Characterization of CMB Foregrounds

Tuhin Ghosh (IUCAA)

17th of December, 2010

PFNG Meeting, HRI

CMB Foregrounds

Can galactic foregrounds leaves Non-Gaussian signatures in the reconstructed CMB map?

We need to understand the following properties of foregrounds:

1) Spectral characteristics of foregrounds

2) Foreground statistics >> non-gaussian signal

CMB + Noise + Foreground Map (23GHz)

CMB + Noise + Foreground Map (41GHz)

CMB anisotropy signal is frequency independent

Thermodynamic temperature versus frequency

CMB Foregrounds

Non-Gaussian and Non-Stationary Signal

^[1] T. Ghosh, S. Prunet, J.F. Cardoso and T. Souradeep

Spectral Characterization of CMB Foreground Study of Galactic Physics using CMB

Cross-correlation Analysis:

We assume that different regions of the sky can be locally decomposed into four components which are dust, free-free, synchrotron and monopole term. The idea is to minimize the chi-square using one template for each of the component and calculate the fit coefficients. In simple terms,

$$\chi^2 = \sum_{i,p} \frac{(T(\nu_i, p) - b_1(\nu_i)T_H - b_2(\nu_i)I_F - b_3(\nu_i)M_d)^2}{\sigma_i^2}$$

The above relation is not in general true for various reasons which are **masking issues**, need to take into account **CMB**, **beam issues**.

^[1] Bennet et al., WMAP 1st Year Papers
[2] Hinshaw et al., WMAP 3rd Year Papers

Template Fitting

Figure 1. T–T plots for region 6 (middle row of Fig. 3) clearly showing the *WMAP* dust-correlated emission at *K*, *Ka* and *Q* bands against the 100- μ m SFD98 map. The best-fitting line is plotted along with the number of pixels *N*, the *y*-intercept *C*, slope *M* and Pearson correlation coefficient *P*.

Cross-correlation Analysis

[1] Davies et al. , 2005, astro-ph/0511384

WMAP-1 Results

	Band	Dust:FDS (rel to FDS)	$\begin{array}{c} \text{Free-Free:} \mathrm{H}\alpha \\ (\mu \mathrm{K/R}) \end{array}$	Synchrotron:Haslam $(\mu K/K)$
23 GHz	Κ	6.3	4.6	5.6
	Ka	2.4	2.1	1.5
	Q1	1.5	1.3	0.5
	Q2	1.4	1.3	0.5
	V1	0.9	0.5	-0.2
	V2	0.9	0.4	-0.2
	W1	1.2	0.1	-0.3
	W2	1.2	0.1	-0.4
94 GHZ	W3	1.2	0.1	-0.3
	W4	1.1	0.1	-0.3

First evidence of dust correlated spinning dust emission.

[1] Bennet et al., WMAP 1st Year Papers
[2] Oliveira de Costa et al., ApJ, 527 (1999)

Cross Correlation Analysis in case of correlated errorbars:

Let \mathbf{d} be the data vector and \mathbf{t} is the template vector. Then chi-square is given by,

$$\chi^2 = (\mathbf{d} - \alpha \mathbf{t})^{\mathbf{T}} \mathbf{M}_{\mathbf{SN}}^{-1} (\mathbf{d} - \alpha \mathbf{t})$$

General Expression

Using cholesky decomposition, we get

$$\chi^2 = (\mathbf{d} - \alpha \mathbf{t})^{\mathbf{T}} (\mathbf{L} \mathbf{L}^{\mathbf{T}})^{-1} (\mathbf{d} - \alpha \mathbf{t})$$

In case of diagonal approximation, it reduces to simple chi-square,

$$\chi^2 = \left(\frac{\mathbf{d} - \alpha \mathbf{t}}{\sigma}\right)^2$$

Minimization of chi-square gives,

$$\alpha = \frac{t^T M_{SN} d}{t^T M_{SN} t}$$

[1] Davies et al. , 2005, astro-ph/0511384

Constraint the dust correlated spinning dust emission

Even with WMAP data, we put constraint on the spinning dust models and get the idea of ratio of different spinning dust components.

[1] Ali Hamoud et al. , 2008, astro-ph/0812.2904
[2] Draine and Lazarian, 1998 papers
[3] Ysard et al. 2009, astro-ph/0906.3360

Free-free fit coefficients

Can be used to study the free-free electron temperature.

Important to find the regions of Ha correlated spinning dust emission (WIM). Important to find the ratio between free-free intensity and spinning dust at peak frequency.

[1] Dickinson et al. , 2003, astro-ph/0302024

Synchrotron Fit Coefficients

Gold et. al. Model of Synchrotron

Can distinguish between different models of synchrotron by measuring chi-square value.

[1] Gold et al. , 2010, WMAP 7yr paper

Modelling of Galactic Foregrounds

Current Understanding (2010)

Towards Getting Foreground Maps at WMAP Frequency Bands

K-Band

K-Band

K-Band

K-Band

[1] T. Ghosh, J. Delabrouille, M. Remazeilles, J.F. Cardoso and T. Souradeep, astro-ph/1006.0916

Summary

1) Using current WMAP data, we can improve our understanding about the various galactic components.

2) Foregrounds are non-gaussian and non-stationary signal and in needlet space follows the Student t-distribution function.