A New Model Of Inflation^{1 2}

Barun Kumar Pal

Junior Research Fellow Physics and Applied Mathematics Unit Indian Statistical Institute

e-mail: barunp1985@rediffmail.com

Barun Kumar Pal (PFNG, H.R.I.)

- Motivation For Inflation....
- Mutated Hilltop Inflation Model....
- **Quantum Fluctuation And Observable Parameters....**
- Matter Power Spectrum....
- Temperature Anisotropies In CMB....
- **O** Summary And Future Aspects....

Motivation For Inflation....

- Standard Big Bang theory very successfully explains:
 - 1. Expanding Universe
 - 2. Big Bang Nucleosynthesis
 - 3. CMB Formation.
- But there are some problems with **SBB**:
 - 1. Flatness Problem
 - 2. Horizon Problem
 - 3. Structure Formation Problem.
- The basic idea to solve those *problems* is to <u>decrease</u> Comoving Hubble Radius $(\frac{1}{aH})$ sufficiently in the very early universe, which is possible only when $\ddot{a} > 0 \implies$ violation of SEC. Inflation[Starobinsky(1980), Guth(1981), Linde(1982)] \mapsto Accelerated Expansion.
- Violation of SEC but how?
 - 1. Cosmological constant....
 - 2. Scalar field

▲口> ▲圖> ▲理> ▲理> 二理

Some Inflationary Potentials....

Chaotic Inflation[Linde(1983)]

$$\mathbf{V}(\phi) = \frac{1}{2}\mathbf{m}^2\phi^2 + \frac{\lambda}{4}\phi^4 \tag{1}$$

• Natural Inflation[Freese et.al.(1990)]

$$\mathbf{V}(\phi) = \mathbf{V_0} \left[\mathbf{1} + \cos(\frac{\phi}{\mathbf{f}}) \right]$$
(2)

• Hybrid Inflation[Linde(1994)]

$$\mathbf{V}(\phi) = \frac{\lambda}{4} (\chi^2 - \mathbf{M}^2)^2 + \frac{1}{2} \mathbf{g}^2 \phi^2 \chi^2 + \frac{1}{2} \mathbf{m}^2 \phi^2$$
(3)

• Hilltop Inflation[Lyth(2005)]

$$V(\phi) = V_0 - \frac{1}{2}m^2\phi^2 +$$
 (4)

Many models can be converted to hilltop....

 Still no particular Model of Inflation satisfies all the Observational Constraints....

Barun Kumar Pal (PFNG, H.R.I.)

Mutated Hilltop Inflation Model....

• Proposed form of the **Potential**:

$$\mathbf{V}(\phi) = \mathbf{V}_{\mathbf{0}} \left(\mathbf{1} - \operatorname{sech}[\alpha \phi] \right)$$
(5)

• Different from original Hilltop Inflation Model:

Expressions For Different Quantities Involved....

• Hubble Slow-Roll Approximation [Liddle & Lyth(1992)]: $\epsilon_H << 1$ and $|\eta_H| << 1$.

$$\epsilon_{\mathbf{H}} \equiv 2\mathbf{M}_{\mathbf{P}}^{2} \left[\mathbf{H}'(\phi) / \mathbf{H}(\phi) \right]^{2}$$
$$= \frac{\mathbf{M}_{\mathbf{P}}^{2}}{2} \frac{\alpha^{2} \mathrm{sech}^{2}(\alpha \phi) \tanh^{2}(\alpha \phi)}{[1 - \mathrm{sech}(\alpha \phi)]^{2}}$$
(6)

$$\eta_{\mathbf{H}} \equiv 2\mathbf{M}_{\mathbf{P}}^{2} \left[\mathbf{H}''(\phi) / \mathbf{H}(\phi) \right]$$

$$= \mathbf{M}_{\mathbf{p}}^{2} \frac{\alpha^{2} \operatorname{sech}(\alpha \phi) [\operatorname{sech}^{2}(\alpha \phi) - \tanh^{2}(\alpha \phi)]}{[\mathbf{1} - \operatorname{sech}(\alpha \phi)]} - \epsilon_{\mathbf{H}} \qquad (7)$$

▲口▼▲圖▼▲画▼▲画▼ 画 ろんの

Expressions For Different Quantities Involved....

