Persistent Betti Topology

Pratyush Pranav Kapteyn Astronomical Institute Groningen, the Netherlands

> PFNG 2010 HRI, Allahabad

Persistent Betti Topology

LSS

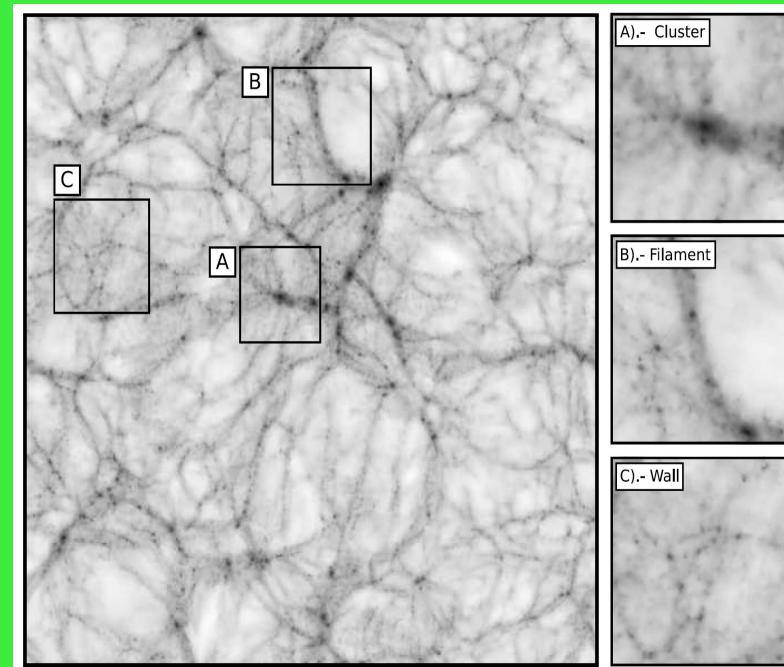
Rien van de Weygaert (KAI) Herbert Edelsbrunner (IST/Duke) Changbom Park (KIAS) Rien van de Weygaert (KAI) Herbert Edelsbrunner (IST/Duke) P. Chingangbam (IIA/KIAS) Changbom Park (KIAS)

CMB

The Cosmic Web

Hierarchical Structure formation

Anisotropic collapse of matter



The Cosmic Web

Web Discretely Sampled:

By far, most information

on the Cosmic Web concerns

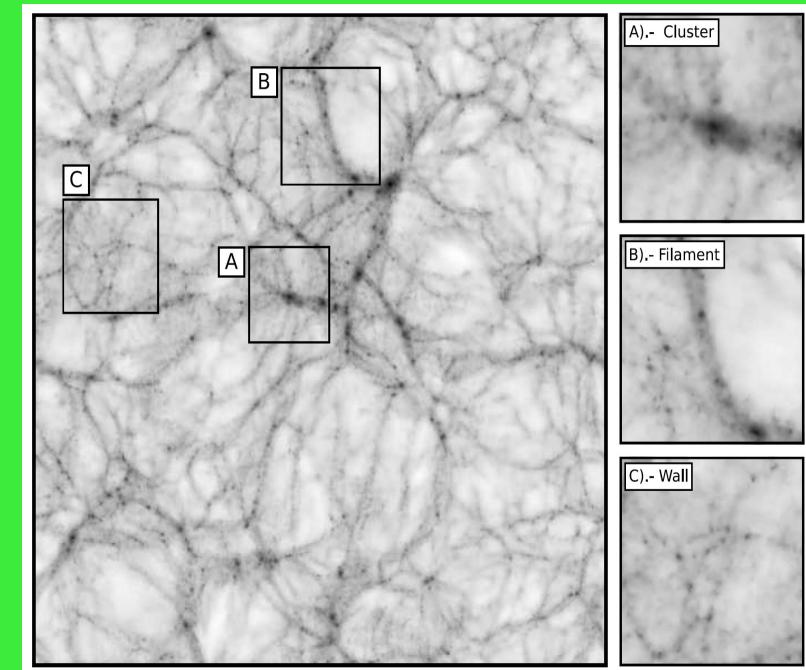
discrete samples:

observational:

Galaxy Distribution

theoretical:

N-body simulation particles



Delaunay Triangulation

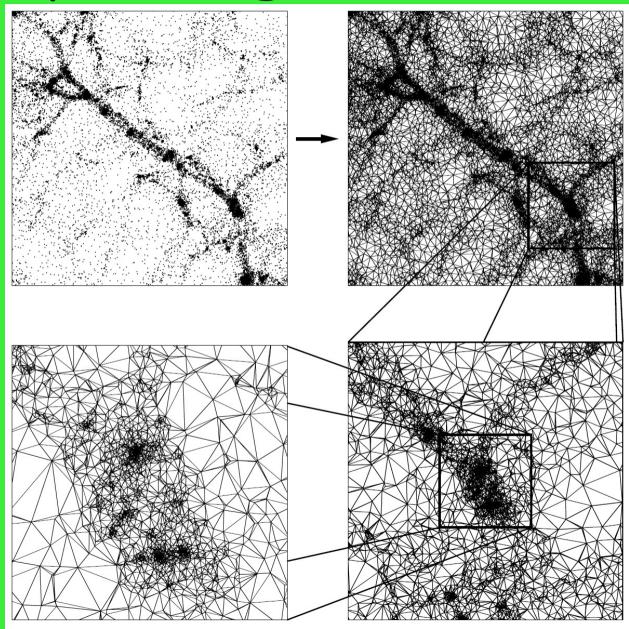
Reconstruction of shapes represented by a discrete point sample

