Non-Gaussianities from Features in the Primordial Spectrum

Xingang Chen

Center for Theoretical Cosmology, DAMTP, Cambridge University

Review: X.C., 1002.1416 + 1008.2485 In a broader context

Classification of Large Non-Gaussianities from Inflation Models

Review: X.C., 1002.1416 + 1008.2485

Why do we need to classify non-Gaussianities?

Motivations from

Both Experimental Data Analyses and Theoretical Model Building

Data analyses

Signal to noise ratio not high enough to detect non-G model-independently

Or decompose into set of base functions, and constrain each separable base. (Fergusson, Liguori, Shellard, 09,10)

- ▹ Need theoretical non-G profiles to start with
- Possible signals could be missed if we are not using the right model or set of basis
- Even if a signal were detected using one template, it does not mean we have found the right form
- Even if CMB were perfectly Gaussian, we still need do the same work to reach the conclusion

Theoretical Model Building

- Divide models into categories, so that all models in the same class share the same non-G feature
- If any such non-G were detected, we know what we learned concretely in terms of fundamental phyiscs
- Not only classify known non-G, but also discovery new ones with good model building motivations

A No-go theorem

Simplest inflation models predict unobservable non-G.

(Maldacena, 02; Acquaviva, Bartolo Matarrese, Riotto, 02)

➢ Single field

Canonical kinetic term

Always slow-roll

Bunch-Davies vacuum

Einstein gravity

 $f_{NL} \sim \mathcal{O}(\epsilon) \lesssim \mathcal{O}(0.01)$

Experimentally: $f_{NL} \gtrsim \mathcal{O}(1)$

Examples of Simplest Slow-Roll Potentials

The other conditions in the no-go theorem also needs to be satisfied.

Much more complicated in realistic model building

A landscape of potentials

Warped Calabi-Yau

η -Problem in slow-roll inflation: (Dine, Fischer, Nemeschansky, 84; Copeland, Liddle, Lyth, Stewart, Wands, 04)

Backreaction from inflationary background

Other model-dependent tuning sources or symmetries are needed to tune a flatter potential.

 \blacktriangleright h-Problem in DBI inflation: (X.C., 08)

$$ds^2 = h(r)^2 ds_4^2 + h(r)^{-2} dr^2$$

DBI inflation requires small warping: $h \ll HR$

Backreaction from inflationary background

$$h \sim HR \qquad \stackrel{?}{\longrightarrow} \qquad h \ll HR$$

Other model dependent tuning sources: moduli deformation, susy breaking etc. (e.g. Frey, Mazumdar, Myer, 05; McAllister, Silverstein, 07)

Field range bound: (X.C., Sarangi, Tye, Xu, 06; Baumann, McAllsiter, 06)

► Variation of potential: (Lyth, 97)

$$V(\phi) = \sum_{n=0}^{\infty} \lambda_n m_{\text{fund}}^{4-n} \phi^n$$

 $m_{\rm fund}$: eg. higher dim Planck mass, string mass, warped scales etc.

 $m_{\rm fund} \ll M_{\rm P}$

Introduce shift symmetry: (e.g. Silverstein, Westphal, McAllsiter, 08)

Algebraic simplicity may not mean simplicity in nature.

Ingredients introduced to solve these problems often make models step beyond the simplest one.

Beyond the No-Go

Canonical kinetic term

Non-canonical kinetic terms: DBI inflation, k-inflation, etc

Always slow-roll

Features in potentials or Lagrangians: sharp, periodic, etc

Bunch-Davies vacuum

Non-Bunch-Davies vacuum due to features, boundary condions, low new physics scales, etc

➢ Single field

Multi-field: turning trajectories, curvatons, inhomogeous reheating surface, etc

Quasi-single field: massive isocurvatons

In-In Formalism

(Schwinger, 61; Weinberg, 05)

Quantum fluctuations \implies Evolution inside, cross, outside horizon \implies Convert to curvature perturbation at reheating \implies Observed as correlations of fluctuations in CMB and LSS

