Non-Gaussianity as a signature of thermal initial condition of inflation Phys.Rev.D80:123537,2009 arXiv:0908.2305 [astro-ph.CO]

Suratna Das

Physical Research Laboratory, Ahmedabad

 $15^{\rm th}$ Dec, 2010

æ

Outline

Non-Gaussianity in slow-roll single field models

Power spectrum Bispectrum Trispectrum

Inflation with prior radiation era

Initial thermal bath and thermal averaging Effects of prior radiation era on Power Spectrum Enhanced Bispectrum Enhanced Trispectrum

Summary

æ

Power spectrum Bispectrum Trispectrum

Outline

Non-Gaussianity in slow-roll single field models

Power spectrum

Bispectrum Trispectrum

Inflation with prior radiation era

Initial thermal bath and thermal averaging Effects of prior radiation era on Power Spectrum Enhanced Bispectrum Enhanced Trispectrum

Summary

æ

・ロン ・回と ・ヨン ・ヨン

Power spectrum Bispectrum Trispectrum

Power spectrum in slow-roll single field model

Quantum fluctuations in inflaton field $\phi(\mathbf{x}, t) \longrightarrow$ Comoving curvature perturbations in spatially flat gauge

$$\mathcal{R}(t,\mathbf{x}) = rac{H}{\dot{\phi}}\delta\phi(t,\mathbf{x})$$

Two-point correlation of $\mathcal{R}(\mathbf{k}, t)$ in Fourier space \longrightarrow Comoving curvature power spectrum

$$\mathcal{P}_{\mathcal{R}}(k) = rac{k^3}{2\pi^2} \langle \mathcal{R}(k) \mathcal{R}(k) \rangle \longleftrightarrow \left(rac{H}{\dot{\phi}}
ight)^2 \langle \delta \phi(k) \delta \phi(k)
angle$$

Well measured through CMB anisotropy spectrum

A D A A B A A B A A B A

Power spectrum Bispectrum Trispectrum

Outline

Non-Gaussianity in slow-roll single field models

Power spectrum

Bispectrum

Trispectrum

Inflation with prior radiation era

Initial thermal bath and thermal averaging Effects of prior radiation era on Power Spectrum Enhanced Bispectrum Enhanced Trispectrum

Summary

æ

・ロン ・回と ・ヨン・

Power spectrum Bispectrum Trispectrum

Bispectrum in slow-roll single field model

 $\label{eq:Bispectrum} \begin{array}{l} \text{Bispectrum} \longrightarrow \text{Three point correlation function} \longrightarrow \text{Non-linear} \\ \text{parameter } \textit{f}_{\textit{NL}} \end{array}$

- WMAP : −151 < f_{NL} < 253 (95% CL)
- PLANCK : $f_{NL} \sim 5$
- 21-cm Background Anisotropy Measurement : $f_{NL} < 0.1$

A. Cooray, Phys. Rev. Lett. 97, 261301 (2006)

Power spectrum Bispectrum Trispectrum

Bispectrum in slow-roll single field model

 $\label{eq:Bispectrum} \begin{array}{l} \text{Bispectrum} \longrightarrow \text{Three point correlation function} \longrightarrow \text{Non-linear} \\ \text{parameter } \textit{f}_{\textit{NL}} \end{array}$

- WMAP : −151 < *f_{NL}* < 253 (95% CL)
- PLANCK : $f_{NL} \sim 5$
- 21-cm Background Anisotropy Measurement : $f_{NL} < 0.1$

A. Cooray, Phys. Rev. Lett. 97, 261301 (2006)

In a free theory

 $\langle \delta \phi(k_1) \delta \phi(k_2) \delta \phi(k_3) \rangle = 0$

Power spectrum Bispectrum Trispectrum

Bispectrum in slow-roll single field model

 $\label{eq:Bispectrum} \begin{array}{l} \text{Bispectrum} \longrightarrow \text{Three point correlation function} \longrightarrow \text{Non-linear} \\ \text{parameter } \textit{f}_{\textit{NL}} \end{array}$

- WMAP : −151 < *f_{NL}* < 253 (95% CL)
- PLANCK : $f_{NL} \sim 5$
- 21-cm Background Anisotropy Measurement : $f_{NL} < 0.1$
 - A. Cooray, Phys. Rev. Lett. 97, 261301 (2006)

