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Entanglement and correlation 
  in many-electron systems



  

          Many-Electron States:  4 states/site,

.   .    .     .     .     .     .

Distinct Labeled Spatial Part

No Double Occupancy,  3 States/site, On-site Spin Correlations

Spin-Only States:   No holes either,  Two states/site,  Qubits

A fixed number of sites, up spins, down spins

Strongly-Correlated States:     
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Many-eletcron State:

Metallic/Uncorrelated BCS-Superconductor



  

 Start from a metallic 'Uncorrelated' State

g=0 Strong Correlation  U=infinity :        
   

g=1 No Correlation, Metallic State, U=0:
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Metzner and Vollhardt (1988)

1n

∣g 〉=i  1−1−g n i n i   ∣F 〉

Projection operator for the site Hilbert Space: g=0 states with Doubly-occupied 
sites are projected out.

d=nn
d=0

Strongly-Correlated electron state:  Gutzwiller Projection, Inhibit double occupancy

d g  ≤n
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Plan

Quantum Entanglement: Subsystem Entropy, Quantum Correlations, Measures

Multi-Species Entanglement:  Macroscopic entanglement, Quantum Criticality
                                                One-Dimensional Transverse-Ising model

Conclusions

Entanglement between spatial partitions:  Correlated, Superconductor,Metal states 



  

Entanglement:

Total System in a
Pure state

Subsystem
A 

B
Entropy = 0

No Entanglement: Pure Entropy  = 0

 Entanglement: Mixed     Entropy     0

Through Unitary Transform Entanglement can be generated
A can become mixed            Entanglement, Decoherence

Direct Product
 or

 Entangled
A , B=∣ 〉〈∣

State of 
Subsystem

A ≡ TrB ∣ 〉〈∣

≠

A
A



  

Entanglement between Distinct Partitions

B

A , B=∣ 〉〈∣

A

Many-dim Hilbert Space
For each Partition 
Many ways to partition!

A       A           A

A

A

B            B

B B
B

Label Partition by A and B
       Type of Particles
Both types access full space

u denotes the set of locations 
occupied by A-type particles

u denotes the state 
  of Partition A

  Spatial
Partitions

   Two
Species



  

∣1 〉∣2 〉∣1 〉∣3 〉∣2 〉∣3 〉

∣1  2 〉∣1 3 〉∣2 3 〉

∣ 〉1∣ 〉2∣ 〉1∣ 〉2

Different Ways of Entanglement

Spin States of Distinct Spatial partitions

 Spatial parts  1 and 2 entangled  

Spatial State of Distinct Spin partitions

  Spin partitions entangled 
 

Entangled Spins + Entangled Spatial Parts



  

Two Different Sources of Entanglement

Correlations Between A and B: Wave function not factorizable

Constraint over degrees of freedom: Ex. Number of down spins fixed

∣〉 = ∑x , u , v
 xu , v  ∣x ,u 〉A ∣x , v 〉B

Even if the amplitude factorizes in each sector

∣〉 = ∑x
x  ∣ x 〉A ∣x 〉B =>   Entanglement

 ∣x 〉A ∣y 〉B
Uncorrelated

Schmidt Form



  

Spin States: NNs
ssssss

i

..,  )..,(   2121}{
φψ Σ

     a     0
      0    b

Ent.  between  

(1,2) and Rest, 
 
Between 1 and 2

1,2,3Similarly                 contains Three-party Entanglement information

If [ , S
z ] = 0, Implies [1,2,3. .n , S 1

zS 2
zS3

z..S n
z ] = 0

1 =

Ent. Between 1 and Rest

Ent. Between 2 and Rest

1,2 =

      u     0     0     0
      0     x     z     0
      0     z*    y     0
      0     0     0     v

Basis states
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 Two-party Ent.
In a mixed State



  

How Entangled Is a Spin State?

 Ave. Site purity
 Global Ent.

