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Plan of the talk

• Deterministic Bell State Discrimination

• NMR implementation

– NDD of Bell States by NMR

– Preparation of PPS
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– Encoding Phase and Parity Information

• Natural entaglement

– Effects of entanglement in susceptibitlity and g-factors

– Heisenberg model
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Plan of the talk

• Entangled channels, perfect teleportation, multi-electron quantum dots

– Teleportation of 1-qubit states

– Generation of the |W3〉 state

– A N-qubit teleporting channel with one magnon

– Generation from Hamiltonian dynamics

– Decoherence from nuclear spin environment

• Exchange coupled pair model (Tetramer)

– Coupling dependent entanglement

– Generation of a 4 particle - 2 magnon state
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Plan of the talk

• Common bath decoherence

– Decoherence free Teleportation

– Average Fidelity of Teleportation

– Measurement in partially entangled basis

– Effect of initial polarizations on the Fidelity

• Conclusions
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Deterministic Bell State Discrimination

• Local operations with 2 Ancilla bits to deterministically distinguish all 4 Bell states,
without affecting the quantum channel

• Never failing Bell measurement is impossible: Both theory and experiments

• Bell states into disentangled basis states. However, in the process of measurement the
entangled state is vandalized

• A scheme which discriminates all the four Bell states deterministically and is able to
preserve these states for further use: Two Ancilla bits instead of LOCC with unitary
operations

• The Bell states:

|ψ+〉 =
1
√

2
(|00〉+ |11〉), |ψ−〉 =

1
√

2
(|00〉 − |11〉), (1)

|φ+〉 =
1
√

2
(|01〉+ |10〉), |φ−〉 =

1
√

2
(|01〉 − |10〉) (2)

• Under Hadamard/Pauli: Transforms into each other → Distinguishing (Fig.)

M. Gupta and PKP, quant-ph/0504183v1
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Deterministic Bell State Discrimination

Diagram depicting the circuit for Bell state discriminator

• In the end, measurement is taken on these Ancilla bits to know with certainty, the type
of Bell state that exists in the channel

– Measurement on the first Ancilla will differentiate the four Bell states into two
pairs: |ψ+〉/|φ+〉 or |ψ−〉/|φ−〉

– Second Ancilla measurement differentiates the Bell states.

• Bell states in first two quantum channels retain their initial states, even after being
discriminated
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Deterministic Bell State Discrimination

• Before measurement the states can be explicitly written as:

|RA1〉 = [I2 ⊗ I2 ⊗H] ∗ [(x1 ⊕A1)⊗ (x2 ⊕A1)⊗ I2] ∗ [I2 ⊗ I2 ⊗H] ∗ [|x12〉 ⊗ |A1〉]
and |RA2〉 = [H⊗

3
] ∗ [(x1 ⊕A2)⊗ (x1 ⊕A2)⊗ I2] ∗ [H⊗

3
] ∗ [|x12〉 ⊗ |A2〉]

Table:

Bell State Measurement A1 Measurement A2

|ψ+〉 0 0
|ψ−〉 1 0
|φ+〉 0 1
|φ−〉 1 1
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NMR implementation

• The Bell state is determined by its parity and relative phase

• Two Ancilla qubits are measured in the circuit

– In the first circuit, measurement on first Ancilla determines the relative phases of
|x〉 and |x̄〉 giving |0〉 for 1√

2
(|x〉+ |x̄〉) and |1〉 for 1√

2
(|x〉 − |x̄〉).

– Measurement on second Ancilla: Exchange parity between two qubits

J. R. Samal, M. Gupta, PKP and A. Kumar, J. Phys. B: At. Mol. Opt. Phys. 43 (2010)

095508
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NDD of Bell States by NMR

• Single Ancilla qubit is used : Two separate measurements with three qubit NMR system
[J. R. Samal et al., At. Mol. Opt. Phys. 43 (2010) 095508]

• The Bell states:

|φ±〉 =
1
√

2
(|00〉 ± |11〉) , |ψ±〉 =

1
√

2
(|01〉 ± |10〉) , (3)

i. e. in general |χ±x〉 = 1√
2

(|x〉 ± |x̄〉)
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NMR implementation

• The spin system chosen for the protocol is 13C labeled 13CHFBr2, 1H, 19F and 13C
being three qubits

• Four steps:

– a)Preparation of |000〉 Pseudo Pure State (PPS)

– b)EPR pair/Bell states from PPS

– c)Encoding phase and parity information

– d)Measurement on Ancilla qubit
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NMR implementation

• The Bell state is determined by its parity and relative phase

• Two Ancilla qubits are measured in the circuit

– In the first circuit, measurement on first Ancilla determines the relative phases of
|x〉 and |x̄〉 giving |0〉 for 1√

2
(|x〉+ |x̄〉) and |1〉 for 1√

2
(|x〉 − |x̄〉).

