Estimates of f_{NL} and g_{NL} from massive high redshift clusters

Shaun Hotchkiss (University of Helsinki and Helsinki Institute of Physics) arXiv:1012.2732 With K. Enqvist and O. Taanilla

UNIVERSITY OF HELSINK

HELSINKI INSTITUTE OF PHYSICS See also: Cayon, Gordon, Silk Hoyle, Jimenez, Verde

Measuring non-Gaussianity

We can measure/constrain non-Gaussianity by:

- Bispectrums strictly zero for Gaussian, so very sensitive to deviations.
 - CMB $-10 < f_{
 m NL}^{
 m local} < 74$
 - LSS not yet competitive
- Correction to LSS bias. $-29 < f_{\rm NL}^{\rm loc} < +69$
- The mere existence of large mass, high-redshift clusters.
 - $\bullet\,$ Very sensitive to tails of the distribution which are very sensitive to fnl, gnl, etc.

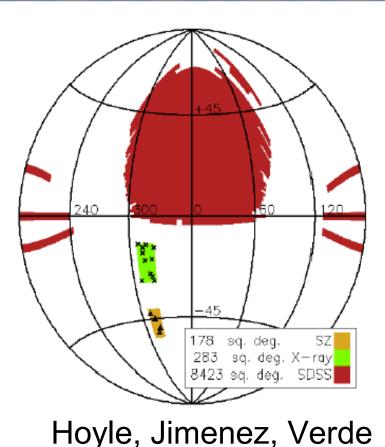
 $f_{\rm NL} \gtrsim 411$!?

Summary and motivation

- There exist a number of high redshift clusters that are very unlikely in LCDM.
- Non-Gaussianities can explain the existence of these clusters.
- Current fNL constraints apply mass functions too far into their tails.
- gNL is a higher order statistic but has attractions that distinguish it from fNL (e.g. voids, no strong scale dependence required, same number of extra parameters required)

These clusters **do** exist. They **are** "too big too early" for LCDM. (subject only to systematic uncertainties on mass measurements by three independent methods)

getting perspective



Yellow = SZ (178 sq. deg.) Green = Xray (283 sq. deg.)

For context:

Red = SDSS (8423 sq. deg) White = total sky (62000 sq. deg.)

A very positive slide! (i.e. this is all very easily tested in the future)

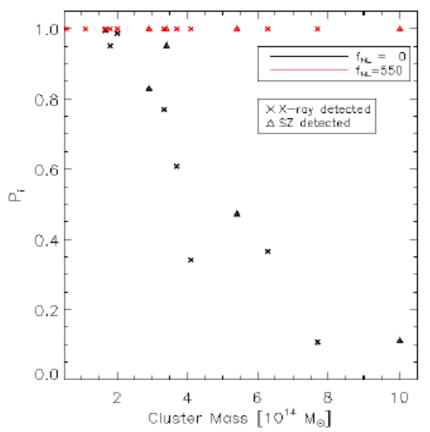
What are these clusters? Hoyle, Jimenez, Verde

Cluster Nam	ne Redshift	$M_{200} 10^{14} M_{\odot}$
'WARPSJ1415.1+3612'	+ 1.02	$3.33^{+2.83}_{-1.80}$
'SPT-CLJ2341-5119'	• 1.03	$5.40^{+2.80}_{-2.80}$
'ClJ1415.1+3612'	• 1.03	$3.40^{+0.60}_{-0.50}$
'XLSSJ022403.9-041328'	+ 1.05	$1.66^{+1.15}_{-0.38}$
\rightarrow 'SPT-CLJ0546-5345'	• 1.06	$10.0^{+6.00}_{-4.00}$
'SPT-CLJ2342-5411'	 1.08 	$2.90^{+1.80}_{-1.80}$
'RDCSJ0910+5422'	+ 1.10	$6.28^{+3.70}_{-3.70}$
'RXJ1053.7+5735(West)'	+ 1.14	$2.00^{+1.00}_{-0.70}$
'XLSSJ022303.0043622'	+ 1.22	$1.10^{+0.60}_{-0.40}$
'RDCSJ1252.9-2927'	+ 1.23	$2.00^{+0.50}_{-0.50}$
'RXJ0849+4452'	+ 1.26	$3.70^{+1.90}_{-1.90}$
'RXJ0848+4453'	+ 1.27	$1.80^{+1.20}_{-1.20}$
\rightarrow 'XMMUJ2235.3+2557'	+ 1.39	$7.70^{+4.40}_{-3.10}$
'XMMXCSJ2215.9-1738'	+ 1.46	$4.10^{+3.40}_{-1.70}$
'SXDF-XCLJ0218-0510'	+ 1.62	$0.57\substack{+0.14\\-0.14}$

