Separability of two qubit states and Optimal state preparations

V. Ravishankar with *H M Bharath*

Department of Physics, IIT Kanpur

IWQI,2012 25 Feb 2012 HRI, Allahabad

= 990

Outline

Preliminaries

- What do we know of separability?
- 2 Separability Construction
 - Strategy: Special to General
 - A few questions
- 3 Application: Optimal State Preparation
 - Separable states
 - Arbitrary States

What do we know of separability?

Basic Notions: Separable and entangled states

• A bipartite state ho^{AB} is separable if

$$\rho^{AB} = \mu_1 \rho_1^A \otimes \rho_1^B + \mu_2 \rho_2^A \otimes \rho_2^B + \cdots$$

where

$$\mu_1, \mu_2... \ge 0; \quad \mu_1 + \mu_2 + \cdots = 1$$

- States that are not separable are entangled; they exhibit nonlocality; violate Bell inequality.
- The most entangled states: Bell states or EPRB states. Example: $|01\rangle |10\rangle.$
- Separable states: $|xy\rangle \equiv |x\rangle \otimes |y\rangle$; 1

Preliminaries

Separability Construction Application: Optimal State Preparation Summarv

Outline

Preliminaries

• What do we know of separability?

- - Strategy: Special to General
 - A few questions
- - Separable states
 - Arbitrary States

What do we know of separability?

∃ ⊳.

• A very well studied topic: Completely Positive Maps *Our Aim*: More modest and simpler

Criterion for separability

- Partial Transpose: Transpose taken on only one qubit $\rho_{x_1y_1;x_2y_2} \rightarrow \rho_{x_1y_2;x_2y_1}$
- Basic Observation: Partial Transpose of every separable state is also a valid state (Peres, 1996)

$$\rho^{T_2} = \mu_1 \rho_1^{\mathcal{A}} \otimes (\rho_1^{\mathcal{B}})^{\mathcal{T}} + \mu_2 \rho_2^{\mathcal{A}} \otimes (\rho_2^{\mathcal{B}})^{\mathcal{T}} + \cdots$$

- Positive Partial Transpose(PPT) is thus a necessary condition for separability
- Note : sufficient for $\frac{1}{2} \otimes \frac{1}{2}$ and $\frac{1}{2} \otimes 1$ systems. (Horedecki, 1996)

What do we know of separability?

Measure of Separability: Negativity

- Negativity N: Perform a partial transpose operation: ρ → ρ^{T₂}. Determine the eigenvalues If an eigenvalue is negative, multiply its magnitude by 2. That yields us negativity.
- N = 0 Otherwise.
- N = 0 for separable states; $N_{max} = 1$ for Bell states
- *Question*: Why flog a dead horse?

▲冊▶ ▲目▶ ▲目▶ 目目 のQ@

What do we know of separability?

Some Interesting Questions

Examples:

- Find the set of all transformations that connect states with a given negativity
- Find all inequivalent separability expansions for a separable state
- Evolve optimal criteria for preparing a state with a given negativity

We address these questions here.

Separability expansions result acts as a tool to settle optimal criterion for preparation of states Results restricted to two qubit states (2QS)

Strategy: Special to General A few questions

Outline

• What do we know of separability?

- Separability Construction
 Strategy: Special to General
 - A few questions
 - 3 Application: Optimal State Preparation
 - Separable states
 - Arbitrary States

∃ → ∢

Strategy: Special to General A few questions

Illustrative.

