

WMAP Anomalies and Statistical Isotropy

CITA Canadian Institute for Theoretical Astrophysics L'institut canadien d'astrophysique theorique

http://www.cita.utoronto.ca/~ahajian

Amazing agreement between the theory and observations!

Amir Hajian -- PFNG 2010

Amazing agreement between the theory and observations!

CITA-ICAT

First Evidence

'Anomalies' in the CMB sky?

Quadrupole (I = 2)

- Ralston & Jain 2004
- de Oliveira-Costa, et al. 2004
- Copi et al. 2004 2006
- Land & Magueijo 2004 2006
- Prunet et al., 2004 no detection
- Hajian, Souradeep & Cornish 2004 - no detection

CITA-ICAT

de Myeira-Costa, et al., Phys. Rev. D 69, 063516 (2004)

'Anomalies' in the CMB sky?

- Special directions
 - Ralston & Jain 2004
 - de Oliveira-Costa, et al. 2004
 - Copi et al. 2004 2006
 - Land & Magueijo 2004 2006
 - Prunet et al., 2004 no detection
 - Armendariz-Picon 2005 no detection
 - Hajian, Souradeep & Cornish
 2004 no detection

N–S assymetries

- Hansen et al. 2003
- Eriksen et al. 2004

'Anomalies' in the CMB sky?

Special directions

- Ralston & Jain 2004
- de Oliveira-Costa, et al. 2004
- Copi et al. 2004 2006
- Land & Magueijo 2004 2006
- Prunet et al., 2004 no detection
- Armendariz-Picon 2005 no detection
- Hajian, Souradeep & Cornish 2004 no detection

N–S assymetries

- Hansen et al. 2003
- Eriksen et al. 2004

Template patterns

- T. Jaffe et al. 2005
- Land & Magueijo 2005
- Ghosh, Hajian & Souradeep 2006

Quantifying Statistical Isotropy

Definitions

Gaussianity v.s. Isotropy

- Gaussianity guarantees that all information of the field is in its two point correlation
- Statistical Isotropy states that correlation function is invariant under rotations

We can have

- Statistically Isotropion Statistics
- Statistically Isotropic
- Statistically An-isotropic Gaussian Models
- Statistically An-isotropic non-Gaussian Models

Most General Two Point Correlation

 $C(\hat{n}_1, \hat{n}_2): S^2 \times S^2 \to \Re$

Expanding Two Point Correlation

$$C(\hat{n}_1, \hat{n}_2) = \sum_i Coefficient_i \times Basis_i$$

$$\sum C_{l_1 l_2 m_1 m_2}^{LM} Y_{l_1 m_1}(\hat{n}_1) Y_{l_2 m_2}(\hat{n}_2)$$

 m_1m_2

Bipolar Spherical Harmonics Natural Basis on $S^2 \times S^2$

Clebsch-Gordan Coefficients $|l_1 - L| \le l_2 \le |l_1 + L|$

Expanding Two Point Correlation

$$C(\hat{n}_{1}, \hat{n}_{2}) = \sum_{l_{1}l_{2}LM} A_{l_{1}l_{2}}^{LM} \{Y_{l_{1}}(\hat{n}_{1}) \otimes Y_{l_{2}}(\hat{n}_{2})\}_{LM}$$

$$\mathbf{A}_{ll'}^{LM} = \sum_{mm'} \left\langle a_{lm} a_{lm'} \right\rangle \quad C_{lml'm'}^{LM}: \text{ Measure cross correlation in } a_{lm}$$

Statistical Isotropy =>

$$\left\langle a_{lm} a_{l'm'}^* \right\rangle = C_l \delta_{ll'} \delta_{mm'} = A_{ll}^{00}$$

Too many indices, One can define:

$$A_{LM} = \sum_{l=0}^{\infty} \sum_{l'=|\ell-l|}^{\ell+l} A_{ll'}^{LM}$$

Expanding Two Point Correlation

Measuring Statistical Isotropy

The Estimator

 $\widetilde{A}_{ll'}^{LM} = \sum_{mm'} \widetilde{a}_{lm} \widetilde{a}_{l'm'} C_{lml'm'}^{LM}$

Statistical Isotropy of WMAP data

- ILC map on large scales
 - Full sky
 - Residuals from Galactic removal errors in ILC-3yr map are estimated to be less than 5 µK on angular scales greater than 10 deg
 - On large scales, the three-year ILC map is believed to provide a reliable estimate of the CMB signal, with negligible instrument noise, over the full sky
 - Exciting scenarios happen on large scales

Bipolar Power Spectrum of WMAP data

WMAP7: a BiPS study

- Used a minimum variance estimator for BiPS
- Detected non-zero BiPS at L=2, all other components are consistent with zero
- The signal is caused by M=0 in ecliptic coordinates
- The effect is larger in W and V band.
- The effects peaks at ell~200 (similar to the CMB power spectrum)
- It is equally strong in cross correlations and in auto correlations.

What Would A Detection Look Like?