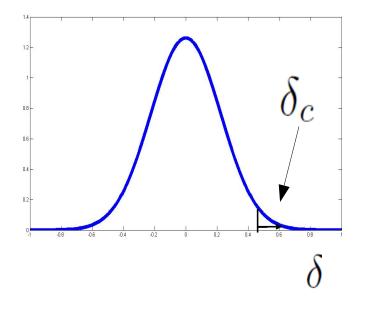
Masses in table from three different methods



Mass $0.57 \times 10^{14} M_{\odot} \le m \le 1.0 \times 10^{15} M_{\odot}$



How do we calculate Probability?



What is the probability
$$\delta$$
 is above δ_c 3

$$n(M,z) = \frac{\bar{\rho}}{M} f \left(-\frac{\mathrm{d}\ln\sigma_M}{\mathrm{d}\ln M} \right)$$

f is the interesting dimensionless quantity.

$$\sigma_R^2 = \int_0^\infty \frac{dk}{k} \alpha_R^2(k, z) \mathcal{P}(k),$$
$$\alpha_R(k, z) = \frac{2}{3\Omega_m} D(z) \left(\frac{k}{H_0}\right)^2 T(k) W_R(k)$$

$$\operatorname{Exp}(M, z, \ldots) = \int_{z_n}^{z_f} dz \int_{M_{\min}}^{M_{\max}} dM f_{\mathrm{sky}} \frac{dV}{dz} n_{\mathrm{NG}}$$

Now, Poisson sample from E.

How do we calculate f? (theory...)

The truth is it isn't easy.

Spherical collapse. (but what about 'cloud in cloud'?) Excursion set – find first crossing. (but what about the choice of filter?) Non Markovian excursion set. (what about other collapsing shapes?) Treat δ_c stochastically to model this.

This is all before even starting to look at non-Gaussianity. Eventually... How do we calculate f? (theory...)

The truth is it isn't easy.

Spherical collapse. (but what about 'cloud in cloud'?) Excursion set – find first crossing. (but what about the choice of filter?) Non Markovian excursion set. (what about other collapsing shapes?) Treat δ_c stochastically to model this.

This is all before even starting to look at non-Gaussianity.Eventually...See Aseem's talk.

Status at $f_{sky}=11$ sq. deg.

Only one unlikely, high redshift, cluster. The wonderfully named, XMMUJ2235.3+2557,

At redshift z=1.4, with mass = $(8.5 \pm 1.7) \times 10^{14} M_{\odot}$ (at the time)

$$\operatorname{Exp}(M, z, \ldots) = \int_{z_n}^{z_f} dz \int_{M_{\min}}^{M_{\max}} dM f_{\mathrm{sky}} \frac{dV}{dz} n_{\mathrm{NG}}$$

Probability of something existing at this redshift and mass or higher, in an 11 sq. deg. survey...

Status at $f_{sky}=11$ sq. deg.

