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Entanglement of indistinguishable quantum particles

In many situations involving interacting entangled quantum
particles, the effects of their indistinguishability cannot be ignored.
Interacting electrons in a system of quantum dots.
All strongly correlated electron systems.
Quantum Hall effect, Quantum phase transitions.
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Indistinguishability and entanglement : some basic issues.

Local and non-local operations.
Antisymmetrization.
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Different measures of entanglement.

Basically bipartite entanglement measures are suggested.
Slater rank : Number of Slater determinants needed to expand an
entangled state.(Schliemman)
Quantum correlations between modes.(Zanardi)
Maximum quantum correlations which can be extracted by means
of local operations on modes fr5om the two parts of the
system.(Wiseman and Vaccaro)
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Outline

We propose a geometric measure of entanglement for a pure state
on N indistinguishable fermions.
Main idea (Zanardi): The Fock space of a system of fermions is
mapped to the isomorphic qubit or ‘mode’ space.
We then obtain a geometric measure of entanglement in this mode
space.
The measure of m-partite entanglement is the Euclidean norm of
the m-partite correlation tensor in the Bloch representation of the
N-particle state.
THis correlation tensor has all the information of the genuine
m-partite entanglement.
This measure is shown to satisfy all the properties expected of a
good entanglement measure.
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Mapping between Fock space and qubit space.

N spin 1
2 fermions on a L site lattice.

Number of single particle states = 2L.
Basis states for the Fock space (F2L) in occupation number
representation are |n1n2 · · · , n2L〉(ni = 0, 1 ; i = 1, 2, . . . , 2L).
No. of particles is conserved : We deal with the subspace of F2L
corresponding to a fixed eigenvalue of the num,ber loperator (FN).

dim(FN) =

(
2L

N

)

dim(F2L) =
2L∑

N=0

(
2L

N

)
= 22L = dim(C⊗2L)

It is possible to construct isomorphism between F2L and C⊗2L (2L
qubit space).
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The isomorphism we implement is

|n1n2 · · · , n2L〉 7−→ |n1〉⊗|n2〉⊗· · ·⊗|n2L〉 (ni = 0, 1 ; i = 1, 2, . . . , 2L).

In the qubit space we associate |0〉 ↔ | ↑〉 and |1〉 ↔ | ↓〉.
Note that this isomorphism maps separable states to separable
states.
The subspace structure of the Fock space

F2L =
2L⊕

N=0

FN

is preserved under this isomorphism

H2L = (C2)⊗2L =
2L⊕

N=0

H2L(N)

H2L(N) is the image of FN under the isomorphism.
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Action of creation and annihilation operators

Next step is to transfer the action of the creation and annihilation
operators on Fock space to the qubit space, under the
isomorphism. We need the creation and annihilation operators a
and a† acting on a single qubit state,

a|0〉 = 0, a|1〉 = |0〉
a†|0〉 = |1〉, a†|1〉 = 0

(1)

such that,

ai → I ⊗ I ⊗ · · · ⊗ a︸︷︷︸
ith qubit

⊗ · · · ⊗ I

a†i → I ⊗ · · · ⊗ a†︸︷︷︸
ith qubit

⊗ · · · ⊗ I

(2)
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Action of creation and annihilation operators

Here ai (a†i ) is the annihilation (creation) operator acting on Fock
space F2L, annihilating (creating) a fermion in ith mode. I is the
identity on single qubit space. The tensor product satisfying the
correspondence in Eq.(??) must be consistent with the
anti-commutation property of the Fock space creation and
annihilation operators,

{ai , a†j } = δij {ai , aj} = 0 = {a†i , a
†
j }
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This requirement leads to the following action of the tensor
product operators on the 2L qubit states

(I ⊗ I ⊗ · · · ⊗ a(a†)︸ ︷︷ ︸
ith place

⊗ · · · ⊗ I )(|n1〉 ⊗ · · · ⊗ |ni 〉 ⊗ · · · ⊗ |n2L〉) = (−1)
∑2L

j=i+1 nj

(|n1〉 ⊗ · · · ⊗ a(a†)|ni 〉︸ ︷︷ ︸
ith qubit

⊗ · · · ⊗ |n2L〉)

(3)

Here ni ∈ {0, 1} ; i ∈ {1, 2, . . . , 2L} and
∑2L

j=i+1 nj is evaluated
mod 2. Using the above Eq., it is straightforward to see that