Example: A Toroidal Universe

The Euclidean 2-torus is a flat square whose opposite sides are connected.

Example: A Toroidal Universe

	.				
•			•		
		•		5 5	
		 •	•		5000 (.
		 5 5		5 5	

Pictures: Starkman e

Light from the yellow galaxy can reach them along several different paths. So they can see more one image of it.

CITA-ICAT

Signature of topology : correlated circles in the sky

THREE POSSIBILITIES

(Size of last scattering surface relative to the size of the compact space)

Looking for Circles in the Sky: Poincare Dodecahedral Space

- Six sets of circle pairs with a 36 degree twist expected.
- None was found in the data (Shapiro Key et al (2007))

Correlation Patterns in Dodecahedral Spaces

AH, Souradeep, Pogosyan, Bond, Contaldi (in progress)

- Using BiPS to look for topology is fast, and orientation independent
- Recipe:
 - For a given cosmic topology compute the correlation function
 - Find the bipolar power spectrum signature of that space (this is dictated by the symmetries of the space)
 - Compare the prediction with the bipolar power spectrum of the observed CMB data

Symmetries of the Correlation Function

Joshi, Jhingan, Souradeep, AH PRD(2010)

Hiding a Bianchi Template in a CMB Anisotropy Map

Limits from observed BiPS

Ghosh, AH, Souradeep, PRD (2006)

Joshi, Jinghan, Souradeep, Hajian PRD(2010)

CITA-ICAT

• Statistically isotropic

$$A_{\ell_1\ell_2}^{LM} = C_{\ell_1}\delta_{\ell_1\ell_2}\delta_{L0}\delta_{M0}$$

Joshi, Jinghan, Souradeep, Hajian PRD(2010)

Dipolar sky modulation

$$T(\mathbf{\hat{n}}) = \left(1 + \sum_{M=-1}^{1} w_{1M} Y_{1M}(\mathbf{\hat{n}})\right) T(\mathbf{\hat{n}})_{\text{iso}}$$

$$\begin{aligned} A_{\ell\ell}^{00} = C_{\ell} \\ A_{\ell-1,\ell}^{1M} = A_{\ell,\ell-1}^{1M} = \frac{w_{1M}(C_{\ell-1} + C_{\ell})}{(4\pi)^{1/2}} \end{aligned}$$

Topology: multiply connected universe

Joshi, Jinghan, Souradeep, Hajian PRD(2010)

Quadrupolar sky modulation

$$T(\mathbf{\hat{n}}) = \left(1 + \sum_{M=-2}^{2} w_{2M} Y_{2M}(\mathbf{\hat{n}})\right) T(\mathbf{\hat{n}})_{\text{iso}}$$

$$\begin{aligned} A_{\ell\ell}^{00} &= C_{\ell} \\ A_{\ell\ell}^{2M} &= \frac{w_{2M}C_{\ell}}{\pi^{1/2}} \\ A_{\ell-2,\ell}^{2M} &= A_{\ell,\ell-2}^{2M} = \frac{w_{2M}(C_{\ell-2}+C_{\ell})}{(4\pi)^{1/2}} \end{aligned}$$

Topology: multiply connected universe

Joshi, Jinghan, Souradeep, Hajian PRD(2010)

CITA-ICAT

Anisotropic early universes

• Ackerman et al (2007)

$$egin{aligned} \zeta(\mathbf{k}) &= \left[1 + \sum_{M=-2}^2 w_{2M} Y_{2M}(\mathbf{\hat{k}})
ight] \zeta(\mathbf{k})_{ ext{iso}} \ A_{\ell_1 \ell_2}^{2M} &= rac{i^{\ell_1 - \ell_2}}{(4\pi)^{1/2}} w_{2M} \int rac{2k^2 \, dk}{\pi} \Delta_{\ell_1}(k) \Delta_{\ell_2}(k) P(k) \end{aligned}$$

Amir Hajian

Topology: multiply connected universe

Joshi, Jinghan, Souradeep, Hajian PRD(2010)

- Anisotropic early universes
 - Ackerman et al (2007)

$$\begin{aligned} \zeta(\mathbf{k}) &= \left[1 + \sum_{M=-2}^{2} w_{2M} Y_{2M}(\mathbf{\hat{k}})\right] \zeta(\mathbf{k})_{\text{iso}} \\ A_{\ell_1 \ell_2}^{2M} &= \frac{i^{\ell_1 - \ell_2}}{(4\pi)^{1/2}} w_{2M} \int \frac{2k^2 dk}{\pi} \Delta_{\ell_1}(k) \Delta_{\ell_2}(k) P(k) \end{aligned}$$