Proof will only be outlined Special cases for illustration Hints for general arguments

Start with purely tensor polarized states invariably correlated Classical versus Quantum Has pure states as subsets

= 990

Strategy: Special to General A few questions

The setting: Tensor Polarized States (TPS) Canonical form of TPS

• Recall: the most general state has the form

$$\frac{1}{4}\{\mathbf{1}\otimes\mathbf{1}+\boldsymbol{a}.\boldsymbol{\sigma}\otimes\mathbf{1}+\mathbf{1}\otimes\boldsymbol{\sigma}.\boldsymbol{b}+X_{ij}\boldsymbol{\sigma}_{i}\otimes\boldsymbol{\sigma}_{j}\}$$

• Tensor polarized states (TPS):

$$\frac{1}{4}\{\mathbf{1}\otimes\mathbf{1}+X_{ij}\sigma_i\otimes\sigma_j\}$$

 Local transformations SU(2) ⊗ SU(2) are the simplest gauge transformations vis-a-vis nonlocality. Canonical form of TPS:

$$\rho[\alpha,\beta,\gamma] = \frac{1}{4} \{ \mathbf{1} \otimes \mathbf{1} + \alpha \sigma_x \otimes \sigma_x + \beta \sigma_y \otimes \sigma_y + \gamma \sigma_z \otimes \sigma_z \}$$

Strategy: Special to General A few questions

Separable TPS: Examples

• Start with the state $\rho^{AB}[\alpha]$. It is trivially separable. For example:

$$\rho^{AB}[\alpha,0,0] = \frac{1}{4} \{ \mathbf{1} \otimes \mathbf{1} + \alpha \sigma_x \otimes \sigma_x \} = \frac{1}{2} \rho^A_+ \otimes \rho^B_+ + \frac{1}{2} \rho^A_- \otimes \rho^B_-$$

where

$$\rho_{\pm}^{A} = \frac{1}{2} \{ 1 \pm \sqrt{\alpha} \sigma_{x} \}; \quad \rho_{\pm}^{B} = \frac{1}{2} \{ 1 \pm \sqrt{\alpha} \sigma_{x} \}$$

This expansion is not unique. In fact, there are many ways to distribute α between subsystems A and B.

• Analogously expand ho[0,eta,0] and $ho[0,0,\gamma]$

(*) *) *) *)

Strategy: Special to General A few questions

Tool: Convexity of separable states

- Convexity: ρ_1 and ρ_2 are separable $\Rightarrow \lambda \rho_1 + (1 \lambda)\rho_2$ is also separable for $0 \le \lambda \le 1$.
- Hence, we have the construction for the states in the convex hull of the 6 points {±1,0,0}, {0,±1,0}, {0,0,±1}.

▲□▶ ▲□▶ ▲□▶ ▲□▶ 三回 ののの

Strategy: Special to General A few questions

Convexity for expansion of separable states Depiction

• For state $\rho[\alpha, \beta, 0]$;

Figure: Using Convexity to construct an arbitrary state $\{\alpha, \beta\}$: $\rho[\alpha, \beta] = \lambda \rho[\alpha + \beta, 0] + (1 - \lambda)\rho[0, \alpha + \beta]$

Strategy: Special to General A few questions

The constructed separable region

• The full constructed separable region in the parameter space $\alpha \times \beta \times \gamma$:

Figure: The octahedron: The convex hull of those 6 points

4 3 b

5 1 S Q Q

Strategy: Special to General A few questions

Comparison Tensor polarized states: The separable region

- Compare with the region obtained from PPT criterion
- The constructed region coincides with the PPT determined region

Figure: Yellow: Entangled; Pink: Separable

Strategy: Special to General A few questions

Outline

• What do we know of separability?

2 Separability Construction

- Strategy: Special to General
- A few questions

3 Application: Optimal State Preparation

- Separable states
- Arbitrary States

Strategy: Special to Genera A few questions

- Question: Is this an accident?
- Can we evolve a general procedure, at least for 2QS?
- Can we use it for higher systems?
- At least narrow down the region of entangled states consistent with PPT criterion?

- Extension to two qubit states is possible.
- We need a few notions

= nan

Strategy: Special to General A few questions

The first notion: Uniform Separability

• Definition: A state is *Uniformly Separable* if it has a resolution of the form

$$\rho^{AB} = \mu_1 \rho_1^A \otimes \rho_1^B + \mu_2 \rho_2^A \otimes \rho_2^B + \dots + \mu_n \rho_n^A \otimes \rho_n^B$$

with $\mu_1 = \mu_2 = \cdots = \mu_n = \frac{1}{n}$; *n* is the number of terms in the expansion.

