A transform of complementary aspects with applications to EURs

Prabha Mandayam

Institute of Mathematical Sciences, Chennai Joint work with Stephanie Wehner (CQT, Singapore) Niranjan Balachandran(Dept. of Math., IIT Bombay)

Reference: Journal of Math Phys , 51, 082201 (2010)

• Entropic uncertainty relations: brief overview.

- Entropic uncertainty relations: brief overview.
- Complementarity and uncertainty: the role of mutually unbiased bases (MUBs) in obtaining **strong** uncertainty relations.

- Entropic uncertainty relations: brief overview.
- Complementarity and uncertainty: the role of mutually unbiased bases (MUBs) in obtaining **strong** uncertainty relations.
- A novel construction of symmetric MUBs using the generators of the Clifford algebra.

- Entropic uncertainty relations: brief overview.
- Complementarity and uncertainty: the role of mutually unbiased bases (MUBs) in obtaining **strong** uncertainty relations.
- A novel construction of symmetric MUBs using the generators of the Clifford algebra.
- New lower bounds on the average min-entropy for any set of $2 < L \leq d+1$ MUBs in d dimensions.

- Entropic uncertainty relations: brief overview.
- Complementarity and uncertainty: the role of mutually unbiased bases (MUBs) in obtaining **strong** uncertainty relations.
- A novel construction of symmetric MUBs using the generators of the Clifford algebra.
- New lower bounds on the average min-entropy for any set of $2 < L \leq d+1$ MUBs in d dimensions.
- An optimal uncertainty relation for 4 MUBs in d = 4.

• First formulated by Heisenberg (1927) in terms of variances, for canonically conjugate variables.

- First formulated by Heisenberg (1927) in terms of variances, for canonically conjugate variables.
- Generalized by Robertson (1929), for any two observables A and B :-Prepare many copies of the state $|\psi\rangle$, on each of them measure either A or B, then,

$\Delta A \Delta B \geq \frac{1}{2} |\langle \psi | [A, B] | \psi \rangle|$

 $\Delta A = \sqrt{\langle \psi | A^2 | \psi \rangle - \langle \psi | A | \psi \rangle^2}.$

- First formulated by Heisenberg (1927) in terms of variances, for canonically conjugate variables.
- Generalized by Robertson (1929), for any two observables A and B :-Prepare many copies of the state $|\psi\rangle$, on each of them measure either A or B, then,

$$\Delta A \Delta B \ge \frac{1}{2} |\langle \psi | [A, B] | \psi \rangle|$$

$$\Delta A = \sqrt{\langle \psi | A^2 | \psi \rangle - \langle \psi | A | \psi \rangle^2}.$$

• Other measures quantifying the spread of the distribution - entropy

- First formulated by Heisenberg (1927) in terms of variances, for canonically conjugate variables.
- Generalized by Robertson (1929), for any two observables A and B:-Prepare many copies of the state $|\psi\rangle$, on each of them measure either A or B, then,

$\Delta A \Delta B \ge \frac{1}{2} |\langle \psi | [A, B] | \psi \rangle|$

$$\Delta A = \sqrt{\langle \psi | A^2 | \psi \rangle - \langle \psi | A | \psi \rangle^2}.$$

- Other measures quantifying the spread of the distribution entropy
- An entropic uncertainty relation for canonically conjugate variables :-

$H(X||\psi\rangle) + H(P||\psi\rangle) \ge \log(e\pi)$

Formulated by Everett and Hirschmann (1957); established by Beckner and Bialynicki-Birula and Mycielski (1975).

This implies the Hiesenberg uncertainty relation.

Measures of entropy

• Renyi entropies: If $P_X(x)$ is a probability distribution over the set $\mathcal{X} = \{x_1, x_2, ..., x_d\}$, Renyi entropy of order α is

$$H_{\alpha}(P_X) := \frac{1}{1-\alpha} \log \left(\sum_{x \in \mathcal{X}} (P_X(x))^{\alpha} \right).$$

Measures of entropy

• **Renyi entropies:** If $P_X(x)$ is a probability distribution over the set $\mathcal{X} = \{x_1, x_2, ..., x_d\}$, Renyi entropy of order α is

$$H_{\alpha}(P_X) := \frac{1}{1-\alpha} \log \left(\sum_{x \in \mathcal{X}} (P_X(x))^{\alpha} \right).$$

• Shannon entropy:

$$H(P_X) := \lim_{\alpha \to 1} H_\alpha(P_X) = -\sum_{x \in \mathcal{X}} P_X(x) \log P_X(x).$$

Measures of entropy

• **Renyi entropies:** If $P_X(x)$ is a probability distribution over the set $\mathcal{X} = \{x_1, x_2, ..., x_d\}$, Renyi entropy of order α is

$$H_{\alpha}(P_X) := \frac{1}{1-\alpha} \log \left(\sum_{x \in \mathcal{X}} (P_X(x))^{\alpha} \right).$$

• Shannon entropy:

$$H(P_X) := \lim_{\alpha \to 1} H_\alpha(P_X) = -\sum_{x \in \mathcal{X}} P_X(x) \log P_X(x).$$

- Collision entropy: $H_2(P_X) = -\log \sum_{x \in \mathcal{X}} (P_X(x))^2$.
- Min-entropy: $H_{\infty}(P_X) = -\log \max_{x \in \mathcal{X}} P_X(x)$.
- Renyi entropies are monotonically *decreasing* in α : $H_{\infty}(.) \leq H_{2}(.) \leq H(.)$

• For a set of measurements $\{M_1, M_2, ..., M_L\}$ on the space \mathbb{H} with a finite set of outcomes, an EUR is of the form

$$\frac{1}{L}\sum_{j=1}^{L}H_{\alpha}(\mathcal{M}_{j}|\rho) \geq c_{\{\mathcal{M}_{j}\}}, \ \forall \ \rho \in \mathcal{S}(\mathbb{H}).$$

where $c_{\{\mathcal{M}_i\}}$ is independent of the choice of state ρ .

¹For a recent review, see S.Wehner and A.Winter, New Journal of Phys, **12** (2010)

• For a set of measurements $\{M_1, M_2, ..., M_L\}$ on the space \mathbb{H} with a finite set of outcomes, an EUR is of the form

$$\frac{1}{L}\sum_{j=1}^{L}H_{\alpha}(\mathcal{M}_{j}|\rho) \geq c_{\{\mathcal{M}_{j}\}}, \ \forall \rho \in \mathcal{S}(\mathbb{H}).$$

where $c_{\{\mathcal{M}_j\}}$ is independent of the choice of state ρ .