Diagonal Ordering/Correlations Decrease Entanglement

=
2
N

1−Tr i
2 Larger in a State implies

 better sharing of Ent.
One-Qubit
Reduced i

Two-Qubit
Reduced ij

E ij=−Tr ij lnij

C ij from [ij ij
T ]

Entropy of the block:  Ent. Between ij and rest

Concurrence of sites i and j
Bipartite entanglement Cave=〈C ij 〉

1
2
C ij=∣off −diag∣− 1

4
diag 

2

−m2=1−4m2



  

Examples:

GHZ State : ∣000 〉∣111 〉 =1 C=0

Bell State : ∣00 〉ei∣11 〉 =1 C=1

W State : ∣001 〉∣010 〉∣100 〉 =
8
9
C=2

3

Shor's 9-qubit
Error-correcting Code

∣0 〉≡∣000111 〉∣000111 〉∣000111〉

∣1 〉≡∣000−111〉∣000−111 〉∣000−111 〉

∣0 〉≡∣00000−10100110001111011110cycl 〉5-Qubit 
code



  

How Entangled are Many-Electron States?
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Global Entanglement
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ρ

d=〈n i  ni  〉

n=nn

Max. Ent.  Each Eigenvalue=1/4 d=1 /4 n=n=1/2 =1

Strong Correlations U large  d=0 Now only 3 states per site

Max. Ent.  Each Eigenvalue=1/3 n=n=1 /3 =8/9

Half-filled Case: No holes either
Max. Ent. Each Eigenvalue=1/2

n=n=1 /2 =2 /3



  

Gutzwiller Projection: Start from a metallic 'Uncorrelated' State

g=0 Strong Correlation  U=infinity :        
   

g=1 No Correlation, Metallic State, U=0:
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Metzner and Vollhardt (1988)

1n

∣g 〉=i  1−1−g n i n i   ∣F 〉

Projection operator for the site Hilbert Space: g=0 states with Doubly-occupied 
sites are projected out.

d=nn
d=0



  
g

ε

Uncorrelated
No projectionStrong Corr.

  U=Infinity

2
nnn  

Dim. >1

Quite Complicated

Combinatorial

Global Entanglement and electron correlation: d=1 Gutzwiller State

∣g 〉=i 1−1−g n i n i   ∣F 〉 VS, Phys. Lett. A374, 3151 (2010)



  

Metallic Fermi State
BCS-Superconducting State
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Matallic State
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Entanglement in the BCS Superconducting State



VS (2010)



  

Multi-Species Entanglement  

Let u (v) denote the set of sites occupied by A (B) particles

Strong exclusion: B occupies only sites unoccupied by A

Half filling: Total number of particles equals the number of 
sites
Now, v stands for the complement of the set  u

Schmidt numbers: Eigenvalues of reduced density matrix 

VS, Quant. Inform. Comp. (2011)



  

∣ 〉A∣ 〉B∣ 〉A∣ 〉B =∣A , B 〉 ∣0 〉  ∣A 〉 ∣B 〉
Sites A and B unentangled Up and Down Spins Entangled

Multi-Species Entanglement!

Example:Multi-Species Entanglement

∣〉 = ∣ 〉∣ 〉 = ∣O 〉 ∣U 〉∣U 〉 ∣O 〉
Entanglement for a single Qubit

∣〉 = ∏ ∣ 〉i∣ 〉i No entanglement in any spatial partitionng

Macroscopic Entanglement betwen Up and Down Spins:  N log 2



  

Spin Systems: States with a given number Spins N , N  . N 

Macroscopic System with
Thermodynamic densities

n = limN ∞

N 

N
n = limN ∞

N 

N

 ,  = limN ∞

S 

N
Macroscopic Entangment
Betwen up and down spins
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∣[ s i]∣
2 Eigenvalueof 

We will see Multi-Species Entanglement has a Thermodynamic Limit
Can display a singularity that are Associated with Quantum Phase Transitions.

In Contrast, entropy of Spatial Partition does not scale with System Size!

Block entropy per site does not tend to a limit



  

Transverse Ising Model: Quantum Phase Transition in the ground state

h=0 Ordered Phase

h≠0 Fluctuations similar to thermal (incoherent) excitations

h=J Quantum critical point, Order parameter vanishes

=∣J /h∣

Osterloh et al, Nature, 416, 608 (2002)

Nearest-Neighbor 
   Concurrence

Pauli operators



  

Transverse Ising....