– Measurement on second Ancilla: Exchange parity between two qubits
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NMR implementation

• The NMR Hamiltonian for a weakly coupled 3 spin system:

H = −
3∑
i=1

ωiI
i
z + 2π

3∑
i<j=1

JijI
i
zI
i
z (4)

• The equilibrium density matrix under high temperature and high field approximation In
a highly mixed state:

ρeq =
1

N
(I − β∇ρeq) (5)

where,

∇ρeq = γHI
H
z + γCI

C
z = γH

(
IHz + 0.94IFz + 0.25ICz

)
(6)
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NMR implementation

a) Schematic energy-level diagram of the three-qubit system. The horizontal bars depict the
eight energy levels. The dashed lines (- - - - -), the dotted lines ( . . . . . . ) and the solid
lines (———-) respectively represent the first (1H), second (19F ) and the third qubit (13C)
transitions
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NMR implementation

b) Equilibrium spectra of 1H, 19F and 13C of 13CHFBr2. The labels on each transition of a
qubit represent the state of the other two qubits in the transition
c)The population spectra of 1H, 19F and 13C after the preparation of the |000〉 pseudo-pure
state. Population spectra obtained by using measuring pulses of 900 on each spin individually
after a gradient pulse to kill any unwanted coherence created by imperfections in the PPS
sequence. Exclusive presence of the 00 transition for each qubit confirms the creation of the
|000〉 PPS.
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Preparation of PPS

• In liquid state NMR, one prepares PPS mimicking pure states. They are prepared from
the equilibrium density matrix by spatial averaging

[57.9]Fx → Gz → [π/4]Hx → [1/2J]HC → [π/4]H−y → Gz → [π/4]Fx → [1/2J]FC → [π/4]F−y →
Gz → [π/4]Hx → [1/2J]HF → [π/4]H−y → Gz

∇ρeq = γH
(
IHz + 1

2
IFz + 1

4
ICz
)

• The [π/4] pulses before and after the J-evolution and the [π] pulses in the middle of
the evolution period transfer the density matrix into the |000〉 PPS

∇ρ000 =
γH

4

(
IHz + ICz + 2IHz I

C
z + 2IHz I

F
z + 2IFz I

C
z + 4IHz I

F
z I

C
z

)
(7)

• The |000〉 PPS is used for preparation of Bell states [|00〉+ |11〉] /
√

2 and [|00〉 − |11〉] /
√

2

• For preparation of Bell states [|01〉+ |10〉] /
√

2 and [|01〉 − |10〉] /
√

2, one needs to start
from |000〉 PPS

∇ρ000 =
γH

4

(
−IHz + ICz − 2IHz I

C
z − 2IHz I

F
z + 2IFz I

C
z − 4IHz I

F
z I

C
z

)
(8)
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Preparation of Bell states

• Four Bell states are prepared from first two qubits (1H and 19F from |000〉 and |001〉
PPS respectively, by unitary transformation: U± = exp

(
∓iIxHIyFπ

)
[π/2]F∓x → [π/2]Hy → [1/2J]HF → [π/2]H−y → [π/2]F±x

• Under U±, the PPS density matrix transforms:
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Preparation of Bell states

• These density matrices correspond respectively to the states:

|φ±〉HF |0〉C =
1
√

2
[|00〉 ± |11〉]HF |0〉C,

|ψ±〉HF |0〉C =
1
√

2
[|01〉 ± |10〉]HF |0〉C,

where the first two qubits combine to form Bell states and the third qubit is in the
state |0〉

• Average absolute deviation:

〈|∇x|〉 =
1

N2

N∑
i,j=1

|xTij − xEij| (9)

• Maximum absolute deviation:

∇xmax = Max|xTij − xEij|, ∀ i, jε{1, N} (10)

where xTij, x
T
ij are theoretical and experimental elements respectively
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Preparation of Bell states
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Encoding Phase and Parity Information

• By the use of Hadamard gates and controlled-NOT (CNOT) gates:

Hadamard −→ ([π/2]y → [π]x)

CNOT-i,j: −→
(

[π/2]jx → {[π/2]jy → [1/2J]ij → [π/2]j−y} → {[π/2]iy → [π/2]ix → [π/2]i−y
)

• The deviation density matrices after the phase and parity measurements are:
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Encoding Phase and Parity Information
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Encoding Phase and Parity Information
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Encoding Phase and Parity Information
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Encoding Phase and Parity Information
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Natural entaglement

• Entanglement that is present ‘naturally’ in easily accessible

states of certain systems (for example, in ground states or

in thermal equilibrium)

• Natural question to ask:

– How much is there? Can we quantify it?

– How is it distributed in space?

– Can we use it for anything?
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Natural entaglement
Ising model:

H = −
∑
〈ij〉

Jσizσ
j
z +Bz

∑
i

σiz (11)

Transverse field Ising model

H = −J
∑
i

σizσ
i+1
z +B

∑
i

σix (12)

No non-trivial quantum dynamics:

[H,σiz] = 0 (13)

Each spin seperately a constant of the motion.
eg. B in x-direction:
Low B: ground state ferromagnetic in z direction
Large B: ground state aligned in x direction
Two different domains seperated by a quantum phase transition
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Effects of entanglement in susceptibitlity and g-factors

Ghosh, Rosenbaum, Aeppli, Coppersmith, Nature, 425, 48 (2003)
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Heisenberg model

H = J
∑
i

~Si · ~Si+1 +B
∑
i

Siz (14)

Singlet (AF):|ψ〉 = 1√
2

(| ↑↓〉 − | ↓↑〉)
Triplet:

1√
2

(| ↑↓〉+ | ↓↑〉)

| ↑↑〉
| ↓↓〉

No entanglement for ferromagnetic ground state!!
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Exchange coupled pair model (Dimer)

H = 2
∑
i
Ji~Si · ~Si+1 + gµBH

∑
i

~Si
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Panigrahi and Mitra, Jour Indian Institute of Science, 89, 333-350(2009)
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Analysis: Susceptibility as an Entanglement witness

(Bipartite systems)
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The Hamiltonian for two qubit is written as:

31



In the ground state (at low temperatures) the system is in 

the pure state and is in the state 

Maximum Mixing

E
n
e

rg
y
 E

-3J/4 (singlet)

J/4 (triplet)

J
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At finite temperatures the system is in a mixed state
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At very high temperatures, β 0, the density matrix, Reduces to

Panigrahi and Mitra, Jour Indian Institute of Science, 89, 333-350(2009)
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(goes to zero, since the Pauli matrices are traceless)

Hence the system is perfectly separable

ρ is separable if it can be expressed as a convex 

sum of tensor product states of the two subsystems

There exists

35



Thermal Entanglement (intermediate temp)
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Concurrence

In Ferromagnet it is zero

For an Antiferromagnet

[W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1998)]
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B = 0 limit

Isotropic 

system
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Susceptibility as an Entanglement Witness
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Concurrence in Copper Nitrate
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Heisenberg 1-2 Heisenberg 1-4
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Ising 1-2 Ising 1-4
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Heisenberg XY 1-2 Heisenberg XY 1-4
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Heisenberg XXX 1-2
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Entangled channels, perfect teleportation, multi-electron

quantum dots

• Generating N qubit entangled states teleporting an unknown state perfectly

• Desired states through suitable exchange interaction

• A multi electron quantum dot can be a possible realization for generating such N qubit
states with high fidelity

• Effect of the nuclear spin environment on the fidelity of teleportation for a general N
qubit entangled channel

D. D. B. Rao, S. Ghosh and PKP, Phys. Rev. A 78, 042328 (2008)
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Teleportation of 1-qubit states

• Teleportation of an unknown state through multi-particle entangled states

• In addition to the N-qubit GHZ states, W states form another class of entangled states

• W states from N-qubit interactions conserving z-component of the total spin of qubits

• Symmetric three qubit W state: |ψ〉 = 1√
3

[
|100〉+ |010〉+ |001〉

]
fails to teleport the

unknown state perfectly to Bob

• Modification of W-states −→ Agarwal and Pati et al., but not for quantum state sharing

• The modified W states can be connected to GHZ states by performing entangling
operations on any two qubits

• Thus the modified W-state can be a key source for quantum protocols as different tasks
can be performed as required
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Teleportation of 1-qubit states

• We propose an experimental way of generating these states using exchange interaction
between the qubits in quantum dot systems, and further generalize to N qubits.

• 3-qubit state:

|W3〉 = α1|100〉+ α2|010〉+ α3|001〉, |α1|2 + |α2|2 + |α3|2 = 1 (15)

• Bob has 1 qubit, Alice has 2. Alice to Bob: |ψ〉 = a|0〉+ b|1〉, with |α3|2 = |α1|2 + |α2|2
Example:

|W3〉 =
1

2

[
|100〉+ |010〉+

√
2|001〉

]
α1 =

1
√

2
, α2 =

1
√

2
sinφeιχ1, α3 =

1
√

2
cosφeιχ1,

with 0 ≤ φ ≤ 2π and 0 ≤ χ1,χ2 ≤ 2π

• Bob with the first qubit: |α1|2 = |α2|2 + |α3|2 as different weights of the basis states

• A W-like state :

|W̃3〉 =
1

2

[
|100〉+ |010〉+ |001〉+ |111〉

]
, (16)

but does not conserve total Ŝz
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Generation of the |W3〉 state

• Hamiltonian:

H = J ~SA.~SB + J ~SB.~SC + J∆~SA.~SC, J ∼ 0.01eV (17)

• ∇ = 1→ closed chain and ∇ = 0→ open chain: Different |W̃3〉s

Representation of closed and open chains for 3 and 4 qubits interacting through Heisen-
berg exchange interaction. For ∆ = 1 the chain is perfectly closed and ∆ = 0 the chain
is open.
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Generation of the |W3〉 state

• Initial 3-qubit state: |ψ(0)〉 = |100〉 —itemAs H conserves ẑ component of the total
spin:

|ψ(t)〉 = α1(t)|100〉+ α2(t)|010〉+ α3(t)|001〉,

α1(t) =
1

6

[
2e−itE1 + 3e−itE2 + e−itE3

]
,

α2(t) =
1

3

[
e−itE1 − e−itE3

]
,

α3(t) =
1

6

[
2e−itE1 − e−itE2 + e−itE3

]
• Eigenvalues: E1 = J(2 + ∆)/4, E2 =3 J/4, E3 = (∆− 4)/4

• Condition for perfect teleportation with Bob having the first qubit:

3 cos(Jt
1 + 2∆

2
) + cos

3Jt

2
+

3

2
cos((1−∆)Jt)− 1 = 0, (18)

