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Problems:

Singularity

Horizon

Flatness

Homogeneity

Perturbations

Dark matter

Dark energy / cosmological constant

Baryogenesis

...

Topological defects (monopoles)

Accepted solution = INFLATION

(Linde’s book)
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Inflation: 

solves cosmological puzzles
uses GR + scalar fields [(semi-)classical]
can be implemented in high energy theories
makes falsifiable predictions ...
... consistent with all known observations
string based ideas (brane inflation, ...)
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Problems of Inflation 3
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Fig. 1. Space-time diagram (sketch) showing the evolution of scales in inflationary
cosmology. The vertical axis is time, and the period of inflation lasts between ti and
tR, and is followed by the radiation-dominated phase of standard big bang cosmol-
ogy. During exponential inflation, the Hubble radius H

−1 is constant in physical
spatial coordinates (the horizontal axis), whereas it increases linearly in time after
tR. The physical length corresponding to a fixed comoving length scale labelled by
its wavenumber k increases exponentially during inflation but increases less fast than
the Hubble radius (namely as t

1/2), after inflation.

From R. Brandenberger, in M. Lemoine, J. Martin & P. P. (Eds.), “Inflationary cosmology”,
Lect. Notes Phys. 738 (Springer, Berlin, 2007).

 Scalar field origin?

 Singularity

 Trans-Planckian

Hierarchy (amplitude)?

 Validity of classical GR?

V (ϕ)

∆ϕ4
≤ 10−12

1

∃t; !(t) = !0
a0

a(t)
≤ !

Pl

V (ϕ)

∆ϕ4
≤ 10−12

∃t(±∞); a(t) → 0

1

∃t; !(t) = !0
a0

a(t)
≤ !

Pl

V (ϕ)

∆ϕ4
≤ 10−12

∃t(±∞); a(t) → 0

Einf $ 10−3M
Pl

1

∃t; !(t) = !0
a(t)

a0
≤ !

Pl

V (ϕ)

∆ϕ4
≤ 10−12

∃t(±∞); a(t) → 0

Einf $ 10−3M
Pl

S3 > S2 > S1

a(η)





Φ+
g

Φ+
d



 = Tij(k)





Φ−
g

Φ−

d





vk ∝
e−ic

S
kη

√

2c
S
k

1



HRI - Allahabad - 14th December 2010

Alternative model???

singularity, initial conditions & homogeneity

Inflation: 

solves cosmological puzzles
uses GR + scalar fields [(semi-)classical]
can be implemented in high energy theories
makes falsifiable predictions ...
... consistent with all known observations
string based ideas (brane inflation, ...)

5



HRI - Allahabad - 14th December 2010

Alternative model???

string based ideas (PBB, other brane models, string gas, …)
singularity, initial conditions & homogeneity

Inflation: 

solves cosmological puzzles
uses GR + scalar fields [(semi-)classical]
can be implemented in high energy theories
makes falsifiable predictions ...
... consistent with all known observations
string based ideas (brane inflation, ...)

5



HRI - Allahabad - 14th December 2010

Alternative model???

string based ideas (PBB, other brane models, string gas, …)
singularity, initial conditions & homogeneity

Inflation: 

solves cosmological puzzles
uses GR + scalar fields [(semi-)classical]
can be implemented in high energy theories
makes falsifiable predictions ...
... consistent with all known observations
string based ideas (brane inflation, ...)

Quantum gravity / cosmology

5



HRI - Allahabad - 14th December 2010

Alternative model???

string based ideas (PBB, other brane models, string gas, …)
singularity, initial conditions & homogeneity

Inflation: 

solves cosmological puzzles
uses GR + scalar fields [(semi-)classical]
can be implemented in high energy theories
makes falsifiable predictions ...
... consistent with all known observations
string based ideas (brane inflation, ...)

Quantum gravity / cosmology

5

purely classical theory



HRI - Allahabad - 14th December 2010

Alternative model???

string based ideas (PBB, other brane models, string gas, …)
singularity, initial conditions & homogeneity

Inflation: 

solves cosmological puzzles
uses GR + scalar fields [(semi-)classical]
can be implemented in high energy theories
makes falsifiable predictions ...
... consistent with all known observations
string based ideas (brane inflation, ...)

Quantum gravity / cosmology

bounces

5

purely classical theory



HRI - Allahabad - 14th December 2010

Alternative model???

string based ideas (PBB, other brane models, string gas, …)
singularity, initial conditions & homogeneity

provide challengers / new ingredients!

Inflation: 

solves cosmological puzzles
uses GR + scalar fields [(semi-)classical]
can be implemented in high energy theories
makes falsifiable predictions ...
... consistent with all known observations
string based ideas (brane inflation, ...)

