PUBLICATIONS

Journal Publications

  1. S. Banerjee and K. Chakraborty, Asymptotic behaviour of a Lambert series à La Zagier: Maass case, Ramanujan J., (2018), (To appear).
  2. K. Chakraborty, A. Hoque, Y. Kishi and P. P. Pandey, Divisibility of the class numbers of imaginary quadratic fields, J. Number Theory, 185 (2018), 339--348.
  3. K. Chakraborty and A. Hoque, Pell-type equations and class number of the maximal real subfield of a cyclotomic field, Ramanujan J., (2018), DOI: 10.1007/s11139-017-9963-9
  4. K. Chakraborty and A. Hoque, Divisibility of class numbers of certain families of quadratic fields, J. Ramanujan Math. Soc., (2018), (To appear).
  5. K. Chakraborty, A. Juyal, S.D. Kumar and B. Maji, Asymptotic expansion of a Lambert series, Int. J. Number Theory, 14 (2018), no 1, 289--299.
  6. D. Banerjee, K. Chakraborty, S. Kanemitsu and B. Maji, Abel-Tauber process and asymptotic formulas, Kyushu J. Math., 71 (2017), no. 2, 363--385.
  7. K. Chakraborty, J. J. Urroz and F. Pappalardi, Pairs of integers which are mutually squares, Sci. China Math., 60 (2017), no. 9, 1--14.
  8. K. Chakraborty, S. Kanemitsu and B. Maji, Modular type relations associated to the Rankin-Selberg L-functions, Ramanujan J., 42 (2017), no. 2, 285--299.
  9. K. Chakraborty, I. Kàtai and B. M. Phong, Additive functions on the greedy and lazy Fibonacci expansions, J. Integer Seq., 19 (2016), no. 4, 16.4.5, 12 pp.
  10. K. Chakraborty, S. Kanemitsu and H. Tsukuda, Ewald expansions of a class of zeta functions, Springer Plus, (2016),5:99 DOI: 10.1186/s40064-016-1732-5.
  11. K. Chakraborty, S. Kanemitsu and H. -L. Li, Quadratic reciprocity and Riemann's non-differentiable function, Res. Number Theory, 1 (2015), Art. 14, 8 pp.
  12. K. Chakraborty, S. Kanemitsu and H. Tsukada, Applications of the Beta-Transform, Siauliai Math. Sem., 10 ( 2015), no. 18, 5--28.
  13. T. Arai, K. Chakraborty and J. Ma, Applications of the Hurwitz-Lerch zeta-function, Pure Appl. Math. J., 4 (2015), no. 1,2, 30--35.
  14. K. Chakraborty and M. Minamide, On power moments of the Hecke multiplicative functions, J. Aust. Math. Soc., 99 (2015), 334--340.
  15. K. Chakraborty, S. Kanemitsu and T. Kuzumaki, On the Barnes multiple gamma functions, Siauliai Math. Sem., 9 (2014), no. 17, 27--41.
  16. K. Chakraborty and J. Mehta, Preventing unknown key-share attack using cryptographic bilinear maps, J. Discr. Math. Sci. Crypt., 17 (2014), no. 2, 135--147.
  17. K. Chakraborty, S. Kanemitsu and T. Kuzumaki, On the class number formula of certain real quadratic fields, Hardy-Ramanujan J., 36 (2013), 1--7.
  18. K. Chakraborty and M. Minamide, On partial sums of a spectral analogue of the Möbius function, Proc. Indian Acad. Sci. (Math. Sci.), 123 (2013), no. 2, 193--201.
  19. K. Chakraborty, I. Kàtai and B. M. Phong, On the values of arithmetic functions in short intervals, Ann. Univ. Sci. Budapest. Sect. Comput., 38 (2012), 13--21.
  20. K. Chakraborty, S. Kanemitsu and H. Tsukada, Arithmetical Fourier series and the modular relation, Kyushu J. Math., 66 (2012), no. 2, 411--427.
  21. K. Chakraborty, I. Kàtai and B.M. Phong, On real valued additive functions modulo $1$, Ann. Univ. Sci. Budapest., Sect. Comput., 36 (2012), 355--373.
  22. K. Chakraborty and J. Mehta, A stamped blind signature scheme based on elliptic curve discrete logarithm problem, Int. J. Network Security, 14 (2012), no. 6, 316--319.
  23. K. Chakraborty and J. Mehta, On completely multiplicative complex valued functions, Ann. Univ. Sci. Budapest, Sect. Comput., 38 (2012), 19--24.
  24. K. Chakraborty, I. Kàtai and B. M. Phong, On additive functions satisfying some relations, Ann. Univ. Sci. Budapest., Sect. Comput. 38 (2012), 1--12.
  25. K. Chakraborty, S. Kanemitsu and X. -H. Wang, The modular relation and the digamma function, Kyushu J. Math., 65 (2011), no. 1, 39--53.
  26. K. Chakraborty, S. Kanemitsu, Y. Katayama and Y. Nitta, Sustainibility of ancient constructions and non-associated numbers, J. Sangluo Univ., 24 (2010), no. 2, 60--79.
  27. K. Chakraborty, S. Kanemitsu and H.-L. Li, On the value of a class of Dirichlet series at rational arguments, Proc. Amer. Math. Soc., 138 (2010), no. 4, 1223--1230.
  28. K. Chakraborty, On the Chowla-Selberg integral formula for non-holomorphic Eisenstein series, Integral Transforms Spec. Funct., 21 (2010), no. 12, 917--923.
  29. K. Chakraborty, F. Luca, Perfect powers in solutions to Pell equations, Rev. Columbiana Mat., 43 (2009), no. 1, 71--86.
  30. K. Chakraborty, S. Kanemitsu and J. -H. Li, Manifestations of the Parseval identity, Proc. Japan Acad. Ser. A, 85 (2009), no. 9, 149--154.
  31. K. Chakraborty, S. Kanemitsu, H. Kumagai and Y. Kubara, Shapes of objects and the golden ratio, J. Sangluo Univ., 23 (2009), no. 4, 18--27.
  32. K. Chakraborty, S. Kanemitsu and T. Kuzumaki, Finite expressions for higher derivatives of the Dirichlet L -function and the Deninger R- function, Hardy-Ramanujan J., 32 (2009), 38--53.
  33. K. Chakraborty, F. Luca and A. Mukhopadyay, Exponents of class groups of real quadratic fields, Int. J. Number Theory, 4 (2008), 1--15.
  34. K. Chakraborty, F. Luca and A. Mukhopadyay, Real quadratic fields with class numbers having many distinct prime factors, J. Number Theory, 128 (2008), no. 9, 2559--2572.
  35. K. Chakraborty, On the Diophantine equation x+y+z = xyz = 1, Ann. Univ. Sci. Budapest. Sect. Comput., 27 (2007), 145--154.
  36. K. Chakraborty and A. Mukhopadyay, Exponents of class groups of real quadratic function fields (II), Proc. Amer. Math. Soc., 134 (2006), no. 1, 51--54.
  37. K. Chakraborty and A. Mukhopadyay, Exponents of class groups of real quadratic function fields, Proc. Amer. Math. Soc., 132 (2004), no. 7, 1951--1955.
  38. K. Chakraborty and M. Ram Murty, On the number of real quadratic fields with class number divisible by 3, Proc. Amer. Math. Soc., 131 (2003), no. 1, 41--44.
  39. S. Baba, K. Chakraborty and Y. N. Petridis, On the number of Fourier coefficients that determine a Hilbert modular form, Proc. Amer. Math. Soc., 130 (2002), no. 9, 2497--2502.
  40. K. Chakraborty and M. V. Kulkarni, Solutions of cubic equations in quadratic fields, Acta Arith., 89 (1999), no. 1, 37--43.
  41. K. Chakraborty, A. K. Lal and B. Ramakrishnan, Modular forms which behave like theta series, Math. Comp., 66 (1997), no. 219, 1169--1183.
  42. K. Chakraborty, B. Ramakrishnan and T. C. Vasudevan, A Note on Jacobi forms of Higher degree, Abh. Math. Sem. Univ. Hamburg, 65 (1995), 89--93.
  43. K. Chakraborty and B. Ramakrishnan, A note on Hecke eigen forms, Arch. Math., 63 (1994), no. 6, 509--517.
  44. S. D. Adhikari and K. Chakraborty, On the average behaviour of an arithmetical function, Arch. Math., 62 (1994), no. 5, 411--417.
  45. Conference Proceedings/ Book Chapters