• For J = 0 the 3-qubit state can perfectly teleport

• The roots of Eq.18 can specifically be found for open and closed chains
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Generation of the |W3〉 state

• For ∇ = 0, Solution: Jt = 2
3

cos−1

(
− 1

8

)
with periodicity of 4π/3

Also, |α1(t)2| = 1
2

and |α2(t)|2 = |α3(t)|2 = 1
4

• Finally:

|ψ(t = τ)〉 =
1

2

[√
2eιφ1|100〉+ eιφ2|010〉+ eιφ2|001〉

]
, (19)

where τ = 2
3
[2nπ + cos−1(−1

8
)], and φ1 = tan−1(−

√
2) and φ2 = tan−1(

√
2

3
)

• First qubit to Bob −→ |100〉,

last qubit to Bob −→ |001〉
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Generation of the |W3〉 state

We have plotted Eq. (18) as a function of time. The times at which the curves intersect
with the horizontal line are the solutions to the non-linear equation given in Eq. (18). The
asymmetry parameter ∆ is varied from 0 (open) to 1 (perfectly closed). The times at which
one can find solutions to Eq. (18) increases with decreasing ∆

• As |α1|2 = 1, for any value of ∇,

|ψ(t = τ∆)〉 =
1

2

[√
2eιφ1(∆)|100〉+ eιφ2(∆)|010〉+ eιφ3(∆)|001〉

]
(20)
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A N-qubit teleporting channel with one magnon

• In teleporting a single qubit, states with at least one magnon excitation are required

• n magnon state:

|N ;n〉 =

N∑
i1i2.......in=1

Ci1i2···in|i1 · · · i7 · · · in〉,
N∑

i1i2.......in=1

|Ci1i2···in|2 = 1 (21)

• We shall consider all the complex coefficients to be some phase factors only

• One qubit to Bob and keep the remaining N1 qubits with Alice. Initially:

|ψ〉i = (α|0〉+ β|1〉)⊗
N∑
i=1

Ci|i〉. (22)

• Alice and Bob qubits:
∑N

i=1
Ci|i〉 =

∑N−1

i=1
Ci|i〉|0〉+ CN |00 · · ·0〉|1〉
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A N-qubit teleporting channel with one magnon

• Now:

|ψ〉i =
1

2

[
(|ξ1〉+ |ξ4〉)(α|0〉+ β|1〉) + (|ξ1〉 − |ξ4〉)(α|0〉 − β|1〉)

+ (|ξ2〉+ |ξ3〉)(β|0〉+ α|1〉) + (|ξ2〉 − |ξ4〉)(−β|0〉+ α|1〉)
]
,

|ξ1〉 = |0〉
N−1∑
i=1

Ci|i〉, |ξ4〉 = |1〉|00 · · ·0〉, |ξ3〉 = |1〉
N−1∑
i=1

Ci|i〉 (23)

• Orthonormal basis for Alice: |ξ1〉 ± |ξ4〉 and |ξ1〉 ± |ξ4〉 −→∑N−1

i=1
|Ci|2 = |CN |2

• Then the single qubit teleporting state is:

|ψ〉C =
1√

2(N − 1)

N−1∑
j=1

ei2πj/N |j〉|0〉 ±
1
√

2
|00 · · ·0〉|1〉. (24)

• For N = 2 this is the usual Bell state and for N = 3 this is the modified W state

• Deterministic teleportation using the above class of states can be possible only for
N = 2, as Alice has the complete orthonormal basis for measurement
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A N-qubit teleporting channel with one magnon

• A generalization:

|ψ〉C =
1√

2
[
N−1Cn

]
[

N−1∑
j1j2..jn=1

|j1j2 · · · jn〉|0〉 ±

√
N − n
n

N−1∑
j1j2..jn−1=1

|j1j2 · · · jn−1〉|1〉

]
(25)

• N−1Cn = (N − 1)!/n!(N − n− 1)!

• Only when N = 2, Alice can perform a complete orthonormal basis measurement

55



Generation from Hamiltonian dynamics

• By switching the exchange interaction on between the qubits

• Interaction Hamiltonian:

H = J
∑
i

~Si · ~Si+1, N + 1 = 1 (26)

with 1-magnon eigenstate |k〉 =
∑

n
eikn|n〉, where k = 2πλ/N, λ = 0,1,2 · · ·N − 1 and

|n〉 represents the site number at which the spin is flipped
Eigenvalues: Ek = J(1− cos k)

• For |ψ(0)〉 = |100 · · ·0〉,

|ψ(t)〉 =
∑
k

∑
n

eiEkteik(n−1)|n〉 (27)

• For perfect teleportation:∣∣∣∣∣∑
k

eiEkt

∣∣∣∣∣
2

−
N∑
n=2

∣∣∣∣∣∑
k

eiEkteik(n−1)

∣∣∣∣∣
2

= 0. (28)
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Generation from Hamiltonian dynamics

• For
∣∣∑

k
eiEk(t=τ)

∣∣2 = 1/2, for finite N : τ = 2
3J

cos−1

(
− 1

8

)
• For large N :

N−1∑
p=0

eiJt cos(2πp/N) ≈
N

2π

∫ 2π

0

dxeiJt cosx = NJ0(Jt) (29)

• Existence of solution to Eq.27: J0(Jt) = 1/
√

2

• There will no revival of |α1(t)|2 close to 1/2 as N becomes large: Only one solution at
large N

• A more general condition of generating the N qubit entangled channels to teleport one
qubit perfectly across a chain of non interacting quantum dots
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Generation from Hamiltonian dynamics

We have plotted Eq. 28 as a function of time for different values of N . The times at which

the curves intersect with the horizontal line are the solutions to the non-linear equation given

in the above equation. In large N limit, there are no strong revivals indicating that there

can exist only one solution corresponding to the first intersection with the horizontal line.

