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As I told you tomorrow, time 
machines can solve hard problems

…or as I prefer to put it:



Closed timelike curves

•  Closed timelike curves (CTCs) are spacetime objects 
allowed by the theory of general relativity (although 
perhaps not by a complete theory of quantum gravity).

•  Recent work has shown how CTC resources would greatly 
boost classical and quantum computational power.

•  Question: how are information processing tasks affected 
when a party has access to (localized) CTCs?



Time-travel paradoxes
•  The possibility of time travel has always raised 

difficult questions about causality.  These are often 
phrased in terms of paradoxes, that fall into two 
main types:

•  Grandfather paradoxes.  A time traveler goes 
back before his father was born and kills his 
grandfather.  Therefore, he was never born, and 
never went back.

•  Uncaused effects.  A time traveler receives a piece 
of information from her future self; in the future, 
she passes in back to her earlier self.  Where did 
the information come from?



Solving hard problems with CTCs
•  Grandfather paradoxes seem difficult to 

accommodate within a reasonable theory 
(though Deutsch makes a good try, as we shall 
see).  But the kind of self-consistent evolution 
described in the second paradox might actually 
be exploited.

•  Suppose we set up a situation in which an 
inconsistency will occur unless some specified 
information appears.  We could then find the 
answers to hard problems without going to the 
trouble of actually solving them.



Factoring numbers

I also gave a (flawed) argument that CTCs enabled efficient 
solution of even harder problems—NP-complete and 
PSPACE-complete problems.  To show this, though, one 
needs a more precise model of how CTCs work.

Brun, Found. Phys. Lett. 16, 245 (2003). 



Deutsch’s self-consistency criteria
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D. Deutsch, Phys. Rev. D 44, 3197 (1991) 



Solving problems with DCTCs
•  Since DCTCs produce an effective nonlinear 

evolution, they can (for example) magnify the 
probability of distinguishing one quantum 
state from another, nonorthogonal, state.

•  Bacon showed that this could be used to solve 
NP-complete problems—in particular, the 
problem SAT.  A nonlinear evolution allows 
him to distinguish between the cases of zero 
and nonzero satisfying assignments for a 
Boolean function.

Bacon, PRA 70, 032309  (2004); Aaronson and Watrous, Proc. R. Soc. A 465, 631 (2009) 



•  Aaronson and Watrous carried this a step further, 
showing that both classical and quantum 
computers with CTCs could efficiently solve any 
problem in PSPACE.

•  They used the property of the Deutsch approach 
that it finds a self-consistent solution for       .  
They set up the program so that the only self-
consistent evolution is a loop over all 
configurations of a Turing machine, with a control 
bit b set to the final answer to the problem.

•  DCTCs can also enhance other tasks besides 
computation.
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Breaking B92 QKD

•  This circuit maps                             and                           .
•  A straightforward modification of the unitaries enables 

perfect distinguishability of any two quantum states.
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Brun, Harrington and Wilde, Phys. Rev. Lett. 102, 210402 (2009). 



Breaking BB84 QKD

•  This circuit maps                                                                 , 
where a denotes the basis and b denotes the bit value. 

•  The controlled unitaries are:
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Distinguishing Arbitrary States

•  We can do the same thing with an arbitrary set of 
(in general nonorthogonal) states        .

•  This will break any QKD protocol that relies on 
nonorthogonality; it also allows a single q-bit to 
carry an arbitrary amount of information.
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Infinite channel capacity

•  To make a single quantum bit carry n bits of 
information, choose 2n nonorthogonal states:

•  Alice encodes her n-bit message by selecting 
one of these states and sending it to Bob.  
Using a DCTC, he can determine which state 
was sent and extract n bits of information, 
where in principle n is arbitrarily large.
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A linearity trap?
•  In a more recent paper, Bennett et al. 

suggested that this protocol cannot really 
succeed.  Since the receiver (Bob) does not 
know the state, he should describe it by a 
mixed state:

•  The protocol, which succeeds on both 0 and 
-, fails on this mixed state.  They termed 
this a “linearity trap.”! 
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Bennett et al., PRL 103, 170502 (2009). 



•  This argument, however, has some flaws of 
its own.  The authors assume that a 
probabilistic mixture can be represented by 
a density matrix, just as in standard QM.  In 
a nonlinear theory, however, this is not true.

•  Moreover, that choice of state is subjective 
from Bob’s point of view.  Alice will 
certainly not use that mixture to describe the 
state, since she knows the value of x.

•  However, there is a related argument that 
does raise serious questions about the 
Deutsch criterion.

Pati, Chakrabarty and Agrawal, PRA 84, 062325 (2011). 

Ralph and Myers, PRA 82, 062330 (2010). 