• Captures the extent of mutual incompatibility of the set of measurements $\{M_1, M_2, ..., M_L\}$.

¹For a recent review, see S.Wehner and A.Winter, New Journal of Phys, **12** (2010)

• For a set of measurements $\{M_1, M_2, ..., M_L\}$ on the space \mathbb{H} with a finite set of outcomes, an EUR is of the form

$$\frac{1}{L}\sum_{j=1}^{L}H_{\alpha}(\mathcal{M}_{j}|\rho) \geq c_{\{\mathcal{M}_{j}\}}, \ \forall \rho \in \mathcal{S}(\mathbb{H}).$$

where $c_{\{\mathcal{M}_i\}}$ is independent of the choice of state ρ .

- Captures the extent of mutual incompatibility of the set of measurements $\{M_1, M_2, ..., M_L\}$.
- There always exists ρ such that $H_{\alpha}(\mathcal{M}_j|\rho) = 0$ for one of the measurements \mathcal{M}_j (an eigenstate!). $\Rightarrow (1 \frac{1}{L}) \log |\mathcal{X}| \ge c_{\{\mathcal{M}_j\}} \ge 0$.

Prabha Mandayam (IMSc)

HRI(IWQI'12)

¹For a recent review, see S.Wehner and A.Winter, New Journal of Phys, **12** (2010)

• For a set of measurements $\{M_1, M_2, ..., M_L\}$ on the space \mathbb{H} with a finite set of outcomes, an EUR is of the form

$$\frac{1}{L}\sum_{j=1}^{L}H_{\alpha}(\mathcal{M}_{j}|\rho) \geq c_{\{\mathcal{M}_{j}\}}, \ \forall \rho \in \mathcal{S}(\mathbb{H}).$$

where $c_{\{\mathcal{M}_j\}}$ is independent of the choice of state ρ .

- Captures the extent of mutual incompatibility of the set of measurements $\{M_1, M_2, ..., M_L\}$.
- There always exists ρ such that $H_{\alpha}(\mathcal{M}_j|\rho) = 0$ for one of the measurements \mathcal{M}_j (an eigenstate!). $\Rightarrow (1 \frac{1}{L}) \log |\mathcal{X}| \ge c_{\{\mathcal{M}_j\}} \ge 0$.
- If $c_{\{M_j\}} = (1 \frac{1}{L}) \log |\mathcal{X}|$, the set $\{\mathcal{M}_j\}$ is maximally incompatible, implying a maximally strong uncertainty relation.

¹For a recent review, see S.Wehner and A.Winter, New Journal of Phys, **12** (2010)

EURs for two measurement bases

The Massen and Uffink bound (1988) : For state ρ ∈ ℍ (dim ℍ = d) and observables A and B with orthonormal eigenbases A = {|a₁⟩, ..., |a_d⟩} and B = {|b₁⟩, ..., |b_d⟩},

$$\frac{1}{2}\left(H(\mathcal{A}||\psi\rangle) + H(\mathcal{B}||\psi\rangle)\right) \ge -\log c(\mathcal{A}, \mathcal{B})$$

where² $c(\mathcal{A}, \mathcal{B}) := \max |\langle a | b \rangle|, \forall | a \rangle \in \mathcal{A}, | b \rangle \in \mathcal{B}.$

²Shannon entropy: $H(P_X) := -\sum_{x \in \mathcal{X}} P_X(x) \log P_X(x)$

EURs for two measurement bases

• The Massen and Uffink bound (1988) :-

For state $\rho \in \mathbb{H}$ (dim $\mathbb{H} = d$) and observables \mathcal{A} and \mathcal{B} with orthonormal eigenbases $\mathcal{A} = \{|a_1\rangle, ..., |a_d\rangle\}$ and $\mathcal{B} = \{|b_1\rangle, ..., |b_d\rangle\}$,

$$\frac{1}{2}\left(H(\mathcal{A}||\psi\rangle) + H(\mathcal{B}||\psi\rangle)\right) \ge -\log c(\mathcal{A}, \mathcal{B})$$

where² $c(\mathcal{A}, \mathcal{B}) := \max |\langle a | b \rangle|, \ \forall | a \rangle \in \mathcal{A}, | b \rangle \in \mathcal{B}.$

• Maximum value of RHS is attained when $|\langle a|b\rangle| = \frac{1}{\sqrt{d}}, \forall |a\rangle, |b\rangle$, so that

$$\frac{1}{2} \left(H(\mathcal{A}||\psi\rangle) + H(\mathcal{B}||\psi\rangle) \right) \ge \frac{1}{2} \log d$$

²Shannon entropy: $H(P_X) := -\sum_{x \in \mathcal{X}} P_X(x) \log P_X(x)$

EURs for two measurement bases

• The Massen and Uffink bound (1988) :-

For state $\rho \in \mathbb{H}$ (dim $\mathbb{H} = d$) and observables \mathcal{A} and \mathcal{B} with orthonormal eigenbases $\mathcal{A} = \{|a_1\rangle, ..., |a_d\rangle\}$ and $\mathcal{B} = \{|b_1\rangle, ..., |b_d\rangle\}$,

$$\frac{1}{2}\left(H(\mathcal{A}||\psi\rangle) + H(\mathcal{B}||\psi\rangle)\right) \ge -\log c(\mathcal{A}, \mathcal{B})$$

where² $c(\mathcal{A}, \mathcal{B}) := \max |\langle a | b \rangle|, \ \forall | a \rangle \in \mathcal{A}, | b \rangle \in \mathcal{B}.$

• Maximum value of RHS is attained when $|\langle a|b\rangle| = \frac{1}{\sqrt{d}}, \forall |a\rangle, |b\rangle$, so that

$$\frac{1}{2} \left(H(\mathcal{A}||\psi\rangle) + H(\mathcal{B}||\psi\rangle) \right) \ge \frac{1}{2} \log d$$

• Strongest possible uncertainty relation is obtained when the bases are *mutually unbiased*.

