Delving the symmetries of CMB correlation function

Nidhi Joshi

Centre for Theoretical Physics Jamia Millia Islamia

Collaborators: Sanjay Jhingan, Tarun Souradeep & Amir Hajian

Based on: Phys. Rev. D 81, 083012 (2010) astro-ph/0912.3217

FNG-HRI 2010 12/17/201

Outline

1) Motivation-Evidence of Statistical Isotropy violation?

2) An Introduction to Bipolar formalism.

3) Symmetries and Bipolar space.

4) Bipolar coefficients- SI and non-SI models.

5) Conclusion.

Is statistical isotropy broken?

PFNG-HRI 2010 12/17/2010

Evidences of SI Breakdown?

WMAP anomalies (deviations from isotropy- Inconsistent with standard cosmological model)

Low multipole Peculiarities

- Peculiar alignment of quadrupole & octupole along a preferred axis.
 (Tegmark et al. 2003; de Oliveira-Costa et al. 2004; Schwarz et al. 2004; Copi et al. 2006).
- Indications of preferred axis(Land & Magueijo 2005)
- Suppression of power in low I multipoles(Bennett et al 1992,2010);

North-south power asymmetry

(Eriksen, et al. 2004,2007, Hansen et al. 2004,2007, 2009
 Larson & Wandelt 2004, Park 2004, Hoftuft2009, Ackerman et al. 2007, Groeneboom et al. 2009).

Axis of maximum asymmetry found to be close to ecliptic

Outliers in wmap-seven year data(Bennett et al. 2010)

Statistical properties are <u>not</u> invariant under rotation of the sky ???

12/17/2010

The quadrupolar bipolar power spectra, binned with I = 50, using the KQ75y7 mask.

Bipolar Spherical Harmonics

PFNG-HRI 2010 12/17/2010

Basics of Bipolar Statistics

□ Correlation is a two point function & can be expanded in bipolar spherical harmonics basis.

$$C(\hat{n}_1, \hat{n}_2) = \sum_{l_1, l_2, J, M} A^{JM}_{l_1 l_2} \{ Y_{l_1}(\hat{n}_1) \otimes Y_{l_2}(\hat{n}_2) \}_{JM}$$

 $A_{l_1 l_2}^{JM} \rightarrow$ Bipolar spherical harmonic coefficients(BipoSH)

$$\{Y_{l_1}(\hat{n}_1)\otimes Y_{l_2}(\hat{n}_2)\}_{JM} \to \mathbb{B}$$
ipolar spherical harmonics

Convenient basis of expansion for functions depending on two vector directions

$$\{Y_{l_1}(\hat{n}_1) \otimes Y_{l_2}(\hat{n}_2)\}_{JM} = \sum_{m_1m_2} C_{l_1m_1l_2m_2}^{JM} Y_{l_1m_1}(\hat{n}_1) Y_{l_2m_2}(\hat{n}_2)$$
Recall $Y_{lm}(\hat{n})$

$$|l_1 - l_2| \le L \le l_1 + l_2$$
Triangularity conditions
 $M = m_1 + m_2$
Productions for different set of l_1, l_2, J, M

1) Bipolar coefficients

Inverse transform

$$A_{l_1 l_2}^{JM} = \int d\Omega_{\hat{n}_1} \int d\Omega_{\hat{n}_2} C(\hat{n}_1, \hat{n}_2) \{Y_{l_1}(\hat{n}_1) \otimes Y_{l_2}(\hat{n}_2)\}_{JM}^*$$
$$a_{lm} = \int d\Omega_{\hat{n}} \Delta T(\hat{n}) Y_{lm}(\hat{n}) \quad \text{RECALL}$$

$$A_{l_1 l_2}^{JM} = \sum_{m_1 m_2} (-1)^{m_2} < a_{l_1 m_1} a_{l_2 m_2}^* > C_{l_1 m_1 l_2 - m_2}^{JM}$$

Measures cross-correlation in spherical harmonic Coefficients.

