

Problems:

<u>Singularity</u>

<u>Horizon</u>

<u>Flatness</u>

Homogeneity

Perturbations

Dark matter

Dark energy / cosmological constant

Baryogenesis

•••

Accepted solution = INFLATION

Topological defects (monopoles)

- **constant series of solutions of a solution of a solution**
- **:** uses GR + scalar fields [(semi-)classical]
- **Inflation: •** can be implemented in high energy theories
 - **e** makes falsifiable predictions ...
 - **©** ... consistent with all known observations
 - string based ideas (brane inflation, ...)

- **e** solves cosmological puzzles
- **:** uses GR + scalar fields [(semi-)classical]
- **Inflation: •** can be implemented in high energy theories
 - 🙂 makes falsifiable predictions ...
 - **c** ... consistent with all known observations
 - string based ideas (brane inflation, ...)

- **e** solves cosmological puzzles
- **:** uses GR + scalar fields [(semi-)classical]
- **Inflation: •** can be implemented in high energy theories
 - **e** makes falsifiable predictions ...
 - :.. consistent with all known observations
 - string based ideas (brane inflation, ...)

singularity, initial conditions & homogeneity

- **e** solves cosmological puzzles
- **:** uses GR + scalar fields [(semi-)classical]
- **Inflation: •** can be implemented in high energy theories
 - 🙂 makes falsifiable predictions ...
 - **c** ... consistent with all known observations
 - string based ideas (brane inflation, ...)

- **singularity, initial conditions & homogeneity**
- **string based ideas (PBB, other brane models, string gas, ...)**

- **:** solves cosmological puzzles
- **:** uses GR + scalar fields [(semi-)classical]
- **Inflation: •** can be implemented in high energy theories
 - makes falsifiable predictions ...
 - **©** ... consistent with all known observations
 - string based ideas (brane inflation, ...)

- singularity, initial conditions & homogeneity
- **string based ideas (PBB, other brane models, string gas, ...)**
- Quantum gravity / cosmology

- **e** solves cosmological puzzles
- **:** uses GR + scalar fields [(semi-)classical]
- **Inflation: (c)** can be implemented in high energy theories
 - makes falsifiable predictions ...
 - **©** ... consistent with all known observations
 - string based ideas (brane inflation, ...)

- singularity, initial conditions & homogeneity
- **string based ideas (PBB, other brane models, string gas, ...)**
- Quantum gravity / cosmology
- purely classical theory

- **e** solves cosmological puzzles
- **:** uses GR + scalar fields [(semi-)classical]
- **Inflation: (c)** can be implemented in high energy theories
 - makes falsifiable predictions ...
 - **©** ... consistent with all known observations
 - string based ideas (brane inflation, ...)

- singularity, initial conditions & homogeneity
- **string based ideas (PBB, other brane models, string gas, ...)**
- Quantum gravity / cosmology
- purely classical theory
- bounces

- **e** solves cosmological puzzles
- **:** uses GR + scalar fields [(semi-)classical]
- **Inflation: (c)** can be implemented in high energy theories
 - **c** makes falsifiable predictions ...
 - :.. consistent with all known observations
 - string based ideas (brane inflation, ...)

- singularity, initial conditions & homogeneity
- **string based ideas (PBB, other brane models, string gas, ...)**
- Quantum gravity / cosmology
- purely classical theory
- **bounces**
- provide challengers / new ingredients!

A brief history of bouncing cosmology

R. C. Tolman, "On the Theoretical Requirements for a Periodic Behaviour of the Universe", PRD 38, 1758 (1931)
 G. Lemaître, "L'Univers en expansion", Ann. Soc. Sci. Bruxelles (1933)

- -> A. A. Starobinsky, "On one non-singular isotropic cosmological model", Sov. Astron. Lett. 4, 82 (1978)
- -> M. Novello & J. M. Salim, "Nonlinear photons in the universe", Phys. Rev. 20, 377 (1979)
- → V.N. Melnikov, S.V. Orlov, Phys. Lett. A 70, 263 (1979).
- -> R. Durrer & J. Laukerman, "The oscillating Universe: an alternative to inflation", Class. Quantum Grav. 13, 1069 (1996)

M. Novello & S.E. Perez Bergliaffa, "Bouncing cosmologies", Phys. Rep. 463, 127 (2008)

→ Penrose: BH formation

 $S_2 > S_1$

Quantum nucleation?