²Shannon entropy: $H(P_X) := -\sum_{x \in \mathcal{X}} P_X(x) \log P_X(x)$

• Massen-Uffink bound is not tight for general pairs of observables³ – eg. components of spin along non-orthogonal directions.

³Shown to be tight for Stabilizer Basis States: Niekamp et al. JMP 53 (2012)

- Massen-Uffink bound is not tight for general pairs of observables³ eg. components of spin along non-orthogonal directions.
- Massen-Uffink bound for the min-entropy⁴

$$\frac{1}{2} \left(H_{\infty}(\mathcal{A} ||\psi\rangle) + H_{\infty}(\mathcal{B} ||\psi\rangle) \right) \geq -\log\left[\frac{1 + c(\mathcal{A}, \mathcal{B})}{2}\right]$$

³Shown to be tight for Stabilizer Basis States: Niekamp et al. JMP 53 (2012) ⁴Min-entropy: $H_{\infty}(P_X) = -\log \max_{x \in \mathcal{X}} P_X(x)$

Prabha Mandayam (IMSc)

HRI(IWQI'12)

- Massen-Uffink bound is not tight for general pairs of observables³ eg. components of spin along non-orthogonal directions.
- Massen-Uffink bound for the min-entropy⁴

$$\frac{1}{2}\left(H_{\infty}(\mathcal{A}||\psi\rangle) + H_{\infty}(\mathcal{B}||\psi\rangle)\right) \geq -\log\left[\frac{1 + c(\mathcal{A}, \mathcal{B})}{2}\right]$$

• Tight for some choices of A and B, in particular, for 2 mutually unbiased bases in d = 2.

³Shown to be tight for Stabilizer Basis States: Niekamp et al. JMP 53 (2012) ⁴Min-entropy: $H_{\infty}(P_X) = -\log \max_{x \in \mathcal{X}} P_X(x)$

Prabha Mandayam (IMSc)

HRI(IWQI'12)

Mutually unbiased bases⁶ Definition and examples

• Definition:- Two orthonormal bases $\mathcal{B}^{(1)} = \{|b_1^1\rangle, |b_2^1\rangle, ..., |b_d^1\rangle\}$ and $\mathcal{B}^{(2)} = \{|b_1^2\rangle, |b_2^2\rangle, ..., |b_d^2\rangle\}$ in \mathbb{C}^d are *mutually unbiased* if

$$|\left\langle b_k^1 | b_l^2 \right\rangle| = \frac{1}{\sqrt{d}}, \ \forall \, k, l = 1, ..., d$$

⁶For a recent review, see T.Durt et al. Int. J. Quant Info, 8, 535-640 (2010)

Mutually unbiased bases⁶ Definition and examples

• **Definition**:- Two orthonormal bases $\mathcal{B}^{(1)} = \{|b_1^1\rangle, |b_2^1\rangle, ..., |b_d^1\rangle\}$ and $\mathcal{B}^{(2)} = \{|b_1^2\rangle, |b_2^2\rangle, ..., |b_d^2\rangle\}$ in \mathbb{C}^d are *mutually unbiased* if

$$|\left\langle b_k^1 | b_l^2 \right\rangle| = \frac{1}{\sqrt{d}}, \ \forall \, k, l = 1, ..., d$$

 Examples:- Eigenvectors of σ_x and σ_z in d = 2. In general, the computational basis and Hadamard basis. (Eigenbases of I^{⊗k} and H^{⊗k} in dimension d = 2^k, where H is the Hadamard matrix.)

⁶For a recent review, see T.Durt et al. Int. J. Quant Info, 8, 535-640 (2010)

Mutually unbiased bases⁶ Definition and examples

• **Definition**:- Two orthonormal bases $\mathcal{B}^{(1)} = \{|b_1^1\rangle, |b_2^1\rangle, ..., |b_d^1\rangle\}$ and $\mathcal{B}^{(2)} = \{|b_1^2\rangle, |b_2^2\rangle, ..., |b_d^2\rangle\}$ in \mathbb{C}^d are *mutually unbiased* if

$$|\left\langle b_k^1 | b_l^2 \right\rangle| = \frac{1}{\sqrt{d}}, \ \forall \, k, l = 1, ..., d$$

- Examples:- Eigenvectors of σ_x and σ_z in d = 2. In general, the computational basis and Hadamard basis. (Eigenbases of I^{⊗k} and H^{⊗k} in dimension d = 2^k, where H is the Hadamard matrix.)
- Maximal number of MUBs⁵ in dimension d is $N(d) \le d + 1$. If $d = p^k$, N(d) = d + 1 – explicit construction is known using generalized Pauli operators.

Prabha Mandayam (IMSc)

HRI(IWQI'12)

⁵S.Bandyopadhyay *et al.* Algorithmica, **34**(4), 512, 2002

⁶For a recent review, see T.Durt *et al.* Int. J. Quant Info, **8**, 535-640 (2010)

• MUBs give rise to maximally strong uncertainty relations for the case of two measurements.

- MUBs give rise to maximally strong uncertainty relations for the case of two measurements.
- For measurements involving more than 2 bases, to obtain strong uncertainty relations, the bases must be mutually unbiased MUBs are a *necessary* condition to achieve maximal incompatibility with multiple bases.

- MUBs give rise to maximally strong uncertainty relations for the case of two measurements.
- For measurements involving more than 2 bases, to obtain strong uncertainty relations, the bases must be mutually unbiased MUBs are a *necessary* condition to achieve maximal incompatibility with multiple bases.
- When the complete set of d+1 MUBs exist, EURs are known⁷

$$\frac{1}{d+1} \sum_{j=1}^{d+1} H_2(\mathcal{B}_j|\rho) \ge \log(d+1) - 1$$

Tight for states invariant under $U: \mathcal{B}_1 \to \mathcal{B}_2 \to \dots \mathcal{B}_d \to \mathcal{B}_1$.

⁷I.D.Ivanovic, J. Phys. A: Math. Gen.25(7), 363, 1992;

J.Sanchez, Physic Letters A 173, 233, 1993

Prabha Mandayam (IMSc)

- MUBs give rise to maximally strong uncertainty relations for the case of two measurements.
- For measurements involving more than 2 bases, to obtain strong uncertainty relations, the bases must be mutually unbiased -MUBs are a *necessary* condition to achieve maximal incompatibility with multiple bases.
- When the complete set of d+1 MUBs exist, EURs are known⁷

$$\frac{1}{d+1} \sum_{j=1}^{d+1} H_2(\mathcal{B}_j|\rho) \ge \log(d+1) - 1$$

Tight for states invariant under $U: \mathcal{B}_1 \to \mathcal{B}_2 \to \dots \mathcal{B}_d \to \mathcal{B}_1$.