{I⊗I⊗· · ·⊗ a(a†)︸ ︷︷ ︸
ith place

⊗ · · ·⊗I , I⊗I⊗· · ·⊗ a(a†)︸ ︷︷ ︸
jth place

⊗ · · ·⊗I}(|n1〉⊗· · ·⊗|ni 〉⊗· · ·⊗|nj〉⊗· · ·⊗|n2L〉) = 0

(4)
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and

{I ⊗ I ⊗ · · · ⊗ a︸︷︷︸
ith place

⊗ · · · ⊗ I , I ⊗ I ⊗ · · · ⊗ a†︸︷︷︸
jth place

⊗ · · · ⊗ I}

(|n1〉 ⊗ · · · ⊗ |ni 〉 ⊗ · · · ⊗ |nj〉 ⊗ · · · ⊗ |n2L〉) = (I ⊗ · · · ⊗ I )︸ ︷︷ ︸
2L factors

δij

(5)
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Nomenclature

fermions ↔ spin 1
2 fermions.

mode ↔ single particle state.
N fermions on L sites ↔ 2L mode system.
Two fermions on two sites A,B constitute a four mode system
with states |A ↑〉, |A ↓〉, |B ↑〉, |B ↓〉.
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Subsystems and entanglement

We deal with entanglement between subsets forming a partition of
a 2L-mode fermionic system.
We define entanglement measure for any such partition : no
restriction on the no. and size of the partition.
Local and non-local operations.
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Geometric measure of entanglement

We assume that a partition equally divides 2L modes into
m = 2L/n subsets each containing equal no. of modes say n.
H2L is divided into subspaces of dimension d = 2n. The system
then consists of m qudits with d = 2n.
We use the Bloch repre4sentation of ρ = |ψ〉〈ψ| namely,

ρ =
1

dN
{I⊗m

d +
∑
k∈N

∑
αk

sαk
λ(k)αk

+
∑
{k1,k2}

∑
αk1

αk2

tαk1
αk2
λ(k1)αk1

λ(k2)αk2
+ · · ·+

∑
{k1,k2,··· ,kM}

∑
αk1

αk2
···αkM

tαk1
αk2
···αkM

λ(k1)αk1
λ(k2)αk2

· · ·λ(kM)
αkM

+

· · ·+
∑

α1α2···αN

tα1α2···αN
λ(1)α1

λ(2)α2
· · ·λ(m)

αN
}
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Definition of entanglement.

Let a 2L mode N fermion system be partitioned by m = 2L/n
subsets, each containing n modes. Then for this partition, we
define the entanglement measure for a state |ψ〉 ∈ H2L(N) by [?]

E = ||τ || − ||τ ||sep (6)

where

||τ || =

√√√√ d2−1∑
α1···αm=1

t2α1···αm
(7)

and ||τ ||sep is ||τ || for separable (product) m qudit state

||τ ||sep =

(
d(d − 1)

2

)m/2

(8)
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Entanglement in a four mode system

Consider a four mode system and the normalized state |ψ〉 ∈ H4(2)
defined as

|ψ〉 =
1√
6
{iα|1100〉+ |1001〉+ |0110〉+

|0011〉+ β|0101〉+ |1010〉} α2 + β2 = 2

where α, β are real. Note that |ψ〉 can be treated as a member of
the Fock space F4(2) with the kets appearing in it being its basis
states.
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The Hamiltonian

Consider the evolution of the system in state |ψ〉 ∈ F4(2) via the
Hamiltonian

H = f (a†1a4 + a†4a1) + qn̂1n̂2 + Γn̂1 + γn̂3 + η(a†1a2 + a†2a1) (9)

acting on F4. Here f term is the interaction between two modes on
different sites (inter-site interaction), η term is the interaction
between two modes on the same site (intra-site interaction). Γ and
γ correspond to single mode on site A and B respectively. q term
involves number operators n̂i = a†i ai ; i = 1, 2 for first two modes,
on A site. We have included all the different kinds of typical
interactions encountered in condensed matter systems, respecting
number super-selection rule.
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After an infinitesimal unitary evolution via this Hamiltonian, the
state |ψ〉 evolves to

|ψ′〉 = |ψ〉 − iεH|ψ〉 (10)

By employing the mapping of annihilation and creation operators
in Eq.(??) and Eq.(??) and that of Fock space basis states in
Eq.(??), we get, for |ψ′〉
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|ψ′〉 =
1√
6
{(iα + iεf + αqε)|1100〉+