In a free theory

 $\langle \delta \phi(k_1) \delta \phi(k_2) \delta \phi(k_3) \rangle = 0$

But a theory with $V(\phi) = \lambda \phi^3 \longrightarrow$ Non-vanishing Bispectrum

 $\langle \delta \phi(k_1) \delta \phi(k_2) \delta \phi(k_3) \rangle \sim \lambda/H$

 $\lambda/H \longrightarrow$ Too small (QFT) $\sim \mathcal{O}(10^{-7}) \longrightarrow$ Not measurable

T. Falk, R. Rangarajan and M. Srednicki, Astrophys. J. 403, L1 (1993)

Power spectrum Bispectrum Trispectrum

Bispectrum in single field slow-roll model

In the non-linear limit

$$\mathcal{R}_{NL}(t,\mathbf{x}) = \frac{H}{\dot{\phi}}\delta\phi_L(t,\mathbf{x}) + \frac{1}{2}\frac{\partial}{\partial\phi}\left(\frac{H}{\dot{\phi}}\right)\delta\phi_L^2(t,\mathbf{x}) + \mathcal{O}(\delta\phi_L^3)$$

Three-point correlation exists in momentum space

$$\langle \mathcal{R}_{NL} \mathcal{R}_{NL} \mathcal{R}_{NL} \rangle \simeq \left(\frac{H}{\dot{\phi}}\right)^2 \frac{1}{2} \frac{\partial}{\partial \phi} \left(\frac{H}{\dot{\phi}}\right) \langle \delta \phi \delta \phi \delta \phi^2 \rangle$$

Power spectrum Bispectrum Trispectrum

Bispectrum in single field slow-roll model

In the non-linear limit

$$\mathcal{R}_{NL}(t,\mathbf{x}) = \frac{H}{\dot{\phi}}\delta\phi_L(t,\mathbf{x}) + \frac{1}{2}\frac{\partial}{\partial\phi}\left(\frac{H}{\dot{\phi}}\right)\delta\phi_L^2(t,\mathbf{x}) + \mathcal{O}(\delta\phi_L^3)$$

Three-point correlation exists in momentum space

$$\langle \mathcal{R}_{NL} \mathcal{R}_{NL} \mathcal{R}_{NL} \rangle \simeq \left(\frac{H}{\dot{\phi}}\right)^2 \frac{1}{2} \frac{\partial}{\partial \phi} \left(\frac{H}{\dot{\phi}}\right) \langle \delta \phi \delta \phi \delta \phi^2 \rangle$$

Defining the non-linear parameter f_{NL}

$$\langle \mathcal{R}(\mathbf{k}_1)\mathcal{R}(\mathbf{k}_2)\mathcal{R}(\mathbf{k}_3)\rangle = (2\pi)^{-\frac{3}{2}}\delta^3(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3)\frac{6}{5}f_{NL}\left(\frac{P_{\mathcal{R}}(k_1)}{k_1^3}\frac{P_{\mathcal{R}}(k_2)}{k_2^3} + 2 \text{ perms.}\right)$$

Non-linear parameter for bispectrum $f_{NL} = \frac{5}{6}(\delta - \epsilon) \rightarrow \text{too small}$ to be detected

Power spectrum Bispectrum Trispectrum

Outline

Non-Gaussianity in slow-roll single field models

Power spectrum Bispectrum Trispectrum

Inflation with prior radiation era

Initial thermal bath and thermal averaging Effects of prior radiation era on Power Spectrum Enhanced Bispectrum Enhanced Trispectrum

Summary

æ

・ロン ・回と ・ヨン ・ヨン

Power spectrum Bispectrum Trispectrum

Trispectrum in slow-roll single field model

Trispectrum \longrightarrow Connected part of four point correlation function

 $\begin{aligned} \langle \mathcal{R}(\mathbf{k}_1) \mathcal{R}(\mathbf{k}_2) \mathcal{R}(\mathbf{k}_3) \mathcal{R}(\mathbf{k}_4) \rangle_c &\equiv \langle \mathcal{R}(\mathbf{k}_1) \mathcal{R}(\mathbf{k}_2) \mathcal{R}(\mathbf{k}_3) \mathcal{R}(\mathbf{k}_4) \rangle \\ - \left(\langle \mathcal{R}_L(\mathbf{k}_1) \mathcal{R}_L(\mathbf{k}_2) \rangle \langle \mathcal{R}_L(\mathbf{k}_3) \mathcal{R}_L(\mathbf{k}_4) \rangle + 2 \text{ perm} \right) \end{aligned}$