• For less than d+1 MUBs, such relations have not been obtained.

⁷I.D.Ivanovic, J. Phys. A: Math. Gen.**25**(7), 363, 1992;

J.Sanchez, Physic Letters A 173, 233, 1993

• In square prime power dimensions $(d = p^{2l})$ there exist upto $p^l + 1$ MUBs derived from generalized Pauli matrices, which satisfy *weak* uncertainty relations⁸ :-

$$\min_{\rho} \frac{1}{L} \sum_{j} H(\mathcal{B}_{j}|\rho) = \frac{\log d}{2}$$

⁸M.Ballester and S.Wehner, PRA, **75** 022319, 2007

• In square prime power dimensions $(d = p^{2l})$ there exist upto $p^l + 1$ MUBs derived from generalized Pauli matrices, which satisfy *weak* uncertainty relations⁸ :-

$$\min_{\rho} \frac{1}{L} \sum_{j} H(\mathcal{B}_{j}|\rho) = \frac{\log d}{2}$$

• This is infact the trivial lower bound obtained by combining pairwise, the Massen-Uffink bound for multiple MUBs!

⁸M.Ballester and S.Wehner, PRA, **75** 022319, 2007

• In square prime power dimensions $(d = p^{2l})$ there exist upto $p^l + 1$ MUBs derived from generalized Pauli matrices, which satisfy *weak* uncertainty relations⁸ :-

$$\min_{\rho} \frac{1}{L} \sum_{j} H(\mathcal{B}_{j}|\rho) = \frac{\log d}{2}$$

- This is infact the trivial lower bound obtained by combining pairwise, the Massen-Uffink bound for multiple MUBs!
- For 3 MUBs in prime power dimension, it has been shown⁹ that the lower bound cannot exceed $(\frac{1}{2} + O(1)) \log d$ for large dimensions (assuming the Generalized Riemann Hypothesis!!).

⁹A.Ambainis, arXiV:0909.3720

Prabha Mandayam (IMSc)

⁸M.Ballester and S.Wehner, PRA, **75** 022319, 2007

• In square prime power dimensions $(d = p^{2l})$ there exist upto $p^l + 1$ MUBs derived from generalized Pauli matrices, which satisfy *weak* uncertainty relations⁸ :-

$$\min_{\rho} \frac{1}{L} \sum_{j} H(\mathcal{B}_{j}|\rho) = \frac{\log d}{2}$$

- This is infact the trivial lower bound obtained by combining pairwise, the Massen-Uffink bound for multiple MUBs!
- For 3 MUBs in prime power dimension, it has been shown⁹ that the lower bound cannot exceed $(\frac{1}{2} + O(1)) \log d$ for large dimensions (assuming the Generalized Riemann Hypothesis!!).
- Thus, for more than two measurements with multiple outcomes, whether there exist maximally strong uncertainty relations remains an interesting open question.

⁸M.Ballester and S.Wehner, PRA, **75** 022319, 2007

⁹A.Ambainis, arXiV:0909.3720

Prabha Mandayam (IMSc)

Some practical motivations!

• Apart from their significance in understanding the foundations of quantum mechanics, EURs play a central role in cryptography.

- Apart from their significance in understanding the foundations of quantum mechanics, EURs play a central role in cryptography.
- Applications of Shannon entropic uncertainty relations: security proof of QKD¹⁰, phenomenon of information locking¹¹.

 ¹⁰M. Koashi, e-print arXiv:quant-ph/0505108.
¹¹D. DiVincenzo *et al.*, Phys. Rev. Lett. 92, 067902 (2004).
- Apart from their significance in understanding the foundations of quantum mechanics, EURs play a central role in cryptography.
- Applications of Shannon entropic uncertainty relations: security proof of QKD¹⁰, phenomenon of information locking¹¹.
- Application of min-entropic uncertainty relations: noisy-storage model¹². The security of two-party protocols in this model is directly related to a lower bound on the average min-entropy.

¹⁰M. Koashi, e-print arXiv:quant-ph/0505108.
¹¹D. DiVincenzo *et al.*, Phys. Rev. Lett. 92, 067902 (2004).
¹²P.Mandayam and S.Wehner, PRA, **83** (2012)

- Apart from their significance in understanding the foundations of quantum mechanics, EURs play a central role in cryptography.
- Applications of Shannon entropic uncertainty relations: security proof of QKD¹⁰, phenomenon of information locking¹¹.
- Application of min-entropic uncertainty relations: noisy-storage model¹². The security of two-party protocols in this model is directly related to a lower bound on the average min-entropy.
- There exists a direct correspondence between the lower bounds on the average min-entropy and the extrema of discrete Wigner functions.

 ¹⁰M. Koashi, e-print arXiv:quant-ph/0505108.
¹¹D. DiVincenzo *et al.*, Phys. Rev. Lett. 92, 067902 (2004).
¹²P.Mandayam and S.Wehner, PRA, **83** (2012)

- Apart from their significance in understanding the foundations of quantum mechanics, EURs play a central role in cryptography.
- Applications of Shannon entropic uncertainty relations: security proof of QKD¹⁰, phenomenon of information locking¹¹.
- Application of min-entropic uncertainty relations: noisy-storage model¹². The security of two-party protocols in this model is directly related to a lower bound on the average min-entropy.
- There exists a direct correspondence between the lower bounds on the average min-entropy and the extrema of discrete Wigner functions.
- Separability criteria based on EURs are known¹³.

¹⁰M. Koashi, e-print arXiv:quant-ph/0505108.

¹¹D. DiVincenzo et al., Phys. Rev. Lett. 92, 067902 (2004).