Expectation value of an operator in a time-dependent background:

$$\langle Q(t) \rangle \equiv \langle 0 | \left[\bar{T} \exp\left(i \int_{t_0}^t H_I(t) dt \right) \right] Q^I(t) \left[T \exp\left(-i \int_{t_0}^t H_I(t) dt \right) \right] | 0 \rangle$$

$$= i^n \int_{t_0}^t dt_1 \int_{t_0}^{t_1} dt_2 \cdots \int_{t_0}^{t_{n-1}} dt_n \left\langle [H_I(t_n), [H_I(t_{n-1}), \cdots, [H_I(t_1), Q_I(t)] \cdots]] \right\rangle$$

Shape and Running of Bispectra (3pt)

Bispectrum is a function, with magnitude f_{NL} , of three momenta: k_1, k_2, k_3

$$\langle \zeta^3 \rangle \equiv S(k_1, k_2, k_3) \frac{1}{(k_1 k_2 k_3)^2} \tilde{P}_{\zeta}^2(2\pi)^7 \delta^3(\sum_{i=1}^3 \mathbf{k}_i)$$

• Shape dependence: (Shape of non-G)

Fix
$$K = k_1 + k_2 + k_3$$
, vary k_2/k_1 , k_3/k_1 .

Squeezed

Equilateral

Folded

• Scale dependence: (Running of non-G)

Fix k_2/k_1 , k_3/k_1 , vary $K = k_1 + k_2 + k_3$.

Non-Canonical Kinetic Terms

General Single Field Inflation

Consider the general single field inflation (Lorentz invariant, first derivative)

$$S = \int d^4x \sqrt{-g} \left[\frac{M_{\rm P}}{2} R + P(X,\phi) \right]$$

$$X \equiv -\frac{1}{2}g^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi$$

• Define parameters: $c_s = \lambda/\Sigma$

(Garriga, Mukhanov, 99) (Seery, Lidsey, 05)

$$c_s^2 = \frac{P_{,X}}{P_{,X} + 2XP_{,XX}}$$

$$\Sigma = XP_{,X} + 2X^2P_{,XX}$$

$$\lambda = X^2 P_{,XX} + \frac{2}{3} X^3 P_{,XXX}$$

General Single Field Inflation

Consider the general single field inflation (Lorentz invariant, first derivative)

$$S = \int d^4x \sqrt{-g} \left[\frac{M_{\rm P}}{2} R + P(X,\phi) \right] \qquad \qquad X \equiv -\frac{1}{2} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi$$

(Garriga, Mukhanov, 99)

- Define parameters: $c_s = \lambda/\Sigma$
- Slow-variation parameters:

$$\epsilon = -\frac{\dot{H}}{H^2}$$
, $\eta = \frac{\dot{\epsilon}}{\epsilon H}$, $s = \frac{\dot{c}_s}{c_s H}$

Require them to be small, independent of mechanisms that realize the inflation

Non-Slow-roll Mechanism

Full Bispectrum (X.C., Huang, Kachru, Shiu, 06)

- 11 shapes, speficied by 5 parameters, 3 different orders
- Leading bispectra:

Equilateral bispectra are large if $c_s \ll 1$ or $\lambda/\Sigma \gg 1$

 $-214 < f_{NL}^{
m eq} < 266$ (WMAP7, 10)

Physics of Large Equilateral Shape

• Generated by interacting modes during their horizon exit

Quantum fluctuations
$$\implies$$
 Interacting and exiting horizon \implies Frozen
 \downarrow
 $k_1 \sim k_2 \sim k_3$

For single field, small correlation if $k_3 \ll k_1$

Higher derivative terms provide such interactions.

So, the shapes peak in the equilateral limit.