- μ_1, μ_2, \cdots are rational \implies the state is uniformly separable
- By density of rationals, every state can be closely approximated by uniformly separable states.
- Redundancy is of no concern. Will be useful later

▲□▶ ▲□▶ ▲□▶ ▲□▶ 三回 ののの

The formulation

Strategy: Special to General A few questions

• Find a uniform separation of an arbitrary separable state:

$$\frac{1}{4} \{ \mathbf{1} \otimes \mathbf{1} + \mathbf{u} \cdot \mathbf{\sigma} \otimes \mathbf{1} + \mathbf{1} \otimes \mathbf{\sigma} \cdot \mathbf{v} + X_{ij} \mathbf{\sigma}_i \otimes \mathbf{\sigma}_j \}$$
$$= \frac{1}{n} \sum_{\nu=1}^n \frac{1}{2} \{ \mathbf{1} + \mathbf{p}_{\nu} \cdot \mathbf{\sigma} \} \otimes \frac{1}{2} \{ \mathbf{1} + \mathbf{q}_{\nu} \cdot \mathbf{\sigma} \}$$

• Given $\boldsymbol{u}, \boldsymbol{v}$ and X, we are to find vectors \boldsymbol{p}_{v} and \boldsymbol{q}_{v}

< 口 > < 同

Strategy: Special to General A few questions

The matrices P, Q

 Arrange *p_v* and *q_v* as column vectors of 3 × n real matrices P and Q.

$$P = \begin{pmatrix} p_1^x & p_2^x & p_3^x & \cdots & p_n^x \\ p_1^y & p_2^y & p_3^y & \cdots & p_n^y \\ p_1^z & p_2^z & p_3^z & \cdots & p_n^z \end{pmatrix}; \quad Q = \begin{pmatrix} q_1^x & q_2^x & q_3^x & \cdots & q_n^x \\ q_1^y & q_2^y & q_3^y & \cdots & q_n^y \\ q_1^z & q_2^z & q_3^z & \cdots & q_n^z \end{pmatrix}$$

< 一型

Strategy: Special to General A few questions

The Conditions

• Conditions to be satisfied by *P* and *Q*:

$$PQ^{T} = nX; Pa_{n} = nu; Qa_{n} = nv; a_{n} = \begin{pmatrix} 1\\ 1\\ \vdots\\ 1 \end{pmatrix}$$

 a_n is the n dimensional vector with all entries equal to 1.

- Recall: X is the tensor polarization; u, v are the polarizations of qubits A, B.
- We will demonstrate the method to solve the above equations through a chain of examples

▲ Ξ ▶ ▲ Ξ ▶ Ξ Ξ · · · ○ ○ ○

Strategy: Special to General A few questions

llustration The simplest nontrivial example

• Consider the special state

$$\rho[\alpha,\beta,u] = \frac{1}{4} \{ \mathbf{1} \otimes \mathbf{1} + u\sigma_z \otimes \mathbf{1} + \alpha\sigma_x \otimes \sigma_x + \beta\sigma_y \otimes \sigma_y \}$$

• Conditions on *P*, *Q*:

$$PQ^{T} = n \begin{pmatrix} \alpha & 0 & 0 \\ 0 & \beta & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
$$P\boldsymbol{a}_{n} = n \begin{pmatrix} 0 \\ 0 \\ u \end{pmatrix}; \quad Q\boldsymbol{a}_{n} = 0$$

• Rank and nullity requirements on P and Q \implies $n \ge 3$. Choose n=4 (works for the most general case as well).

Strategy: Special to General A few questions

Uniqueness of P, Q

We need two notions to settle this question.