Experimental bound on Non-linear parameter τ_{NL}

- WMAP : $| au_{NL}| \lesssim 10^8$
- PLANCK : $| au_{\textit{NL}}| \sim 560$
- 21-cm Background Anisotropy Measurement : $au_{\it NL} \sim 10$

A. Cooray, C. Li and A. Melchiorri, Phys. Rev. D 77, 103506 (2008)

Power spectrum Bispectrum Trispectrum

Trispectrum in slow-roll single field model

Trispectrum \longrightarrow Connected part of four point correlation function

 $\begin{aligned} \langle \mathcal{R}(\mathbf{k}_1) \mathcal{R}(\mathbf{k}_2) \mathcal{R}(\mathbf{k}_3) \mathcal{R}(\mathbf{k}_4) \rangle_c &\equiv \langle \mathcal{R}(\mathbf{k}_1) \mathcal{R}(\mathbf{k}_2) \mathcal{R}(\mathbf{k}_3) \mathcal{R}(\mathbf{k}_4) \rangle \\ - \left(\langle \mathcal{R}_L(\mathbf{k}_1) \mathcal{R}_L(\mathbf{k}_2) \rangle \langle \mathcal{R}_L(\mathbf{k}_3) \mathcal{R}_L(\mathbf{k}_4) \rangle + 2 \text{ perm} \right) \end{aligned}$

Experimental bound on Non-linear parameter τ_{NL}

- WMAP : $| au_{NL}| \lesssim 10^8$
- PLANCK : $| au_{\textit{NL}}| \sim 560$
- 21-cm Background Anisotropy Measurement : $au_{\it NL} \sim 10$

A. Cooray, C. Li and A. Melchiorri, Phys. Rev. D 77, 103506 (2008)

In free theory \longrightarrow Four-point function \rightarrow Square of two-point function \longrightarrow Connected four-point function vanishes $\rightarrow \tau_{NL} = 0$

Power spectrum Bispectrum Trispectrum

Trispectrum in single field slow-roll model

Expanding non-linearly upto third order

 $\mathcal{R}_{NL}(t,\mathbf{x}) \rightarrow \mathcal{O}(\delta \phi_L^3)$

Non-vanishing connected four-point function \longrightarrow Yields non-linear parameter

$$\tau_{NL} = \left(\frac{6}{5}f_{NL}\right)^2$$

Power spectrum Bispectrum Trispectrum

Trispectrum in single field slow-roll model

Expanding non-linearly upto third order

 $\mathcal{R}_{NL}(t,\mathbf{x}) \rightarrow \mathcal{O}(\delta \phi_L^3)$

Non-vanishing connected four-point function \longrightarrow Yields non-linear parameter

$$\tau_{NL} = \left(\frac{6}{5}f_{NL}\right)^2$$

 $au_{NL} < f_{NL}$ au_{NL} too small to be detected

Thermal averaging Effects of prior radiation era on Power Spectrum Enhanced Bispectrum Enhanced Trispectrum

Outline

Non-Gaussianity in slow-roll single field models Power spectrum Bispectrum Trispectrum

Inflation with prior radiation era

Initial thermal bath and thermal averaging

Effects of prior radiation era on Power Spectrum Enhanced Bispectrum Enhanced Trispectrum

Summary

æ

・ロン ・回と ・ヨン ・ヨン

Thermal averaging Effects of prior radiation era on Power Spectrum Enhanced Bispectrum Enhanced Trispectrum

Features due to initial thermal bath

If pre-inflationary radiation era exists \longrightarrow Thermal vacuum contains real particle

$$N_k |\Omega\rangle = n_k |\Omega\rangle$$

The probability of the system to be in the state $\varepsilon_k \equiv n_k k$

$$p(\varepsilon_k) \equiv \frac{e^{-\beta n_k k}}{\sum_{n_k} e^{-\beta n_k k}} = \frac{e^{-\beta n_k k}}{z}$$

Thermal averaging Effects of prior radiation era on Power Spectrum Enhanced Bispectrum Enhanced Trispectrum