Orthogonalization

Features:

- Periodic features
 Resonant running
- ➢ Non-Bunch-Davies vacuum → Folded shape + Sinusoida/Resonant running

Sharp Features

(Kofman, 91; Wang, Kamionkowski, 99; Komatsu et al, 03) (X.C., Easther, Lim, 06, 08; Bean, X.C., Hailu, Tye, Xu, 08; Hotchkiss, Sarkar, 09)

Sharp Features in Potentials (X.C., Easther, Lim, 06,08)

• At sharp feature, ignoring background expansion:

$$L = \frac{1}{2}\dot{\phi}^2 - V(\phi) , \qquad \epsilon = \frac{\dot{\phi}^2}{2M_p^2 H^2}$$

• Energy conservation:

$$\frac{1}{2}\dot{\phi}^2 + V = \text{const.}$$

$$\frac{\Delta V}{V} \text{ small} \rightarrow \Delta\epsilon \text{ small}$$

Sharp Features in Warp Factors (Bean, X.C., Hailu, Tye, Xu, 08)

• At sharp feature, ignoring background expansion:

$$L = -T(\phi)\sqrt{1 - \dot{\phi}^2/T(\phi)}$$
, $c_s = \sqrt{1 - \dot{\phi}^2/T}$

 $T(\phi)$: warped brane tension

• Energy conservation:

$$T/c_s = \text{const.}$$

- ϵ or c_s do not change much due to approximate energy conservation relations
- They change in a very short period of time, boosting $\dot{\epsilon} \to \eta$ or $\dot{c}_s \to s$ by several orders of magnitude

The Cubic Part

• The exact cubic action for scalar perturbation ζ

 $\frac{\Delta s}{c_s}$, $\Delta\left(\frac{\eta}{c_s^2}\right)$

$$\begin{split} S_{3} &= \int dt d^{3}x \{ -a^{3} (\Sigma(1-\frac{1}{c_{s}^{2}})+2\lambda) \frac{\dot{\zeta}^{3}}{H^{3}} + \frac{a^{3}\epsilon}{c_{s}^{4}} (\epsilon-3+3c_{s}^{2})\zeta\dot{\zeta}^{2} \\ &+ \frac{a\epsilon}{c_{s}^{2}} (\epsilon-2s+1-c_{s}^{2})\zeta(\partial\zeta)^{2} - 2a\frac{\epsilon}{c_{s}^{2}}\dot{\zeta}(\partial\zeta)(\partial\chi) \\ &+ \frac{a^{3}\epsilon}{2c_{s}^{2}}\frac{d}{dt} (\frac{\eta}{c_{s}^{2}})\zeta^{2}\dot{\zeta} + \frac{\epsilon}{2a} (\partial\zeta)(\partial\chi)\partial^{2}\chi + \frac{\epsilon}{4a} (\partial^{2}\zeta)(\partial\chi)^{2} + 2f(\zeta)\frac{\delta L}{\delta\zeta}|_{1} \} \;, \end{split}$$

Important in the presence of sharp features

Sinusoidal Running (X.C., Easther, Lim, 06,08)

Roughly,
$$S \sim f_{NL}^{\text{feat}} \sin\left(\frac{K}{k_*} + \phi_0\right)$$
, $k_* = -1/\tau_*$

Sharp Features and Statistical Fluctuations

Power spectrum: oscillatory corrections due to the negative energy component

$$\Delta P_{\zeta} \propto \sin\left(\frac{k}{k_*/2} + \psi_0\right)$$

 $S \sim f_{NL}^{\text{feat}} \sin\left(\frac{K}{k_*} + \phi_0\right)$

Osillatory frequency is given by location of feature

Model Building Realizations

• Small field inflation has very small ϵ , so very sensitive to tiny features in potential or internal space.

E.g. Brane inflation. (Bean, X.C., Hailu, Tye, Xu, 08)

• Aftermath effect of sudden interactions or particle creation.

E.g. Particle creation \implies Equilateral + Sinusoidal running

(Barnaby, 10)

Periodic (Frequent) Features

(X.C., Easther, Lim, 08;Flauger, Pajer, 10;X.C., 10; Leblond, Pajer, 10)

Resonant Non-Gaussianity

(X.C., Easther, Lim, 08)

• Consider small periodic features in potential or Lagrangian

Small oscillatory component to slow-roll parameters with frequency ω

• Mode functions are also oscillatory, and the frequency scans

Highly oscillatory quantum fluctuations \implies Stretched by inflation \implies Frequency is continuously reduced to $H \implies$ Exit horizon and Frozen

As long as $\omega > H$,

modes will resonant with the background, creating large non-G.