 PBB - Ekpyrotic - Modified gravity - Quantum cosmology - Quintom -Horava-Lifshitz - Lee-Wick - ...

HRI - Allahabad - 14th December 2010

 $S_3 > S_2 > S_1$

Standard puzzles and some (bouncing) solutions

- 😕 Singularity
- 😕 Horizon
- 😕 Flatness

😕 Homogeneity

- 😕 Perturbations
- 😕 Others

Standard puzzles and some (bouncing) solutions

😕 Singularity

Merely a non issue in the bounce case!

- 😕 Horizon
- 😕 Flatness
- 😕 Homogeneity

- 😕 Perturbations
 - **B** Others

Standard puzzles and some (bouncing) solutions

- Singularity
 Merely a non issue in the bounce case!
- Sprizon $d_{\rm H} \equiv a(t) \int_{t_{\rm i}}^{t} \frac{\mathrm{d}\tau}{a(\tau)}$ can be made divergent easily if $t_{\rm i} \to -\infty$
- 😕 Flatness
- 😕 Homogeneity

- B Perturbations
- B Others

HRI - Allahabad - 14th December 2010

 \odot

Standard puzzles and some (bouncing) solutions

- Singularity Merely a non issue in the bounce case! Sorizon $d_{\rm H} \equiv a(t) \int_{t_i}^t \frac{d\tau}{a(\tau)}$ can be made divergent easily if $t_i \to -\infty$ Slatness $\frac{d}{dt} |\Omega - 1| = -2\frac{\ddot{a}}{\dot{a}^3}$ accelerated expansion (inflation) or decelerated contraction (bounce) Somogeneity
- B Perturbations
- 😕 Dthers

Standard puzzles and some (bouncing) solutions

Standard puzzles and some (bouncing) solutions

Standard puzzles and some (bouncing) solutions

Influence of the spatial curvature?

 \rightarrow Modify GR to non singular theories (curvature invariants)

$$\mathcal{S} = \frac{1}{16\pi G_{\rm N}} \int \mathrm{d}^4 x \sqrt{-g} \left[R + \sum_{i=1}^N \varphi_i I^{(i)} - V\left(\varphi\right) \right] \qquad \Longrightarrow \frac{\mathrm{d}V}{\mathrm{d}\varphi} = I$$

R. Brandenberger, V. F. Mukhanov and A. Sornborger, Phys. Rev. D48, 1629 (1993)

A generic model-independent treatment of the bounce phase?

Geometric matching conditions?

HRI - Allahabad - 14th December 2010

19

20

Solutions to old puzzles

Solution Straight Straight

G.R. ...

monopoles = ???

Dark energy ...

Model dependence ...

Bouncing cosmology!

Wew solutions to old puzzles

No singularity

☑ G.R. ...

monopoles = ???

Dark energy ...

Model dependence ...

New predictions (oscillations, *T/S* ...)

Bouncing cosmology!

Wew solutions to old puzzles

No singularity

€ G.R. ...

monopoles = ???

Dark energy ...

Model dependence ...

New predictions (oscillations, *T/S* ...)

Future

String implementation

An example of non gaussianities in a matter bounce

 $\omega = 0 \quad \Longleftrightarrow \quad n_{\rm s} = 1$

matter bounce = contraction phase dominated by dust

Y.-F. Cai, W. Xue, R. Brandenberger & X. Zhang, JCAP 05, 011 (2009) [arXiv:0903.0631]

HRI - Allahabad - 14th December 2010

Bouncing cosmology!

With the solutions to old puzzles

No singularity

€ G.R. ...

monopoles = ???

Dark energy ...

Model dependence ...

New predictions (oscillations, *T/S* ...)

Future

String implementation

An example of non gaussianities in a matter bounce

 $\omega = 0 \quad \Longleftrightarrow \quad n_{\rm s} = 1$

matter bounce = contraction phase dominated by dust

Y.-F. Cai, W. Xue, R. Brandenberger & X. Zhang, JCAP 05, 011 (2009) [arXiv:0903.0631]

HRI - Allahabad - 14th December 2010

Bouncing cosmology!

With the solutions to old puzzles

No singularity

29

