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Scale of inflation
Observational upper bound on primordial GW: V ! 1016 GeV ∼MGUT

Close to “unification scale”

αi = e2
i /!c

log10(E/GeV )3 16 18

α3

α2

α1
αgrav

Couplings unify (assuming MSSM above 1 TeV ) at approximately 1016 GeV.
Graph not to scale.

See also:

• p decay

• ν mass
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I. Introduction
φ -- inflaton V (φ) -- potential energy driving inflation



Detectable gravitational radiation requires large fields

⇒

∆ϕ! mpl

from observations

Lyth, hep-ph/9606387

upper bound on V upper bound on V’/V

•
(

δρ
ρ

)
= cV 1/2

m3
pl

V
V ′ ∼ 10−5

• Ne =
∫

dtH =
∫ dφ

φ̇
H = 3

m2
pl

∫
dφ V

V ′ ! 60
to match observed flatness

upper bound on dφ
dN ,∆φ during inflation

⇒
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Effective field theory and large φ

Effective field theory: expansion in 1/M for some UV scale M

V =
∑

n gn
φn

Mn−4

generically
• gn ∼ 1
• M ! mpl

Expansion breaks down for φ >M

• New degrees of freedom could become light

• Relevant d.o.f. very different

unless forbidden by symmetry
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A sort of measure of 
“tastefulness”



Inflation is a highly nongeneric theory

Consider V ∼ m2φ2 or V ∼ λφ4

δρ/ρ ∼ 10−5, Ne ! 60 ⇒ • m2

m2
pl
∼ 10−12

• λ ∼ 10−14

δV =
∑

n gn
φn

Mn−4Corrections

all gn must be small: infinite fine tuning!

else e.g. η = m2
pl

V ′′

V ≥ 1

Slow roll inflation requires approximate shift symmetry

φ→ φ + a
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UV completions make slow roll difficult to maintain

• Gravity breaks continuous global symmetries 
(Hawking radiation/virtual black holes, 
wormholes,...)

• String theory: continuous global symmetries tend to 
be gauged, anomalous

• Anomalous symmetries broken by nonperturbative 
effects (e.g. Peccei-Quinn symmetry of axion)

Continuous global symmetries like φ→ φ + a are always (we think) broken 

Holman et al; Kamionkowski and 
March-Russell; Barr and Seckel; 
Lusignoli and Roncadelli; Kallosh, 
Linde, and Susskind

δV ∼ Λ4
∑

n cn cos(nφ/fφ)
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(NB: slow roll is safe from perturbative loops of inflatons, gravitons) Smolin, Linde, KLS



Candidate solution: axion monodromy inflation

Consider compact scalar field  ϕ ∼ ϕ + f ; f " mpl

Theory invariant under shift ϕ→ ϕ + f physical state need not be

φ

V (φ)

fφ

n = −1
n = 0

n = 1n = −2

Let axion wind N times such that Nfφ ! mpl

Silverstein and Westphal; 
McAllister, Silverstein, and Westphal

Compactness of field space seems to control quantum corrections
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Goal: 4d effective field theory analysis

• Quantum corrections studied in specific string 
models and appear to be viable

• In all known string examples, effective potential for 
large fields has exotic power laws

• Basic behavior, corrections have been studied model 
by model; models are of necessity complicated

V ∼M4−pϕp<2

Silverstein and Westphal; 
McAllister, Silverstein, and Westphal
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Effective field theory approach

• Input basic fields, symmetries, topology of field space

• Expand action in powers of 1/M (M = UV scale), include all 
terms consisten with symmetries

• Pinpoints physics behind suppressing corrections to slow roll

• Isolates fine tuning required.

• Provides a framework for building new string models

String theory has a complicated landscape
Realistic models very hard to construct
Quantum corrections difficult to compute

⇒ 4d effective field theory
analysis is always important
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II. 4d models of axion monodromy

Axion-four form model Kaloper and Sorbo

Sclass =
∫

d4x
√

g
(
m2

plR− 1
48F 2 − 1

2 (∂ϕ)2 + µ
24ϕ∗F

)

Fµνλρ = ∂[µ Aνλρ] U(1) gauge symmetry: δAµνλ = ∂[µ Λ νλ]

ϕ periodic: ϕ→ ϕ + fϕ

F does not propagate.
U(1) quantized Fµνλρ = ne2εµνλρ ; n ∈ Z

n can jump across domain walls/membranes
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Dynamics

Hamiltonian:

Compact U(1): pA = ne2

Htree = 1
2p2

φ + 1
2 (pA + µφ)2 + grav.