Though for finite N there will always be revivals, the revival time increase drastically with N
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DECOHERENCE FROM NUCLEAR SPIN ENVIRONMENTS

• In quantum dot systems, interaction of the electron spin with nuclear spin bath gives
the dominant contribution to its decoherence

• N qubit entangled states are generated at the order of few pico seconds and then
separated, only the effects of individual environments for each spin need to be considered

• The system bath interaction:

HSE =
∑
ij

Ki
~Si · ~Ii, ~Ii =

∑
k

~Ii,k (30)

• For the initial state of the bath to be completely unpolarized, the time evolution of
each of the N qubit teleporting channels:

ρN(t) = TrI1,I2···IN

∑
i,j

{(
ai(t) + bi(t)~Si · ~Ii

)
|ψN〉〈ψN | ⊗ ρB(0)

(
a∗j(t) + b∗j(t)~Sj · ~Ij

)}
,

where ai = cos Λit+ iKi sin Λit/2Λi and bi = 2iKi sin Λit/Λi, where 2Λi = Ki(Ii + 1/2)
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DECOHERENCE FROM NUCLEAR SPIN ENVIRONMENTS

• The state |ψ〉 = 1
2

[√
2|100〉+ eιφ|010〉+ eιφ|001〉

]
can be rewritten in terms of the spin

operators for each qubit as:

ρ =
1

8

[
I − (SzB + SzC)(I + 2SzA)−

√
2eiφ(S+

A S
−
B + S+

A S
−
C)

+S+
B S
−
C − 2

√
2eiφ(S+

A + S−BS
z
C + S+

A S
z
BS
−
C)

−2SzAS
+
B S
−
C + 8SzAS

z
BS

z
C + h.c

]
, S± = Sx ± iSy (31)

• The state at any later time obtained after tracing out the bath degrees of freedom:

~Si(t) = ~Si(0)

{
1

3
+

2

3

(
1−

t2

τ2
i

)
e−t

2/2τ2
i

}
, τi =

2

Ki

√
Ni

(32)

• SzAS
x
b S

y
C decay much faster (decay rate τ1 + τ2 + τ3) than SxAS

y
B (decay rate τ1 + τ2) −→

The state still can be entangled

• The GHZ state with three particle correlations, becomes completely mixed quickly

• The modified W states can teleport unknown states with better fidelity than GHZ states

• The higher order correlations decay faster: Need control schemes with longer entan-
glement preserving of multi-qubit states
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Exchange coupled pair model (Tetramer)
The Heisenberg chain for four particles is given by

H =

3∑
i=1

∆a
~Si · ~Si+1 + ∆b

~S4 · ~S1

The eigenspectrum and the eigenstates of the system are:

λa ≡ λ1 = λ2 = λ3 =
1

2
(−∆a + ∆b)

λb ≡ λ4 = λ5 = λ6 = λ7 = λ8 =
1

2
(3∆a + ∆b)

λc ≡ λ9 =
1

2
(−3∆a −∆b − 2p)

λd ≡ λ10 =
1

2
(−3∆a −∆b + 2p)

λe ≡ λ11 = λ12 = λ13 =
1

2
(−∆a −∆b − 2q)

λf ≡ λ14 = λ15 = λ16 =
1

2
(−∆a −∆b + 2q)
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Exchange coupled pair model (Tetramer)
Here p =

√
3∆2

a + ∆2
b and q =

√
2∆2

a + 2∆a∆b + ∆2
b . The eigenvectors are given by:

|1〉 = |0001〉 − |0010〉 − |0100〉+ |1000〉
|2〉 = |0110〉 − |1001〉
|3〉 = |0111〉 − |1011〉 − |1101〉+ |1110〉
|4〉 = |0000〉
|5〉 = |0001〉+ |0010〉+ |0100〉+ |1000〉
|6〉 = |0011〉+ |0101〉+ |0110〉+ |1001〉+ |1010〉+ |1100〉
|7〉 = |0111〉+ |1011〉+ |1101〉+ |1110〉
|8〉 = |1111〉

|9〉 = |0011〉 −
2∆a + p

∆a + ∆b

|0101〉+
∆a −∆b + p

∆a + ∆b

|0110〉+
∆a −∆b + p

∆a + ∆b

|1001〉+
2∆a + p

∆a + ∆b

|1010〉

+ |1100〉
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Exchange coupled pair model (Tetramer)