    1. K. Chakraborty, A. Hoque and R. Sharma, Divisibility of class numbers of quadratic fields: Qualitative aspects, To appear in 'Advances in Mathematical Inequalities and Applications, Trends in Mathematics, Birkhäuser, Singapore, 2018'.
    2. K. Chakraborty and A. Hoque, Quadratic reciprocity and some "Non-differentiable" Functions, In: Ruzhansky M., Cho Y., Agarwal P., Area I. (eds), Advances in Real and Complex Analysis with Applications, Trends in Mathematics. Birkhäuser, Singapore, 2017, pp. 145--181.
    3. K. Chakraborty, H. Kanemitsu and H. -L. Li, Special functions in number theory and in science, Proceedings of the 14-th Annual Conf. SSFA, 14 (2015), 11--43.
    4. K. Chakraborty, On the number of Fourier coefficients that determine a form, Conference Proceedings, Institute of mathematics, Waseda University, 2005, 19--30.
    5. K. Chakraborty, On the divisibility of class numbers of real quadratic fields, RIMS Conference Proceedings, Kyoto Univ., 2004.
    6. T. Arai, K. Chakraborty and S. Kanemitsu, On modular relations, Number theory, 1--64, Ser. Number Theory Appl., 11, World Sci. Publ., Hackensack, NJ, 2015.