 Hubble Slow-Roll Approximation [Liddle & Lyth(1992)]: ε_H << 1 and |η_H| << 1.

$$\epsilon_{\mathbf{H}} \equiv 2\mathbf{M}_{\mathbf{P}}^{2} \left[\mathbf{H}'(\phi) / \mathbf{H}(\phi) \right]^{2}$$
$$= \frac{\mathbf{M}_{\mathbf{P}}^{2}}{2} \frac{\alpha^{2} \mathrm{sech}^{2}(\alpha \phi) \tanh^{2}(\alpha \phi)}{[1 - \mathrm{sech}(\alpha \phi)]^{2}}$$
(6)

$$\eta_{\mathbf{H}} \equiv 2\mathbf{M}_{\mathbf{p}}^{2} \left[\mathbf{H}''(\phi) / \mathbf{H}(\phi) \right]$$

$$= \mathbf{M}_{\mathbf{p}}^{2} \frac{\alpha^{2} \operatorname{sech}(\alpha \phi) [\operatorname{sech}^{2}(\alpha \phi) - \tanh^{2}(\alpha \phi)]}{[\mathbf{1} - \operatorname{sech}(\alpha \phi)]} - \epsilon_{\mathbf{H}} \qquad (7)$$

 Now applying *slow-roll* approximation and using Friedmann equations we obtain following expressions:

1. The scalar field expression: $\sinh(\alpha\phi) = \alpha^2 \sqrt{\frac{V_0}{3}} M_P(d-t)$

2. Scale Factor:
$$\mathbf{a}(\mathbf{t}) = \mathbf{a}_1 \exp\left[-(\alpha \mathsf{M}_p)^{-2}\sqrt{1+\alpha^4 \frac{\mathsf{V}_0}{3}\mathsf{M}_p^2(\mathsf{d}-\mathsf{t})^2}\right]$$

Expressions For Different Quantities Involved....

3. The Comoving Hubble Radius: $\frac{1}{aH} = \left| \frac{\sqrt{1 + \alpha^4 \frac{V_0}{3}} M_P^2 (d-t)^2}{\frac{V_0}{3} \alpha^2 (d-t)} \right| a^{-1}(t)$

4. Amount Of Inflation Or no. of *e-foldings* : $N \equiv \ln \frac{a(t_{end})}{a(t_{initial})} = (\alpha^2 M_p)^{-1} [\cosh(\alpha \phi) - \ln \cosh^2(\frac{\alpha \phi)}{2})]_{\phi_{end}}^{\phi_{in}}$ Observational Bound: $56 \le N \le 70$.

α	$\epsilon_H < 1$	$ \eta_H < 1$	ϕ_{end}	$\phi_{\it in}$	Ν
M_{P}^{-1}	$\phi \ge M_P$	$\phi \ge M_P$	M_P	M_P	
				2.44625	70
2.9	0.59886	1.02192	1.02192	2.39431	60
				2.37111	56
				2.38713	70
3.0	0.58759	1.00796	1.00796	2.33689	60
				2.31446	56
				2.33112	70
3.1	0.57681	0.99435	0.99435	2.28248	60
				2.26076	56

・ロト・(中下・(中下・(日下・(日下)))

Quantum Fluctuations and Observable Parameters....