|10〉 = |0011〉 −
2∆a + p

∆a + ∆b

|0101〉 −
−∆a −∆b + p

∆a + ∆b

|0110〉 −
−∆a −∆b + p

∆a + ∆b

|1001〉 −
2∆a + p

∆a + ∆b

|1010〉

+ |1100〉

|11〉 = |0001〉 −
∆a + ∆b + q

∆a
|0010〉+

∆a −∆b + q

∆a
|0100〉 − |1000〉

|12〉 = |0011〉 −
∆a + q

∆a −∆b

|0101〉+
∆a + q

∆a −∆b

|1010〉 − |1100〉

|13〉 = |0111〉 −
∆a −∆b + q

∆a
|1011〉+

∆a −∆b + q

∆a
|1101〉 − |1110〉

|14〉 = |0001〉+
−∆a + ∆b + q

∆a
|0010〉 −

−∆a + ∆b + q

∆a
|0100〉 − |1000〉

|15〉 = |0011〉+
−∆a + q

∆a −∆b

|0101〉+
∆a − q

∆a −∆b

|1010〉 − |1100〉

|16〉 = |0111〉+
−∆a + ∆b + q

∆a
|1011〉 −

−∆a + ∆b + q

∆a
|1101〉 − |1110〉
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Coupling dependent entanglement
Consider a general four particles - two magnon state:

|ψ〉 =
1

Nψ

[
a |0011〉+ b |0101〉+ c |0110〉+ d |1001〉+ e |1010〉+ f |1100〉

]
.

where, Nψ =
√
|a|2 + |b|2 + |c|2 + |d|2 + |e|2 + |f |2 is the normalization. The two particle

reduced density matrix ρ12 for the partition 12|34 will be:

ρ12 =
1

N2
ψ

|a|2 0 0 0
0 |b|2 + |c|2 bd∗ + ce∗ 0
0 b∗d+ c∗e |d|2 + |e|2 0
0 0 0 |f |2


which is of the form:

ρ′ =
1

N2
ψ

(
w1 0 0 0
0 w2 w∗3 0
0 w3 w4 0
0 0 0 w5

)
.

The von-Neumann entropy of ρ12 is given by

S(ρ12) = −
4∑
i=1

λi logλi.
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where, λ are the eigenvalues of ρ12 and are given as

λ1 =
(
|a|2
)
/N2

ψ

λ2 =
(
|b|2 + |c|2 −

(
|bd|2 + b∗cde∗ + bc∗d∗e+ |ce|2

))
/N2

ψ

λ3 =
(
|d|2 + |e|2 −

(
|bd|2 + b∗cde∗ + bc∗d∗e+ |ce|2

))
/N2

ψ

λ1 =
(
|f |2
)
/N2

ψ

The concurrence is given by

C = max
(

0,
√

Λ1 −
√

Λ2 −
√

Λ3 −
√

Λ4

)
where, Λ are the eigenvalues of

ρ̃12 = ρ12σy ⊗ σyρ∗12σy ⊗ σy =
1

N4
ψ

|f |2 0 0 0
0 |d|2 + |e|2 b∗d+ c∗e 0
0 bd∗ + ce∗ |b|2 + |c|2 0
0 0 0 |a|2

 ,

such that Λ1 ≥ Λ2 ≥ Λ3 ≥ Λ4. The eigenvalues of ρ̃12 are thus given by

Λ1 =
(
|a|2
)
/N4

ψ

Λ2 =
(
|b|2 + |c|2 −

(
|bd|2 + b∗cde∗ + bc∗d∗e+ |ce|2

))
/N4

ψ

Λ3 =
(
|d|2 + |e|2 −

(
|bd|2 + b∗cde∗ + bc∗d∗e+ |ce|2

))
/N4

ψ

Λ1 =
(
|f |2
)
/N4

ψ



Generation of a 4 particle - 2 magnon state
The time evolution of an initial state |φ〉 (0) under the Hamiltonian is given as,

|φ(t)〉 = a4(t) |0011〉+ a6(t) |0101〉+ a7(t) |0110〉
+a10(t) |1001〉+ a11(t) |1010〉+ a13(t) |1100〉

where,

a4(t) =
{
eıtD1a4(0)− eıtD3a7(0)− eıtD4a10(0) + eıtD5a11(0) + eıtD6a13(0)

}
a6(t) =

{
eıtD1a4(0) +M+eıtD3a7(0) +M−eıtD4a10(0) + P−eıtD5a11(0)

+P+eıtD6a13(0)
}

a7(t) =
{
eıtD1a4(0)− eıtD2a6(0) +Q−eıtD5a11(0) +Q+eıtD6a13(0)

}
a10(t) =

{
eıtD1a4(0) + eıtD2a6(0) +Q−eıtD5a11(0) +Q+eıtD6a13(0)

}
a11(t) =

{
eıtD1a4(0)−M+eıtD3a7(0)−M−eıtD4a10(0) + P−eıtD6a11(0)

+P+eıtD7a13(0)
}

a13(t) =
{
eıtD1a4(0) + eıtD3a7(0) + eıtD4a10(0) + eıtD5a11(0) + eıtD6a13(0)