Combining BipoSH in different ways to reduce Cosmic Variance.

2) Reduced Bipolar Coefficients- rBipoSH

Orientation Dependent

3) Bipolar Map

$$A_{LM} = \sum_{l_1=0}^{\infty} \sum_{l_2=|L-l_1|}^{L+l_1} A_{l_1 l_2}^{LM}$$

$$\theta(\hat{n}) = \sum_{LM} A_{LM} Y_{LM}(\hat{n})$$

12/17/2010

4) Bipolar Power Spectrum Recall
$$C_l = \frac{1}{(2l+1)} \sum_m |a_{lm}|^2$$

Orientation- independent measure $\kappa_L = \sum_{l_1, l_2, M} |A_{l_1 l_2}^{LM}|^2$
 $\kappa_L = \left(\frac{2L+1}{8\pi}\right)^2 \int d\Omega_{\hat{n}_1} \int d\Omega_{\hat{n}_2} \left[\int dR \,\chi^L(R) \,C(R\hat{n}_1, R\hat{n}_2)\right]^2$

A weighted average of the correlation function over all rotations

Breakdown of SI implies non-zero components of BiPS

How do various symmetries show up in Bipolar space???

Bipolar harmonic coefficients catches the symmetries Of the underlying correlation function!

PFNG-HRI 2010 12/17/2010

10

Set of all possible Bipolar coefficients indexed by l1,l2,L,M

The various symmetries...

 $C(\hat{n}_1, \hat{n}_2)$ where $\hat{n} \to (\theta, \phi)$

Correlation function is invariant under:

- complex conjugation(Reality)
- symmetric under exchange of n1 and n2.
- point reflection $\theta \to \pi \theta$ and $\phi \to \pi + \phi$
- Mirror reflection $\theta \to \pi \theta$ and $\phi \to \phi$ about x-y plane
- $\bullet \quad \theta \to \theta, \phi \to -\phi$
- $\theta \to -\theta$ or $\phi \to \phi + \pi$
- $\theta \rightarrow -\theta$ and $\phi \rightarrow -\phi$

change of argument signs

Symmetries of correlation function & Bipolar coefficients

• Correlation Function is Real $C(\hat{n_1}, \hat{n_2}) = C^*(\hat{n_1}, \hat{n_2})$

In rotational or azimuthal symmetries M = 0, non-vanishing bipolar coefficients have $l_1 + l_2 + L$ =even

• Correlation function is Symmetric

$$C(\hat{n}_{1}, \hat{n}_{2}) = C(\hat{n}_{2}, \hat{n}_{1})$$

$$A_{l_{1}l_{2}}^{JM} = (-1)^{l_{1}+l_{2}+J}A_{l_{2}l_{1}}^{JM}$$

$$A_{ll}^{JM} = A_{ll}^{JM}\delta_{J,2k} \qquad k = 0, 1, 2, 3...$$

$$A_{l0}^{JM} = A_{0l}^{JM}\delta_{J,l}$$
Even parity BipoSH
are symmetric.
Odd parity ones
are anti-symmetric

• Point Reflection Recall $Y_{lm}(\hat{n}) = (-1)^l Y_{lm}(\hat{n})$ $C(\theta_1, \phi_1, \theta_2, \phi_2) = C(\pi - \theta_1, \phi_1 + \pi, \pi - \theta_2, \phi_2 + \pi)$ $l_1 + l_2 = \text{even}$

• Mirror Reflection Recall $Y_{lm}(\hat{n}) = (-1)^{l+m} Y_{lm}(\hat{n})$

$$C(\pi - \theta_1, \phi_1, \pi - \theta_2, \phi_2) = C(\theta_1, \phi_1, \theta_2, \phi_2)$$

$$l_1+l_2+M= ext{even}$$
 $C(....)=-C(....)$ PFNG-HRI 2010

12/17/2010

Anti-Symmetry leads to an odd value of above combinations. 14

Further Symmetries and BipoSH......