- The Quantum Fluctuations in the inflaton field were stretched outside the causal horizon producing macroscopic Cosmological Perturbations.
- New Scalar Field : $\mathbf{v} \equiv \mathbf{a}(\eta)\phi = -z\mathcal{R}$ where \mathcal{R} is the Comoving Curvature Perturbation and

$$\mathbf{z} \equiv \frac{\mathbf{a}\phi'}{\mathcal{H}} \approx \alpha^{-1} \mathbf{M}_{\mathbf{P}} \sqrt{\frac{3}{\mathbf{V}_{\mathbf{0}}}} |\eta|^{-1} \left[\ln \left(\mathbf{a}_{\mathbf{1}} \mathbf{M}_{\mathbf{P}}^{-1} \sqrt{\frac{\mathbf{V}_{\mathbf{0}}}{3}} |\eta| \right) \right]^{-1}$$

• Mukhanov-Sasaki equation : $\mathbf{v}_{\mathbf{k}}'' + \left(\mathbf{k}^2 - \frac{\mathbf{z}''}{\mathbf{z}}\right)\mathbf{v}_{\mathbf{k}} = \mathbf{0}$

▲口▼▲圖▼▲園▼▲園▼ 間 ろんの

Quantum Fluctuations and Observable Parameters....

- The Quantum Fluctuations in the inflaton field were stretched outside the causal horizon producing macroscopic Cosmological Perturbations.
- New Scalar Field : $\mathbf{v} \equiv \mathbf{a}(\eta)\phi = -z\mathcal{R}$ where \mathcal{R} is the Comoving Curvature Perturbation and

$$\mathsf{z} \equiv \frac{\mathsf{a}\phi'}{\mathcal{H}} \approx \alpha^{-1} \mathsf{M}_{\mathsf{P}} \sqrt{\frac{3}{\mathsf{V}_0}} |\eta|^{-1} \left[\mathsf{ln} \left(\mathsf{a}_1 \mathsf{M}_{\mathsf{P}}^{-1} \sqrt{\frac{\mathsf{V}_0}{3}} |\eta| \right) \right]^{-1}$$

• Mukhanov-Sasaki equation : $\mathbf{v}_{\mathbf{k}}'' + \left(\mathbf{k}^2 - \frac{\mathbf{z}''}{\mathbf{z}}\right)\mathbf{v}_{\mathbf{k}} = \mathbf{0}$

And the complete solution is given by,

$$\mathbf{v}_{\mathbf{k}} = \sqrt{\frac{1}{2\mathbf{k}}} \exp(-\mathbf{i}\mathbf{k}\eta) \left(1 - \frac{\mathbf{i}}{\mathbf{k}\eta}\right)$$
 (8)

• Therefore k^{th} Fourier mode of $\mathcal{R}_{\mathbf{k}}$ is

$$\mathcal{R}_{\mathbf{k}} = -\frac{\alpha\sqrt{\mathbf{V}_{\mathbf{0}}}}{\mathbf{M}_{\mathbf{P}}\sqrt{\mathbf{3}}} \frac{|\eta|\mathbf{e}^{-\mathbf{i}\mathbf{k}\eta}}{\sqrt{2\mathbf{k}}} (\mathbf{1} - \mathbf{i}/\mathbf{k}\eta) \left[\ln \left(\mathbf{a}_{\mathbf{1}}\mathbf{M}_{\mathbf{P}}^{-1}\sqrt{\frac{\mathbf{V}_{\mathbf{0}}}{\mathbf{3}}} |\eta| \right) \right] \quad (9)$$

Barun Kumar Pal (PFNG, H.R.I.)

• Power Spectrum of \mathcal{R}

$$\begin{aligned} \mathbf{P}_{\mathcal{R}}(\mathbf{k}) &\equiv \frac{\mathbf{k}^{3}}{2\pi^{2}} |\mathcal{R}_{\mathbf{k}}|^{2} \\ &= \frac{\alpha^{2} \mathbf{V}_{0}}{\mathbf{1}2\pi^{2} \mathbf{M}_{\mathbf{P}}^{2}} (\mathbf{1} + \mathbf{k}^{2} \eta^{2}) \left[\ln \left(\mathbf{a}_{1} \mathbf{M}_{\mathbf{P}}^{-1} \sqrt{\frac{\mathbf{V}_{0}}{3}} |\eta| \right) \right]^{2} \\ \mathbf{P}_{\mathcal{R}}|_{\mathbf{k}=\mathbf{a}\mathbf{H}} &= \frac{\alpha^{2} \mathbf{V}_{0}}{\mathbf{6}\pi^{2} \mathbf{M}_{\mathbf{P}}^{2}} \left[\ln \left(\mathbf{a}_{1} \mathbf{M}_{\mathbf{P}}^{-1} \sqrt{\frac{\mathbf{V}_{0}}{3}} |\eta| \right) \right]^{2} \end{aligned} \tag{10}$$

where in the last equation we have evaluated power spectrum at the horizon crossing i.e., when k = aH.