Consistency condition: µfϕ = e2

conserved by Htree

Jumps by membrane nucleation

Realizes monodromy inflation: theory invariant if 

ϕ→ ϕ + fϕ ;n→ n− 1

Good model for inflation: fits data well if µ ∼ 10−6mpl

+ observable GW

φ

V (φ)

fφ

n = −1
n = 0

n = 1n = −2

Single massive scalar degree of freedom Dvali; Kaloper and Sorbo

pA
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Large-N gauge dynamics

Sclass =
∫

d4x
√

g
(
m2

plR− 1
4g2

Y M
trG2 − 1

2 (∂ϕ)2 + ϕ
fϕ

trG ∧G
)

G: field strength for U(N) gauge theory with N large; strong coupling in IR

Htree = Hgauge + 1
2p2

ϕ + 1
2

(
nΛ2 + µϕ

)2

strong coupling scale of U(N) theoryΛ

Witten; Giusti, Petrarca, and TaglientiInstanton expansion breaks down

µ = Λ2/fϕ

Can be related to 4-form version: Fµνλρ ∼ tr G[µν Gλρ]
Dvali
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III. Quantum corrections

Sclass =
∫

d4x
√

g
(
m2

plR− 1
48F 2 − 1

2 (∂ϕ)2 + µ
24ϕ∗F

)

µ ∼ 10−6mpl to match constraints on δρ/ρ, Ne

What are the possible corrections?

Effective field theory:

• Allow all terms consistent with symmetries, topology of field space
• Dimenson-d operators suppressed by Md−4

uv

Corrections controlled by:

• Compactness of scalar, U(1)
• Small coupling µ/Muv ! 1
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Direct corrections to
Periodicity of ϕ ⇒ quantum corrections to S must be

V (ϕ)

• Functions of
• periodic functions of ϕ

∂nϕ

δV ∼ Λ4
∑

n>1 cn cos(nϕ/fϕ)
V (ϕ)

ϕ

fφ ! mpl

Monodromy potential modulated by periodic effects

Vcorr ! 1
2µ2ϕ2 ⇒ Λ4 !M4

gut

η = m2
pl

V ′′

V ! 1⇒ Λ4

f2
ϕ
! V

m2
pl

= H2

Example: feasible if Λ ∼ .1 Mgut, f > .01 mpl
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Λ =Λ QCD
 Gauge dynamics:

from couplings ϕ
fϕ

tr G ∧G
instanton corrections take above form (if dilute gas approx good)
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Resonant non-Gaussianity Chen, Easther, Lim; Flauger, 
McAllister, Pajer, Westphal; Flauger 
and Estphal

Consider oscillations rapid on a Hubble time.

fNL ∼ 〈ζ3〉
〈ζ2〉2 ζ : gauge invariant scalar perturbation

〈ζ(k1)ζ(k2)ζ(k3)〉 enhanced when
∑

i |ki|phys = ϕ̇
fϕ

δV ∼ cos
(

ϕ0+ϕ̇tprop

fϕ

)

fNL,res ∼ Λ4
√

ϕ̇
H5f5

ϕ

Λ ∼ .3Mgut, fϕ ∼ 0.1mpl (slow roll starting to break down)

⇒ fNL,res ∼ 34



Caveat: moduli stabilization

In any string theory: couplings in V will depend on moduli ψ

V = V0(ψ) + 1
2µ2

(
ψ

mpl

)
ϕ2 + Λ4

∑
n cn

(
ψ

mpl

)
cos

(
nϕ
fϕ

)

Periodic corrections change sign many times since fφ ! mpl

Moduli must be stabilized by different 
effects than instantons coupling to inflaton

Large ϕ! mpl sources potential for ψ

Stability requires

M2
ψ ≡ V ′′

0 (ψ)" Λ4

m2
pl

M2
ψ ! µ2ϕ2/m2

pl ∼ µ2/ε ∼ H2
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Indirect corrections to V (ϕ)

Additional corrections must respect periodicity of ϕ

corrections to dynamics of four-form F⇒

Sclass =
∫

d4x
√

g
(
m2

plR− 1
48F 2 − 1

2 (∂ϕ)2 + µ
24ϕ∗F

)

δL =
∑

n dn
F 2n

M4n−4Consider

Integrate out F: F ∼ µϕ + . . .

Safe if: M4 ! Vclass ∼M4
gut

Corrections of the form δL =
(∑

n=1 dn+1
F 2n

M4n

)
(∂ϕ)2

δVeff = Vclass ×
(∑

n=1 dn+1
V n

class
M4n

)

Gives same effect after redefining ϕ to be canonically normalized 
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Small M not always fatal

Many string theory scenarios:

M2 ! mplV (ϕ) = M4
1

√
1 + ϕ2

M2
2

• For small ϕ V ∼ 1
2µ2ϕ2 ;µ = M4

1
M2

2

• For ϕ! mpl V ∼ m3ϕ; m3 = M4
1

M2

Silverstein and Westphal; 
McAllister, Silverstein, and Westphal

Out of range of 4d effective field theory; requires understanding 
of UV completion (eg 10d SUGRA) to compute
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Example: Coleman-Weinberg corrections

Consider scalar fields ψn (e.g. moduli, KK states, etc.)

