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Wigner Distributions on R
Consider a quantum system whose classical configuration
space Q = R is the real line R. Let { |q〉 | q ∈ R} denone the
coordinate basis in the corresponding Hilbert space H :

〈q|q′〉 = δ (q − q′) ,
∞∫

−∞

dq|q〉〈q| = I;

Given the coordinate basis, one defines a ‘momentum basis’
{ |p〉 | p ∈ R} related to it by Fourier transformation:

|p〉 =
1√
2π~

∞∫
−∞

dq eiqp/~|q > ;

〈p|p′〉 = δ (p− p′) ,
∞∫

−∞

dp|p〉〈p| = I;



We may arrange the values of q and p in the usual Cartesian
fashion and call it the ’classical phase space’ associated with
the quantum system. ( Note that this classical phase space is
not always the same as T ∗Q ).
In 1932, Wigner introduced a quantum analogue of the
classical phase space distribution which associates with any
quantum state ρ̂ a function Wbρ(q, p) as follows:

ρ̂ 7→ Wbρ(q, p) = Tr
{
ρ̂ Ŵ (q, p)

}
;

Ŵ (q, p) =
1

(2π~)

∞∫
−∞

dq′ |q +
1

2
q′〉〈q − 1

2
q′| ei pq′/~,

The operators Ŵ (q, p) will be referred to as phase point
operators



The Wigner distribution defined above has the following
properties

1. Reality : Wbρ(q, p) = Wbρ(q, p)∗.
2. Marginals property : Average of the Wigner distribution

along a line in phase space yields a probability density

3. Traciality: Tr {ρ̂′ρ̂} =

1

(2π~)

∞∫
−∞

dq

∞∫
−∞

dp Wbρ′(q, p) Wbρ(q, p).
4. Wbρ(q, p) not necessarily positive for all ρ̂. For pure states
|ψ >∈ H the Wigner distribution is positive if and only if
the state is a Gaussian state. ( The Wigner distribution
for such states is itself a Gaussian ).



Correspondingly, for the phase point operators,

1. Hermiticity : Ŵ (q, p) = Ŵ †(q, p).

2. Marginals property : Average of the phase point operator
along a line in phase space yields a Projector

Wigner distributions have played an important role in semi
classical approximations, classical optics etc. Of late they
came into prominence in Quantum Information Theory largely
due to the work of R. Simon [Phys. Rev. Lett. 84, 2726
(2000)] and also Duan et. al [ Phys. Rev. Lett. 84, 2722
(2000)] in the context of continuous variable entanglement
where necessary and sufficient conditions for entanglement in
two mode Gaussian pure states were derived.

We now focus on phase space descriptions of d-state quantum
stystems. It turns out that it is sufficient to examine the case
d = pn.



Phase space description of d-state quantum

systems for d = pn

Two possibilities naturally arise:

I q, p take values in the field Fpn

I q, p take values in the ring Zpn

[ A field, like R or C, is a set whose elements form an abelian
group under addition ( additive identity denoted by ‘0’) and
the non zero elements form an abelian group under
multiplication ( multiplicative identity denoted by ‘1’). A ring
is the same as a field except that not all elements have
multiplicative inverses]
The first case was examined in detail by Gibbons et al [ Phys
Rev A 70, 062101 (2004)] and by Wootters [IBM. Res. Dev.
48, 99 (2004); quant-ph/0406032] leading to the notion of
Quantum Nets.



An alternative algebraic approach to Wigner distributions
developed by us [S.C, N.M. and R.S., J. Phys A 43, 075302,
(2010) is capable of handling both the cases within the same
framework. Here we will compare the two approaches for the
first case when d = 2n and highlight the differences with the
second case for the same dimensions. These arise from the
differences in the geometry of the corresponding phase spaces.
In the field case the usual geometric propositions hold

I Two points define a line

I Parallel lines have no points in common

I Any two non parallel lines intersect at exactly one point



As a result

I The phase space has exactly d+ 1 isotropic lines
–‘straight’ lines through the origin.

I Each isotropic line gives rise to d− 1 lines parallel to it
and thereby generates a striation of the phase space –
decomposition of the set of d2 phase points constituting
the phase space space into d lines containing d points
each. Each isotropic lines may therefore be chosen as the
representative of the corresponding striation. As there are
d+ 1 lines, one has d+ 1 striations.

I Any two non parallel lines intersect at exactly one point
and there are exactly d+ 1 lines through a given phase
point.

The situation is quite different in the ring case as we shall see
later.



Notes on finite fields

The set
Fp = {0, 1, · · · , p− 1}

with addition and multiplication mod p is a field. To go from
Fp to Fpn , one considers

I all polynomials of degree n− 1 in x with coefficients in Fp

I a monic polynomial of degree n in x with coefficients in
Fp irreducible over Fp i.e does not become zero for any
x ∈ Fp

This set with addition modulo Fp and multiplication modulo
the chosen irreducible polynomial constitute the field Fpn

An example

F22 = {0, 1, x, 1 + x}; Irreducible Polynomial : x2 + x+ 1



A useful operation in finite fields is the trace operation:

α ∈ Fpn . tr[α] = α + αp + · · ·+ αpn−1

.