• Observational Bound [WMAP3, COBE, Spergel(2006)] : $P_{\mathcal{R}}^{1/2} \sim 5 \times 10^{-5}.$

《曰》《聞》《臣》《臣》 三臣

Quantum Fluctuations and Observable Parameters....

• The *scale* dependence of *Power Spectrum* for **Comoving Curvature** perturbation is defined by the **Spectral Index** *n*_s

$$\mathbf{n}_{s} \equiv \mathbf{1} + \frac{d \ln \mathbf{P}_{\mathcal{R}}(\mathbf{k})}{d \ln \mathbf{k}}|_{\mathbf{k}=\mathbf{a}\mathbf{H}} = \mathbf{1} - \mathbf{2} \left[\ln \left(\mathbf{a}_{1} \mathbf{M}_{\mathbf{P}}^{-1} \sqrt{\frac{\mathbf{V}_{0}}{3}} |\eta| \right) \right]^{-1} \quad (11)$$

Quantum Fluctuations and Observable Parameters....

• The *scale* dependence of *Power Spectrum* for **Comoving Curvature** perturbation is defined by the **Spectral Index** *n*_s

$$\mathbf{n}_{s} \equiv \mathbf{1} + \frac{d \ln \mathbf{P}_{\mathcal{R}}(\mathbf{k})}{d \ln \mathbf{k}}|_{\mathbf{k}=\mathbf{a}\mathbf{H}} = \mathbf{1} - \mathbf{2} \left[\ln \left(\mathbf{a}_{1} \mathbf{M}_{\mathbf{P}}^{-1} \sqrt{\frac{\mathbf{V}_{0}}{3}} |\eta| \right) \right]^{-1}$$
(11)

• Running of the Spectral Index [WMAP3(2005)] :

$$\mathbf{n}_{\mathbf{s}}' \equiv \frac{\mathrm{d}\mathbf{n}_{\mathbf{s}}}{\mathrm{d}\ln\mathbf{k}}|_{\mathbf{k}=\mathbf{a}\mathbf{H}} = -2\left[\ln\left(\mathbf{a}_{1}\mathbf{M}_{\mathbf{p}}^{-1}\sqrt{\frac{\mathbf{V}_{0}}{3}}|\boldsymbol{\eta}|\right)\right]^{-2} \qquad (12)$$

• WMAP3 data set indicates this running.

The tensor modes satisfies

$$\mathbf{h}_{\mathbf{k}}^{\prime\prime} + 2\mathcal{H}\mathbf{h}_{\mathbf{k}}^{\prime} + \mathbf{k}^{2}\mathbf{h}_{\mathbf{k}} = \mathbf{0}$$
(13)

We define new tensor field: $h_k=\frac{\sqrt{2}}{M_P}\frac{u_k}{a}$ The above equation then becomes

$$\mathbf{u}_{\mathbf{k}}^{\prime\prime} + \left(\mathbf{k}^2 - \frac{\mathbf{a}^{\prime\prime}}{\mathbf{a}}\right)\mathbf{u}_{\mathbf{k}} = 0 \tag{14}$$

The exact solution is

$$\mathbf{u}_{\mathbf{k}} = \sqrt{\frac{1}{2\mathbf{k}}} \exp(-\mathbf{i}\mathbf{k}\eta) \left(1 - \frac{\mathbf{i}}{\mathbf{k}\eta}\right)$$
(15)

《曰》《聞》《臣》《臣》 三百

The solutions are also known as Gravitational Waves.

. .