- 1. Left Elementary Transformations,
 - 2. Right Orthogonal Transformations
- Left E, F be nonsingular 3×3 matrices. Let us perform the elementary transformations

$$P' = EP; \quad Q' = FQ$$

Then the conditions on P, Q change to

$$P'Q'^{T} = n E \begin{pmatrix} \alpha & 0 & 0 \\ 0 & \beta & 0 \\ 0 & 0 & 0 \end{pmatrix} F^{T}$$
$$P'a_{n} = n E \begin{pmatrix} 0 \\ 0 \\ u \end{pmatrix}; \quad Q'a_{n} = 0$$

Strategy: Special to General A few questions

Left Elementary transformations: contd

• E, F have a dual role to play

(i) Generating a family of separable states from a given separable state:

 $P'Q'^T \neq PQ^T$; or *E* does not leave *u* invariant.

(ii) Generate inequivalent separability expansions for a given state:

$$P'Q'^T = PQ^T$$
; and E stabilizes **u**.

This set of inequivalent resoluutions is not exhaustive

- An Observation: If E, F are chosen to be orthogonal, they reduce to local transformation (trivial gauge transformations). Not of Interest.
- Notice that *E* and *F* are much more general than orthogonal transformations. The only invariant is the rank of X.

▲ Ξ ▶ ▲ Ξ ▶ Ξ Ξ · · · ○ ○ ○

Strategy: Special to General A few questions

A simple Example for generating inequivalent expansions: scaling

Consider

$$n \left(\begin{array}{ccc} \gamma & 0 & 0 \\ 0 & \gamma' & 0 \\ 0 & 0 & 1 \end{array}\right) \left(\begin{array}{ccc} \alpha & 0 & 0 \\ 0 & \beta & 0 \\ 0 & 0 & 0 \end{array}\right) \left(\begin{array}{ccc} \gamma^{-1} & 0 & 0 \\ 0 & \gamma'^{-1} & 0 \\ 0 & 0 & 1 \end{array}\right)$$

ъ.

∃ >

Strategy: Special to General A few questions

Inequivalent Expansions: Right Orthogonal Transformations

• Consider the set of transformations

$$P' = PO; \quad Q' = QO$$

- O are $n \times n$ orthogonal matrices which stabilize a_n : $Oa_n = a_n$.
- They have further stabilizing properties. They leave the following invariant:

$$P'Q'^T = PQ^T$$

$$P'a_n = Pa_n; \quad Q'a_n = Qa_n$$

• Consequence: The group generates a family of inequivalent (almost always) expansions for a given separable state.

Strategy: Special to General A few questions

Explicit solution: Inspection and Construction

Recall that we started with the state

$$\rho[\alpha,\beta,u] = \frac{1}{4} \{ \mathbf{1} \otimes \mathbf{1} + u\sigma_z \otimes \mathbf{1} + \alpha\sigma_x \otimes \sigma_x + \beta\sigma_y \otimes \sigma_y \}$$

• We attempt an expansion with four terms. Write $a_4 = 2(\boldsymbol{a} \otimes \boldsymbol{a})^T$. We employ the eotation

$$\boldsymbol{a}=rac{1}{\sqrt{2}}\left(egin{array}{cccc} 1 & 1 \end{array}
ight); \quad \boldsymbol{b}=rac{1}{\sqrt{2}}\left(egin{array}{ccccc} 1 & -1 \end{array}
ight)$$

• Simple algebra gives a solution for P, Q:

$$P = 2 \begin{pmatrix} \sqrt{\alpha} \mathbf{a} \otimes \mathbf{b} \\ \sqrt{\beta} \mathbf{b} \otimes \mathbf{a} \\ u \mathbf{a} \otimes \mathbf{a} \end{pmatrix}; \quad Q = 2 \begin{pmatrix} \sqrt{\alpha} \mathbf{a} \otimes \mathbf{b} \\ \sqrt{\beta} \mathbf{b} \otimes \mathbf{a} \\ 0 \end{pmatrix}$$

• α and β can be redistributed between P and Q. That is a left elementary transformation. This has an important role.