Features due to initial thermal bath

If pre-inflationary radiation era exists \longrightarrow Thermal vacuum contains real particle

$$N_k |\Omega\rangle = n_k |\Omega\rangle$$

The probability of the system to be in the state $\varepsilon_k \equiv n_k k$

$$p(\varepsilon_k) \equiv \frac{e^{-\beta n_k k}}{\sum_{n_k} e^{-\beta n_k k}} = \frac{e^{-\beta n_k k}}{z}$$

Thermal statistical average of two-point correlation

$$\begin{aligned} \mathcal{P}_{\delta\phi}^{\mathrm{th}}(k) &= \frac{k^3}{2\pi^2} \langle \Omega | \delta\phi(k,t) \delta\phi(k,t) | \Omega \rangle_{\beta} \\ &= \frac{k^3}{2\pi^2} \sum_{\varepsilon_k} p(\varepsilon_k) \langle \Omega | \delta\phi(k,t) \delta\phi(k,t) | \Omega \rangle \end{aligned}$$

Thermal averaging Effects of prior radiation era on Power Spectrum Enhanced Bispectrum Enhanced Trispectrum

Features due to initial thermal bath

Due to the thermal distribution of the inflaton field

$$\begin{split} \langle \Omega | \delta \phi(k,t) \delta \phi(k,t) | \Omega \rangle &= |\varphi_k(t)|^2 \langle \Omega | (1+2N_k) | \Omega \rangle \\ &= |\varphi_k(t)|^2 (1+2n_k) \end{split}$$

Thermal averaging Effects of prior radiation era on Power Spectrum Enhanced Bispectrum Enhanced Trispectrum

Features due to initial thermal bath

Due to the thermal distribution of the inflaton field

$$\begin{split} \langle \Omega | \delta \phi(k,t) \delta \phi(k,t) | \Omega \rangle &= |\varphi_k(t)|^2 \langle \Omega | (1+2N_k) | \Omega \rangle \\ &= |\varphi_k(t)|^2 (1+2n_k) \end{split}$$

The thermal power spectrum

$$P_{\delta\phi}^{\rm th}(k) = \frac{k^3}{2\pi^2} |\varphi_k(t)|^2 \frac{1}{z} \sum_{n_k} e^{-\beta n_k k} (1+2n_k)$$
$$= \frac{k^3}{2\pi^2} |\varphi_k(t)|^2 (1+2f_B(k))$$

 $f_B(k) \equiv \frac{1}{e^{\beta k} - 1} \longrightarrow$ Bose-Einstein distribution

Thermal averaging Effects of prior radiation era on Power Spectrum Enhanced Bispectrum Enhanced Trispectrum

Features due to initial thermal bath

Due to the thermal distribution of the inflaton field

$$\begin{split} \langle \Omega | \delta \phi(k,t) \delta \phi(k,t) | \Omega \rangle &= |\varphi_k(t)|^2 \langle \Omega | (1+2N_k) | \Omega \rangle \\ &= |\varphi_k(t)|^2 (1+2n_k) \end{split}$$

The thermal power spectrum

$$\begin{split} P_{\delta\phi}^{\rm th}(k) &= \frac{k^3}{2\pi^2} \left| \varphi_k(t) \right|^2 \frac{1}{z} \sum_{n_k} e^{-\beta n_k k} \left(1 + 2n_k \right) \\ &= \frac{k^3}{2\pi^2} \left| \varphi_k(t) \right|^2 \left(1 + 2f_B(k) \right) \end{split}$$

 $f_B(k) \equiv \frac{1}{e^{\beta k} - 1} \longrightarrow$ Bose-Einstein distribution

Power is enhanced by a factor

$$1+2f_B(k)=\coth(\beta k/2)$$

Thermal averaging Effects of prior radiation era on Power Spectrum Enhanced Bispectrum Enhanced Trispectrum

Outline

Non-Gaussianity in slow-roll single field models Power spectrum Bispectrum Trispectrum

Inflation with prior radiation era

Initial thermal bath and thermal averaging Effects of prior radiation era on Power Spectrum Enhanced Bispectrum Enhanced Trispectrum

Summary

æ

・ロン ・回と ・ヨン ・ヨン

Thermal averaging Effects of prior radiation era on Power Spectrum Enhanced Bispectrum Enhanced Trispectrum

K. Bhattacharya, S. Mohanty and R. Rangarajan, Phys. Rev. Lett. **96**, 121302 (2006)

Non-Gaussianity

> < ≧ > < ≧ > PFNG, HRI

A ₽

Thermal averaging Effects of prior radiation era on Power Spectrum Enhanced Bispectrum Enhanced Trispectrum