• Tensor Power Spectrum

$$P_{T} = \frac{V_{0}}{3\pi^{2}M_{P}^{4}}(1 + k^{2}\eta^{2})$$
$$= \frac{2V_{0}}{3\pi^{2}M_{P}^{4}}$$
(16)

• Tensor Spectral Index

$$n_T \equiv \frac{\mathrm{d} \ln \mathbf{P}_{\mathrm{T}}}{\mathrm{d} \ln \mathbf{k}}|_{\mathbf{k}=\mathbf{a}\mathbf{H}} = 0 \tag{17}$$

メロト メポト メヨト メヨト 二日

So we get the tensor modes to be strictly scale invariant.

• Tensor Power Spectrum

$$P_{T} = \frac{V_{0}}{3\pi^{2}M_{P}^{4}}(1 + k^{2}\eta^{2})$$
$$= \frac{2V_{0}}{3\pi^{2}M_{P}^{4}}$$
(16)

• Tensor Spectral Index

$$n_T \equiv \frac{\mathrm{d} \ln \mathbf{P_T}}{\mathrm{d} \ln \mathbf{k}}|_{\mathbf{k}=\mathbf{aH}} = 0 \tag{17}$$

イロト イポト イヨト イヨト 二百

So we get the tensor modes to be strictly scale invariant.

Tensor to scalar power spectrum ratio :

$$\mathbf{r} \equiv \frac{\mathbf{P}_{\mathsf{T}}|_{\mathsf{k}=\mathsf{a}\mathsf{H}}}{\mathbf{P}_{\mathcal{R}}|_{\mathsf{k}=\mathsf{a}\mathsf{H}}} = \frac{4}{\alpha^2 \mathsf{M}_{\mathsf{P}}^2} \left[\mathsf{ln} \left(\mathsf{a}_1 \mathsf{M}_{\mathsf{P}}^{-1} \sqrt{\frac{\mathsf{V}_0}{3}} |\eta| \right) \right]^{-2}$$

Observational bound: r < 0.1.

Barun Kumar Pal (PFNG, H.R.I.)

$\begin{array}{c} \alpha \\ M_P^{-1} \end{array}$	$P_{\mathcal{R}}^{1/2}$	ns	r
2.9	$3.7784 imes 10^{-5}$	0.9609	$1.82 imes 10^{-4}$
3.0	$3.9080 imes 10^{-5}$	0.9609	$1.70 imes10^{-4}$
3.1	$4.0377 imes 10^{-5}$	0.9609	$1.60 imes10^{-4}$

• We see from the table, that **Power Spectrum, Scalar Spectral Index, Tensor To Scalar Power Spectrum Ratio** are well within the observational bound.

イロト イポト イヨト イヨト 二日

Matter Power Spectrum

• Using the super horizon limit of $\mathcal{R}_{\mathbf{k}}$; conservation law for $\zeta_{\mathbf{k}}$; equivalence of $\mathcal{R}_{\mathbf{k}}$ and $\zeta_{\mathbf{k}}$ in the super horizon limit for **adiabatic** perturbations we get, the expression for gravitational potential modes reentering the horizon during **matter dominated** era

$$\Phi|_{\mathbf{k}=\mathbf{a}\mathbf{H}} = -\frac{3}{5}\mathcal{R}|_{\mathbf{k}=\mathbf{a}\mathbf{H}} = -\frac{3\alpha}{5M_{P}}\sqrt{\frac{V_{0}}{3}}\frac{\mathbf{i}}{\sqrt{2\mathbf{k}^{3}}}\ln\left(2\mathbf{a}_{1}M_{P}^{-1}\sqrt{\frac{V_{0}}{3}}\mathbf{k}^{-1}\right)$$
(18)