Quantum gravity / cosmology

bounces

5

purely classical theory
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A brief history of bouncing cosmology

R. C. Tolman,  “On the Theoretical Requirements for a Periodic Behaviour of the Universe”, PRD 38, 1758 (1931) 

G. Lemaître,  “L’Univers en expansion”, Ann. Soc. Sci. Bruxelles (1933) 
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Quantum nucleation?

Penrose: BH formation 

PBB - Ekpyrotic - Modified gravity - Quantum cosmology - Quintom - 
Horava-Lifshitz - Lee-Wick - ...
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A. A. Starobinsky,  “On one non-singular isotropic cosmological model”, Sov. Astron. Lett. 4, 82 (1978) 
M. Novello & J. M. Salim,  “Nonlinear photons in the universe”, Phys. Rev. 20, 377  (1979) 

V.N. Melnikov, S.V. Orlov, Phys. Lett. A 70, 263 (1979).
R. Durrer & J. Laukerman,  “The oscillating Universe: an alternative to inflation”, Class. Quantum Grav. 13, 1069 (1996) 
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Pre Big Bang scenario: (cf. M.Gasperini & G. Veneziano, arXiv: hep-th/0703055)

20 M. Gasperini and G. Veneziano

tions [44, 45]. With such potential V = V (φ) the string cosmology equations
can be rewritten in terms of a, φ, ρ = ρa3 and p = pa3 as follows [36, 37, 38]:

φ̇
2
− 3H2 − V (φ) = 2λ2

se
φ ρ,

Ḣ − Hφ̇ = λ2
s e

φ p,

2φ̈ − φ̇
2
− 3H2 + V (φ) −

∂V

∂φ
= 0. (12)

These equations are still invariant under the duality transformations (4),
(7) but, differently from Eq. (5), they admit regular and self-dual solutions.
We can also obtain exact analytical integrations for appropriate forms of the
potential V (φ), and for equations of state such that p/ρ can be written as
integrable function of a suitable time parameter [15].

Let us consider, as a simple example, the exponential potential V =
−V0 exp(2φ) (with V0 > 0), to be regarded here only as an effective, low-
energy description of the quantum-loop backreaction, possibly computable at
higher orders. Let us use, in addition, an equation of state (motivated by an-
alytical simulations concerning the equation of state of a string gas in back-
grounds with rolling horizons [46]) evolving between the asymptotic values
p = −ρ/3 at t → −∞ and p = ρ/3 at t → +∞, so as to match the low-energy
pre-and post-big bang solutions (10) and (8), respectively. The plot of the
corresponding solution (see [15] for the exact analytic form) is illustrated in
Fig. 2.
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Fig. 2. Example of smooth transition between a phase of pre-big bang inflation and
the standard radiation-dominated evolution.

The solution smoothly interpolates between the string perturbative vac-
uum at t → −∞ and the standard, radiation-dominated phase at constant
dilaton (described by Eq. (8)) at t → +∞, after a pre-big bang phase of grow-
ing curvature and growing dilaton described by Eq. (10). The dashed curves

22 M. Gasperini and G. Veneziano
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Fig. 3. Example of pre-big bang evolution represented in the E-frame, where the
scale factor is shrinking and the Hubble parameter HE is negative. The plots are
obtained from Eq. (14) with a0 = 0.8, φ0 = 0, ρ0 = 1, η0 = 1.

strong coupling, in a marked quantum regime. Nevertheless, an epoch of pre-
big bang inflation is able to solve the kinematical problems of the standard
scenario starting from different initial conditions which are not necessarily
unnatural [49] or unlikely [50] (see also [51] for a detailed comparison of the
pre-big bang versus post-big bang inflationary kinematics). A possible excep-
tion concerns the presence of primordial “shear”, which is not automatically
inflated away during the phase of pre-big bang evolution: the isotropization
of the three-dimensional spatial sections might require some specific post-big
bang mechanism (see e.g. the discussion of [52]), differently from the standard
inflationary scenario where the dilution of shear is automatic.

Quantum effects, in the pre-big bang scenario, can become important to-
wards the end of the inflationary regime. We can say, in particular, that the
monotonic growth of the curvature and of the string coupling automatically
“prepares” the onset of a typically “stringy” epoch at strong coupling. This
epoch could be characterized by the production of a gas of heavy objects
(such as winding strings [53, 54] or mini-black holes [55]) as well as light,
higher-dimensional branes [56]. In such a context the interaction (and/ or the
eventual collision) of two branes can drive a phase of slow-roll inflation [26],
as discussed in Sect. 3.

At this point of the cosmological evolution there are two possible alterna-
tives.

i) The phase of string/brane dominated inflation is long enough to dilute
all effects of the preceding phase of dilaton inflation, and to give rise to
an epoch of slow-roll inflation able to prepare the subsequent evolution,
according to the conventional inflationary picture.

ii) The back-reaction of the quantum fluctuations, amplified by the phase of
pre-big bang inflation, induces a bounce as soon as the Universe reaches

string frame Einstein frame

7
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Ekpyrotic/cyclic scenario: 

3

inspiration in the extra dimensional scenarios, à la Ran-
dall – Sundrum [4], and can be motivated by compact-
ifying the action of 11 dimensional supergravity on an
S1/Z2 orbifold, compactified on a Calabi–Yau three-fold.
This results in an effectively five dimensional action read-
ing

S5 ∝
∫

M5

d5x
√

−g5

[

R
(5)

−
1

2
(∂ϕ)2 −

3

2

e2ϕF2

5 !