¹²P.Mandayam and S.Wehner, PRA, 83 (2012)

¹³O.Guehne, M.Lewenstein, PRA, **70**(2004)

• Given the 2n generators of the Clifford algebra $\{\Gamma_0,\Gamma_1,...,\Gamma_{2n-1}\}$ in dimension $d=2^n,$

¹⁴P.Mandayam, N.Balachandran and S.Wehner, J Math Phys. **51**, 082201 (2010)

- Given the 2n generators of the Clifford algebra $\{\Gamma_0, \Gamma_1, ..., \Gamma_{2n-1}\}$ in dimension $d = 2^n$,
 - $\{\Gamma_0, \Gamma_1, ..., \Gamma_{2n-1}\}$ can be viewed as 2n orthogonal vectors forming a basis for \mathbb{R}^{2n} .

 \Rightarrow There exists a unitary U that cyclically permutes the $\Gamma\text{-operators}.$

- This symmetry can be extended to SO(2n+1), including $\Gamma_{2n} = i\Gamma_0\Gamma_1..\Gamma_{2n-1}$
- The set of operators $S = \{I, \Gamma_j, i\Gamma_i\Gamma_j, \Gamma_i\Gamma_j\Gamma_k, ..., \Gamma_{2n} = i\Gamma_0\Gamma_1..\Gamma_{2n-1}\}$ forms an orthogonal basis for $d \times d$ Hermitian matrices, where $d = 2^n$.

¹⁴P.Mandayam, N.Balachandran and S.Wehner, J Math Phys. **51**, 082201 (2010)

- Given the 2n generators of the Clifford algebra $\{\Gamma_0, \Gamma_1, ..., \Gamma_{2n-1}\}$ in dimension $d = 2^n$,
 - $\{\Gamma_0, \Gamma_1, ..., \Gamma_{2n-1}\}$ can be viewed as 2n orthogonal vectors forming a basis for \mathbb{R}^{2n} .

 \Rightarrow There exists a unitary U that cyclically permutes the $\Gamma\text{-operators.}$

- This symmetry can be extended to SO(2n+1), including $\Gamma_{2n} = i\Gamma_0\Gamma_1..\Gamma_{2n-1}$
- The set of operators $S = \{I, \Gamma_j, i\Gamma_i\Gamma_j, \Gamma_i\Gamma_j\Gamma_k, ..., \Gamma_{2n} = i\Gamma_0\Gamma_1..\Gamma_{2n-1}\}$ forms an orthogonal basis for $d \times d$ Hermitian matrices, where $d = 2^n$.
- To construct MUBs, we group the elements of S into classes $\{C_1, C_2, \ldots, C_L \mid C_j \subset S\}$ of size $|C_j| = d$ such that (i) the elements of C_j commute for all j = 1, 2, ..., L and (ii) $C_j \cap C_k = \{I\} \forall j \neq k$.

¹⁴P.Mandayam, N.Balachandran and S.Wehner, J Math Phys. **51**, 082201 (2010)

- Given the 2n generators of the Clifford algebra $\{\Gamma_0, \Gamma_1, ..., \Gamma_{2n-1}\}$ in dimension $d = 2^n$,
 - $\{\Gamma_0, \Gamma_1, ..., \Gamma_{2n-1}\}$ can be viewed as 2n orthogonal vectors forming a basis for \mathbb{R}^{2n} .

 \Rightarrow There exists a unitary U that cyclically permutes the $\Gamma\text{-operators.}$

- This symmetry can be extended to SO(2n+1), including $\Gamma_{2n} = i\Gamma_0\Gamma_1..\Gamma_{2n-1}$
- The set of operators $S = \{I, \Gamma_j, i\Gamma_i\Gamma_j, \Gamma_i\Gamma_j\Gamma_k, ..., \Gamma_{2n} = i\Gamma_0\Gamma_1..\Gamma_{2n-1}\}$ forms an orthogonal basis for $d \times d$ Hermitian matrices, where $d = 2^n$.
- To construct MUBs, we group the elements of S into classes
 {C₁, C₂,..., C_L | C_j ⊂ S} of size |C_j| = d such that (i) the elements of C_j
 commute for all j = 1, 2, ..., L and (ii) C_j ∩ C_k = {I}∀j ≠ k.
- The common eigenbases of such classes are MUBs that get cyclically permuted under the action of U.

Prabha Mandayam (IMSc)

HRI(IWQI'12)

 $^{^{14}\}mbox{P.Mandayam},$ N.Balachandran and S.Wehner, J Math Phys. **51**, 082201 (2010)

• A simple example in d = 4. For k = 3 MUBs, the classes are given by

$$\begin{aligned} \mathcal{C}_0 &= \{\Gamma_0, i\Gamma_1\Gamma_4, i\Gamma_3\Gamma_2\} \\ \mathcal{C}_1 &= \{\Gamma_1, i\Gamma_2\Gamma_4, i\Gamma_3\Gamma_0\} \\ \mathcal{C}_2 &= \{\Gamma_2, i\Gamma_0\Gamma_4, i\Gamma_3\Gamma_1\} \end{aligned}$$

• A simple example in d = 4. For k = 3 MUBs, the classes are given by

$$\begin{aligned} \mathcal{C}_0 &= \{\Gamma_0, i\Gamma_1\Gamma_4, i\Gamma_3\Gamma_2\} \\ \mathcal{C}_1 &= \{\Gamma_1, i\Gamma_2\Gamma_4, i\Gamma_3\Gamma_0\} \\ \mathcal{C}_2 &= \{\Gamma_2, i\Gamma_0\Gamma_4, i\Gamma_3\Gamma_1\} \end{aligned}$$

• U that transforms $\Gamma_0 \to \Gamma_1 \to \Gamma_2 \to \Gamma_0$, but leaves Γ_3 and Γ_4 invariant, cyclically permutes the corresponding bases.

• A simple example in d = 4. For k = 3 MUBs, the classes are given by

$$\begin{aligned} \mathcal{C}_0 &= \{\Gamma_0, i\Gamma_1\Gamma_4, i\Gamma_3\Gamma_2\} \\ \mathcal{C}_1 &= \{\Gamma_1, i\Gamma_2\Gamma_4, i\Gamma_3\Gamma_0\} \\ \mathcal{C}_2 &= \{\Gamma_2, i\Gamma_0\Gamma_4, i\Gamma_3\Gamma_1\} \end{aligned}$$

- U that transforms $\Gamma_0 \to \Gamma_1 \to \Gamma_2 \to \Gamma_0$, but leaves Γ_3 and Γ_4 invariant, cyclically permutes the corresponding bases.
- Since each class can contain only 1 Clifford generator, maximum number of such classes possible is 2n + 1.