$$C(\theta_1, \phi_1, \theta_2, \phi_2) = C(\theta_1, -\phi_1, \theta_2, -\phi_2)$$

Real Bipolar coefficients

Anti-symmetry gives purely imaginary Bipolar coefficients

$$C(\theta_{1}, \phi_{1}, \theta_{2}, \phi_{2}) = C(\theta_{1}, \phi_{1} + \pi, \theta_{2}, \phi_{2} + \pi)$$

OR

$$C(\theta_{1}, \phi_{1}, \theta_{2}, \phi_{2}) = C(-\theta_{1}, \phi_{1}, -\theta_{2}, \phi_{2})$$

$$M = \text{even}$$

Anti-Symmetry restricts M to be **odd**.

Symmetry $\hat{n} \rightarrow -\hat{n}$ $C(\theta_1, \phi_1, \theta_2, \phi_2) = C(-\theta_1, -\phi_1, -\theta_2, -\phi_2)$

Real Bipolar coefficients & M = even

Bipolar coefficients & symmetries-SI and non-SI models...

PFNG-HRI 2010 12/17/2010

Statistically Isotropic CMB

Correlation function is invariant under the rotations

$$C(\hat{n}_1, \hat{n}_2) = C(\hat{n}_1, \hat{n}_2) = C(\Theta) = \frac{1}{4\pi} \sum_{l=2}^{\infty} (2l+1)C_l P_l(\cos\Theta)$$

 $\cos\Theta = \cos\theta_1 \cos\theta_2 + \sin\theta_1 \sin\theta_2 \cos(\phi_1 - \phi_2)$

Correlation function doesn't depend on the two direction, only on the angle between them

- Real coefficients
- l1+l2=even
- Rotational symmetry gives M=0 hence l1+l2+J=even.
- J=0
- Symmetric coefficients.

Bipolar coefficients

Bipolar power spectrum

$$\phi \to -\phi \quad \text{RECALL}$$

$$\theta \to \pi - \theta \text{ and } \phi \to \pi + \phi$$
$$A_{l_1 l_2}^{JM} = (-1)^{l_1 + l_2 - J} A_{l_2 l_1}^{JM}$$

$$A_{l_1 l_2}^{JM} = (-1)^{l_1} C_{l_1} \sqrt{2l_1 + 1} \delta_{l_1 l_2} \delta_{J0} \delta_{M0}$$

A.Hajian and T. Souradeep, ApJ **597** L5 (2003)

12/17/2010

PFNG-HRI 2010

 $\kappa_J = \kappa_0 \delta_{J0}$

Cylindrical Symmetry:

Rotational symmetry about z-axis

 $C^{(A)}(\theta_1,\phi_1,\theta_2,\phi_2) = C^{(A)}(\theta_1,\phi_1 + \Delta\phi,\theta_2,\phi_2 + \Delta\phi)$

Has a continuous φ symmetry

M=0
Hence l1+l2+J=even
Real coefficients

symmetric bipolar coefficients under exchange of l1 and l2.

If correlation function further has reflection symmetry(about x-y plane) then, $l_1+l_2=even$, which will imply J=even.

Primordial homogenous magnetic field

Homogenous magnetic fields break
 Statistical Isotropy by inducing
 Preferred direction.

Correlation function depends not only on the angular separation b/w two points but also on their orientation w.r.t magnetic field. Cross Correlation b/w off diagonal terms

Magnetic field induces off-diagonal correlations R. Durrer (1998) $\langle a_{l_1m_1}a_{l_2m_2}^*\rangle = \delta_{m_1m_2}\delta_{l_1l_2}C_{l_1} + \delta_{m_1m_2}(\delta_{l_1+1,l_2-1} + \delta_{l_1-1,l_2+1})D_{l_1}$ $D_l(m) = \langle a_{l-1m}^*a_{l+1m}\rangle \equiv \langle a_{l+1m}^*a_{l-1m}\rangle$ power spectrum of off-diagonal elements of covariance matrix.

