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Recently experimental control of atomic BECs have advanced to a level that coherent control 

between two component BECs are possible.  

Bohi et al. Nature Phys. 5, 592 (2009) 
Treutlein et al. Fortschr. Phys. 54, 702 

(2006) 

Coherent control of Bose-Einstein 

condensates (BEC) 

Riedel et al. Nature 464, 1170 (2010) 



• Usually to want see quantum effects we have to fight against other effects.  

Bosonic enhancement should make it easier to observe quantum effects 

 

 

 

• Working with macroscopic, rather than microscopic objects (e.g. atoms, 

quantum dots, Nitrogen vacancies,…) 

 

• Large energy scales usually means short time scales (             ), i.e. fast gates ~ /t E

Potential disadvantages 

 

•   Isn’t decoherence enhanced for such macroscopic systems? 

 

•   For large N doesn’t the system approach a classical limit? Aren’t BECs 

“classical” in that sense? 

 

•   How to experimentally implement in practice?  

Advantage/disadvantages of many boson systems 
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Basic idea 
Each qubit is mapped onto a bosonic qubit 

The mapping takes advantage of the properties of Schwinger boson operators 

† †zS a a b b  † †xS a b b a  † †yS ia b ib a  

These obey exactly the same commutation relations as Pauli operators 
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Same SU(2) algebra is obeyed.   

In a group theoretical language, the bosonic spins form a spin N/2 representation, where 

N is the number of bosons.   
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Example 
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Qubit case 
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Bosonic qubit case 

Initial state: 

Final state: 

z 
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x We can visualize the bosonic qubits as vectors 

in a Bloch sphere (N times bigger) with exactly 

the same rotation. 



Average, variance, overlap 

Expectation values 

Variance 
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“Large Bloch spin” obeys pseudo-

orthogonal properties 

“classical”…. Or is it? 

for 



Two qubit gates 

For now assume there is an interaction of the form 
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Can get corresponding entangled state with a time 

shortened by a factor N 
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Let us consider the analogue of the maximally entangling operation 



Entropy 

For bipartite entanglement we have a good measurement of entanglement  

( ) ( log ) logi i

i

S Tr         eigenvalues of density matrixi 
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Using the expression on the previous page, after some algebra 
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The total entanglement keeps growing 

with N 
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At times of order 1/N, there is about the 

same entaglment as for one qubit 

Entanglement doesn’t disappear 

even for large N! 



Entanglement with decoherence 

0 1,0 1,0t  

Initial state 

For highly entangled states, fidelity falls off quickly.  For short gate times   

the entanglement increases thanks to reduced gate time 
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Implementation: optical cavity QED 

qubit states (a,b) 

intermediate state (c) 
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F are boson spin operators involving 

levels b and c, e.g.  

. . ' 2, ' 0Fe g F m 

. . 1, 1 , 2, 1F Fe g F m F m    

One possible implementation of a two qubit interaction is cavity QED.  BECs strongly 

coupled to optical cavities have been achieved in Colombe et al., Nature 450, 272 (2007) 

 

By using standard adiabatic elimination of the cavity photon and intermediate state 
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2~ ( )O NOrder of the interaction is                     giving fast two quibt gates  



Universality 

Arguments relating to universality (any one and two qubit gate can create any unitary) 

can also be used here 

 Lloyd Phys. Rev. Lett. 75, 346 (1995) 

i.e. given available gates A and B, we can then create C=i[A,B] 

The available gates are 

 

 

 1 2 1 2( )( ) . .B S S S S H c      ,z x
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This forms a universal set of gates that can produce any state  



Decoherence for state storage 

Dephasing 
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.exp[ 4 ]xS const t   NOT enhanced by bosonic factor 

Isn’t having a large number of particles in the BEC going to enhance decoherence?.  

Since we are encoding a single qubit, the only information that we are interested in is  

xS yS zS

Particle loss 
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can be generalized to any number of qubits.  



Other decoherence effects 

Using experimental parameters in in Colombe et al., Nature 450, 272 

(2007) give 

(spontaneous emission) 

(cavity decay) 

(inverse 2 qubit gate time) 

Cavity decay 

Spontaneous 

emission 



Quantum algorithms: Grover’s alogorithm 

Use the “Hamiltonian” version of Grover’s algorithm.  

For qubits 

Using the mapping procedure the bosonic version of the Hamiltonian is  
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Conclusions 

• Using bosonic qubits seem to be able to perform quantum computation.  The 

mapping appears to be straightforward, due to the preservation of the spin 

commutation relations. 

 

• Can obtain factor N speedup of two qubit gate from bosonic enhancement. 

 

• Decoherence for state storage is not necessarily enhanced by N.  For highly 

entangled states, there can be an enhancement.   

 

• Protocols that use non-unitary evolution (e.g. measurement) are a bit more 

tricky but possible. e.g. Teleportation (See poster of Alexey Pyrkov) 

 

 

 

See also Byrnes, Wen, Yamamoto arxiv: 1103.5512 

 

 

 



Mapping from qubits to bosonic qubits 

Quantum protocols seem to be able to be mapped straightforwardly according to the 

prescription 

1) Find the sequence of Hamiltonians that need to be implemented 

2) Make the replacement 

 

 

 

3) Evolve the Hamiltonian for a reduced time of  
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Scaling with number of sites 

We can estimate the period of the oscillations by 

assuming that they follow a generic form 
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How to implement Grover Hamiltonian? 
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Breaking the Grover Hamiltonian into gates requires an exponential number of terms, so 

we cannot literally perform this.  

We can adapt the gate decomposition methods to the bosonic qubit case 
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Decoherence from cavity decay 
p



Decoherence from spontaneous emission 

Using excited states scales rather 

badly with N 



What about higher order spins operators? 

Consider the Schrodinger cat state  1
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Substituting into the dephasing master equation we find 
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In this case off diagonal elements do 

degrade very quickly.  

We can expect high order operators (e.g      .         ) to degrade quickly. However, if 

the task is to perform the qubit mapping, these are unnecessary! 
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