(1− iΓε− iεηβ)|1001〉+ (1− iγε− iεη)|0110〉+
(1− iεf − iεγ)|0011〉+ (β − εf β − iεη)|0101〉+
(1 + iεf − iεΓ− iεγ − iεη)|1010〉
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Now we find the entanglement for different partitions of this four
mode system, using the geometric entanglement measure. We first
partition four modes into four subsets, each containing one mode.
This case gives genuine entanglement between four modes, which
is more general than only the bipartite entanglement considered in
the literature. For this case d = 2, so that ||τ ||sep = 1 and we get,
for the genuine four mode entanglement,

E = ||τ || − 1 (11)

where

||τ || =

√√√√ 3∑
i ,j ,k,l=1

t2ijkl (12)

with

tijkl = Tr [ρ σi ⊗ σj ⊗ σk ⊗ σl ] = 〈ψ|σi ⊗ σj ⊗ σk ⊗ σl |ψ〉. (13)

where {σi} i = 0, 1, 2, 3 are the generators of the SU(2) group
(Pauli operators).
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The resulting entanglement in |ψ′〉 is

Eg (|ψ′〉) =
1

6

(
−6 +

√
88 + 64α2 + 32β + 64β2 + 10α2β2 + β4

)
−

4
(
4f α− 2qα(1 + β) + f αβ(α2 − β2) + 4αη(1 + β)

)
ε(

−6 +
√

88 + 64α2 + 32β + 64β2 + 10α2β2 + β4
) +

O[ε2]

(14)

where the first term gives the entanglement E (|ψ〉) for the state ψ
as defined in Eq.(??). For this partition, the operations on a single
mode are the only local operations, while all others are non-local.
Therefore, the terms Γn̂1 and γn̂3 are the only local interactions.
Therefore, we expect that the four mode genuine entanglement
should not depend on Γ or γ to the first order in ε, which is the
case, as seen from Eq.
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Next, we consider the partition consisting of two subsets, each
containing two modes on each site, {A ↑,A ↓} and {B ↑,B ↓}
(site partition). Thus we have two subsystems with d = 4
corresponding to a SU(4)⊗ SU(4) qudit system. Further, n = 2
giving m = (2L/n) = 2 so that the geometric entanglement is

Es(|ψ′〉) = ||τ || − 6 (15)

where

||τ || = 4

√√√√ 15∑
j ,k=1

K 2
jk

with
Kjk = 〈ψ|λ̂j ⊗ λ̂k |ψ〉

where λ̂j ; j = 1, . . . , 15 are the generators of SU(4).
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The entanglement of |ψ′〉 in Eq.(??) is then given by

Es(|ψ′〉) =

1

3

(
−18 +

√
208 + 136α2 + 9α4 − 32β + 104β2 + 34α2β2 + 9β4

)
−

16(−f α + f αβ(α2 − β2 − 2))ε

3(
√

208 + 136α2 + 9α4 − 32β + 104β2 + 34α2β2 + 9β4)
+

O[ε2]

According to the ‘site partition’, in addition to the operations on
single modes, the operations on the pair of modes having the same
site label are also local. Therefore, the resulting entanglement
cannot change under the intra-site operations in the Hamiltonian,
namely the q term, the η term and as before, Γ and γ terms.
Thus, to the first order in ε, the entanglement is expected to
depend only on the non-local part of the Hamiltonian, that is, on
the f parameter. From Eq.(??) we see that this is the case.
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We now consider some correlated fermionic lattice models and
discuss multi-mode entanglement in these models using the
geometric measure. The Hubbard dimer model is a simple model
for a number of physical systems, including the electrons in a H2

molecule, double quantum dots, etc [?]. The Hamiltonian can be
written as

H = −t
∑
σ=↑,↓

(
c†AσcBσ + c†BσcAσ

)
+ U

∑
j=A,B

n̂j↑n̂j↓ (16)

where A, B are the site labels and ↑ and ↓ are spin labels. t is the
hopping coefficient measuring hopping between two sites while
conserving spin and U quantifies Coulomb interaction between
fermions on the same site. By varying

(
U
4t

)
we can vary the

relative contributions of hopping and Coulomb mechanisms.