F 2 ∼ Vclass = 1
2µ2ϕ2Integrate out F:

δL ∼ 1
2 (∂ψn)2 − 1

2M2
nψ2

n −
∑

k dn,k
F 2n

M4n−2 ψ2
n

Effective mass for ψ : M2
eff = M2

ψ + M2
∑

k d′
n,k

V 2

M4n

Integrate out ψn : δVCW (ϕ) ∼Meff (φ)4 ln Meff

M

Must include all such states with M2
n < M2

Corrections safe if neffM2
ψ !M2 ;V !M4
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Kaluza-Klein corrections

Roughly neff = m2
pl

m2
∗

;m∗ = (ms, mpl,10) ! Mgut

Corrections safe if Vclass !M4

VCW =
∑

KK

∫
d4q ln

(
q2 + M2

n,eff

)

∼ VD

∫
dD+4q ln

(
q2 +

∑

k

dk
V k

tree

M4k−4m2
pl

)

∼ mD+4
∗ VD(ψ) + m2

∗VD
∑

k

dk
V k

tree

M4k−4m2
pl

∼ δV (ψ) + Vtree F

(
Vtree

M4

)
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Additional “stringy” light states

Shift τ n times; D-brane becomes n times as long.

W p

Consider square torus with sides of length L; D4 wrapped n times

m2
W = m4

sL2

1+n2 ; m2
p = 1

L(1+n2) ;n = ϕ
fϕ

= F
µfϕ

n >> 1: strings have spectrum of asymmetric torus with sides of length

LW = n
m2

sL ;Lp ∼ n
L

and volume Veff ∼ n2

m2
s
∼ F 2

m2
se4

where e2 = µfϕ is unit of quantization of F flux
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Leading quantum correction

VCW =
∑

k,l

∫
d4q ln

(
q2 + m2

W,k + m2
p,k

)
+ . . .

∼ F 2

m2
se

4

∫
d6q lnq2 + . . .

∼ m4
s

e4
F 2 + . . .

Effect is to renormalize e2 → m2
s ∼M2

gut ∼ 10−4m2
pl

Dangerous: µ = 10−6mpl to match observation

⇒ fϕ ∼ 102 mpl

Must ensure renormalization of e is suppressed:

fϕ ∼ .1 mpl ⇒ e2 ∼ 10−7m2
pl ∼

(
3× 10−4mpl

)2 ∼ H2
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• NB model above is crude (and known not to work for other reasons) so this is a 
caveat and not a fatal flaw
 

• Even if
 

µ2 pushed above 10−6mpl

we may still get successful large field inflation of the form, e.g.

V (ϕ) = M4
1

√
1 + ϕ2

M2
2

but this requires more than our 4d EFT can do at present
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IV. Stability 

φ

V (φ)

fφ

n = −1
n = 0

n = 1n = −2

Sergei Dubovsky, AL, Matthew Roberts;  
SD, AL, Raphael Flauger, in progress

Success of monodromy inflation requires that transition 
between branches is slow compared to time scale of inflation 
(must complete 60 efolds before such transitions)
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Transitions occur by bubble nucleation.  Let:

• T = tension of bubble wall
• E = energy difference between branches

Decay probability: (thin wall)Γ ∼ exp
(
− 27π2

2
T 4

E3

)
Coleman

Phenomenological bound on T

ϕ = Nfϕ ; ∆ϕ = fϕ

fφ ∼ .1 mpl; N ∼ 100;V ∼M4
gut

⇒ T 1/3 " .2 Mgut



V. Conclusions

• Check stability in explicit string, field theory models

• General issue: monodromy inflation does not seem 
parametrically safe. Should we worry?

Perhaps this is interesting:

• Implies number of e-foldings could be close to lower bound
• Implications for measurements of curvature, pre-inflation transients

Dubovsky, AL, Roberts;  SD, AL, Flauger, in progress
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Witten; Giusti, Petrarca, 
and Taglienti

• Gauge dynamics:

from couplings ϕ
fϕ

tr G ∧G
instanton corrections take above form (if dilute gas approx good)

strong coupling effects (when dilute gas aprox fails)

δV ∼ Λ4 mink F
(

ϕ
fϕ

+ k
)

multibranched function of ϕ

!

!

"#$#%

"#$#!&

"#$#&

"#$#!'

(

When using this effect to generate monodromy potential:
mixing between branches must be weak

When this generates corrections: mixing must be strong
(else trapped in a fixed branch)

Λ =Λ QCD

• Gravitational dynamics: Λ4 ∼ fn+4
ϕ

mn
pl

gravitational instantons, wormholes, etc.
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