}
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where,

M± =
∆a∓∆b

2
∓
√

2∆2
a − 2∆a∆b + ∆2

b

∆a −∆b

±
1

2

P± =
−∆a−∆b

2
− 3∆a+∆b

2
±
√

3∆2
a + ∆2

b

∆a + ∆b

Q± =
−∆a−3∆b

2
+ 3∆a+∆b

2
±
√

3∆2
a + ∆2

b

∆a + ∆b

D1 =
3∆a + ∆b

2

D2 =
∆b −∆a

2

D3 =
√

2∆2
a − 2∆a∆b + ∆2

b −
∆b + ∆a

2

D4 = −
√

2∆2
a − 2∆a∆b + ∆2

b −
∆b + ∆a

2

D5 =
√

3∆2
a + ∆2

b −
∆b + 3∆a

2

D6 = −
√

3∆2
a + ∆2

b −
∆b + 3∆a

2



Common bath decoherence

• Central spin model to study the effect of spin bath on the qubits used for teleportation

• nuclear spins interacting through homogeneous Heisenberg interaction with system spins

• The Hamiltonian: H = Ka
~Sa · ~IEa +KA

~SA · ~IEA +KB
~SB · ~IEB, ~IE =

∑
k
~IE,k

• Common spin bath or Separate baths

• Common bath can induce entanglement between two initially unentangled qubits

• The most general representation of a two-qubit Bell state:

ρAB =
1

4
Î +

∑
k

DkS
k
AS

k
B, (33)

• Correlation vector: Dk ≡ Tr(ρABSkAS
k
B)

• For Bell states: ~DS0 = [−1,−1,−1], ~DT0 = [1,1,−1], ~DT+ = [1,−1,1], and ~DT− =
[−1,1,1]

• The states are: |S0〉 = 1√
2
[| ↑↓ − ↓↑〉], |T0〉 = 1√

2
[| ↑↓ + ↓↑〉], |T+〉 = 1√

2
[| ↑↑ + ↓↓〉] and

|T−〉 = 1√
2
[| ↑↑ − ↓↓〉]

D. D. B. Rao, PKP and C. Mitra, Phys. Rev. A 78, 022336 (2008)
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Decoherence free Teleportation

• The initial state:

ρaAB = ρa ⊗ ρAB =
1

2

[
Î + 2~Pa · ~Sa

]
⊗

1

4

[
Î + 4

∑
k

DkS
k
AS

k
B

]
, ~Pa = Trρa ~Sa (34)

• Alice’s measurement: TraA[ρaA ⊗ ÎBρaAB], where ρaA = 1
4
Î +

∑
k
MkS

k
aS

k
A

• M has the information of the Bell measurement made by Alice

• Bob gets ρB = 1
2

[
Î + 2~PB · ~SB

]
with probability 1/4

• Polarizations are related as: P i
B = DiMiP i

a

• ~D = ~M : Bob needs to do nothing
( ~D× ~M) · n̂ 6= 0: Bob has to do a rotation along n̂ −→ multiplying DiMi to P i

B in Eq.??

• ρB = ρa: Bob is the unknown state that Alice wishes to teleport
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Common bath decoherence for Alice’s qubits

• The Hamiltonian reduces to:

H = (Ka
~Sa +KA

~SA) · ~IE , (35)

where ~IE represents the total bath spin

• Interaction with the bath can result in an indirect coupling between the two: Entagle-
ment between Alices qubits

• Initial state of the Alice-Bob system:

ρaAB(0) =
1

8
Î +

1

2
~Pa · ~Sa +

1

2
~PA · ~SA +

3∑
m,n=1

DmnS
m
a S

n
A, (36)

where Pi
A = DiSiB, and Dmn = Pm

a D
nSnB

• Before Alice’s measurement:

ρaAB(t) = TrE
(
UH(t)ρaAB(0)⊗ ρEU †H(t)

)
(37)
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COMMON BATH DECOHERENCE FOR ALICES QUBITS

• The unitary operator:

UH =
[
a1(t) + a2(t)(~Sa − ~SA) · ~IE

]
(1−

Ŝ2
aA

2
)

+
[
a3(t) + a4(t)~SaA · ~IE + a5(t)(~SaA · ~IE)2

+ a6(t)(~Sa − ~SA) · ~IE + a7(t)(~Sa × ~SA) · ~IE
] Ŝ2

aA

2
,

~SaA = ~Sa + ~SA (38)

• On tracing out bath degrees of freedom:

ρaAB(t) =
1

8
Î +

1

2
~Pa(t) · ~Sa +

1

2
~PA(t) · ~SA +

3∑
m,n=1

Dmn(t)Sma S
n
A.
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COMMON BATH DECOHERENCE FOR ALICES QUBITS

• After Alice makes the Bell measurement, Bob gets ρB(t) = 1
2
Î+

∑
k
MkDkk(t) with 1/4

probability

Dkk(t) = f(t)Dkk(0) + g(t)Tr[D(t)],

= f(t)P k
aDkS

k
B + g(t)

∑
m

Pm
a DmS

m
B . (39)

• The final state of Bob: ρB(t) = 1
2
Î + ~PB(t) · ~SB, with P i

B = f(t)P i
a + g(t)MiTrMP i

a

• If system bath interaction is zero we get perfect teleportation

• In the presence of the bath Bob’s final state depends on ~M from which he can know
about the measurement made by Alice

• If the qubits of Alice see separate environments there will be no such dependence of
Alice measurement.
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Average Fidelity of Teleportation

• Fidelity: How close the teleported state to the unknown state,

F(t) ≡
1

2

[
1 + ~Pa · ~PB(t)