]

, (1)

where φ is the scalar modulus, and F the field strength of
a four-form gauge field. Two four–dimensional boundary
branes (orbifold fixed planes), one of which to be later
identified with our universe, are separated by a finite gap.
Both are BPS states [13], i.e., they can be described at
low energy by an effective N = 1 supersymmetric model,
so that their curvature vanishes. This is how the flatness
problem is addressed in the ekpyrotic model.
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FIG. 1: Schematic representation of the old ekpyrotic model
as a bulk – boundary branes in an effective five dimensional
theory. Our Universe is to be identified with the visible brane,
and a bulk brane is spontaneously nucleated near the hidden
brane, moving towards our universe to produce the Big-Bang
singularity and primordial perturbations. In the new ekpy-
rotic scenario, the bulk brane is absent and it is the hidden
brane that collides with the visible one, generating the hot
Big Bang singularity.

In the “old” scenario [8], the five dimensional bulk is
also assumed to contain various fields not described here,
whose excitations can lead to the spontaneous nucleation
of yet another, much lighter, freely moving, brane. In
the so-called “new” scenario [9], and its cyclic exten-
sion [23], it is the hidden boundary brane that is able
to move in the bulk. In both cases, this extra brane, if
assumed BPS (as demanded by minimization of the ac-
tion) is flat, parallel to the boundary branes and initially

at rest. Non perturbative effects yield an interaction po-
tential between the visible and the bulk brane. The dis-
tance of the former to the latter can be regarded as a
scalar field living on the four dimensional visible bound-
ary brane whose effective action is thus that of four di-
mensional GR together with a scalar field ϕ evolving in
an exponential potential, namely

S4 =

∫

M4

d4x
√

−g4

[

R
(4)

2κ
−

1

2
(∂φ)2 − V (φ)

]

, (2)

with

V (ϕ) = −Vi exp

[

−
4
√

πγ

mPl

(ϕ − ϕi)

]

, (3)

where γ is a constant and κ = 8πG = 8π/m2
Pl

. Apart
from the sign, the potential is the one that leads to the
well known power-law inflation model if the value of γ
lies in a given range [24].

The interaction between the two branes results in one
(bulk or hidden) brane moving towards the other (vis-
ible) boundary until they collide. This impact time is
then identified with the Big-Bang of standard cosmol-
ogy. Slightly before that time, the exponential potential
abruptly goes to zero so the boundary brane is led to a
singular transition at which the kinetic energy of the bulk
brane is converted into radiation. The result is, from this
point on, exactly similar to standard big bang cosmology,
with the difference that the flatness problem is claimed
to be solved by saying our Universe originated as a BPS
state (see however [23]).

FIG. 2: Scale factor in the new ekpyrotic scenario. The
Universe starts its evolution with a slow contraction phase
a ∝ (−η)1+β with β = −0.9 on the figure. The bounce itself
is explicitly associated with a singularity which is approached
by the scalar field kinetic term domination phase, and the
expansion then connects to the standard Big-Bang radiation
dominated phase.
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dall – Sundrum [4], and can be motivated by compact-
ifying the action of 11 dimensional supergravity on an
S1/Z2 orbifold, compactified on a Calabi–Yau three-fold.
This results in an effectively five dimensional action read-
ing

S5 ∝
∫

M5

d5x
√

−g5

[

R
(5)

−
1

2
(∂ϕ)2 −

3

2

e2ϕF2

5 !

]

, (1)

where φ is the scalar modulus, and F the field strength of
a four-form gauge field. Two four–dimensional boundary
branes (orbifold fixed planes), one of which to be later
identified with our universe, are separated by a finite gap.
Both are BPS states [13], i.e., they can be described at
low energy by an effective N = 1 supersymmetric model,
so that their curvature vanishes. This is how the flatness
problem is addressed in the ekpyrotic model.

R
orb

Bulk

K=0

V
is
ib
le

H
id
d
en

4 
D

 b
ra

ne
,

Q
ua

si
 B

P
S

FIG. 1: Schematic representation of the old ekpyrotic model
as a bulk – boundary branes in an effective five dimensional
theory. Our Universe is to be identified with the visible brane,
and a bulk brane is spontaneously nucleated near the hidden
brane, moving towards our universe to produce the Big-Bang
singularity and primordial perturbations. In the new ekpy-
rotic scenario, the bulk brane is absent and it is the hidden
brane that collides with the visible one, generating the hot
Big Bang singularity.