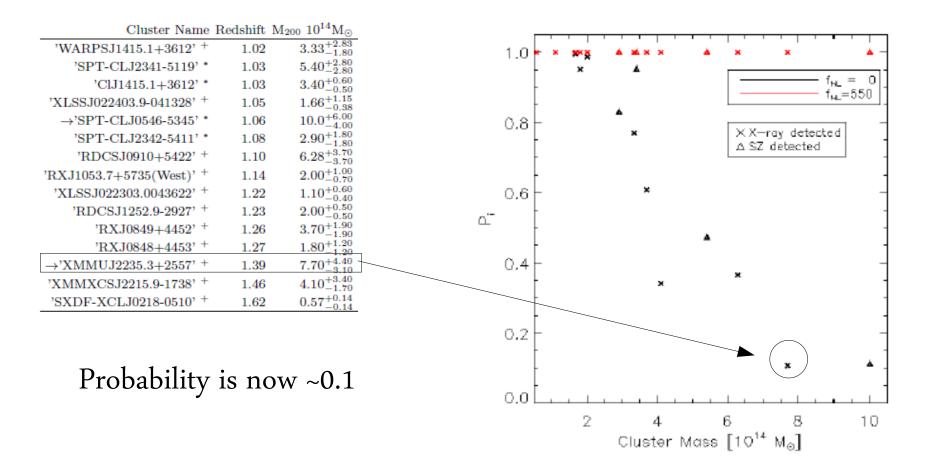
Only one unlikely, high redshift, cluster. The wonderfully named, XMMUJ2235.3+2557,

At redshift z=1.4, with mass = $(8.5 \pm 1.7) \times 10^{14} M_{\odot}$ (at the time)

$$\operatorname{Exp}(M, z, \ldots) = \int_{z_n}^{z_f} dz \int_{M_{\min}}^{M_{\max}} dM f_{\mathrm{sky}} \frac{dV}{dz} n_{\mathrm{NG}}$$

Probability of something existing at this redshift and mass or higher, in an 11 sq. deg. survey... $\sim 5 \times 10^{-3}$ Jee et al.

and now..? (with $f_{sky} \sim 180-280$)



However, what about all these new clusters?

and now..? (with $f_{sky} \sim 180-280$)

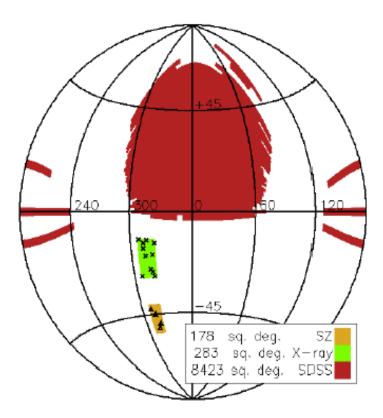
Cluster Name	Redshift	$M_{200} 10^{14} M_{\odot}$
'WARPSJ1415.1+3612' +	1.02	$3.33^{+2.83}_{-1.80}$
'SPT-CLJ2341-5119' *	1.03	$5.40^{+2.80}_{-2.80}$
'ClJ1415.1+3612' *	1.03	$3.40^{+0.60}_{-0.50}$
'XLSSJ022403.9-041328' +	1.05	$1.66^{+1.15}_{-0.38}$
$\rightarrow `\operatorname{SPT-CLJ0546-5345'}"$	1.06	$10.0^{+6.00}_{-4.00}$
'SPT-CLJ2342-5411' *	1.08	$2.90^{+1.80}_{-1.80}$
'RDCSJ0910+5422' +	1.10	$6.28^{+3.70}_{-3.70}$
'RXJ1053.7+5735(West)' +	1.14	$2.00^{+1.00}_{-0.70}$
'XLSSJ022303.0043622' +	1.22	$1.10\substack{+0.60\\-0.40}$
'RDCSJ1252.9-2927' +	1.23	$2.00^{+0.50}_{-0.50}$
'RXJ0849+4452' +	1.26	$3.70^{+1.90}_{-1.90}$
'RXJ0848+4453' +	1.27	$1.80^{+1.20}_{-1.20}$
\rightarrow 'XMMUJ2235.3+2557' $^+$	1.39	$7.70^{+4.40}_{-3.10}$
'XMMXCSJ2215.9-1738' +	1.46	$4.10^{+3.40}_{-1.70}$
'SXDF-XCLJ0218-0510' $^+$	1.62	$0.57\substack{+0.14\\-0.14}$

1.0f_{HL} = f_{HL}=550 0.8×X−ray detected ∆ SZ_detected × 0.6oʻ-0,4 ж 0.2 х 0.0 2 10 4 6 8 Cluster Mass [10 14 $M_{\odot}]$

Total probability = 3×10^{-4} !