Strategy: Special to General A few questions

Soln contd: A further constraint

• The solutions obtained above must represent valid states in rhs.

$$|oldsymbol{p}_{V}|\leq 1; \; |oldsymbol{q}_{V}|\leq 1$$

- This imposes additional constraints: We choose the Left elementary transformations to maximize the range.
- Example: Suppose that $lpha,\ eta\geq$ 0. The optimal choice is

$$P = 2 \begin{pmatrix} \sqrt{\alpha(\alpha + \beta)} \mathbf{a} \otimes \mathbf{b} \\ \sqrt{\beta(\alpha + \beta)} \mathbf{b} \otimes \mathbf{a} \\ u\mathbf{a} \otimes \mathbf{a} \end{pmatrix}; \quad Q = 2 \begin{pmatrix} \sqrt{\frac{\alpha}{\alpha + \beta}} \mathbf{a} \otimes \mathbf{b} \\ \sqrt{\frac{\beta}{\alpha + \beta}} \mathbf{b} \otimes \mathbf{a} \\ 0 \end{pmatrix}$$

Similar expressions (involving sign changes) cover the full separability range range $u^2+(|\alpha|+|\beta|)^2\leq 1$

Strategy: Special to General A few questions

Class of solutions: Invariants

- The right orthogonal transformation O provides us a class of solutions {PO, QO| O ∈ O(4), Oa⊗a = a⊗a} from a single solution P, Q.
- The invariants are $\sum_{\nu=1}^{n} |\boldsymbol{p}_{\nu}|^2$, $\sum_{\nu=1}^{n} |\boldsymbol{q}_{\nu}|^2$, and $\sum (\boldsymbol{p}_{\nu}.\boldsymbol{p}_{\mu})^2$, $\sum (\boldsymbol{q}_{\nu}.\boldsymbol{q}_{\mu})^2$.

Strategy: Special to General A few questions

Generalization to a larger class

• We have constructed a resolution for the class

$$\rho[\alpha,\beta,u] = \frac{1}{4} \{ \mathbf{1} \otimes \mathbf{1} + u\sigma_z \otimes \mathbf{1} + \alpha\sigma_x \otimes \sigma_x + \beta\sigma_y \otimes \sigma_y \}$$

• We can use convexity to extend it further

$$\rho[\alpha,\beta,u,\gamma] \equiv \frac{1}{4} \{ \mathbf{1} \otimes \mathbf{1} + u\sigma_z \otimes \mathbf{1} + \alpha\sigma_x \otimes \sigma_x + \beta\sigma_y \otimes \sigma_y + \gamma\sigma_z \otimes \sigma_z \}$$

$$\begin{split} \rho[\alpha,\beta,u,\gamma] &= |\gamma| \frac{1}{4} \{ \mathbf{1} \otimes \mathbf{1} \pm \sigma_z \otimes \sigma_z \} \\ &+ (1-|\gamma|) \frac{1}{4} \{ \mathbf{1} \otimes \mathbf{1} + \frac{u}{1-|\gamma|} \sigma_z \otimes \mathbf{1} + \frac{\alpha}{1-|\gamma|} \sigma_x \otimes \sigma_x \\ &+ \frac{\beta}{1-|\gamma|} \sigma_y \otimes \sigma_y \} \end{split}$$

Strategy: Special to General A few questions

The next step: Further convexity

and

• We possess resolution for states of the form

$$\frac{1}{4}\{\mathbf{1}\otimes\mathbf{1}+u\sigma_{z}\otimes\mathbf{1}+\alpha\sigma_{x}\otimes\sigma_{x}+\beta\sigma_{y}\otimes\sigma_{y}+\gamma\sigma_{z}\otimes\sigma_{z}\}$$

$$\frac{1}{4}\{\mathbf{1}\otimes\mathbf{1}+\mathbf{v}\mathbf{1}\otimes\sigma_{z}+\alpha\sigma_{x}\otimes\sigma_{x}+\beta\sigma_{y}\otimes\sigma_{y}+\gamma\sigma_{z}\otimes\sigma_{z}\}$$

