisfy an optimal, tight uncertainty relation.
Minimizing state is invariant under the unitary transform.
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Open questions

Can we extend our construction to other dimensions/number of bases?
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Shannon entropy?
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Open questions

Can we extend our construction to other dimensions/number of bases?

Is it possible to obtain a condition as to when the uncertainty relation is
tight?

Can we obtain similar lower bounds for the average collision entropy and
Shannon entropy?

Can the maximally strong EUR for the d = 4 case be used to improve
existing cryptographic protocols in a practical way?
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Thank You!
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Evaluating the lower bound - I

Recall, Average min-entropy is

1

L

L−1
∑

b=0

H∞(B(b)|ρ) = − 1

L

∑

b

log max
y∈{0,...,d−1}

〈y(b)|ρ|y(b)〉
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(Using Jensen’s inequality)
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1

L
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∑
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H∞(B(b)|ρ) = − 1

L

∑
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log max
y∈{0,...,d−1}

〈y(b)|ρ|y(b)〉

≥ − log
1

L

L−1
∑

b=0

max
y

〈y(b)|ρ|y(b)〉

(Using Jensen’s inequality)

Define P~y := 1
L

∑

y(k) |y(k)〉〈y(k)| for ~y = (y(0), y(1), ..., y(L−1)) denotes a

string of basis elements, i.e. y(k) ∈ {0, 1, ..., d− 1}. Then,

1

L

L−1
∑

k=0

H∞(B(k)||ψ〉〈ψ|) ≥ − logmax
|ψ〉

Tr(P~y |ψ〉〈ψ|)
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Evaluating the lower bound - II

Reduces the problem to finding the largest eigenvalue for any operator P~y .
Any ζ such that P~y ≤ ζI for all ~y, gives us a lower bound for the avergae
min-entropy.
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Evaluating the lower bound - II

Reduces the problem to finding the largest eigenvalue for any operator P~y .
Any ζ such that P~y ≤ ζI for all ~y, gives us a lower bound for the avergae
min-entropy.

For a set of L orthogonal projectors A0, A1, . . . , AL−1, the following bound
holds15:

‖
L−1
∑

j=0

Aj ‖≤ 1 + (L− 1) max
0≤j<k≤L−1

‖ AjAk ‖

where ‖ (.) ‖ denotes the operator norm, or simply the maximum eigenvalue
for Hermitian operators.

15F. Kittaneh, J. Funct. Anal. 143, 337 (1997).
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Evaluating the lower bound - II

Reduces the problem to finding the largest eigenvalue for any operator P~y .
Any ζ such that P~y ≤ ζI for all ~y, gives us a lower bound for the avergae
min-entropy.

For a set of L orthogonal projectors A0, A1, . . . , AL−1, the following bound
holds15:

‖
L−1
∑

j=0

Aj ‖≤ 1 + (L− 1) max
0≤j<k≤L−1

‖ AjAk ‖

where ‖ (.) ‖ denotes the operator norm, or simply the maximum eigenvalue
for Hermitian operators.

Applying this result to sums of basis vectors |y(b)〉, and using
〈b(j)|b(k)〉 = eiφ 1√

d
, for any j 6= k, gives the desired bound.

15F. Kittaneh, J. Funct. Anal. 143, 337 (1997).
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MUBs from generalized Pauli matrices17

Let {|0〉, |1〉, ..., |p− 1〉} denote the computational basis in Cp. The
generalized Paulis are defined by

Xp|k〉 = |(k + 1) mod p〉 ; Zp|k〉 = ωk|k〉,

where ω = e2πi/p.

17S.Bandyopadhyay, P.Boykin, V.Roychowdhury and F.Vatan, Algorithmica, 34(4),
512, 2002
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generalized Paulis are defined by

Xp|k〉 = |(k + 1) mod p〉 ; Zp|k〉 = ωk|k〉,

where ω = e2πi/p.

If d = pk (a prime power), the Hilbert space H can be written as a tensor
product of k copies of Cp.
Group all d2 possible strings of tensor products of Xp and Zp into sets
C1, C2, ..., Cd+1 such that, (i) |Ci| = d, (ii) Ci ∩ Cj = {I} for i 6= j and (iii) all
elements of Ci commute.
Let B(i) be the common eigenbasis of the elements of Ci. The bases
{B(1),B(2), ...,B(d+1)} are mutually unbiased.
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512, 2002
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MUBs from generalized Pauli matrices17

Let {|0〉, |1〉, ..., |p− 1〉} denote the computational basis in Cp. The
generalized Paulis are defined by

Xp|k〉 = |(k + 1) mod p〉 ; Zp|k〉 = ωk|k〉,

where ω = e2πi/p.

If d = pk (a prime power), the Hilbert space H can be written as a tensor
product of k copies of Cp.
Group all d2 possible strings of tensor products of Xp and Zp into sets
C1, C2, ..., Cd+1 such that, (i) |Ci| = d, (ii) Ci ∩ Cj = {I} for i 6= j and (iii) all
elements of Ci commute.
Let B(i) be the common eigenbasis of the elements of Ci. The bases
{B(1),B(2), ...,B(d+1)} are mutually unbiased.

Symmetry property16:- There exists an ordering B(1), ...,B(d+1), and a
unitary U such that UB(j)U † = B(j+1), where UB(d)U † = B(1).

16W.K.Wootters and D.M.Sussman, 2007, arXiv:0704.1277
17S.Bandyopadhyay, P.Boykin, V.Roychowdhury and F.Vatan, Algorithmica, 34(4),

512, 2002
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