    Books

    1. K. Chakraborty, S. Kanemitsu and H. Tsukada, Vistas of special functions II, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2010.
    2. K. Chakraborty, S. Kanemitsu and T. Kuzumaki, A quick introduction to complex analysis, World Scientific Publishing Co. Pte, Letd, Singapore, 2016.

    Other Publications/ Expository Articles

    1. K. Chakraborty, Y. Goto and S. Kanemitsu, Music as mathematics of senses, Preprint.
    2. K. Chakraborty, S. Kanemitsu and Y. Sun, Codons and Codes, Pure Appl. Math. J., 4 (2015), no. 1, 2, 25--29.
    3. K. Chakraborty, S. Kanemitsu, Y. Katayama and Y. Nitta, Sustainability of ancient constructions and non-associated numbers, J. Sangluo Univ., 24 (2010), no. 2, 60--79.
    4. K. Chakraborty, S. Kanemitsu, H. Kumagai and Y. Kubara, Shapes of objects and the golden ratio, J. Sangluo Univ., 23 (2009), no. 4, 18--27.

    Submitted/ Preprint(s)

    1. K. Chakraborty and A. Hoque, On the plus parts of the class numbers of cyclotomic fields, Submitted.
    2. K. Chakraborty, S. Kanemitsu and T. Kuzumaki, Seeing the invisible: Kubert indentities, Submitted.
    3. K. Chakraborty and A. Hoque, Class groups of imaginary quadratic fields of rank at least two, Submitted.
    4. K. Chakraborty, A. Hoque, S. Kenmitsu and A. Laurinčikas, Complex powers of L-functions and integers without large prime factors, Submitted.
    5. S. Banerjee, K. Chakraborty and A. Hoque, An analogue of Wilton's formula in quadratic fields and some applications, Preprint.
    6. K. Chakraborty and A. Hoque, Exponents of class groups of certain imaginary quadratic fields, Submitted.
    7. K. Chakraborty, Exponent of class groups of a family of cyclic cubic fields, Preprint.

    Current Projects

    1. GNFS: Aimed at Development of Modules and Tools for solving Integer factorisation and Discrete log Problems using Number Field Sieve, DRDO is funding this Project. Specially involved in developing the square root module.
    2. L-functions: Study the asymptotic behaviour of ‘Riesz sums’ associated to the Rankin-Selberg L-functions involving various automorphic foms ( e.g. harmonic Mass forms and Hasse-Weil zeta functions associated to the elliptic curves, Hilbert modular forms of degree 2. (With S. Banerjee and A. Juyal).
    3. Modular relations: (i) Consider applications of the theory of zeta-functions to ‘Theoretical Computer Science’. We begin by studying the work of Anshell and Goldfeld in which they add one more condition on the coefficients of the Euler product, i.e. polynomial time evaluation algorithm for the values at prime powers. Then we study the work of Kirschenhoffer and Prodinger about the trie algorithm. In contract to Knuth’s work, they deduce the exact formula for the expectation and for the variance they used Ramanujan’s formulas for the Riemann zeta-values involving Lambert series. We believe there must be a disguised form of the modular relation.

      (ii) Study Mertens’ formula for a class of zeta-functions as we have studied in one of our previous work. We also reveal the hidden structure of Vinogradov’s work on a general Mertens’ formula in number fields.

    4. Class number of number fields: (i) Class numbers of number fields are mysterious objects and not much is known about these numbers. One of the many questions is to show the existence of infinitely many number fields (for quadratic field case many results are known!) whose class number is divisible by a given integer. Quantifying these fields is also an interesting problem. The Cohen-Lenstra heuristics related to these questions is yet to be established. In the direction of indivisibility not much is known though. Its worth looking into these direction relating the arithmetic of some kind of modular forms and that of elliptic curves.

      (ii) There are few well known conjectures (e.g. Vandiver conjecture) relating to the class number of maximal real subfields of cyclotomic fields. The above problems of divisibility and indivisibility are worth exploring here in this set up. This will give us information about the class numbers of the corresponding cyclotomic fields too. These numbers are not easy to calculate by using the class number formula.