• Label the convex combined state $\rho[u, v, \alpha, \beta, \gamma]$.

$$\rho[u, v, \alpha, \beta, \gamma] = \frac{|u|}{|u| + |v|} \frac{1}{4} \{ \mathbf{1} \otimes \mathbf{1} \pm (|u| + |v|) \sigma_z \otimes \mathbf{1} \\ + \alpha \sigma_x \otimes \sigma_x + \beta \sigma_y \otimes \sigma_y + \gamma \sigma_z \otimes \sigma_z \} \\ + \frac{|v|}{|u| + |v|} \frac{1}{4} \{ \mathbf{1} \otimes \mathbf{1} \pm (|u| + |v|) \mathbf{1} \otimes \sigma_z \\ + \alpha \sigma_x \otimes \sigma_x + \beta \sigma_y \otimes \sigma_y + \gamma \sigma_z \otimes \sigma_z \}$$

ъ

The final step: Independent Local Transformations (ILT)

We now introduce the third important notion:

• Consider any separable state:

$$\rho^{AB} = \mu_1 \rho_1^A \otimes \rho_1^B + \mu_2 \rho_2^A \otimes \rho_2^B + \cdots$$

• Key Idea: Independent local $SU(2) \times SU(2)$ transformations on the constituent subsystems generate new separable states:

$$\mu_1(U_1 \otimes V_1)^{\dagger} \rho_1^A \otimes \rho_1^B(U_1 \otimes V_1) + \mu_2(U_2 \otimes V_2)^{\dagger} \rho_2^A \otimes \rho_2^B(U_2 \otimes V_2) + \cdots$$
$$U_i, V_i \in SU(2)$$

• Key result : All separable states are connected to each other by ILT.

Strategy: Special to General A few questions

ILT Final Generalization

• Consider the convex combination of states

$$\frac{1}{4}\{\mathbf{1}\otimes\mathbf{1}+u\sigma_{z}\otimes\mathbf{1}+\alpha\sigma_{x}\otimes\sigma_{x}+\beta\sigma_{y}\otimes\sigma_{y}+\gamma\sigma_{z}\otimes\sigma_{z}\}$$

and

٠

$$\frac{1}{4}\{\mathbf{1}\otimes\mathbf{1}+v\mathbf{1}\otimes\sigma_{z}+\alpha\sigma_{x}\otimes\sigma_{x}+\beta\sigma_{y}\otimes\sigma_{y}+\gamma\sigma_{z}\otimes\sigma_{z}\}$$

- **Observation**: Operation of ILT on the convex combinations generates almost all the states.
- Query: What are the exceptional states?
- Answer: The family of pure separable states

ELE DOG

Separable states Arbitrary States

Outline

• What do we know of separability?

- 2 Separability Construction
 - Strategy: Special to General
 - A few questions
- Application: Optimal State Preparation
 Separable states
 - Arbitrary States

Separable states Arbitrary States

Entropy of preparation For separable states

• For a separable state, consider the quantity:

$$S_{res} = \mu_1 S[\rho_1^A \otimes \rho_1^B] + \mu_2 S[\rho_2^A \otimes \rho_2^B] + \cdots$$

where S is the shannon entropy.

 S_{res} depends on the resolution, but is bounded by S[ρ]. Hence we can maximize it over all possible resolutions:

$$S_p[\rho] = \max_{res} S_{res}$$

• An aside: Equivalently, we use linear entropy $(=1 - Tr(\rho^2))$ in place of shannon entropy.