The Bispectrum

$$S_3 = \int dt d^3x \left[\dots + \frac{a^3 \epsilon}{2} \dot{\eta} \zeta^2 \dot{\zeta} + \dots \right]$$

Without features, $\dot{\eta} \sim \mathcal{O}(\epsilon^2)$; but here much larger.

$$\begin{aligned} \langle \zeta(\mathbf{k}_{1})\zeta(\mathbf{k}_{2})\zeta(\mathbf{k}_{3}) \rangle &\approx i \frac{H^{4}}{64\epsilon^{3}\prod_{i}k_{i}^{3}}(2\pi)^{3}\delta^{3}(\sum_{i}\mathbf{k}_{i}) \\ &\times \int_{-\infty}^{0} \frac{d\tau}{\tau}\epsilon\eta' \left(1-i(k_{1}+k_{2})\tau-k_{1}k_{2}\tau^{2}\right)k_{3}^{2}e^{iK\tau} \\ &+ \text{two perph.} + \text{c.c.} \end{aligned}$$
Freq: ω
Freq: $M_{\mathrm{P}} \to H$

• Running behavior

The phase of bkgd repeats after $\Delta N_e = 2\pi H/\omega$ e-fold.

 $K = k_1 + k_2 + k_3$ changes by $\Delta K = K \Delta N_e = 2\pi K H/\omega$

• Amplitude

Each K-mode resonants only once when it sweeps through ω . Integrand starts to cancel after $\Delta t_1 \sim \pi/\Delta \omega$ Change from ω to $\omega - \Delta \omega$ takes $\Delta t_2 \sim \Delta \omega/(\omega H)$

Resonance duration: $\Delta t \sim \sqrt{\frac{\pi}{\omega H}}$

Number of resonance oscillation:
$$\frac{\omega \Delta t}{2\pi} \sim \sqrt{\frac{\omega}{4\pi H}}$$

• Leading resonant bisepctrum (X.C., Easther, Lim, 08)

 $S_{\text{ansatz}}^{\text{res}} = f_{NL}^{\text{res}} \sin\left(C \ln(K/k_*)\right)$

$$C = 2\pi K / \Delta K = \omega / H \qquad f_{NL}^{\text{res}} \sim \frac{\sqrt{\pi}}{8\sqrt{2}} \frac{\omega^{1/2} \dot{\eta}_A}{H^{3/2}}$$

Periodic-scale-invariance: Rescale all momenta by a discrete efold: $2\pi nH/\omega$

• Characteristic running behavior

Orthogonal to all three shapes constrained in WMAP

An example of how we could miss the detection

Model Building Realizations

• Periodic features from duality cascade in brane inflation

(Hailu, Tye, 06; Bean, X.C., Hailu, Tye, Xu, 08)

Brane moving in throat \implies Field theory duality cascade \implies Dual periodic features in potential or warp factor \implies Sharp or resonant effect

• Periodic features from instantons in monodromy inflation

(Silverstein, Westphal, 08; Flauger, Mcallister, Pajer, Westphal, Xu, 09 Hannestad, Haugboelle, Jarnhus, Sloth, 09)

Tensor mode \implies Large field \implies Shift symmetry (string axions) \implies Broken by non-pert effect \implies Small periodic modulations \implies Resonant non-G

Non-Bunch-Davies Vacuum

First, very qualitatively

Folded Shape (X.C., Huang, Kachru, Shiu, 06; Holman, Tolly,08; Meerburg, van de Schaar, Corasaniti, Jackson, 09)

• Mode function:

$$u_k = u(\tau, \mathbf{k}) = \frac{iH}{\sqrt{4\epsilon c_s k^3}} (C_+ (1 + ikc_s\tau)e^{-ikc_s\tau} + C_- (1 - ikc_s\tau)e^{ikc_s\tau})$$