Only 15 clusters, but collectively they are very unlikely.

getting perspective

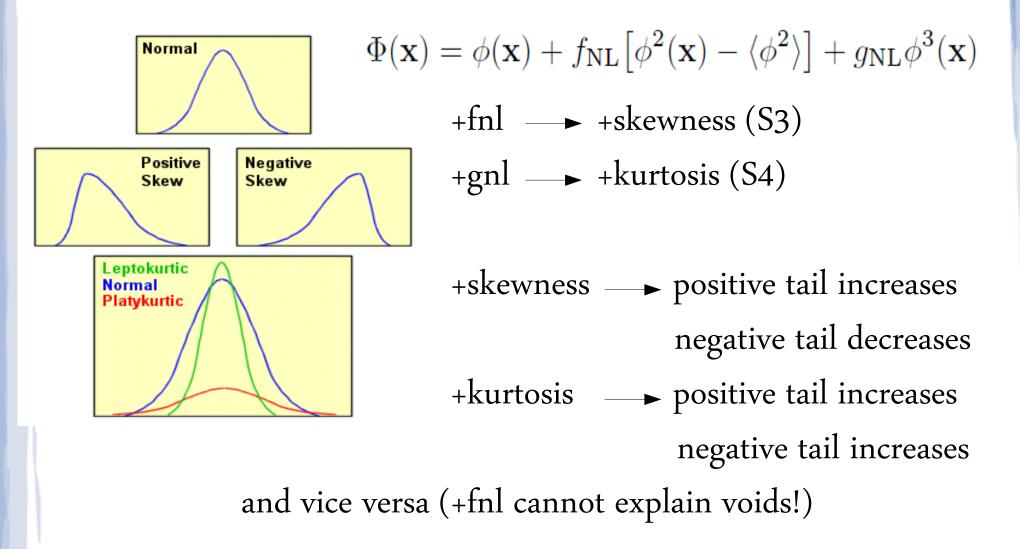


With just: yellow = SZ (178 sq. deg.), green = Xray (283 sq. deg.), the significance is 3×10^{-4} .

Caveats:

- Systematic mass errors?
- How do we pick where to look?
- 'independent' mass measurements?

Effect of NG on cluster formation



Quantitative effects of NG

- Theoretical Gaussian mass functions are getting better and better.
- Until recently weren't good enough, so typical method...

$$\mathcal{R}\left(M, z, f_{\rm NL}, g_{\rm NL}\right) = \frac{n_{\rm analytical}(M, z, f_{\rm NL}, g_{\rm NL})}{n_{\rm analytical}(M, z, f_{\rm NL} = 0, g_{\rm NL} = 0)}$$

$$\mathcal{R} = \exp\left(\delta_{ec}^3 \frac{S_3(M, f_{\rm NL})}{6\sigma_M^2}\right) \left\{\frac{1}{6} \frac{\delta_{ec}}{\delta_3} \frac{dS_3}{d\ln\sigma} + \delta_3\right\} \exp\left(\delta_{ec}^4 \frac{S_4(M, g_{\rm NL})}{24\sigma_M^2}\right) \left\{\frac{1}{24} \frac{\delta_{ec}^2}{\delta_4} \frac{dS_4}{d\ln\sigma} + \delta_4\right\}$$

- Sounds dodgy.... is dodgy... but tested against N-body simulations.
- In the approximate limit (large mass, high redshift) also matches best theory (see Aseem's talk).