In the “old” scenario [8], the five dimensional bulk is
also assumed to contain various fields not described here,
whose excitations can lead to the spontaneous nucleation
of yet another, much lighter, freely moving, brane. In
the so-called “new” scenario [9], and its cyclic exten-
sion [23], it is the hidden boundary brane that is able
to move in the bulk. In both cases, this extra brane, if
assumed BPS (as demanded by minimization of the ac-
tion) is flat, parallel to the boundary branes and initially

at rest. Non perturbative effects yield an interaction po-
tential between the visible and the bulk brane. The dis-
tance of the former to the latter can be regarded as a
scalar field living on the four dimensional visible bound-
ary brane whose effective action is thus that of four di-
mensional GR together with a scalar field ϕ evolving in
an exponential potential, namely

S4 =

∫

M4

d4x
√

−g4

[

R
(4)

2κ
−

1

2
(∂φ)2 − V (φ)

]

, (2)

with

V (ϕ) = −Vi exp

[

−
4
√

πγ

mPl

(ϕ − ϕi)

]

, (3)

where γ is a constant and κ = 8πG = 8π/m2
Pl

. Apart
from the sign, the potential is the one that leads to the
well known power-law inflation model if the value of γ
lies in a given range [24].

The interaction between the two branes results in one
(bulk or hidden) brane moving towards the other (vis-
ible) boundary until they collide. This impact time is
then identified with the Big-Bang of standard cosmol-
ogy. Slightly before that time, the exponential potential
abruptly goes to zero so the boundary brane is led to a
singular transition at which the kinetic energy of the bulk
brane is converted into radiation. The result is, from this
point on, exactly similar to standard big bang cosmology,
with the difference that the flatness problem is claimed
to be solved by saying our Universe originated as a BPS
state (see however [23]).

FIG. 2: Scale factor in the new ekpyrotic scenario. The
Universe starts its evolution with a slow contraction phase
a ∝ (−η)1+β with β = −0.9 on the figure. The bounce itself
is explicitly associated with a singularity which is approached
by the scalar field kinetic term domination phase, and the
expansion then connects to the standard Big-Bang radiation
dominated phase.

3

inspiration in the extra dimensional scenarios, à la Ran-
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problem is addressed in the ekpyrotic model.
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FIG. 1: Schematic representation of the old ekpyrotic model
as a bulk – boundary branes in an effective five dimensional
theory. Our Universe is to be identified with the visible brane,
and a bulk brane is spontaneously nucleated near the hidden
brane, moving towards our universe to produce the Big-Bang
singularity and primordial perturbations. In the new ekpy-
rotic scenario, the bulk brane is absent and it is the hidden
brane that collides with the visible one, generating the hot
Big Bang singularity.

In the “old” scenario [8], the five dimensional bulk is
also assumed to contain various fields not described here,
whose excitations can lead to the spontaneous nucleation
of yet another, much lighter, freely moving, brane. In
the so-called “new” scenario [9], and its cyclic exten-
sion [23], it is the hidden boundary brane that is able
to move in the bulk. In both cases, this extra brane, if
assumed BPS (as demanded by minimization of the ac-
tion) is flat, parallel to the boundary branes and initially

at rest. Non perturbative effects yield an interaction po-
tential between the visible and the bulk brane. The dis-
tance of the former to the latter can be regarded as a
scalar field living on the four dimensional visible bound-
ary brane whose effective action is thus that of four di-
mensional GR together with a scalar field ϕ evolving in
an exponential potential, namely

S4 =

∫

M4

d4x
√

−g4

[

R
(4)

2κ
−

1

2
(∂φ)2 − V (φ)

]

, (2)

with

V (ϕ) = −Vi exp

[

−
4
√

πγ

mPl

(ϕ − ϕi)

]

, (3)

where γ is a constant and κ = 8πG = 8π/m2
Pl

. Apart
from the sign, the potential is the one that leads to the
well known power-law inflation model if the value of γ
lies in a given range [24].

The interaction between the two branes results in one
(bulk or hidden) brane moving towards the other (vis-
ible) boundary until they collide. This impact time is
then identified with the Big-Bang of standard cosmol-
ogy. Slightly before that time, the exponential potential
abruptly goes to zero so the boundary brane is led to a
singular transition at which the kinetic energy of the bulk
brane is converted into radiation. The result is, from this
point on, exactly similar to standard big bang cosmology,
with the difference that the flatness problem is claimed
to be solved by saying our Universe originated as a BPS
state (see however [23]).

FIG. 2: Scale factor in the new ekpyrotic scenario. The
Universe starts its evolution with a slow contraction phase
a ∝ (−η)1+β with β = −0.9 on the figure. The bounce itself
is explicitly associated with a singularity which is approached
by the scalar field kinetic term domination phase, and the
expansion then connects to the standard Big-Bang radiation
dominated phase.
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ȧ3

6

accelerated expansion (inflation) or decelerated contraction (bounce)

Last
Scattering
surface
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ä

ȧ3
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ä

ȧ3
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Influence of the spatial curvature?