イロト イポト イヨト イヨト

Matter Power Spectrum

Using the super horizon limit of *R_k*; conservation law for ζ_k; equivalence of *R_k* and ζ_k in the super horizon limit for adiabatic perturbations we get, the expression for gravitational potential modes reentering the horizon during matter dominated era

$$\Phi|_{\mathbf{k}=\mathbf{a}\mathbf{H}} = -\frac{3}{5}\mathcal{R}|_{\mathbf{k}=\mathbf{a}\mathbf{H}} = -\frac{3\alpha}{5\mathsf{M}_{\mathsf{P}}}\sqrt{\frac{\mathsf{V}_{0}}{3}}\frac{\mathsf{i}}{\sqrt{2\mathsf{k}^{3}}}\ln\left(2\mathsf{a}_{1}\mathsf{M}_{\mathsf{P}}^{-1}\sqrt{\frac{\mathsf{V}_{0}}{3}}\mathsf{k}^{-1}\right)$$
(18)

Poisson equation in GTR

$$\mathbf{3}\mathcal{H}^{2}\mathbf{\Phi}_{\mathbf{k}} + \mathbf{3}\mathcal{H}\mathbf{\Phi}_{\mathbf{k}}^{'} + \mathbf{k}^{2}\mathbf{\Phi}_{\mathbf{k}} = -\frac{\mathbf{3}}{2}\mathcal{H}^{2}\delta_{\mathbf{k}}$$
(19)

Matter Power Spectrum

$$\mathbf{P}_{\delta}|_{\mathbf{k}=\mathbf{a}\mathbf{H}} = \frac{\mathbf{16}\alpha^{2}\mathbf{V}_{\mathbf{0}}}{\mathbf{75}\pi^{2}\mathbf{M}_{\mathbf{P}}^{2}} \left[\ln\left(\mathbf{2a_{1}}\mathbf{M}_{\mathbf{P}}^{-1}\sqrt{\frac{\mathbf{V}_{\mathbf{0}}}{3}}\mathbf{k}^{-1}\right) \right]^{2}$$
(20)

Figure: Variation of the matter power spectrum with comoving wave number

(日) (同) (三) (三)

• Spectral index for Matter Power Spectrum

$$\mathbf{n}_{\delta} \equiv \mathbf{1} + \frac{d \ln \mathbf{P}_{\delta}(\mathbf{k})}{d \ln \mathbf{k}} |_{\mathbf{k}=\mathbf{a}\mathbf{H}} = \mathbf{1} - \mathbf{2} \left[\ln \left(2\mathbf{a}_{1}\mathbf{M}_{\mathbf{P}}^{-1}\sqrt{\frac{\mathbf{V}_{0}}{3}}\mathbf{k}^{-1} \right) \right]^{-1}$$
(21)

So we have explicitly scale dependent *matter power spectrum* as it should be since our *primordial curvature perturbation* is scale dependent.

• Matter spectral index has negative running given by

$$\mathbf{n}_{\delta}^{'} \equiv \frac{\mathrm{d}\mathbf{n}_{\delta}}{\mathrm{d}\ln\mathbf{k}}|_{\mathbf{k}=\mathbf{a}\mathbf{H}} = -2\left[\ln\left(2\mathbf{a}_{1}\mathbf{M}_{\mathbf{P}}^{-1}\sqrt{\frac{\mathbf{V}_{0}}{3}}\,\mathbf{k}^{-1}\right)\right]^{-2} \tag{22}$$

 Angular power spectrum for Sachs-Wolfe[Sachs and Wolfe(1967)] effect:

$$C_{I}^{SW} = \frac{\alpha^{2}V_{0}}{75\pi M_{P}^{2}} \left(\ln \left[a_{1}M_{P}^{-1}\sqrt{\frac{V_{0}}{3}}\frac{2\eta_{0}}{l} \right] \right)^{2} \frac{1}{2l(l+1)}$$
(23)

The Sachs-Wolfe plateau is slightly tilted towards larger *I*.