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Separable states Arbitrary States

Example: Isotropic states

- States $\frac{1}{4} \{ \mathbf{1} \otimes \mathbf{1} + \alpha \sigma^A . \sigma^B \}$ are isotropic.
- Range of α :

Figure: Isotropic states: MS: Separable; PM: Entangled; B: bell state; O: unpolarized state

▲□▶ ▲□▶ ▲□▶ ▲□▶ 三回 ののの

Separable states Arbitrary States

Entropy of preparation Isotropic states

• Comparing S and S_p for isotropic separable states:

Figure: S and S_p for separable range.

• *S_p* drops to zero just at the boundary of separable and entangled states.

Separable states Arbitrary States

Outline

• What do we know of separability?

- 2 Separability Construction
 - Strategy: Special to General
 - A few questions

3 Application: Optimal State Preparation

- Separable states
- Arbitrary States

Separable states Arbitrary States

Entopy of preparation For Arbitrary states

• Arbitrary state preparation:

$$ho = \lambda \Pi_1 + (1 - \lambda)
ho_s$$

where, Π_1 is pure and entangled; ρ_s is separable.

- Π_1 : Zero entropy; ρ_s : Zero entanglement
- Extending the definition of entropy of preparation

$$S_{\rho}^{\lambda}[\rho] = (1-\lambda)S_{\rho}[\rho_{s}]$$

= 900

< ∃ > <

Separable states Arbitrary States

Optimal Preparation Isotropic States

• The decomposition $\rho = \lambda \Pi_1 + (1 - \lambda)\rho_s$ is not unique; consider the isotropic states for instance:

Figure: Isotropic states: MS: Separable; PM: Entangled; B: bell state; O: unpolarized state

- To prepare a state in the region PM, choosing the bell state(P) for Π_1 , ρ_s can be chosen to be any point between M and S.
- Hence we need a further extremization to define an optimal preparation.

• • E • • E • E

Separable states Arbitrary States

Free Entanglemet

• In the spirit of Gibbs' Free energy, define Free Entanglement

$$\mathscr{F} = \lambda N[\Pi_1] - N[\rho] S_{\rho}^{\lambda}[\rho] = N[\Pi_1] - N(\rho) S_{\rho}[\rho_s](1-\lambda)$$

where $N[\rho]$ is the negativity of ρ .

• This quantity depends on the choice of the decomposition.

∃ → ∢

ъ

Separable states Arbitrary States

Optimal preparation An Example

- \bullet Our Proposal: Minimize ${\mathscr F}$ over all possible decompositions
- Consider the states: $\rho[x, y] = \frac{1}{4} \{ \mathbf{1} \otimes \mathbf{1} + x(\sigma_z \otimes \mathbf{1} \mathbf{1} \otimes \sigma_z) y(\sigma_x \otimes \sigma_x + \sigma_y \otimes \sigma_y) \sigma_z \otimes \sigma_z \}$

Figure: State space

Separable states Arbitrary States

Illustrating the optimal preparation

• The state space and separable subspace

Figure: Circumference: pure states; Diameter SS': separable; B and B': bell states; S and S': pure separable states

S_p = 0 on SS'; R is the state to be prepared; Choices of decomposition: AM, CB, SL', S'L. Minimum ℱ at S'L

Summary

- We develop a new method for explicit construction of the separation for a separable two qubit state.
- We use the obtained separation to find optimal preparation for a given state, cost of preparation expressed as free entanglement.
- Outlook
 - Extend the construction procedure to higher spin bipartite systems, where no sufficient condition for separability is known.

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

References I

Hoffman, Kunze,. *Linear Algebra*. Prentice hall

I. N. Herstein *Topics in Algebra*. Ginn and company.

A. Peres.

Separability criterion for density matrices. *Phys. Rev. Lett.* 77:1413–1415, 1996.

M. Horodecki, P. Horodecki, R. Horodecki. Separability mixed ststes: Necessary and sufficient conditions. *Physics Letters A.* 223:1–8, 1996.