Modify GR to non singular theories (curvature invariants)

R.Abramo, P. P.  & I. Yasuda, Phys. Rev. D81, 023511 (2010)
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FIG. 2: Rescaled power spectra for scalar and tensor pertur-
bations as functions of time for ω = 0.01 and two different
values of k̃. It is clear from the figure that not only both
spectra reach a constant mode, but also that this mode does
behave as indicated in Eqs. (46) and (50). It is purely inci-
dental that the actual constant value of both modes are very
close for that particular value of ω. The constant values ob-
tained in this figure are the one used to derive the spectrum
below. In this figure and the following, the value of nS used
to rescale Φ is the one derived in Eq. (46), thus proving the
validity of the analytic calculation.
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FIG. 3: Rescaled power spectra for ω = 8×10−4, correspond-
ing to the conservative maximum bound on the deviation from
a scale invariant spectrum nS = 1.01, as function of k. The
scalar spectrum PΦ is the full line, while the dashed line is
the gravitational wave spectrum Ph. Also shown is the ratio
T/S (dotted); in this case, the T/S " 5.2 × 10−3, i.e. almost
two orders of magnitude below the current limit. This case
has a typical bounce length-scale of L0 ∼ 1.47 × 103"Pl . The
amplitude of the modes is obtained as the constant part of
Fig. 2.

satisfies the same dynamical equation (51) with cs → 1,
with µ subject to initial condition

µini =

√

3

k
$Ple

−ikη . (57)

From the above defined spectra, one reads the ampli-
tudes
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where we assume the classical relation between Φ and the
curvature perturbation ζ through
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to obtain the observed spectrum. Since both spectra are
identical power laws, and indeed almost scale invariant
power laws, the tensor-to-scalar (T/S) ratio, defined by
the CMB multipoles C$ at $ = 10 as
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can easily be computed (see, e.g., [16] and references
therein). In Eq. (61), the function F depends entirely
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A potential problem with bouncing cosmologies:
Does linear perturbation theory still make sense?



HRI - Allahabad - 14th December 2010 18

Geometric matching conditions?

Id

τa

[a]± = 0

Tij(k) =

[

A(k) B(k)
C(k) D(k)

]

〈a†a〉 # 1

c2
T

=
T

U

Ωvortons # 1

S = −m2

∫

d2ξ
√
−γ

1

OK

Id

τa

η+

[H ]± = 0

Tij(k) =

[

A(k) B(k)
C(k) D(k)

]

〈a†a〉 # 1

c2
T

=
T

U

Ωvortons # 1

1

???

Id

τa

η+

[ζ ]± = 0

Tij(k) =

[

A(k) B(k)
C(k) D(k)

]

〈a†a〉 # 1

c2
T

=
T

U

Ωvortons # 1

1

???

A generic model-independent treatment of the bounce phase?
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still satisfied. As a consequence, this implies that H(! j) can-
not be large in comparison to K!1; in fact, since !0!1 and
x"1, H 2 is expected to be negligibly small compared to
unity right after the bounce. This means that one necessarily
connects the bounce to a regime where the curvature is im-
portant or, in other words, in a region where the sine function
appearing in the scale factor "39# cannot be approximated by
the first term of the Taylor expansion, a(!)!a r(!#! r) . The
only way to avoid this conclusion would be to violate the
null energy condition, as already noticed in Ref. $4% and to
have a small !0 but then it would have been useless to con-
sider the case K!1 for modeling the bounce since this was
done precisely in order to satisfy this condition. Therefore,
we conclude that between the bounce and the standard hot
big bang, another phase must necessary occur whose main
effect will be to drive H to sufficiently large values. This is
usually the role played by a phase of inflation.
With the general framework thus clarified, let us turn to

the evolution of the scalar gravitational perturbations through
the bounce by means of evaluating the effective potential for
the variable u related with the Bardeen potential through Eq.
"11#. We discuss the potential for the variable v in the dis-
cussion Sec. V A below.

D. The potential Vu„!…
The effective potential for the variable u in the de Sitter–

like solution is, according to Eq. "29#, constant in time. This
is however very specific to this particular solution, as any
displacement away from it immediately leads to a different
form of the potential. This is illustrated in Fig. 4 which
shows the relative accuracy of the expansion "30# around the
de Sitter–like solution "21#. It is also clear from the figure
that the expansion "30#, if pushed to sufficiently high orders
in ! , gives back the correct constant value over a large range
of conformal times. Let us now turn to the more general
bounce case of Eq. "30#.
Arbitrary values for the parameter & restricted to the range

of interest discussed above lead to the generic shape illus-

trated in Fig. 5. The calculation of the effective potential is
extremely complicated even with the quartic approximation
of the scale factor. Even if it can be done in full generality
since, for a scale factor given by Eq. "30#, the potential
Vu(!) reads

Vu"!#'
(!
(

$3K"1#cS
2#!