- Azimuthally symmetric, M=0
- l1+l2+J=even
- Further l1+l2=even
- Hence in this case, **J**=even

$$A_{l_1 l_2}^{JM} = (-1)^{l_1} (2l_1 + 1)^{1/2} C_{l_1} \delta_{l_1 l_2} \delta_{J0} \delta_{M0} + D_{l_1} \delta_{l_1, l_2 \pm 2} \delta_{M0} \delta_{J, 2k} \sum_m (-1)^m C_{l_1 m l_2 - m}^{J0}$$

BiPS of Primordial Magnetic Fields

Amir Hajian, PhD thesis

2n-fold discrete Cylindrical symmetry

- Compact universe with flat universal cover exhibits 2*n*-fold rotational symmetry about an axis.
- There are six possible compact models of the universe with flat UC by identifying opposite sides of fundamental polyhedra(parallelopiped).

1)	Identify opposite faces by translations.
2)	Opposite faces, one pair being rotated by angle π
3)	Opposite faces, one pair being rotated by $\frac{\pi}{2}$
4)	Opposite faces, all three pairs being rotated by π
5)	Opposite faces, top face rotated by an angle $\frac{2\pi}{3}$ with respect to bottom face.
6)	Opposite faces, the top face being rotated by an angle $\frac{\pi}{3}$ with respect to bottom face.

n-fold rotational symmetry

Correlation function having *n*-fold(discrete) rotational symmetry about z-axis:

$$C^{(A)}(\theta_1, \phi_1, \theta_2, \phi_2) = C^{(A)}(\theta_1, \phi_1 + \frac{2\pi}{n}, \theta_2, \phi_2 + \frac{2\pi}{n})$$

Even-fold cases will always have a symmetry

$$C(\theta_1, \phi_1, \theta_2, \phi_2) = C(\theta_1, \phi_1 + \pi, \theta_2, \phi_2 + \pi)$$

Which implies, M=even

All possible Euclidean models of compact universe exhibit reflection symmetry about x-y plane:

$$C(\theta_1, \phi_1, \theta_2, \phi_2) = C(\pi - \theta_1, \phi_1, \pi - \theta_2, \phi_2)$$

l1+l2=even

Form of correlation function under even-fold symmetry.

$$C^{(A)}(\theta_1, \phi_1, \theta_2, \phi_2) = \sum_{m_1, m_2} f_{m_1, m_2}(\theta_1, \theta_2) \delta_{m_1 + m_2, nk} \cos(m_1 \phi_1 + m_2 \phi_2)$$

Real coefficients

Temperature Modulation

$$\Delta T(\hat{n}) = \Delta T^{i}(\hat{n})[1 + f(\hat{n})]$$

Statistical isotropic temperature fluctuation

Modulation function

$$C(\hat{n_1}, \hat{n_2}) = C(\Theta)[1 + f(\hat{n_1}) + f(\hat{n_2})] \qquad f(\hat{n}) = \sum_{lm} f_{lm} Y_{lm}(\hat{n})$$
$$C(\hat{n_1}, \hat{n_2}) = \sum_{l_1 l_2 LM} A_{l_1 l_2}^{JM} \sqrt{\frac{(2l_1 + 1)(2l_2 + 1)}{4\pi(2J + 1)}} C_{l_1 0 l_2 0}^{J0} \{Y_{l_1}(\hat{n_1}) \otimes Y_{l_2}(\hat{n_2})\}_{JM}$$

$$C_{l_10l_20}^{J0}$$
 is non-vanishing for $l_1 + l_2 + L$ =even

- Symmetry of the correlation function is guiding to have a restricted bipolar basis, having I1+I2+J=even.
- M=even

- -

• L=l, so the modulation in temperature space directly shows up in Bipolar space

12/17/2010

Toy Models- SI violation

Correlation function- one preferred axis

• To break the rotational invariance of correlation function, introduce a preferred direction(with reflection symmetry).

$$C(\hat{\hat{n}}_1, \hat{n}_2) = 1 - \epsilon (\hat{q}_1 \cdot \hat{z} - \hat{q}_2 \cdot \hat{z})^2 \qquad \epsilon < \frac{1}{4}$$

Х

- Given the correlation function, what all Bipolar coefficients one can expect???? Check for symmetries.....
- Real coefficients
- l1+l2=even
- Azimuthal symmetry guarantees M=0, hence l1+l2+J=even.
- J=even, vanishes for J odd.
- Symmetric coefficients.