- The Bunch-Davis vacuum: $C_+ = 1$ and $C_- = 0$
- Non-Bunch-Davis vacuum: For example, a small C_{-} (Martin, Brandenberger, 00)
- Bispectrum

In 3pt:
$$\frac{1}{k_1 + k_2 + k_3} \longrightarrow \frac{1}{k_1 + k_2 - k_3} + \text{perm.}$$

Peaks at folded triangle limit

 $k_1 + k_2 - k_3 = 0$ and cyclic

Problems:

Infinite peak at folded limit is unphysical; Non-BD vacuum put in by hand. E.g. the transition from BD to non-BD does not solve the equation of motion.

Need a self-consistent prototypical example of non-BD case.

Feature models: Non-BD vacuum can be easily generated:

- General solution: linear superposition of positive and negative energy mode
- Positive energy mode: asymptotes to BD vacuum
- Any disturbance from features will introduce the other component.

Analytical examples:

Sharp feature:	(Bean, X.C., Hailu, Tye, Xu, 08)
Periodic features:	(Flauger, McAllister, Pajer, Westphal, Xu, 09)

But, amplitude of the non-BD component is small, so neglected in previous examples.

A Small By-Product Playing a Large Role (X.C., 10)

• A small non-BD component in the resonant model:

Enhancement

General single field Interaction terms with least slow-roll suppression $S_3 \supset \int dt d^3x \left[\frac{a^3 \epsilon}{Hc_s^2} \left(\frac{1}{c_s^2} - 1 - \frac{2\lambda}{\Sigma} \right) \dot{\zeta}^3 - \frac{3a^3 \epsilon}{c_s^2} \left(\frac{1}{c_s^2} - 1 \right) \zeta \dot{\zeta}^2 + a\epsilon \left(\frac{1}{c_s^2} - 1 \right) \zeta \left(\partial \zeta \right)^2 \right]$

Deeper inside horizon \longrightarrow factors of $\omega/H \gg 1$

Folded Resonant Non-Gaussianity (X.C., 10)

• Three effects synthesized:

Resonant mechanism, non-BD vacuum, non-canonical kinetic terms

• Amplitude:

$$f_{NL}^{\text{res}} \sim \frac{\Delta \epsilon}{\epsilon} \frac{1}{c_s^2} \left(\frac{\omega}{H}\right)^{5/2} \text{ or } \frac{\Delta c_s}{c_s} \frac{1}{c_s^2} \left(\frac{\omega}{H}\right)^{5/2},$$

$$f_{NL}^{\text{fold-res}} \sim \frac{\Delta \epsilon}{\epsilon} \frac{1}{c_s^2} \left(\frac{\omega}{H}\right)^{7/2 \text{ or } 5/2} \text{ or } \frac{\Delta c_s}{c_s} \frac{1}{c_s^2} \left(\frac{\omega}{H}\right)^{7/2 \text{ or } 5/2}$$

Non-BD induced non-G can become the leading effect

 $1/c_s^2 - 1$ and λ/Σ does not have to be much larger than one

Leading Bispectra Shapes and Running

Multiple Fields:

Massive Isocurvatons

Quasi-Single Field Inflation (X.C., Wang, 09,10)

Fields generally have mass of order H

 \blacktriangleright One of them has to be tuned to be << *H*

Quasi-Single field models: One inflaton $m^2 \sim \mathcal{O}(0.01)H^2$, others have $m^2 \sim H^2$

Decoupled: same prediction as single field models

Coupled: can have novel implications on density perturbations

An Example: Turning Trajectory

In polar coordinates:

$$S_{m} = \int d^{4}x \sqrt{-g} \left[\frac{1}{2} (R+\sigma)^{2} g^{\mu\nu} \partial_{\mu} \theta \partial_{\nu} \theta + \frac{1}{2} g^{\mu\nu} \partial_{\mu} \sigma \partial_{\nu} \sigma - V_{sr}(\theta) - V(\sigma) \right]$$

Slow-roll potential

Potential for massive fields

Difference Between $V_{sr}(\theta)$ and $V(\sigma)$

 $V_{sr}^{\prime\prime\prime} \sim \mathcal{O}(\epsilon^2) P_{\zeta}^{1/2} H$

but

 $V'' \sim H^2$

V''' can be H

V'''' can be 1, etc

 $V(\sigma)$ is the main source of large non-Gaussianities.