It maps elements of Fpn to Fp. in a way such that

tr[α + β] = tr[α] + tr[β]; α, β ∈ Fpn ;

tr[aα] = a tr[α]; α ∈ Fpn , a ∈ Fp.

and permits us to define a symplectic product between two
phase points σ = (q, p) and σ′ = (q′, p′)as

< σ, σ′ >= tr[pq′ − qp′]

and hence an isotropic line λ as a set of phase points such
that the symplectic product between any two vanishes.



Displacement operators

On the Hilbert space H of complex dimension d = pn we
introduce the familiar Weyl operators

U(p) =
∑
q∈Fd

ωtr[qp]|q〉〈q|;

V (q) =
∑
p∈Fd

ωtr[qp]|p)(p|,

where {|q >} and {|p)} denote the ‘coordinate’ and
‘momentum’ orthonormal bases related to each other by a
discrete Fourier transform

|p) =
1√
d

∑
q∈Fd

ωtr[qp]|q >; ω = e2iπ/p

The Weyl operators obey the commutation relations relations

V (q)V (q′) = V (q + q′); U(p)U(p′) = U(p+ p′);

U(p)V (q) = ωtr[pq]V (q)U(p) = τ 2tr[pq]V (q)U(p).

where τ = eiπ/p, τ 2 = ω.



The displacement operators are defined in terms of the Weyl
operators as follows:

σ = (q, p) : D(σ) = τ−tr[qp]U(p)V (q)

= τ tr[qp]V (q)U(p).

These operators have the following properties

Unitary : D(σ)†D(σ) = I;
Trace Orthogonality : Tr(D(σ′)†D(σ)) = Nδσ,σ′ ;

Composition : D(σ)D(σ′) = µ(σ, σ′)D(σ + σ′).

where

µ(σ, σ′) = τ−tr[qp]−tr[q′p′]+tr[(q+q′)(p+p′)]ωtr[qp′].

When p is odd, so that Fp contains 2 as an element, using the
properties of tr[·] the R.H.S. simplifies to

µ(σ, σ′) = ω〈σ,σ
′〉

However, when p = 2, the expression for µ(σ, σ′) should be
kept as such



Phase space description of a qubit: Quantum Nets

Phase space: 2× 2 lattice with q and p taking values in
F2 = {0, 1}
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Quantum net construction :

striation −→ MUB

isotropic lineλ −→ the projector Pλ corresponding to a MUB vector

Assignment of projectors to the lines parallel to the isotropic
line done consistent with translational covariance. Each such
assignment is a quantum net
We thus have 23 (in general dd+1) possible quantum nets. A
quantum net captures the geometric properties of the lines to
the Hilbert space level via the MUBs in the following sense:

Overlap between two lines λ and λ′ =No. of common points/d

−→ Tr[PλPλ′ ]

For a given quantum net one then defines the phase point
opertors as

Ŵ (σ) =
∑
λ,σ∈λ

Pλ − I



These have the following properties:

Tr(Ŵ (σ)) = 1; Tr(Ŵ (σ)Ŵ (σ′)) = Nδσ,σ′ ;
1

d

∑
σ∈λ

Ŵ (σ) = Pλ

There are dd−1 ways of defining sets of d2 such operators and
hence that many Wigner distributions. In particular, for d = 2n

there are 2n(2n−1) possible definitions of Wigner distributions.
Some interesting open questions: How many of these dd−1

possibilities are spectrally distinct? What are the extremal
values of the spectra? These questions are of interest in the
conext of an application of quantum nets to Quantum Random
Access Codes as discussed in the work of A.Casaccino, E. F.
Galvão and S. Severini Phys Rev A 78, 022310 (2008)



Quantum nets for based on F2n: an algebraic

approach

In our ‘square root’ approach to Wigner distributions which
takes the traciality property as the starting point one is led to
phase point operators having the following structure;

Ŵ (σ) =
1

d

∑
σ′

ω〈σ,σ
′〉S(σ′)D(σ′)

where S(σ) take values ±1 and satisfy the symmetry condtion

S(σ) = S(−σ)

The phase point opertors so defined are hermitian and trace
orthogonal:

Tr(Ŵ (σ′)Ŵ (σ)) = dδσ,σ′ .

The standard q − p marginals conditions requires

S(0, p) = S(q, 0) = 1.



Further, requiring that the average of the phase point operator
along any istropic line yields a rank one projector yields the
following conditions on S(σ):

S(σ)S(σ′)µ(σ, σ′) = S(σ + σ′);σ, σ′ ∈ λ.

For d = 2n one can count the number of free signs and these
turn out to be 2n(2n−1) exactly the same as in the quantum
net construction. The advantage of this approach is that it
does not require explicit knowledge of the MUBS. The
construction is entirely algebraic – each assignment of MUB
projector to lines in the quantum net corresponds a specific
choice for the free signs.



Quantum nets for based on Z2n: an algebraic

approach

Our algebraic approach works here as well. There are 2n+1 − 1
isotropic lines to deal with. Of course, the lines on the phase
space no longer have the nice properties as in the field
case–two non parallel lines may have more than one point in
common etc. The marginals conditions can no longer be
implemented on all of them but on specific subsets thereof.
When this is done, what remains true is the relation

Overlap between two lines λ and λ′ =No. of common points/d

−→ Tr[PλPλ′ ]

Same questions as in the field case still remain: How many of
these various possibilities for the Wigner distributions are
spectrally distinct? What are the extremal values of the
spectra?