Outline

Non-Gaussianity in slow-roll single field models

- Power spectrum
- Bispectrum
- Trispectrum

Inflation with prior radiation era

Initial thermal bath and thermal averaging Effects of prior radiation era on Power Spectrum Enhanced Bispectrum Enhanced Trispectrum

Summary

æ

・ロン ・回と ・ヨン ・ヨン

Thermal averaging Effects of prior radiation era on Power Spectrum Enhanced Bispectrum Enhanced Trispectrum

Non-Gaussianity from Bispectrum

The three point function too has to be thermal averaged

$$\langle \mathcal{R}_{NL} \mathcal{R}_{NL} \mathcal{R}_{NL} \rangle_{\beta} \simeq \left(\frac{H}{\dot{\phi}}\right)^2 \frac{1}{2} \frac{\partial}{\partial \phi} \left(\frac{H}{\dot{\phi}}\right) \langle \delta \phi \delta \phi \delta \phi^2 \rangle_{\beta}$$

where the thermal average of four inflaton field

$$\langle \delta \phi_{k_1} \delta \phi_{k_2} \delta \phi_{k_3} \delta \phi_{k_4} \rangle_{\beta} = \sum_{\{n_{k_i}\}} p(k_1, k_2, k_3, k_4) \langle \Omega | \delta \phi_{k_1} \delta \phi_{k_2} \delta \phi_{k_3} \delta \phi_{k_4} | \Omega \rangle$$

Here the probability of occupancy of different energy states is

$$p(k_1, k_2, k_3, k_4) \equiv \frac{\prod_r e^{-\beta n_{k_r} k_r}}{\prod_r \sum_{n_k} e^{-\beta n_{k_r} k_r}} = \frac{\prod_r e^{-\beta n_{k_r} k_r}}{Z}$$

3

・ロト ・回ト ・ヨト ・ヨト

Thermal averaging Effects of prior radiation era on Power Spectrum Enhanced Bispectrum Enhanced Trispectrum

Non-Gaussianity from Bispectrum

The three point function too has to be thermal averaged

$$\langle \mathcal{R}_{NL} \mathcal{R}_{NL} \mathcal{R}_{NL} \rangle_{\beta} \simeq \left(\frac{H}{\dot{\phi}}\right)^2 \frac{1}{2} \frac{\partial}{\partial \phi} \left(\frac{H}{\dot{\phi}}\right) \langle \delta \phi \delta \phi \delta \phi^2 \rangle_{\beta}$$

where the thermal average of four inflaton field

$$\langle \delta \phi_{k_1} \delta \phi_{k_2} \delta \phi_{k_3} \delta \phi_{k_4} \rangle_{\beta} = \sum_{\{n_{k_i}\}} p(k_1, k_2, k_3, k_4) \langle \Omega | \delta \phi_{k_1} \delta \phi_{k_2} \delta \phi_{k_3} \delta \phi_{k_4} | \Omega \rangle$$

Here the probability of occupancy of different energy states is

$$p(k_1, k_2, k_3, k_4) \equiv \frac{\prod_r e^{-\beta n_{k_r} k_r}}{\prod_r \sum_{n_k} e^{-\beta n_{k_r} k_r}} = \frac{\prod_r e^{-\beta n_{k_r} k_r}}{Z}$$

 f_{NL} is enhanced due to thermal averaging

・ロン ・回と ・ヨン ・ヨン

Thermal averaging Effects of prior radiation era on Power Spectrum Enhanced Bispectrum Enhanced Trispectrum

Non-Gaussianity from Bispectrum

See K. Simth's talk

æ

・ロト ・回ト ・ヨト ・ヨト

Thermal averaging Effects of prior radiation era on Power Spectrum Enhanced Bispectrum Enhanced Trispectrum

Non-Gaussianity from Bispectrum

1. Equilateral

2. Squeezed/local

3. Flattened

See K. Simth's talk

$$egin{split} f_{NL}^{ ext{th}} &= f_{NL} imes \ \left(3 + rac{5}{4 \sinh^2\left(rac{eta k}{2}
ight)}
ight) \end{split}$$

 $f_{NL}^{\text{th}} = f_{NL} \times \qquad f_{NL}^{\text{th}} = f_{NL} \times \\ 2\left(1 + 3.72 \operatorname{coth}\left(\frac{\beta k}{2}\right)\right) \left(3 + \frac{1}{\sinh^2\left(\frac{\beta k}{2}\right)}\right)$ $f_{2}: \qquad \text{Enhancement}: \qquad \text{Enhancement}:$