It is scale-invariant for constant turn case.

Interaction Part

• Transfer vertex

$$\mathcal{H}_2^I = -c_2 a^3 \delta \sigma_I \delta \dot{\theta}_I$$
$$c_2 = 2R \dot{\theta}_0$$

We use this transfer-vertex to compute the isocurvature-curvature conversion

• Interaction vertex

$$\mathcal{H}_3^I = c_3 a^3 \delta \sigma_I^3$$
$$c_3 = \frac{1}{6} V'''$$

Source of the large non-Gaussianities

Perturbation Method and Feynman Diagrams

These conditions are not necessary for the model building, but non-perturbative method remains a challenge.

Choose appropriate representation of in-in formalism to cancel 9 different orders spurious IR divergences for light isocurvaton $0 < m < \sqrt{2}H$

Intermediate Bispectra (X.C., Wang, 09,10)

$$S \sim \left(\frac{p_3}{p_1}\right)^{\frac{1}{2}-\nu}$$

 $0 \le \nu < 3/2$ $(3H/2 \ge m > 0)$

One parameter family of shapes lying between equilateral and local

$$S_{\text{ansatz}}^{\text{int}} = \frac{3^{\frac{1}{2}-3\nu}}{10} \frac{f_{NL}^{\text{int}}(p_1^2 + p_2^2 + p_3^2)(p_1p_2p_3)^{\frac{1}{2}-\nu}}{(p_1 + p_2 + p_3)^{\frac{7}{2}-3\nu}}$$

Physics of Large Intermediate Shapes

• Quasi-equilateral: for heavier isocurvaton $m > \sqrt{2}H$, i.e. $\nu < 1/2$

Fluctuations decay faster after horizon-exit, so large interactions happen during the horizon-exit.

Modes have comparable wavelengths: Closer to equilateral shape.

• Quasi-local: for lighter isocurvaton $m < \sqrt{2}H$, i.e. $3/2 > \nu > 1/2$

Fluctuations decay slower after horizon-exit, so non-G gets generated and transferred more at super-horizon scales.

Closer to local shape (explained in next page).

y=1 y=1

In $m \to 0$, i.e. $\nu \to 3/2$ limit, recover the local shape behavior.

Multiple Fields:

Massless Isocurvatons

Physics of Large Local Shape

- Generated by modes after horizon exit, in multifield inflation
 - \blacktriangleright Isocurvature modes \longrightarrow curvature mode

Patches that are separated by horizon evolve independently (locally)

 $\delta N = \delta N_g + f_{NL} (\delta N_g)^2$

(Starobinsky, 85; Sasaki, Stewart, 95; Lyth, Rodriguez, 05)

Local in position space \longrightarrow non-local in momentum space

So, the shape peaks at squeezed limit.

For example, in curvaton models; (Lyth, Ungarelli, Wands, 02) modulated reheating; (Dvali, Gruzinov, Zaldarriaga,03; Kofman,03) turning trajectory. (Vernizzi, Wands, 06; Rigopoulos, Shellard, van Tent, 06)

Conclusions

Using primordial non-Gaussianities to probe early universe

Different inflationary dynamics can imprint distinctive signatures in non-G;

No matter whether the primordial nonG will turn out to be observable or not, detecting/constraining them requires a complete classification of their profiles.

Conclusions

Using primordial non-Gaussianities to probe early universe

Classification:

- Non-canonical kinetic term: Equilateral shape
- Sharp feature: Sinusoidal running
- Periodic features: Resonant running
- Negative energy non-BD vacuum: Folded shape + running
- Massive isocurvatons: Intermediate shapes
- Massless isocurvaton: Local shape