• The acoustic oscillations of baryon-photon fluid is

$$\frac{1}{4}\delta_{\gamma\mathbf{k}}^{''} + \frac{1}{4}\frac{\mathbf{R}^{'}}{1+\mathbf{R}}\delta_{\gamma\mathbf{k}}^{'} + \frac{1}{4}\mathbf{k}^{2}\mathbf{c}_{s}^{2}\delta_{\gamma\mathbf{k}} = -\frac{\mathbf{k}^{2}}{3}\Phi_{\mathbf{k}}(\eta) + \frac{\mathbf{R}^{'}}{1+\mathbf{R}}\Phi_{\mathbf{k}}^{'}(\eta) + \Phi_{\mathbf{k}}^{''}(\eta)$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 二国

• The acoustic oscillations of baryon-photon fluid is

$$\frac{1}{4}\delta_{\gamma\mathbf{k}}^{''} + \frac{1}{4}\frac{\mathbf{R}^{'}}{\mathbf{1} + \mathbf{R}}\delta_{\gamma\mathbf{k}}^{'} + \frac{1}{4}\mathbf{k}^{2}\mathbf{c}_{s}^{2}\delta_{\gamma\mathbf{k}} = -\frac{\mathbf{k}^{2}}{3}\Phi_{\mathbf{k}}(\eta) + \frac{\mathbf{R}^{'}}{\mathbf{1} + \mathbf{R}}\Phi_{\mathbf{k}}^{'}(\eta) + \Phi_{\mathbf{k}}^{''}(\eta)$$

• The complete solution in the tight coupling approximation reads

$$\begin{split} &\frac{1}{4} \delta_{\gamma k} = \frac{3}{5} (1+\mathsf{R}) \mathcal{R}_k \mathsf{T}_k + \frac{1}{2} \mathsf{T}_k^0 \Phi_k^0 \cos(\mathsf{k} \mathsf{r}_s) \qquad (24) \\ &\mathsf{V}_{\gamma k} = \frac{3 \mathsf{c}_s}{2} \mathsf{T}_k^0 \Phi_k^0 \sin(\mathsf{k} \mathsf{r}_s) \qquad (25) \end{split}$$

where $R = \frac{3\rho_b}{4\rho_\gamma}$ and $r_s \equiv \int_0^{\eta} c_s(\eta) d\eta$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 めるの

• The acoustic oscillations of baryon-photon fluid is

$$\frac{1}{4}\delta_{\gamma\mathbf{k}}^{''} + \frac{1}{4}\frac{\mathbf{R}^{'}}{\mathbf{1} + \mathbf{R}}\delta_{\gamma\mathbf{k}}^{'} + \frac{1}{4}\mathbf{k}^{2}\mathbf{c}_{s}^{2}\delta_{\gamma\mathbf{k}} = -\frac{\mathbf{k}^{2}}{3}\Phi_{\mathbf{k}}(\eta) + \frac{\mathbf{R}^{'}}{\mathbf{1} + \mathbf{R}}\Phi_{\mathbf{k}}^{'}(\eta) + \Phi_{\mathbf{k}}^{''}(\eta)$$

• The complete solution in the tight coupling approximation reads

$$\frac{1}{4}\delta_{\gamma \mathbf{k}} = \frac{3}{5}(1+\mathsf{R})\mathcal{R}_{\mathbf{k}}\mathsf{T}_{\mathbf{k}} + \frac{1}{2}\mathsf{T}_{\mathbf{k}}^{0}\Phi_{\mathbf{k}}^{0}\cos(\mathsf{k}\mathsf{r}_{s})$$
(24)

$$\mathbf{V}_{\gamma \mathbf{k}} = \frac{3\mathbf{c}_{\mathbf{s}}}{2} \mathbf{T}_{\mathbf{k}}^{\mathbf{0}} \mathbf{\Phi}_{\mathbf{k}}^{\mathbf{0}} \sin(\mathbf{k}\mathbf{r}_{\mathbf{s}})$$
(25)

where $R = \frac{3\rho_b}{4\rho_{\gamma}}$ and $r_s \equiv \int_0^{\eta} c_s(\eta) d\eta$. • The CMB anisotropy spectrum is therefore

$$C_l = \frac{2}{\pi} \int_0^\infty |\theta_l|^2 k^2 dk \tag{26}$$

$$\Theta_{I} = \left(\left[\frac{1}{4} \delta_{\gamma}(\eta, k) + \Phi(\eta, k) \right] j_{I}(k\eta_{0}) + V_{\gamma}(\eta, k) \frac{dj_{I}(k\eta_{0})}{d(k\eta_{0})} \right) e^{-(\sigma k\eta)^{2}} |_{\eta = \eta_{LS}}$$