Method used to constrain f_{NL} Cayon, Gordon, Silk and Hoyle, Jimenez, Verde

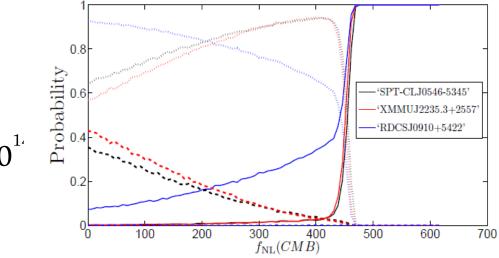
$$\operatorname{Exp}(M, z, \ldots) = \int_{z_n}^{z_f} dz \int_{M_{\min}}^{M_{\max}} dM f_{\mathrm{sky}} \frac{dV}{dz} n_{\mathrm{NG}}$$

XMMUJ2235.3+2557

$$7.7^{+4.4}_{-3.1} \times 10^{14} M_{\odot}$$

Three mass bins

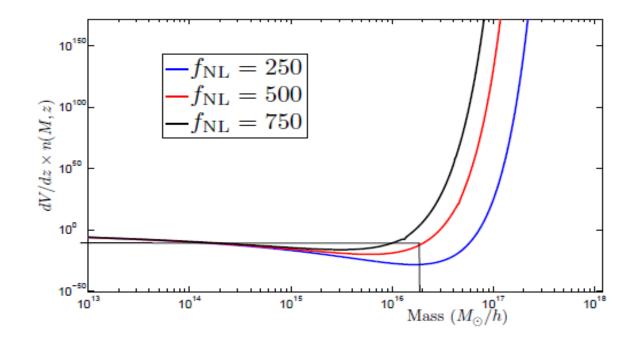
• $M < 4.6 \ge 10^{14}$ • $4.6 \ge 10^{14} < M < 12.1 \ge 10^{14}$ • $12.1 \ge 10^{14} < M$



What is the probability that `most massive' cluster is in each bin?

Integrate to ∞ ? (be careful)

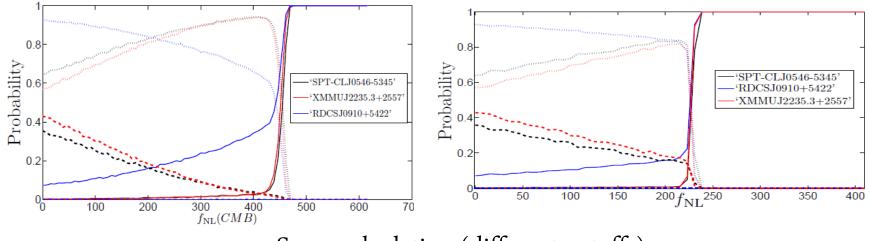
$$\operatorname{Exp}(M, z, \ldots) = \int_{z_n}^{z_f} dz \int_{M_{\min}}^{M_{\max}} dM f_{\mathrm{sky}} \frac{dV}{dz} n_{\mathrm{NG}}$$



 $\nu = \delta_{ec} / \sigma_M$ $\mathcal{R}_{NG} \Rightarrow \exp\left(\frac{\nu^3}{6} (\sigma S_3)\right)$

If Mmax < Mturn some of the probability is unphysical. Once Mmax << Mturn almost all the probability is unphysical. But, if Mmax > Mturn results can be trusted.

Choose your fnl?



- Same calculation (different cutoffs)
- Looks bad, yes, but underneath a critical fnl, these are actually identical!
- In general, underestimated fnl

We know this shouldn't happen. What is going wrong? Is it actually R?

Gaussian mass function comparison

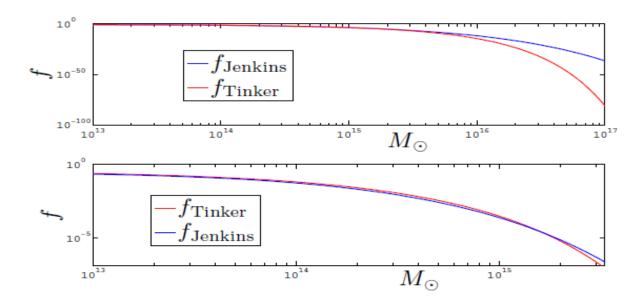
What should the asymptotic behaviour be? $f \sim \exp(-c/\sigma^2)$