P24"!#

Q24"!#
, "41#

where P24(!) and Q24(!) are two polynomials of order 24,
in practice the calculation is not tractable. However, since in
practice we always have !/!0"1, only the first monomials
are important. One can check that the following approxima-
tion

Vu
(app)"!#!3

c0$c2!
2

d0$d2!
2$d4!

4
, "42#

FIG. 4. Absolute value of the effective potential Vu(!) for the perturbation variable u(!) for the de Sitter–like case "full line on both
panels#, for which it is constant and for the various approximation levels "from quadratic to eighth power of the scale factor#. The left panel
shows the potential as obtained by using the quadratic "dotted line# and quartic "dashed# expansions of the scale factor only, whereas the right
panel presents the situation when quartic "dashed#, sixth "dotted# and eighth "dot-dashed# terms are used. It is clear that the quadratic
approximation is qualitatively wrong and cannot be used to describe a de Sitter bounce. The value !0!1.01 has been used to derive these
plots.

FIG. 5. Absolute value of the potential Vu(!) as a function of
rescaled conformal time !/!0 for !0!1.01 as derived using either
the assumption that the scale factor behaves as a square root, i.e.,

a!a0!1$(!/!0)
2, "full line# or Eq. "30# up to quadratic "dotted

line# and quartic order with )!0 and &!#2/5 "dashed line#. The
quartic approximation is extremely close to the exact solution, ex-

emplifying its accuracy, while the quadratic approximation appears

to be at best qualitatively correct.

J. MARTIN AND P. PETER PHYSICAL REVIEW D 68, 103517 "2003#

103517-8

Id

τa

k2 ≡ n(n + 2)

〈a†a〉 $ 1

c2
T

=
T

U

Ωvortons $ 1

S = −m2

∫

d2ξ
√
−γ

H ≡
ȧ
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still satisfied. As a consequence, this implies that H(! j) can-
not be large in comparison to K!1; in fact, since !0!1 and
x"1, H 2 is expected to be negligibly small compared to
unity right after the bounce. This means that one necessarily
connects the bounce to a regime where the curvature is im-
portant or, in other words, in a region where the sine function
appearing in the scale factor "39# cannot be approximated by
the first term of the Taylor expansion, a(!)!a r(!#! r) . The
only way to avoid this conclusion would be to violate the
null energy condition, as already noticed in Ref. $4% and to
have a small !0 but then it would have been useless to con-
sider the case K!1 for modeling the bounce since this was
done precisely in order to satisfy this condition. Therefore,
we conclude that between the bounce and the standard hot
big bang, another phase must necessary occur whose main
effect will be to drive H to sufficiently large values. This is
usually the role played by a phase of inflation.
With the general framework thus clarified, let us turn to

the evolution of the scalar gravitational perturbations through
the bounce by means of evaluating the effective potential for
the variable u related with the Bardeen potential through Eq.
"11#. We discuss the potential for the variable v in the dis-
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is however very specific to this particular solution, as any
displacement away from it immediately leads to a different
form of the potential. This is illustrated in Fig. 4 which
shows the relative accuracy of the expansion "30# around the
de Sitter–like solution "21#. It is also clear from the figure
that the expansion "30#, if pushed to sufficiently high orders
in ! , gives back the correct constant value over a large range
of conformal times. Let us now turn to the more general
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Vu(!) reads
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FIG. 4. Absolute value of the effective potential Vu(!) for the perturbation variable u(!) for the de Sitter–like case "full line on both
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shows the potential as obtained by using the quadratic "dotted line# and quartic "dashed# expansions of the scale factor only, whereas the right
panel presents the situation when quartic "dashed#, sixth "dotted# and eighth "dot-dashed# terms are used. It is clear that the quadratic
approximation is qualitatively wrong and cannot be used to describe a de Sitter bounce. The value !0!1.01 has been used to derive these
plots.

FIG. 5. Absolute value of the potential Vu(!) as a function of
rescaled conformal time !/!0 for !0!1.01 as derived using either
the assumption that the scale factor behaves as a square root, i.e.,

a!a0!1$(!/!0)
2, "full line# or Eq. "30# up to quadratic "dotted

line# and quartic order with )!0 and &!#2/5 "dashed line#. The
quartic approximation is extremely close to the exact solution, ex-

emplifying its accuracy, while the quadratic approximation appears

to be at best qualitatively correct.
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where the k dependence stems from the solution !78" and the
unknown matrices T?