DCTCs and Many-Worlds
•  Suppose that Alice and Bob are in the 

following superposition state:

•  Since Deutsch justifies his criterion within 
the Many-Worlds interpretation of QM, this 
is a natural state to arise.  But note, here 
again the protocol fails!

•  It seems that to use the Deutsch criterion, 
one must know the state of the full 
wavefunction, not just your own “branch.”
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Discussion
•  The CTC in this construction need only exist a very short 

time (just long enough for the unitaries); for state 
discrimination, they are needed only on Bob’s side.

•  In the absence of noise, an arbitrary number of classical 
bits can then be stored and retrieved with a single qubit, 
thus violating Holevo’s bound of one bit per qubit.

•  This system also raises uncomfortable questions about 
superluminal signaling.

•  It is also not entirely clear how it works within the 
Many-Worlds theory used to justify it.



Postselected CTCs
•  A different approach to 

describing QM with CTCs 
was invented (but never 
published) by Bennett and 
Schumacher.

•  This approach is based on teleportation.  If 
one were guaranteed to always get a particular 
desired measurement outcome, one could 
teleport a copy of a state into the past.  This 
type of CTC can therefore be simulated by 
QM with postselection.

Lloyd et al., PRL 106, 040403 (2011); Lloyd et al., arXiv:1007.2615v1; Svetlichny, arXiv:0902.4898. 



A time-travel experiment!

•  A PCTC protocol was simulated (by post-
selection) in the lab of Aephraim Steinberg.

•  The experiment showed that in this approach, 
Grandfather paradoxes are forbidden.



Computational Power of PCTCs
•  PCTCs also enable efficient algorithms for hard 

problems.  Here is a circuit for factoring:

•  Note that this requires only a single qubit to be sent back in 
the CTC.

Brun and Wilde, Found. Phys. 42, 341 (2011). 



Complexity Alphabet Soup
•  In fact, it is not difficult to show that 

quantum computers with PCTCs are as 
powerful as quantum computers with 
postselection:  they can solve any problem 
in the complexity class PP.

•  The most widely believed inclusions for 
computational complexity classes are:

•  If this is true, the PCTCs are more powerful 
than standard QCs, but less than DCTCs.

! 

P = BPP " NP " PH " PP " PSPACE.



Distinguishing Nonorthogonal States
•  PCTCs also allow us to distinguish 

nonorthogonal states.  (In fact, the same 
circuit works as with DCTCs.)

•  However, PCTCs can only distinguish sets 
of states that are linearly independent.  So 
they don’t violate the Holevo bound.



Are PCTCs paradox-free?
•  Unlike DCTCs, PCTCs do not have solutions for 

every situation.  Inconsistent evolutions—
grandfather paradoxes—do not admit solutions.

•  This gives another way of understanding the 
information-processing power of PCTCs.  By 
setting up two alternatives—one paradoxical, the 
other one not—the probability of the second 
alternative can be dramatically enhanced.

•  However, paradoxes of the second type—in which 
information seemingly appears out of nowhere—
are still allowed by PCTCs.



A Classical Analogy
Chronology!Preserving Bits
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CTC Bits

There are two natural ideas of self-consistency:  we 
could require the CTC bits to have the same value 
before and after the circuit, or require them to have the 
same probability distribution.  These two approaches 
are analogous to the PCTC and DCTC criteria.



Other Approaches to CTCs
•  A number of other approaches have been suggested for QM with 

CTCs.
•  In the 1990s, both H. David Politzer and James Hartle did 

calculations for quantum evolutions on spacetimes with CTCs.  
While the results are not exactly comparable, the are somewhat 
similar in flavor to PCTCs.

•  More recently, Tim Ralph has suggested a Heisenberg-like 
approach to CTCs, and shown that he can derive Deutsch’s 
criterion from it.

Ralph, Phys. Rev. A 76, 012336 (2007); Ralph and Myers, PRA 82, 062330 (2010). 

Politzer, Phys. Rev. D 49, 3981 (1994); Hartle, Phys. Rev. D 49, 6543 (1994). 



Conclusions
•  DCTCs have advantages, in terms of guaranteed 

solutions and straightforward interpretation.  But it 
is not clear that they can really be fit into a Many-
Worlds picture, as claimed, and they are 
disturbingly powerful.

•  PCTCs may make connection to other approaches 
(e.g., that of Hartle), and avoid some of the 
paradoxes of DCTCs without having to invoke 
Many Worlds.  But they still lead to strange 
evolutions, and in some ways have broader effects 
than DCTCs.



•  Of course, we have no evidence that CTCs 
exist at all!  And if they do, this becomes at 
least partially an experimental question.

•  But playing around with these systems is a 
lot of fun, and raises interesting logical 
questions about causality and information 
that may have applications elsewhere.  And 
it certainly beats working for a living.