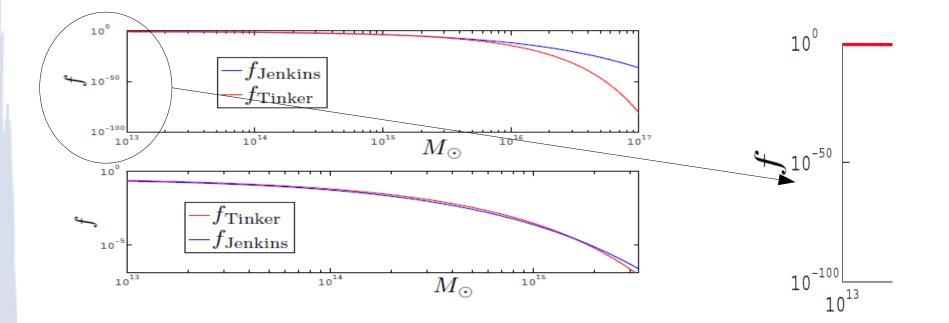
Jenkins et. al (?)
$$f = 0.301 \exp\left[-\left|\ln \sigma_M^{-1}(z) + 0.64\right|^{3.82}\right]$$

Tinker et. al. (yes)
$$f(\sigma) = A\left[\left(\frac{\sigma}{b}\right)^{-a} + 1\right]e^{-c/\sigma^2}$$

Shows how important it is to have a good understanding of expectations

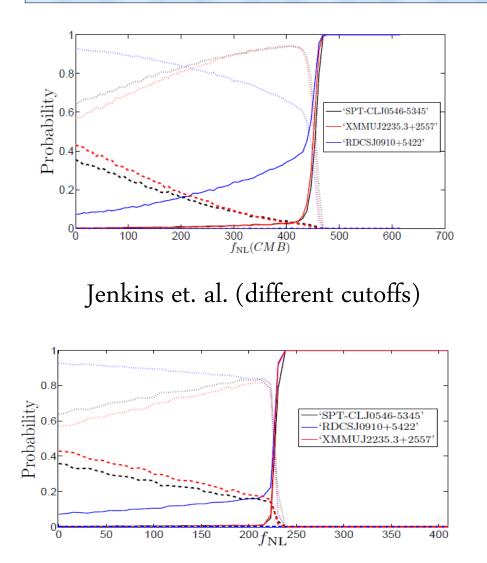
Those responsible for the theoretical mass functions must enjoy the irony

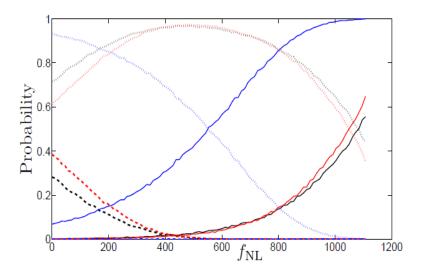




At large masses and redshifts, the difference is big

Choose your fnl?

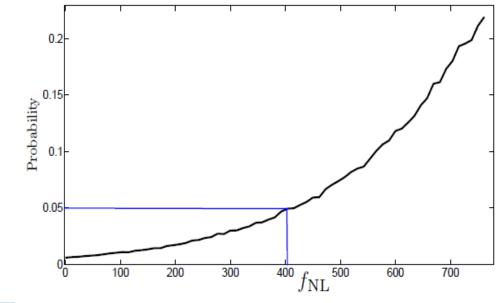




Tinker et al. (no cutoff dependence)

- Looks bad, yes, but underneath a critical fnl, these are **still** identical!
- In general, cutoff effect underestimates fnl

A lower bound for fnl



 $-10 < f_{\rm NL}^{\rm local} < 74$

- Treat mass distribution of each cluster as log-normally distributed.
- For each cluster sample over masses and ask "what is the probability that this cluster could exist?"
- The final probability (plotted) is the product of all 15 cluster probabilities.

 $f_{\rm NL}\gtrsim411$ This is similar to Hoyle, Jimenez, Verde $f_{\rm NL}$ > 478

Lower bound ~ 6 times larger than upper bound

Calculating g_{NL} , (and why not h_{NL})?