64.82

Enhancement : 90.85

S. Das

Non-Gaussianity

PFNG, HRI

Thermal averaging Effects of prior radiation era on Power Spectrum Enhanced Bispectrum Enhanced Trispectrum

Non-Gaussianity from Bispectrum

Э

イロト イヨト イヨト イヨト

Thermal averaging Effects of prior radiation era on Power Spectrum Enhanced Bispectrum Enhanced Trispectrum

Non-Gaussianity from Bispectrum

- Maximum contribution \longrightarrow "Equilateral" configuration
- \bullet Non-Gaussianity \longrightarrow Measurable by the 21-cm background radiation observations

Thermal averaging Effects of prior radiation era on Power Spectrum Enhanced Bispectrum Enhanced Trispectrum

Similar analysis by Agullo and Parker (arXiv:1010.5766)

- Calculated non-Gaussinities in single field inflationary models when perturbations are already present in the initial state.
- Considerd a generic statistical density operator ρ (in our case p) that includes probabilities for nonzero numbers of scalar perturbations to be present at early times during inflation.
- Only Bispectrum features are analyzed and found that the initial presence of quanta can significantly enhance non-gaussianities

$$\begin{split} & \mathrm{Tr}[\rho \hat{\mathcal{R}}_{\vec{k}_1}^l(0) \hat{\mathcal{R}}_{\vec{k}_2}^l(0) \hat{\mathcal{R}}_{\vec{k}_3}^l(0)] = \\ & \delta_{(\sum \vec{k}_i),0} P_{\mathcal{R}}^0(k_1) P_{\mathcal{R}}^0(k_2) \left[\frac{\ddot{\phi}}{\dot{\phi} H} + \frac{1}{4M_P^2} \frac{\dot{\phi}^2}{H^2} \left(1 + \frac{k_1^2 + k_2^2}{k_3^2} \right) \right] F(\rho, \vec{k}_1, \vec{k}_2) + 2 \text{ perm} \end{split}$$

where

$$F(\rho, \vec{k}_1, \vec{k}_2) = \operatorname{Tr}[\rho(2N_{\vec{k}_1} + 1)(2N_{\vec{k}_2} + 1)] - \delta_{\vec{k}_1, \vec{k}_2} \operatorname{Tr}[\rho N_{\vec{k}_1}(N_{\vec{k}_1} + 1)]$$

Thermal averaging Effects of prior radiation era on Power Spectrum Enhanced Bispectrum Enhanced Trispectrum

Outline

Non-Gaussianity in slow-roll single field models

- Power spectrum
- Bispectrum
- Trispectrum

Inflation with prior radiation era

Initial thermal bath and thermal averaging Effects of prior radiation era on Power Spectrum Enhanced Bispectrum Enhanced Trispectrum

Summary

æ

・ロン ・回と ・ヨン ・ヨン

Thermal averaging Effects of prior radiation era on Power Spectrum Enhanced Bispectrum Enhanced Trispectrum

Non-Gaussianity from Trispectrum

Due to thermal averaging

$$\begin{aligned} \left\langle \mathcal{R}(\mathbf{k}_{1})\mathcal{R}(\mathbf{k}_{2})\mathcal{R}(\mathbf{k}_{3})\mathcal{R}(\mathbf{k}_{4})\right\rangle_{c} &\neq \left\langle \mathcal{R}(\mathbf{k}_{1})\mathcal{R}(\mathbf{k}_{2})\mathcal{R}(\mathbf{k}_{3})\mathcal{R}(\mathbf{k}_{4})\right\rangle_{\beta} \\ &- \left(\left\langle \mathcal{R}_{L}(\mathbf{k}_{1})\mathcal{R}_{L}(\mathbf{k}_{2})\right\rangle_{\beta}\left\langle \mathcal{R}_{L}(\mathbf{k}_{3})\mathcal{R}_{L}(\mathbf{k}_{4})\right\rangle_{\beta} + 2\mathrm{perm}\right) \end{aligned}$$