Non-vanishing independent BipoSH are $A_{00}^{00}, A_{20}^{20}, A_{11}^{00}, A_{11}^{20}$

$$\kappa_{0} = \frac{16\pi^{2}}{27} [27 - 36\epsilon + 16\epsilon^{2}]$$

$$\kappa_{2} = \frac{16}{15} (\frac{8\pi\epsilon}{3})^{2}$$
PFING-HR

use real space representation of kappa and get the same results!!!(Amir Hajian PhD thesis)

2010

12/

□ *Correlation function, having preferred direction(z-axis) as:*

$$C(\hat{n}_1, \hat{n}_2) = (1 + \epsilon \hat{n}_1 \cdot \hat{z})(1 + \epsilon \hat{n}_2 \cdot \hat{z})$$

NO reflection symmetry

Non-vanishing independent BipoSH are $A_{00}^{00}, A_{10}^{10}, A_{11}^{00}, A_{11}^{20}$

$$\kappa_0 = \frac{16\pi^2}{27} [27 + \epsilon^4] \qquad \qquad \kappa_1 = \frac{32\pi^2 \epsilon^2}{3}$$
$$\kappa_2 = \frac{32\pi^2 \epsilon^4}{27}$$

Correlation function with cross terms: Two preferred axes, x and y-axes

$$C(\hat{n}_1, \hat{n}_2) = [(\hat{n}_1 - \hat{n}_2).\hat{x}][(\hat{n}_1 - \hat{n}_2).\hat{y}]$$

Imaginary coefficients

l1+l2=even
l1+l2+M=even
M=even

Symmetric coefficients.

Non-vanishing independent BipoSH are A_{22}^{20}, A_{11}^{22}

 $\kappa_0 = 0$

$$\kappa_2 = \frac{256\pi^2}{45}$$

Correlation function, having three preferred axis

 $C(\hat{n}_1, \hat{n}_2) = 1 - (\epsilon_1 [(\hat{n}_1 - \hat{n}_2) \cdot \hat{x}]^2 + \epsilon_2 [(\hat{n}_1 - \hat{n}_2) \cdot \hat{y}]^2 + \epsilon_3 [(\hat{n}_1 - \hat{n}_2) \cdot \hat{z}]^2)$

Real coefficients
l1+l2+M=even
M=even

Non-vanishing independent BipoSH are $A_{00}^{00}, A_{20}^{20}, A_{20}^{22}, A_{11}^{22}, A_{11}^{00}, A_{11}^{22}$

$$\kappa_0 = 16\pi^2 + \frac{256\pi^2}{27} \sum_{\epsilon^2} + \frac{512\pi^2}{27} \Pi_{\epsilon} - \frac{64\pi^2}{3} \sum_{\epsilon} \frac{1}{27} \prod_{\epsilon} \frac$$

$$\kappa_2 = \frac{64\pi^2}{135} (\sum_{\epsilon^2} -\Pi_\epsilon)$$

if $\epsilon_1 = \epsilon_2 = \epsilon_3$, then $\kappa_2 = 0$

Х

Conclusion & Discussion

- We conclude that symmetries of the correlation function are structurally imprinted in Bipolar space.
- > We studied various models of SI violation leave distinct imprints on bipolar space.
- ➢ For homogenous magnetic field, BipoSH's are restricted to even L and M=0.
- This formalism can be used as a powerful tool to distinguish various types of SI breakdown.