! and T?
" refer to the unknown parts

sketched in Fig. 10. The coefficients one is interested in,
namely T11 and T12 , giving the amplitude of the growing
mode in the expanding phase as functions of the modes in
the contracting phase, accordingly can depend on k. In addi-
tion, it is important to notice that, as shown in Ref. #16$, this
mechanism does not violate causality; a similar statement
was also emphasized in Ref. #30$.
Paradoxically, obtaining a spectral modification at the

bounce is possible provided the bounce lasts the minimal
amount of conformal time compatible with the NEC preser-
vation. Nevertheless, the assumption of no effect can be jus-
tified provided the constraint %0#1$” 1 is satisfied, or in the
pure de Sitter case having %0%1 strictly. This last situation
is what happens in models in which the bounce takes place
for a vanishing value of the scalar field kinetic energy #5$,
whereas the former case implies a kinetic energy density !not
the scalar field itself" for the scalar field comparable to the
Planck scale, which may render the semi-classical field
theory dubious.
This can be particularly important in view of the string

motivated potential alternatives to inflation of the pre big
bang kind if it turns out that these models might lead to such
spectral corrections as discussed above. This condition needs

be verified in each particular situation. For instance, in the
pre big bang case, one would need to model the bounce
occurring in the Einstein frame, in which our formalism is
well suited, to see what the behavior of Vu is in this context.
Therefore, and unfortunately, one consequence of the failure
of any general argument preventing any alteration of the
spectrum is that one needs to explicitly model a regime in
which higher order string corrections are dominant. Avoiding
this was the main interest of the general argument in ques-
tion.
We also obtained that the relevant propagation variable is

not v , whose flat space equivalent is commonly used for
quantization, i.e. for setting up the initial conditions, but
rather the intermediate variable u, directly related to the
Bardeen potential. This is to be compared with what was
recently obtained in Ref. #6$, based on a completely different
theory of gravity, in which neither variable happens to be
bounded at the bounce.
The spectrum of gravitational wave cannot be affected by

propagating through these bounces. This exemplifies the fact
that there is no fundamental reason according to which scalar
and tensor modes should propagate similarly through a
bounce.
The picture that emerges for the construction of a com-

plete model of the universe is shown in Fig. 10 and consists
in a regime in which quantum field theory in a time-
dependent background is well suited, as is the case for in-
stance in many string motivated scenarios #7,8$; this first
phase allows an easy calculation of a spectrum of perturba-
tion that would be sort of pre-primordial. Then, unless the
curvature was always important in this first period, it is fol-
lowed by an unknown epoch which connects to the bounce
itself, which should also be followed by yet another un-
known epoch in order for the curvature to be negligible #16$.
This reveals the most important difference between bouncing
scenarios and inflation, namely the need for a high curvature
phase, which we have seen may drastically modify the physi-
cal predictions.
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Different parameters

primordial spectrum

More on this: cf. M. Lilley’s talk tomorrow!
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An example of non gaussianities in a matter bounce
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matter bounce = contraction phase dominated by dust

Y.-F. Cai, W. Xue, R. Brandenberger & X. Zhang, JCAP 05, 011 (2009) [arXiv:0903.0631]
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the amplitude of the non-Gaussianities is not suppressed
by slow-roll parameters. Hence, it is clear that matter
bounces will predict sizable values of these parameters.

The local form of non-Gaussianity requires that one
of the three momentum modes exits the Hubble radius
much earlier than the other two, for example, k1 !
k2, k3. Specifically, one is interested in the case when
the three momentum vectors compose an isoceles trian-
gle with k1 ! k2 = k3. Then one gets

|B|local
NL = −

35

8
, (38)

which is negative and of order O(1). If our predicted
shape were exactly local (which it is not), then the
above amplitude would equal the famous f local

NL param-
eter. Since the matter bounce model predicts a shape
which is loosely local, one can loosely speaking phrase
our prediction as

f local
NL = −

35

8
. (39)

The equilateral form requires k1 = k2 = k3. In this
case

|B|equil
NL = −

255

64
. (40)

The folded form of non-Gaussianity with k1 = 2k2 =
2k3 takes the value

|B|folded
NL = −

9

4
. (41)

From the above examples, we see that all of these three
values of non-Gaussianity are negative and of sizable am-
plitude. To quantify this statement, we evaluate the re-
sult numerically setting k2 = k3 = 1 and letting fNL be
a function of k1. The physical value of k1 runs between
0 and 2.

D. The Shape of Non-Gaussianity in the Matter
Bounce

It is interesting to determine the shape of the non-
Gaussianities, which has the potential to distinguish dif-
ferent cosmological models once the data will be suffi-
ciently accurate. A useful description of the shape is
given by

AT

k1k2k3
. (42)

To obtain a better idea of the shape of the non-
Gaussianities, we have evaluated Eq. (42) numerically.
Our results are plotted in Figures 2), 3), 4) and 5. In
the figures, we use the following convention: k3 = 1, the
x-axis is k1, the y-axis is k2, and the z-axis corresponds
to the shape A/k1k2k3. Figures 2), 3) and 4) depict the
shape functions of the contributions to order ε, ε2 and

FIG. 1: The fNL parameter in the Matter Bounce.
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FIG. 2: The shape of non-Gaussianity in the Matter Bounce.
The vertical axis is the negative of the shape function. This
figure shows the contribution of the terms of order ε.
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FIG. 3: The shape of non-Gaussianity in the Matter Bounce.
This figure shows the contribution of the terms of order ε2.
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FIG. 4: The shape of non-Gaussianity in the Matter Bounce.
This figure shows the contribution of the terms of order ε3.
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This figure shows the contribution of all terms.