• A simple example in d = 4. For k = 3 MUBs, the classes are given by

$$\begin{aligned} \mathcal{C}_0 &= \{\Gamma_0, i\Gamma_1\Gamma_4, i\Gamma_3\Gamma_2\} \\ \mathcal{C}_1 &= \{\Gamma_1, i\Gamma_2\Gamma_4, i\Gamma_3\Gamma_0\} \\ \mathcal{C}_2 &= \{\Gamma_2, i\Gamma_0\Gamma_4, i\Gamma_3\Gamma_1\} \end{aligned}$$

- U that transforms $\Gamma_0 \to \Gamma_1 \to \Gamma_2 \to \Gamma_0$, but leaves Γ_3 and Γ_4 invariant, cyclically permutes the corresponding bases.
- Since each class can contain only 1 Clifford generator, maximum number of such classes possible is 2n + 1.
- Imposing the additional constraint that $U: C_i \to C_{i+1}$, we show by an explicit construction that there exist $2 < k \leq 2n + 1$ such classes in dimension $d = 2^n$ whenever
 - k is prime, and
 - k divides n or k = 2n + 1.

• Let $\{\mathcal{B}^{(b)}, b = 0, ..., L - 1\}$ be a set of MUBs in a d-dimensional space \mathbb{H} . Then, we show,

$$\frac{1}{L}\sum_{b=0}^{L-1} H_{\infty}(\mathcal{B}^{(b)}|\rho) \ge -\log\left[\frac{1}{L}\left(1+\frac{L-1}{\sqrt{d}}\right)\right], \quad \forall \rho \in \mathbb{H}.$$

• Let $\{\mathcal{B}^{(b)}, b = 0, ..., L - 1\}$ be a set of MUBs in a d-dimensional space \mathbb{H} . Then, we show,

$$\frac{1}{L}\sum_{b=0}^{L-1} H_{\infty}(\mathcal{B}^{(b)}|\rho) \ge -\log\left[\frac{1}{L}\left(1+\frac{L-1}{\sqrt{d}}\right)\right], \quad \forall \rho \in \mathbb{H}.$$

• Corresponds to the Massen-Uffink bound for 2 observables in d = 2.

• Let $\{\mathcal{B}^{(b)}, b = 0, ..., L - 1\}$ be a set of MUBs in a d-dimensional space \mathbb{H} . Then, we show,

$$\frac{1}{L}\sum_{b=0}^{L-1} H_{\infty}(\mathcal{B}^{(b)}|\rho) \ge -\log\left[\frac{1}{L}\left(1+\frac{L-1}{\sqrt{d}}\right)\right], \quad \forall \rho \in \mathbb{H}.$$

• Corresponds to the Massen-Uffink bound for 2 observables in d = 2. For any less-than-maximal set of MUBs (2 < L < d), our bound is stronger than previously obtained bounds.

• Let $\{\mathcal{B}^{(b)}, b = 0, ..., L - 1\}$ be a set of MUBs in a d-dimensional space \mathbb{H} . Then, we show,

$$\frac{1}{L}\sum_{b=0}^{L-1} H_{\infty}(\mathcal{B}^{(b)}|\rho) \ge -\log\left[\frac{1}{L}\left(1+\frac{L-1}{\sqrt{d}}\right)\right], \quad \forall \rho \in \mathbb{H}.$$

- Corresponds to the Massen-Uffink bound for 2 observables in d = 2. For any less-than-maximal set of MUBs (2 < L < d), our bound is stronger than previously obtained bounds.
- For the complete set of L = d + 1 MUBs, we obtain a slightly stronger bound,

$$\frac{1}{L}\sum_{b=0}^{L-1}H_{\infty}(\mathcal{B}^{(b)}|\rho) \ge -\log\left[\frac{1}{d}\left(1+\frac{d-1}{\sqrt{L}}\right)\right], \quad \forall \rho \in \mathbb{H}.$$

• Let $\{\mathcal{B}^{(b)}, b = 0, ..., L - 1\}$ be a set of MUBs in a d-dimensional space \mathbb{H} . Then, we show,

$$\frac{1}{L}\sum_{b=0}^{L-1} H_{\infty}(\mathcal{B}^{(b)}|\rho) \ge -\log\left[\frac{1}{L}\left(1+\frac{L-1}{\sqrt{d}}\right)\right], \quad \forall \rho \in \mathbb{H}.$$

- Corresponds to the Massen-Uffink bound for 2 observables in d = 2. For any less-than-maximal set of MUBs (2 < L < d), our bound is stronger than previously obtained bounds.
- For the complete set of L = d + 1 MUBs, we obtain a slightly stronger bound,

$$\frac{1}{L}\sum_{b=0}^{L-1} H_{\infty}(\mathcal{B}^{(b)}|\rho) \ge -\log\left[\frac{1}{d}\left(1+\frac{d-1}{\sqrt{L}}\right)\right], \quad \forall \rho \in \mathbb{H}.$$

An optimal and tight uncertainty relation in some cases, but not always.

• 4 MUBs in d = 4 via our construction:-

$$\begin{array}{rcl} \mathcal{C}_1 &=& \{\Gamma_1, \Gamma_2\Gamma_0, i\Gamma_3\Gamma_4\} \\ \mathcal{C}_2 &=& \{\Gamma_2, \Gamma_3\Gamma_0, i\Gamma_4\Gamma_1\} \\ \mathcal{C}_3 &=& \{\Gamma_3, \Gamma_4\Gamma_0, i\Gamma_1\Gamma_2\} \\ \mathcal{C}_4 &=& \{\Gamma_4, \Gamma_1\Gamma_0, i\Gamma_2\Gamma_3\} \end{array}$$

• 4 MUBs in d = 4 via our construction:-

$$\begin{array}{rcl} \mathcal{C}_1 &=& \{\Gamma_1, \Gamma_2\Gamma_0, i\Gamma_3\Gamma_4\} \\ \mathcal{C}_2 &=& \{\Gamma_2, \Gamma_3\Gamma_0, i\Gamma_4\Gamma_1\} \\ \mathcal{C}_3 &=& \{\Gamma_3, \Gamma_4\Gamma_0, i\Gamma_1\Gamma_2\} \\ \mathcal{C}_4 &=& \{\Gamma_4, \Gamma_1\Gamma_0, i\Gamma_2\Gamma_3\} \end{array}$$

• There exists a unitary $U: \Gamma_1 \to \Gamma_2 \to \Gamma_3 \to \Gamma_4 \to \Gamma_1$, leaving Γ_0 invariant. U cyclically permutes the corresponding bases.