• After some simplifications we get [V. Mukhanov(2004)]

$$C_{I} = 4\pi P_{\Phi^{0}} \int_{0}^{\infty} \left[C - D\cos(\rho lx) + E\cos^{2}(\rho lx) \right] j_{I}^{2}(xl) \frac{dx}{x} + 4\pi P_{\Phi^{0}} \int_{0}^{\infty} \left[F\left(1 - \frac{l(l+1)}{l^{2}x^{2}}\right) \sin^{2}(\rho lx) \right] j_{I}^{2}(xl) \frac{dx}{x}$$
(28)

$$\begin{split} & \text{here } \mathbf{x} = \frac{k\eta_0}{l} & \text{C} \equiv \frac{81}{100} R^2 T^2(\mathbf{x}) e^{-\frac{l^2 x^2}{l_f^2}} \\ & \text{D} \equiv \frac{9}{10} R T(\mathbf{x}) T^0(\mathbf{x}) e^{-\frac{l^2 x^2}{l_f^2 + l_s^2}} & \text{E} \equiv \frac{1}{4} T^{0^2}(\mathbf{x}) e^{-\frac{l^2 x^2}{l_s^2}} \\ & \text{F} \equiv \frac{9}{4} c_s^2 T^{0^2}(\mathbf{x}) e^{-\frac{l^2 x^2}{l_s^2}} & \text{I}_f^{-2} \equiv 2\sigma^2(\frac{\eta_{\text{LS}}}{\eta_0})^2 \\ & \text{I}_s^{-2} \equiv 2 \left[\sigma^2 + (k_D \eta_{\text{Ls}})^{-2}\right] (\frac{\eta_{\text{LS}}}{\eta_0})^2 & \rho \equiv \frac{1}{\eta_0} \int_0^{\eta_{\text{LS}}} c_s d\eta \text{ and} \\ & \text{P}_{\Phi^0} \equiv \frac{\alpha^2 V_0}{27\pi^2 M_P^2} \left[\ln \left(a_1 M_P^{-1} \sqrt{\frac{V_0}{3}} \frac{\eta_0}{T} \right) \right]^2 \end{split}$$

 In the large *l* >> 1 limit of *spherical bessel* function, the expression for *C_l* simplifies to

$$C_{l} = P_{\Phi^{0}} \int_{1}^{\infty} \frac{C - D\cos(\rho lx) + E\cos^{2}(\rho lx) + F(1 - \frac{l(l+1)}{l^{2}x^{2}})\sin^{2}(\rho lx)}{l^{2}x^{2}\sqrt{x^{2} - 1}/2\pi} dx$$
(29)

Figure: CMB angular power spectrum for adiabatic modes

- Mutated hilltop inflation model provides analytical expressions for most of the *observable parameters*.
- The observable parameters are in good agreement with the latest observations.
- Scale dependent *matter power spectrum* has been obtained.
- We have explicitly shown that *Sachs-Wolfe plateau* is tilted.
- We have studied acoustic oscillations of the baryon-photon plasma and see the CMB power spectrum match well with observations.

- Mutated hilltop inflation model provides analytical expressions for most of the *observable parameters*.
- The observable parameters are in good agreement with the latest observations.
- Scale dependent *matter power spectrum* has been obtained.
- We have explicitly shown that Sachs-Wolfe plateau is tilted.
- We have studied *acoustic oscillations* of the baryon-photon plasma and see the CMB power spectrum match well with observations.
- We are now aiming to extend our work by incorporating Integrated Sachs-Wolfe effect, contribution from the tensor modes into our theory.

イロン イ理と イヨン イヨン

Thank You !

《曰》《聞》《臣》《臣》 三臣