Pramod S. Joag Multipartite entanglement in fermionic systems via a geometric measure



The ground state of the system at zero temperature can be easily
obtained as

|ψ0〉 = NĜ0|vac〉 (17)

where N = 〈ψ0|ψ0〉−1/2 is the normalization factor and

Ĝ0 = c†A↑c
†
A↓ + c†B↑c

†
B↓ + α

(
U

4t

)(
c†A↑c

†
B↓ − c†A↓c

†
B↑

)
(18)

with α(x) = x +
√

1 + x2. By mapping to H2L via Eq.(??) we get,

|vac〉 → |0〉 ⊗ |0〉 ⊗ |0〉 ⊗ |0〉 = |0000〉 (19)

while mapping between the operators, (Eq.(??) and Eq.(??)) gives

c†A↑ → a† ⊗ I2 ⊗ I2 ⊗ I2 c†A↓ → I2 ⊗ a† ⊗ I2 ⊗ I2

c†B↑ → I2 ⊗ I2 ⊗ a† ⊗ I2 c†B↓ → I2 ⊗ I2 ⊗ I2 ⊗ a†

(20)

The normalized ground state can be expressed in the qubit space as

|ψ0〉 =
−1√

2(1 + α2)
{|1100〉+ |0011〉+ α|1001〉 − α|0110〉} (21)
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The four-partite entanglement in any state |ψ〉 can be calculated
by using Eqs.(??),(??),(??)) as,

Eg = ||τ || − 1 (22)

where

||τ || =

√√√√ 3∑
i ,j ,k,l=1

t2ijkl (23)

with
tijkl = 〈ψ|σi ⊗ σj ⊗ σk ⊗ σl |ψ〉. (24)

The ground state entanglement can be then calculated to be

Eg =
3

(1 + α2)

√
1 +

2

9
α2 + α4 − 1 (25)
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(. . . continued)
We plot the four-partite entanglement as a function of U and t
(Fig.1(a)) and as a function of α (Fig.1(b)). The entanglement is
seen to monotonically increase as a function of α, saturating at
large values of α to the maximum value 2. The saturation to the
maximum value can be obtained either for very large values of U
or very small values of t. We can interpret this result in the
following way: since the total particle number is fixed to be 2, the
four mode entanglement essentially measures the correlations
between the spins. The entanglement increases as a function of α
because the spin correlations increase with α.
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Fig. 1) Four-partite entanglement for the Hubbard dimer (at half
filling) as a function of U and t (a) and as a function of α (b).
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Fig. 1) Four-partite entanglement for the Hubbard dimer (at half
filling) as a function of U and t (a) and as a function of α (b).
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We can also calculate the bipartite entanglement between sites A
and B using the geometric measure Eqs.(??,??,??) considering the
partitions to be {{A ↑ A ↓}; {B ↑ B ↓}}

Es = ||τ || − ||τ ||sep (26)

where

||τ || =

√√√√ 15∑
i ,j=1

t2ij ; tij =

(
d

2

)2

〈ψ|λ̂i ⊗ λ̂j |ψ〉 (27)

and ||τ ||sep =
(
d(d−1)

2

)m/2
. Here λ̂s are the generators of SU(4),

there are m = 2 partitions (same as the number of sites) and each
partition has dimension d = 4. This leads to an inter-site
entanglement of the form
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Es =
2

(1 + α2)

√
13α4 + 34α2 + 13− 6 (28)

The bi-partite entanglement between sites A and B was calculated
earlier using the von-Nueumann entropy [?]

EVN =
1

(1 + α2)

{
log2

[
2(1 + α2)

]
− α2 log2

[
α2

2(1 + α2)

]}
(29)
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We plot the inter-site entanglement (the von-Neumann entropy is
also plotted for comparison) as a function of α in Fig.2. It is seen
that both measures show qualitatively similar behavior, i.e, a
monotonically decreasing entanglement as a function of α
saturating at very large values of α. The entanglement between
the sites A and B decreases as a function of α because with
increasing on-site repulsion U, the four dimensional local state
space at each site gets reduced to a two dimensional local state
space [?] due to a suppression of charge fluctuations or in other
words, as α→∞ the SU(4)⊗ SU(4) partition goes over to a
SU(2)⊗ SU(2) partition. We have explicitly checked that the
entanglement obtained in the α→∞ limit can be compared with
that obtained for the SU(2)⊗ SU(2) partition.
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Fig. 2a) The bi-partite entanglement between sites A and B
calculated with the geometric measure as a function of α for the
Hubbard dimer at half filling The corresponding von-Neumann
entropy as a function of α
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Fig. 2b) The bi-partite entanglement between sites A and B
calculated with the geometric measure as a function of α for the
Hubbard dimer at half filling The corresponding von-Neumann
entropy as a function of α
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