The connected part turns out to be

$$\langle \mathcal{R}(\mathbf{k}_1) \mathcal{R}(\mathbf{k}_2) \mathcal{R}(\mathbf{k}_3) \mathcal{R}(\mathbf{k}_4) \rangle_c = \tau_{NL} \left[\frac{P_{\mathcal{R}}(k_1)}{k_1^3} \frac{P_{\mathcal{R}}(k_2)}{k_2^3} \delta^3(\mathbf{k}_1 + \mathbf{k}_3) \delta^3(\mathbf{k}_2 + \mathbf{k}_4) \right. \\ \left. + 2 \text{ perm.} \right]$$

(日) (同) (E) (E) (E)

Thermal averaging Effects of prior radiation era on Power Spectrum Enhanced Bispectrum Enhanced Trispectrum

Non-Gaussianity from Trispectrum

Due to thermal averaging

$$\begin{aligned} \left\langle \mathcal{R}(\mathbf{k}_{1})\mathcal{R}(\mathbf{k}_{2})\mathcal{R}(\mathbf{k}_{3})\mathcal{R}(\mathbf{k}_{4})\right\rangle_{c} &\neq \left\langle \mathcal{R}(\mathbf{k}_{1})\mathcal{R}(\mathbf{k}_{2})\mathcal{R}(\mathbf{k}_{3})\mathcal{R}(\mathbf{k}_{4})\right\rangle_{\beta} \\ &- \left(\left\langle \mathcal{R}_{L}(\mathbf{k}_{1})\mathcal{R}_{L}(\mathbf{k}_{2})\right\rangle_{\beta}\left\langle \mathcal{R}_{L}(\mathbf{k}_{3})\mathcal{R}_{L}(\mathbf{k}_{4})\right\rangle_{\beta} + 2\mathrm{perm}\right) \end{aligned}$$

The connected part turns out to be

$$\langle \mathcal{R}(\mathbf{k}_1) \mathcal{R}(\mathbf{k}_2) \mathcal{R}(\mathbf{k}_3) \mathcal{R}(\mathbf{k}_4) \rangle_c = \tau_{NL} \left[\frac{P_{\mathcal{R}}(k_1)}{k_1^3} \frac{P_{\mathcal{R}}(k_2)}{k_2^3} \delta^3(\mathbf{k}_1 + \mathbf{k}_3) \delta^3(\mathbf{k}_2 + \mathbf{k}_4) \right. \\ \left. + 2 \text{ perm.} \right]$$

 $\tau_{\textit{NL}}$ does not depend upon the slow-roll parameters

3

・ロト ・回ト ・ヨト ・ヨト

Thermal averaging Effects of prior radiation era on Power Spectrum Enhanced Bispectrum Enhanced Trispectrum

Non-Gaussianity from Trispectrum

S. Das

臣

Thermal averaging Effects of prior radiation era on Power Spectrum Enhanced Bispectrum Enhanced Trispectrum

Non-Gaussianity from Trispectrum

 $\tau_{\it NL}$ can be as large as -42.58

臣

Summary

 Thermal inflatons → Enhances bispectrum and trispectrum Non-Gaussianity

æ

◆□ → ◆□ → ◆ □ → ◆ □ → ●

Summary

- Thermal inflatons → Enhances bispectrum and trispectrum Non-Gaussianity
- Enhancement of $f_{NL} \rightarrow$ by factor of (60-90)
- Detectable *f_{NL}* by 21 cm background measurement
- Parker *et. al.* also achived similar enhancement due to presence of initial quanta (arXiv:1010.5766)

Summary

- Thermal inflatons → Enhances bispectrum and trispectrum Non-Gaussianity
- Enhancement of $f_{NL} \rightarrow$ by factor of (60-90)
- Detectable *f_{NL}* by 21 cm background measurement
- Parker *et. al.* also achived similar enhancement due to presence of initial quanta (arXiv:1010.5766)
- $0 > \tau_{NL} > -43$
- In case of trisepctrum : Detectable τ_{NL} by 21 cm background measurement

Summary

- Thermal inflatons → Enhances bispectrum and trispectrum Non-Gaussianity
- Enhancement of $f_{NL} \longrightarrow$ by factor of (60-90)
- Detectable f_{NL} by 21 cm background measurement
- Parker *et. al.* also achived similar enhancement due to presence of initial quanta (arXiv:1010.5766)
- $0 > \tau_{NL} > -43$
- In case of trisepctrum : Detectable τ_{NL} by 21 cm background measurement
- Signature of thermal inflaton background → Large trispectrum compared to bispectrum