ε3, respectively, Figure (5) shows the shape of the total
contribution.

For comparison, the shape function of the non-
Gaussianities in single field slow-roll inflation to leading
order in the slow-roll parameter ε is shown in Figure 6.
We see that the dominant structure of the shape func-
tion (modulo sign) is the same in the matter bounce.
However, it is also clear that the sub-leading correction
terms in the case of the matter bounce shape function are
clearly visible. They arise in the terms which are of the
order ε2 and ε3. Therefore, these next-to-leading correc-
tion terms in the case of slow-roll inflation are suppressed
by orders of magnitude (namely by ε) compared to the
leading term.

From the above analysis, we have learned that the am-
plitude of the non-Gaussianities of metric perturbations
predicted in the matter bounce scenario is of order O(1),
much larger than in single-field slow-roll inflation mod-
els. The shape is dominated by a term of local form,
but there are sizable corrections with which the matter
bounce model could in principle be distinguished from
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FIG. 6: The shape of non-Gaussianity in single field slow-
roll inflation to leading order in ε. The vertical axis is the
amplitude of the shape function.

large classes of inflationary scenarios, including many
generalized inflation models [41].

There are two basic reasons leading to these differ-
ences. One is that in a bounce model the analog of
the slow-roll parameter is large, the other is that the
perturbations outside the Hubble radius are not con-
served which provides a new origin to generate non-
Gaussianities.

E. Squeezed Limit

It is also interesting to consider the behavior of shape
function in the squeezed limit when k1 = k2 ≡ k and
k3 → 0 [49]

In this limit, the leading terms of the above three shape
functions for the contributions to orders ε, ε2 and ε3 are
all proportional to

A ∼
k5

k2
3

. (43)

However, when we sum the three contributions, we find
that the leading terms cancel and the total shape function
takes the form

AT |squeezed = −
21

8
k3 . (44)

IV. DISCUSSION AND CONCLUSIONS

We have calculated the amplitude and shape of the
non-Gaussianities in the matter bounce model as quanti-
fied by the three-point correlation function of ζ. Since in
this model the fluctuations grow on super-Hubble scales
during the contracting phase, different terms in the in-
teraction Lagrangian dominate the contribution to the
non-Gaussianities. In addition, there is no slow-roll sup-
pression of the amplitude. Hence, both the amplitude
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ε3, respectively, Figure (5) shows the shape of the total
contribution.

For comparison, the shape function of the non-
Gaussianities in single field slow-roll inflation to leading
order in the slow-roll parameter ε is shown in Figure 6.
We see that the dominant structure of the shape func-
tion (modulo sign) is the same in the matter bounce.
However, it is also clear that the sub-leading correction
terms in the case of the matter bounce shape function are
clearly visible. They arise in the terms which are of the
order ε2 and ε3. Therefore, these next-to-leading correc-
tion terms in the case of slow-roll inflation are suppressed
by orders of magnitude (namely by ε) compared to the
leading term.

From the above analysis, we have learned that the am-
plitude of the non-Gaussianities of metric perturbations
predicted in the matter bounce scenario is of order O(1),
much larger than in single-field slow-roll inflation mod-
els. The shape is dominated by a term of local form,
but there are sizable corrections with which the matter
bounce model could in principle be distinguished from
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large classes of inflationary scenarios, including many
generalized inflation models [41].

There are two basic reasons leading to these differ-
ences. One is that in a bounce model the analog of
the slow-roll parameter is large, the other is that the
perturbations outside the Hubble radius are not con-
served which provides a new origin to generate non-
Gaussianities.

E. Squeezed Limit

It is also interesting to consider the behavior of shape
function in the squeezed limit when k1 = k2 ≡ k and
k3 → 0 [49]

In this limit, the leading terms of the above three shape
functions for the contributions to orders ε, ε2 and ε3 are
all proportional to

A ∼
k5

k2
3

. (43)

However, when we sum the three contributions, we find
that the leading terms cancel and the total shape function
takes the form

AT |squeezed = −
21

8
k3 . (44)

IV. DISCUSSION AND CONCLUSIONS

We have calculated the amplitude and shape of the
non-Gaussianities in the matter bounce model as quanti-
fied by the three-point correlation function of ζ. Since in
this model the fluctuations grow on super-Hubble scales
during the contracting phase, different terms in the in-
teraction Lagrangian dominate the contribution to the
non-Gaussianities. In addition, there is no slow-roll sup-
pression of the amplitude. Hence, both the amplitude