• 4 MUBs in d = 4 via our construction:-

 $\begin{array}{rcl} \mathcal{C}_1 &=& \{\Gamma_1, \Gamma_2\Gamma_0, i\Gamma_3\Gamma_4\} \\ \mathcal{C}_2 &=& \{\Gamma_2, \Gamma_3\Gamma_0, i\Gamma_4\Gamma_1\} \\ \mathcal{C}_3 &=& \{\Gamma_3, \Gamma_4\Gamma_0, i\Gamma_1\Gamma_2\} \\ \mathcal{C}_4 &=& \{\Gamma_4, \Gamma_1\Gamma_0, i\Gamma_2\Gamma_3\} \end{array}$

- There exists a unitary $U: \Gamma_1 \to \Gamma_2 \to \Gamma_3 \to \Gamma_4 \to \Gamma_1$, leaving Γ_0 invariant. U cyclically permutes the corresponding bases.
- The EUR $\frac{1}{4} \sum_{b=1}^{4} H_{\infty}(\mathcal{B}^{(b)}|\rho) \ge -\log\left[\frac{1}{4}\left(1+\frac{3}{2}\right)\right]$ is tight. The minimum value is attained for a state that is an invariant of U.

• 4 MUBs in d = 4 via our construction:-

$$\begin{array}{rcl} \mathcal{C}_1 &=& \{\Gamma_1, \Gamma_2\Gamma_0, i\Gamma_3\Gamma_4\} \\ \mathcal{C}_2 &=& \{\Gamma_2, \Gamma_3\Gamma_0, i\Gamma_4\Gamma_1\} \\ \mathcal{C}_3 &=& \{\Gamma_3, \Gamma_4\Gamma_0, i\Gamma_1\Gamma_2\} \\ \mathcal{C}_4 &=& \{\Gamma_4, \Gamma_1\Gamma_0, i\Gamma_2\Gamma_3\} \end{array}$$

- There exists a unitary $U: \Gamma_1 \to \Gamma_2 \to \Gamma_3 \to \Gamma_4 \to \Gamma_1$, leaving Γ_0 invariant. U cyclically permutes the corresponding bases.
- The EUR $\frac{1}{4} \sum_{b=1}^{4} H_{\infty}(\mathcal{B}^{(b)}|\rho) \ge -\log\left[\frac{1}{4}\left(1+\frac{3}{2}\right)\right]$ is tight. The minimum value is attained for a state that is an invariant of U.
- However, for 3 MUBs in d = 4, numerical estimates show our bound is not tight.

Average min-entropy for different sets of MUBs in dimension d = 4.

Average min-entropy for different sets of MUBs in dimension d = 8.

• We outline a new construction of symmetric MUBs using the generators of the Clifford algebra, that are cyclically permuted under the action of a unitary transformation U.

- We outline a new construction of symmetric MUBs using the generators of the Clifford algebra, that are cyclically permuted under the action of a unitary transformation U.
- We show explicit constructions of $2 \le L \le 2n + 1$ such MUBs in dimension $d = 2^n$, whenever (a) L is prime and (b) L|n or L = 2n + 1.

- We outline a new construction of symmetric MUBs using the generators of the Clifford algebra, that are cyclically permuted under the action of a unitary transformation U.
- We show explicit constructions of $2 \le L \le 2n + 1$ such MUBs in dimension $d = 2^n$, whenever (a) L is prime and (b) L|n or L = 2n + 1.
- We demonstrate new lower bounds for the average min-entropy for any set of MUBs, stronger than existing lower bounds.

- We outline a new construction of symmetric MUBs using the generators of the Clifford algebra, that are cyclically permuted under the action of a unitary transformation U.
- We show explicit constructions of $2 \le L \le 2n + 1$ such MUBs in dimension $d = 2^n$, whenever (a) L is prime and (b) L|n or L = 2n + 1.
- We demonstrate new lower bounds for the average min-entropy for any set of MUBs, stronger than existing lower bounds.
- Using our construction, we can explicitly write down a set of 4 MUBs in d = 4 and show that they satisfy an optimal, tight uncertainty relation. Minimizing state is invariant under the unitary transform.

• Can we extend our construction to other dimensions/number of bases?

- Can we extend our construction to other dimensions/number of bases?
- Is it possible to obtain a condition as to when the uncertainty relation is tight?

- Can we extend our construction to other dimensions/number of bases?
- Is it possible to obtain a condition as to when the uncertainty relation is tight?
- Can we obtain similar lower bounds for the average collision entropy and Shannon entropy?

- Can we extend our construction to other dimensions/number of bases?
- Is it possible to obtain a condition as to when the uncertainty relation is tight?
- Can we obtain similar lower bounds for the average collision entropy and Shannon entropy?
- Can the maximally strong EUR for the d = 4 case be used to improve existing cryptographic protocols in a practical way?

Thank You!

• Recall, Average min-entropy is

$$\frac{1}{L} \sum_{b=0}^{L-1} \mathcal{H}_{\infty}(\mathcal{B}^{(b)}|\rho) = -\frac{1}{L} \sum_{b} \log \max_{y \in \{0, \dots, d-1\}} \langle y^{(b)}|\rho|y^{(b)}\rangle$$

• Recall, Average min-entropy is

$$\frac{1}{L} \sum_{b=0}^{L-1} \mathcal{H}_{\infty}(\mathcal{B}^{(b)}|\rho) = -\frac{1}{L} \sum_{b} \log \max_{y \in \{0,...,d-1\}} \langle y^{(b)}|\rho|y^{(b)}\rangle$$
$$\geq -\log \frac{1}{L} \sum_{b=0}^{L-1} \max_{y} \langle y^{(b)}|\rho|y^{(b)}\rangle$$

(Using Jensen's inequality)