]
,

=
1

2

[
1 + f(t)|~Pa|2 + g(t)TrM

∑
k

(P k
a )2Mk

]
. (40)

and on averaging over all pure states of qubit a,

Fav(t) =
1

4π

∫ 2π

0

dφ

∫ π

0

dθ sin θF(t),

=
1

2

[
1 + f(t) +

1

3
g(t)(TrM)2

]
. (41)

• Upto leading order:

f(t) ≈ 1−
1

3
{〈Î2
E 〉(K

2
a +K2

A +KaKA)}t2,

g(t) ≈
1

3
〈Î2
E 〉KaKAt

2. (42)

If Ka = KA then f(t) + 3g(t) = 1 −→ Perfect teleportation of the unknown state
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Average Fidelity of Teleportation

• Time dependence:

Fav(t) = 1−
t2

12
〈Î2
E 〉(K

2
a +K2

A)
[
1 + ∆(1− (TrM)2/3

]
∆ = 2KAKa/(K2

A +K2
a ), 〈Î2

E 〉 =
∑
IE

λIEIE(IE + 1) (43)

• For completely unpolarized baths i.e., ρE = 1
2N
Î, 〈Î2

E 〉 = 3N/4, where N is number of
bath spins

• For Bell states, TrM = −3 for singlet and TrM = 1 otherwise

• The average fidelity has an initial Gaussian decay, Fav(t) = exp(−t2/τ2), with two
different decoherence time scales:(

1

τ2

)
S0

=
1

6
〈Î2
E 〉(K

2
a +K2

A)(1−∆),(
1

τ2

)
T0,T+,T−

=
1

6
〈Î2
E 〉(K

2
a +K2

A)
(

1 +
∆

3

)
. (44)

• The sign of the interaction with the bath can decide which particular measurement of
Alice can give Bob a less decohered state.
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Average Fidelity of Teleportation

Average fidelity of teleporting the unknown state given to Alice as function of time. When

the Bell state shared by Alice and Bob belongs to the triplet sector and measurement made

by Alice is in the singlet sector and the converse. One of the Alice’s qubits interact ferro-

magnetically and the other anti-ferromagnetically. Here, ∆ = −1, S0 and T0 with N = 22

and K2 = K2
a +K2

A

73



Measurement in partially entangled basis

• Rao et al.: One can find values of ∆, where non-maximally entangled states have larger
decoherence time scale in comparison to the maximally entangled states

• Whether measurement on the partial entangled basis by Alice can improve the average
fidelity

• 0ne-parameter class of states as basis:

|Sr0〉 =
1√

1 + r2
[| ↑↓ −r ↓↑〉], |T r0〉 =

1√
1 + r2

[r| ↑↓ + ↓↑〉],

|T r+〉 =
1√

1 + r2
[r| ↑↑ + ↓↓〉], |T r−〉 =

1√
1 + r2

[| ↑↑ −r ↓↓〉] (45)

• The density matrix:

ρaA =
Î
4

+
1

2
P z
a (r)Sza −

1

2
P z
A(r)SzA +

3∑
m=1

Πmm(r)Sma S
m
A (46)
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Measurement in partially entangled basis

• Similarly as before:

FS
r
0

av (t) =
1

2
+

(1 + r)2 + 2r

6(1 + r2)

[
1−

t2

τ2
0

(1−∆)

]
,

FT
r
0

av (t) =
1

2
+

(1 + r)2 + 2r

6(1 + r2)

[
1−

t2

τ2
0

(
1 +

∆(1 + r2)

(1 + r)2 + 2r

)]
,

FT
r
±

av (t) =
1

2
+

(1 + r)2 + 2r

6(1 + r2)

[
1−

t2

τ2
0

(
1 +

2∆r

(1 + r)2 + 2r

)]
,

1/τ2
0 =

1

3
〈Î2
E 〉(K

2
a +K2

A) (47)

• The average fidelity of teleportation in the case of partial entangled measurement is

always less than the Bell-state measurement: FS0
av (t) ≥ FS

r
0

av (t)

• T r0 giving one value of Fav(t) and T r+, T
r
− different.

• Individual polarizations of qubits Pa and PA though non-zero, did not contribute to
Fav(t) as averaging was performed on the surface of Bloch sphere.
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Effect of initial polarizations on the fidelity

• If the bath is polarized there will be a preferred direction chosen by the bath because
of which the fidelity of various state which Alice wishes to teleport can be different.

Fidelity as a function of time. Two different states to be teleported in presence of a polarized

bath. Initial: ρE =
∑

I
λI |I; I〉〈I; I|, where λI ∼ I2 exp(−2I2/N), and in |I; I〉 the first index

gives spin value and the second value yields ẑ component of the spin. N = 22 and K2 =

K2
a +K2

A
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Conclusions

• The Bell states can be discriminated deterministically without affecting
the quantum channel

• NDD of Bell states are experimentally achieved by NMR, with encoding
phase and parity informations

• Different models of natural entanglement have been studied

• Perfact teleportation can be achieved with multi-electron quantum dots,
using magnon states

• Working on coupled pair model with 2-magnon states

• Decoherence-free teleportation is achieved through common bath
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Thanks for such a patient listening
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