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Why geometric phase ?
•A connection between GP and entanglement is possible:  both 
are in the realm of quantum kinematics. 

•Existing measures require tomography.

•Need for an operational measure.

•Physical feasibility: may have an edge over Tomography.

• Both GP and topological phases may be designed to realize 
fault tolerance (Knill Nature 2005) and resilience to 
decoherence (Wu et al, PRL 2005, Oreshkov et al PRL 2009). 
But GP is easier to implement.

•Quantum gates with GP have been demonstrated in the NMR 
set up (Jones et al Nature 2000). 

•For photon states interferometric set up helps measure GP.
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Plan
•Evaluate the distribution of entanglement in the parameter 
space.

•Next, the distribution of the GP.

•Examine whether there is a correlation
                     analytically - pure states without decoherence                    
                               numerically - mixed states (real system).
System

•Photons emitted by Atomic systems.    
                                                
•Atom-Photon interactions offers good control for tailoring the 
photon states.

•Better than Parametric down conversion: 
                          Larger cross-section,
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•Larger number of control parameters  
•availability of mixed states 
•Also easy to identify parameters for controlling separability/
entanglement and purity/mixedness.

Limitations of our scheme
• Experimental implementation involves null measurement.

•May not be suitable for other quantum information protocols.

•However, provides a test ground for understanding 
entanglement.
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Three level cascade system: Two photon states show 
non-classical properties (Clauser PRD 1974)
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TWO-PHOTON STATE

•The two photon state   |n>=|n1 >|n2 > is in the Fock space and 
corresponds to the two modes emitted by the two transitions.

•The modes are centered around the frequency of transition. 

• For simplicity we assume that ni ={0,1} (weak excitation regime 
< atomic excited state lifetime ~6MHz).

•The density matrix is of rank three (follows from Schmidt 
decomposition).

•This class of states is in a smaller subspace of dimension         
(N+1)2-1 rather than 4N. 
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HOW  TO DETERMINE  THE  TWO PHOTON STATE

•There is no master equation for emitted photons.

•Equivalence in the weak excitation regime.

atom DM photon DM⇔
 tt-r/c

Sandhya, Ravishankar PRA 2011

master equation exists
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Hamiltonian in the interaction representation 
and in the RWA 

Steady state solution of the equation

Density matrix of the atomic system
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Parameter Space: 
             driving field strength Ωi, i=1,2;
             detuning,  Δi = (ωL -ωi );  i=1,2.
             two-photon detuning Δ=Δ1+Δ2 .
             Lifetime of the excited state Γi, i=2,3.

•Effect of these parameters on the two-photon state:
     Excited state life time:

          infinitely long lived ⇒ no decoherence.

          Real system -metastable (~1 MHz) ⇒ some 

decoherence. 
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Two-photon detuning ∆
                ∆=0 ⇒ pure state in the absence of decoherence

                        ⇒ small admixture to the pure state in the     

presence of decoherence.
Driving field strengths Ω1, Ω2

            Ω1 ≈ Ω2 ,  ∆=0 ⇒ pure Bell states (no decoherence)

                   ⇒ maximally entangled states (with decoherence). 

        Ω1 <<  Ω2  ⇒  separable states.

        Ω2 <<  Ω1 ⇒ mixed states (with decoherence).

Thursday 23 February 2012



                                             

0.9

0.8

0.8

0.7

0.7

0

0.6

0.6
0

0 5

0.5

0

0

0.4

0.9

0.8

0.8

0.7

0.7

0

0.6

0.6
0

0 5

0.5

0

0

0.40.4

0

0

0.5

0 5

0

0.6

0.6

0

0.7

0.7

0.8

0.8

0.9

!1−!2

"

(a)

 

 

−4 −2 0 2
−3

−2

−1

0

1

2

3

0.35

0.45

0.55

0.65

0.75

0.85
0.7

0.6

0.6

0.5

0.5

0.4

0.4

0.3

0.

0.

0.

0.7

0.6

0.6

0.5

0.5

0.4

0.4

0.3

0.

0

00

0

0.

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

!1−!2

"

(b)

 

 

−4 −2 0 2
−3

−2

−1

0

1

2

3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Distribution of concurrence in the parameter space in 
a) the absence of decoherence and b) presence of 

decoherence. 

Thursday 23 February 2012



•In the absence of decoherence the pure state at ∆=0

where                                  is a dimensionless 
parameter.

Concurrence is 2 Sin(X)Cos(X) and is maximally 
entangled for X=π/4.
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GEOMETRIC PHASE

Quick Review:
•Pancharatnam phase for pure states:

α(t)=Arg( ⟨Ψ(0)|Ψ(t)⟩). 

•Berry showed that if there is a Hamiltonian which depends on 
slowly varying external parameters, in the adiabatic 
approximation the solution of the Schrodinger equation gains an 
additional phase apart from the dynamical phase.
•Aharnov Anandan- generalization  to all non-adiabatic cyclic 
• Samuel Bhandari - non-cyclic evolution.
•Mukunda and Simon - quantum kinematic approach 
•Chaturvedi et al -Berry’s phase for coherent states
•Arun Pati et al - unitary evolution of mixed states.
•Tong et al - non-unitary evolution of mixed states.
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•We are interested in the evolution of the GP in the parameter 
space {∆, X}.

•To span the entire parameter space, we need to consider
a non-adiabatic, non-cyclic, non-unitary evolution.  

•For mixed states, using purification by the introduction of an 
ancilla, it has been shown that the total GP is the weighted sum 
of the individual phases of the pure eigenstates.
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•Mixed states: Purification by introducing an ancilla

 

• Impose the parallel transport condition on 
each of the eigenstates |Φk >

A. K. Pati and collaborators PRL 2003 , Tong et al, PRL 2004

Strategy
 
•For pure state (no decoherence) we analytically show the 
relation between GP and entanglement.

•For mixed state (real system) we illustrate it numerically.
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 Pure states

Geometric phase evaluated in the parameter space {Δ, X} with 
no decoherence. 

GP at a point χ=(δ, X+dX) in the neighborhood of 
 χ0 =(0, X)   
 

                          

                                                                                                                                                                           

=
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Variation of the derivative of the GP in the neighborhood 
of χ0  =(0, X). 
a) X=0, concurrence=0 and 
b) X= π/4, concurrence=1.
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Variation of the GP  and its derivative in the real system
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System parameters are rendered dimensionless by scaling with
atomic lifetime ~1MHz
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Stability of GP for small fluctuations of the parameters
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Summary
•We study the relation between GP and entanglement in a 
Hamiltonian system.
•We identify the control parameters for purity and 
entanglement.
•We obtain the distribution of entanglement in the parameter 
space.
•  We show the dependence of the GP on the concurrence for 
the pure state.
•For the mixed state, we show that the derivative of GP is 
sensitive to both entanglement and purity.
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