• Non-commutative inflation (Karwan 2010) $\mathcal{P}_{\mathbf{k}}^{\zeta} = \frac{k^{3}|\zeta_{\mathbf{k}}|^{2}}{2\pi^{2}} = \frac{k^{3}|v_{\mathbf{k}}/z|^{2}}{2\pi^{2}} \simeq \frac{H^{2}}{\pi m_{p}^{2}c_{s}\epsilon} \left(1 - \frac{3}{2}\kappa^{2}\sin^{2}(\theta)\right)$ $\langle A_{00} \rangle = \sum_{l}(-1)^{l}C_{l}\sqrt{2l+1}\left(1 - \frac{2}{3}A_{s}^{2}\Sigma\right),$ $\langle A_{20} \rangle = -2A_{s}^{2}\Sigma\sum_{l}(-1)^{l}C_{l}\sqrt{\frac{l(l+1)(2l+1)}{45(2l-1)(2l+3)}}$ $-2A_{s}^{2}\Sigma\sum_{l\geq 4}(-1)^{l}C_{l}\sqrt{\frac{2l(l-1)}{15(2l-1)}}.$

Amir Hajian -

BiPS of Polarization maps

Circles in Penrose's Conformal Cyclic Cosmology

The Economist

naturenews

Cosmology Going round In contradiction to m evidence that the un

Dec 2nd 2010 | from PRINT

nature news home news archive comments on this Published online

Stories by subject

story

Space and astronomy

Physics

Stories by keywords

- Penrose
- WMAP
- Cyclic universe
- <u>Cosmic microwave</u> background
- Inflation
- Universe
- Black holes

Published online 10 December 2010 | Nature | doi:10.1038/news.2010.665

opinion features

specials

No evidence of time before Big Bang

Latest research deflates the idea that the Universe cycles for eternity.

Edwin Cartlidge

Our view of the early Universe may be full of mysterious circles — and even triangles — but that doesn't mean we're seeing evidence of events that took place before the Big Bang. So says a trio of papers taking aim at a recent claim that concentric rings of uniform

news blog

na

Circular ripples in the cosmic microwave background have been making waves with theoreticians.

Conformal Cyclic Cosmology

- At high energies (early times), all interactions are conformally invariant
- Conformal geometry, not metric geometry of spacetime, is relevant
- Conformal spacetime geometry extends smoothly to before big-bang
- Weyl curvature vanishes at the conformal hypersurface which represents the Big Bang – > no infinite gravity at Big Bang.
- **Fundamental Postulate**: what lies beyond the future boundary hypersurface is the big bang of a ``new universe'', what lay before our BB hypersurface was the future infinity of a ``previous universe''.

Physical material of the universe is only sensitive to the conformal structure of the universe and is blind to the component that provides the *scale* of the metric.

... like ripples on a pond

- Hawking evaporation of black holes -> supplies the radiation content
- Spatial variations in the density after BB caused by gravitational wave bursts from close encounters between black holes
- Density fluctuations: *scaleinvariant* (because of the exponential expansion BEFORE the Big Bang)
- CMB is a superposition of circular patterns on the surface of last scatter.

Looking for circles in CMB sky

- Using foreground cleaned W-band map (Galaxy and point sources masked)
- Looking for circularly correlated patterns with the statistic

$$\mathcal{C}_{ heta}(\hat{n}_i) = rac{1}{S_{ heta}} \int \Delta T(\hat{n}_j) \delta(\hat{n}_i \cdot \hat{n}_j - \cos heta) dS_{ heta}$$

 Simulations of the LCDM CMB maps with realistic noise are used to assess the statistical significance of the results

Distribution of Average Temperatures Along Circles at Different Radii

- Detected circles are all at the edges -> suffer from small number statistics
- Excluding circles with small number of pixels in them removes large deviations from Gaussian distributions.
- No circles in WMAP5 data

0

Concentric circles in WMAP7 data?

- Gurzadyan & Penrose (2010) claim to detect three families of "anomalous low-variance concentric circles" in WMAP7 data
- 3 critical papers show the patterns are not anomalous:
 - Wehus, Eriksen (arXiv:1012.1268)
 - Moss, Scott, Zibin (arXiv:1012.1305)
 - A.H. (arXiv:1012:1656)

• • V band

• • V band

Radius (degrees)

(f) V-band, $\hat{n} = (80.25^{\circ}, 270.00^{\circ})$

Radius (degrees)

(e) W-band, $\hat{n} = (80.25^{\circ}, 270.00^{\circ})$

 Repeating G&P analysis at three centers we get similar patters as G&P

200 simulations of the sky + WMAP noise to determine statistical significance of the dips

(b) V-band, $\hat{n} = (37.00^\circ, 105.04^\circ)$

- Repeating G&P analysis at three centers we get similar patters as G&P
- 200 simulations of the sky
 + WMAP noise to determine statistical significance of the dips

- Repeating G&P analysis at three centers we get similar patters as G&P
- 200 simulations of the sky + WMAP noise to determine statistical significance of the dips
- None of the variances are significantly low!

More details:

http://www.cita.utoronto.ca/~ahajian/pBB.html

an -- PFNG 2010

Measured variances along the G&P circles in WMAP data compared with the PDF of the variances of the same circles in 1000 simulations.

More details:

http://www.cita.utoronto.ca/~ahajian/pBB.html

Thank you!