Impose Periodic Boundary Conditions, Even and Odd Sectors have different
Effective Fermion Hamiltonians, States with either Even or Odd number of particles

Spin Operators acting at different sites behave like bose operators 

Spin Operators acting at one site behave like fermi operators 

Jordan-Wigner Transform  to Fermi Operators, but nonlocal phase-factor tags

Nearest-Neighbor interaction absorbs phases,  effectively a quadratic Hamiltonian

Fourier transform, followed by a Bogoliubov transform,  yields all eigenstates 

Spin-Spin Correlation functions easy to find, though entropy/entanglement tough 

Lieb Schultz Mattis, Ann. Phys (1961)  Pfeuty, Ann. Phys (1970)

[ i
x , j

y]=0

{ l
x , l

y}=2il
z



  

Exact Solution: Jordan-Wigner Fermions

Modes

Ground State

Fermion Occupation--> Up Spin

Label components of Superposition by u (set of q values occupied by Up Spins)
Corresponding amplitude is product of b's and a's (Schmidt Numbers)



  

Eigenvalues of 

1,2. .= ∣aq i∣
2 i ∣bqi∣

2 1− i

Entropy
S =−∑i

∣aq i∣
2log∣aqi∣

2∣bq i∣
2log∣bqi∣

2

S =∑i
H  p i H  p =−p log p−1− p log 1− p

Shannon Binary Entropy

0=∏∣bqi∣
2 1 = 0

∣aMax∣
2

1−∣aMax∣
2

Integrated Density
  Of Eigenvalues



  

Mode eigenvalues as x=J/h is varied

Location

  N=20

Macroscopic limit, Large N
Gap between Two bands stays
Within one  Band continuous

 ≈ 1−∣x∣ near ∣x∣ ≈ 1



  

Integrated Eigenvalue Density

Counting only lower
Of the two eigenvalues
For every mode

Contribution for entropy
From the other eigenvalue
Taken care of by 
Shannon Binary Entropy 



  

Multi-Species Entanglement in Transverse Ising Model

x=1=x=∞



  

Jump-discontinuity in the derivative of Entanglement 

Second Derivative 
Diverges at  |x|=1

One can see
Signature for
Small Sizes!



  

Conclusions

Different Sources of Entanglement: Correlations between partitions, Constraints

Entanglement  useful: Measures aplenty tracking how entangled is a state     

Different ways of entanglement: Multipartite, Spatial partitions, Multi Species

Multi-Species Entanglement: Macroscopic Entanglement Scales with Size

Exists in the Thermodynamic Limit, Can Display Singularities

Transverse-field Ising Model: Macroscopic Entanglement  between
                   Capable of tracking quantum phase transition and critical behaviour. 
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                Thank You      
  For Your Attention



  

Superconducting State...



  


ii

i
ϕψ

TR

No TR

Kicked-Transverse Ising Chain 
N=20

Global Entanglement Generation

AL & VS, Phys. Rev. A71, 062324 (2005)
AL & VS, Phys. Rev. A65, 052304 (2003)

Pair-Entanglement Distributions

TR Breaking --> More Ent.Sharing 
Ave. Ent. Related to Localization

l
i

Nl e ϕϕ πβ2



  

Heisenberg Antiferromagnet GS:   S=0  Spatially Uniform

1−D Chain C1,2=0.398, C1,l=0 l2 Cave=
0.796
N−1

2−D Square C1,2=0.16, C1, l=0 l2 C ave=
0.64
N−1

Kagome and Triangular:                 No pair concurrences!C ij=0

Average Site Mixedness              for all lattices!=1

One-Magnon State ∣〉= l ∣l 〉

Cave=
2
N


2



= 2
N
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Time Reversal Invariant

No Time Reversal

AL,VS (2003)

Location of
Down Spin

VS (2004)



  

 Entropy: Independent mode contributions:

Integrated Eigenvalue Density
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