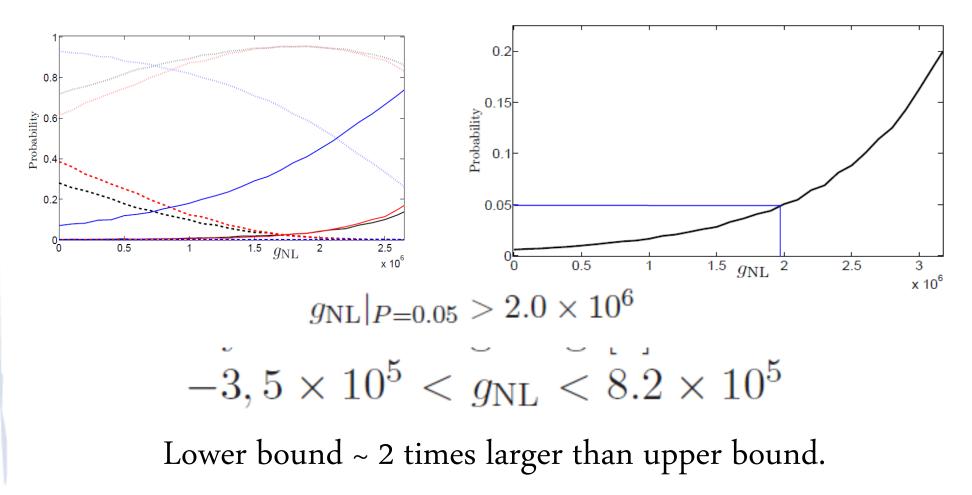
What about bounds on g_{NL}?

- The calculation is exactly the same as for fNL, except we use the kurtosis, S4, instead of the skewness, S3.
- We assume f_{NL} is negligible ($f_{NL} < 50$ is small enough)

Why g_{NL}?

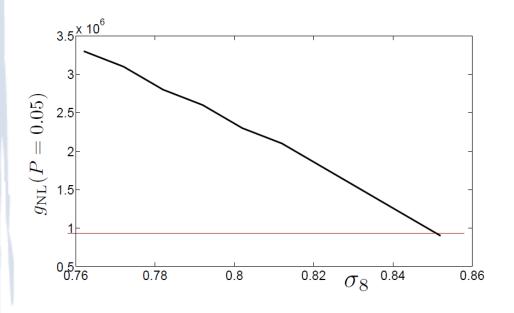
- \bullet We've already introduced one extra parameter for $f_{\rm NL},$ the running.
- $\bullet\,\,g_{\rm NL},$ is the next in the expansion.
- Normally, $g_{NL} \sim f_{NL}^2$ and $h_{NL} \sim f_{NL}^3$. To get around this in theory requires complexity (as does large scale dependence on f_{NL}). The higher the term in the expansion, the more complexity...
- $\bullet\,$ $F_{\rm NL},\,h_{\rm NL}$ make voids less likely, $g_{\rm NL}$ makes them more likely.

For the same calculations as fNL...



σ_8 degeneracy

What if we change $\mathbf{\sigma}_8$ and ask the question again?



- Looks promising. Both parameters are within WMAP bounds without running
- We need to be careful before jumping to conclusions though. WMAP bound will be similarly dependent on $\mathbf{\sigma}_{8.}$

Future prospects

- Find more clusters! (or more sky without them)
- Marginalise over cosmology without cutoff contributing
- fnl and gnl bounds as function of sigma8 for other non-Gaussianity probes
- More accurate gnl
- N-body to values of mass and redshift that probe far enough into the tail
- Look at voids
- Other explanations (step in primordial spectrum, change in expansion history)
- Telling the difference between fnl, gnl, step, history...

Summary and motivation

- There exist a number of high redshift clusters that are very unlikely in LCDM.
- Non-Gaussianities can explain the existence of these clusters.
- Current fNL constraints apply mass functions too far into their tails.
- gNL is a higher order statistic but has attractions that distinguish it from fNL (e.g. voids, no scale dependence required, same number of extra parameters required)

These clusters **do** exist. They **are** "too big too early" for LCDM. (subject only to systematic uncertainties on mass measurements by three independent methods)