• Recall, Average min-entropy is

$$\frac{1}{L} \sum_{b=0}^{L-1} \mathcal{H}_{\infty}(\mathcal{B}^{(b)}|\rho) = -\frac{1}{L} \sum_{b} \log \max_{y \in \{0, \dots, d-1\}} \langle y^{(b)}|\rho|y^{(b)}\rangle$$
$$\geq -\log \frac{1}{L} \sum_{b=0}^{L-1} \max_{y} \langle y^{(b)}|\rho|y^{(b)}\rangle$$

(Using Jensen's inequality)

• Define $P_{\vec{y}} := \frac{1}{L} \sum_{y^{(k)}} |y^{(k)}\rangle \langle y^{(k)}|$ for $\vec{y} = (y^{(0)}, y^{(1)}, ..., y^{(L-1)})$ denotes a string of basis elements, i.e. $y^{(k)} \in \{0, 1, ..., d-1\}$. Then,

$$\frac{1}{L}\sum_{k=0}^{L-1}\mathcal{H}_{\infty}(\mathcal{B}^{(k)}||\psi\rangle\langle\psi|) \geq -\log\max_{|\psi\rangle}\operatorname{Tr}(P_{\vec{y}}|\psi\rangle\langle\psi|)$$

Evaluating the lower bound - II

Reduces the problem to finding the largest eigenvalue for any operator P_y.
Any ζ such that P_y ≤ ζI for all y, gives us a lower bound for the avergae min-entropy.

Evaluating the lower bound - II

- Reduces the problem to finding the largest eigenvalue for any operator P_y. Any ζ such that P_y ≤ ζI for all y, gives us a lower bound for the avergae min-entropy.
- For a set of L orthogonal projectors $A_0, A_1, \ldots, A_{L-1}$, the following bound holds¹⁵:

$$\|\sum_{j=0}^{L-1} A_j \| \le 1 + (L-1) \max_{0 \le j < k \le L-1} \|A_j A_k\|$$

where \parallel $(.) \parallel$ denotes the operator norm, or simply the maximum eigenvalue for Hermitian operators.

¹⁵F. Kittaneh, J. Funct. Anal. **143**, 337 (1997).
Evaluating the lower bound - II

- Reduces the problem to finding the largest eigenvalue for any operator P_y. Any ζ such that P_y ≤ ζI for all y, gives us a lower bound for the avergae min-entropy.
- For a set of L orthogonal projectors $A_0, A_1, \ldots, A_{L-1}$, the following bound holds¹⁵:

$$\|\sum_{j=0}^{L-1} A_j \| \le 1 + (L-1) \max_{0 \le j < k \le L-1} \|A_j A_k\|$$

where $\parallel(.)\parallel$ denotes the operator norm, or simply the maximum eigenvalue for Hermitian operators.

• Applying this result to sums of basis vectors $|y^{(b)}\rangle$, and using $\langle b^{(j)}|b^{(k)}\rangle = e^{i\phi}\frac{1}{\sqrt{d}}$, for any $j \neq k$, gives the desired bound.

¹⁵F. Kittaneh, J. Funct. Anal. **143**, 337 (1997).

MUBs from generalized Pauli matrices¹⁷

• Let $\{|0\rangle, |1\rangle, ..., |p-1\rangle\}$ denote the computational basis in \mathbb{C}^p . The generalized Paulis are defined by

$$X_p|k\rangle = |(k+1) \mod p\rangle \; ; \; Z_p|k\rangle = \omega^k |k\rangle,$$

where $\omega = e^{2\pi i/p}$.

 $^{^{17}}$ S.Bandyopadhyay, P.Boykin, V.Roychowdhury and F.Vatan, Algorithmica, 34(4), 512, 2002

MUBs from generalized Pauli matrices¹⁷

• Let $\{|0\rangle, |1\rangle, ..., |p-1\rangle\}$ denote the computational basis in \mathbb{C}^p . The generalized Paulis are defined by

$$X_p|k\rangle = |(k+1) \mod p\rangle \; ; \; Z_p|k\rangle = \omega^k |k\rangle,$$

where $\omega = e^{2\pi i/p}$.

If d = p^k (a prime power), the Hilbert space 𝔄 can be written as a tensor product of k copies of ℂ^p.
Group all d² possible strings of tensor products of X_p and Z_p into sets C₁, C₂, ..., C_{d+1} such that, (i) |C_i| = d, (ii) C_i ∩ C_j = {I} for i ≠ j and (iii) all elements of C_i commute.
Let B⁽ⁱ⁾ be the common eigenbasis of the elements of C_i. The bases {B⁽¹⁾, B⁽²⁾, ..., B^(d+1)} are mutually unbiased.

¹⁷S.Bandyopadhyay, P.Boykin, V.Roychowdhury and F.Vatan, Algorithmica, **34**(4), 512, 2002

MUBs from generalized Pauli matrices¹⁷

• Let $\{|0\rangle, |1\rangle, ..., |p-1\rangle\}$ denote the computational basis in \mathbb{C}^p . The generalized Paulis are defined by

$$X_p|k\rangle = |(k+1) \mod p\rangle \; ; \; Z_p|k\rangle = \omega^k |k\rangle,$$

where $\omega = e^{2\pi i/p}$.

- If d = p^k (a prime power), the Hilbert space 𝔄 can be written as a tensor product of k copies of ℂ^p. Group all d² possible strings of tensor products of X_p and Z_p into sets C₁, C₂, ..., C_{d+1} such that, (i) |C_i| = d, (ii) C_i ∩ C_j = {I} for i ≠ j and (iii) all elements of C_i commute. Let B⁽ⁱ⁾ be the common eigenbasis of the elements of C_i. The bases {B⁽¹⁾, B⁽²⁾, ..., B^(d+1)} are mutually unbiased.
- Symmetry property¹⁶:- There exists an ordering $\mathcal{B}^{(1)}, ..., \mathcal{B}^{(d+1)}$, and a unitary U such that $U\mathcal{B}^{(j)}U^{\dagger} = \mathcal{B}^{(j+1)}$, where $U\mathcal{B}^{(d)}U^{\dagger} = \mathcal{B}^{(1)}$.

¹⁷S.Bandyopadhyay, P.Boykin, V.Roychowdhury and F.Vatan, Algorithmica, **34**(4), 512, 2002

Prabha Mandayam (IMSc)

¹⁶W.K.Wootters and D.M.Sussman, 2007, arXiv:0704.1277