Unique for a nondegenerate point sample (Empty circumcircle)

Handles multi-scale distribution naturally

suggestion for exploiting this to explore the topology of the cosmic mass Distribution

Alphashapes



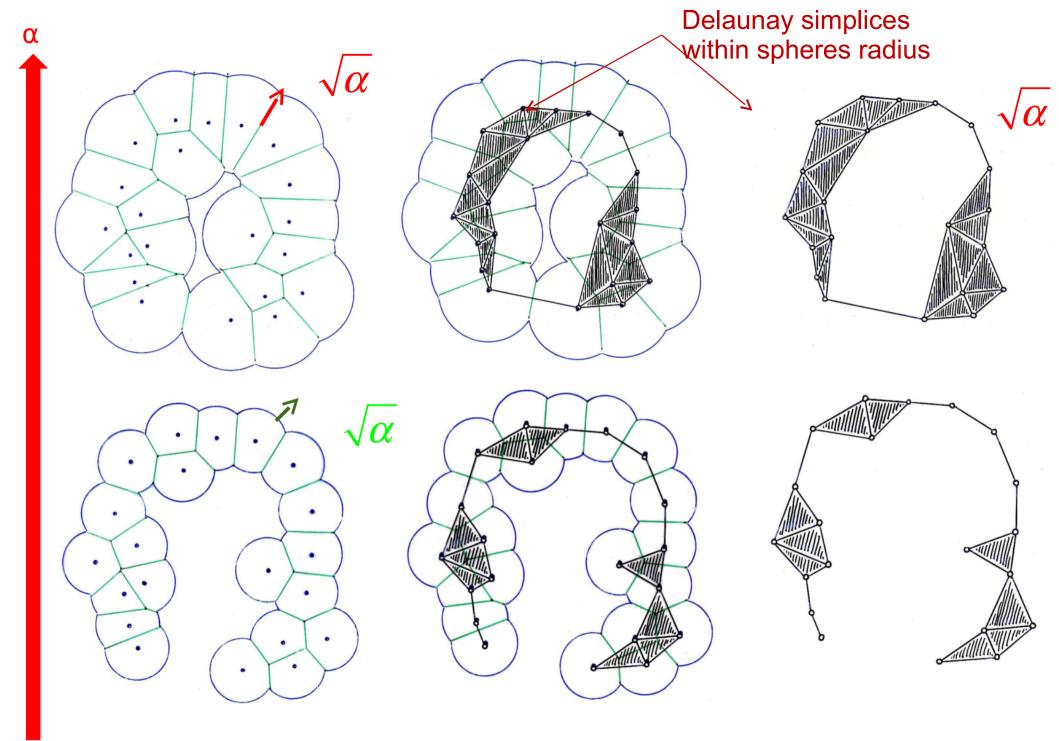
Cosmic Structure Topology

A new approach: Exploit the topological information contained in the Delaunay Tessellations of the galaxy/halo/density distribution

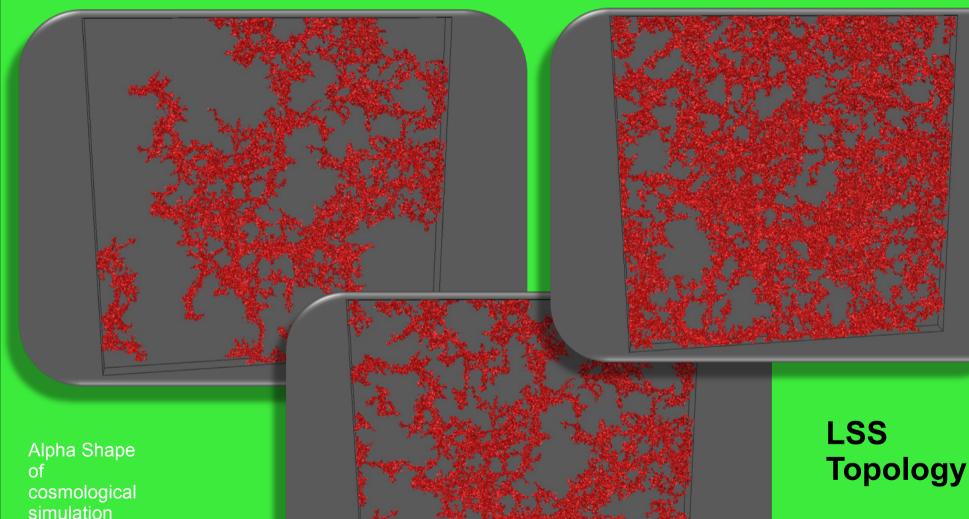
Alpha (a) Shapes

Introduced by H. Edelsbrunner & collab. (1983,1994)

Description of intuitive notion of the shape of a discrete point set



Cosmic Structure Topology



left to right: alpha value increases.

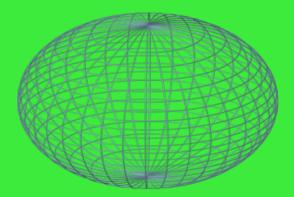
Betti Numbers

Provide complete quantitative characterization of the topology
Can be inferred from the set of alphashapes for varying alpha

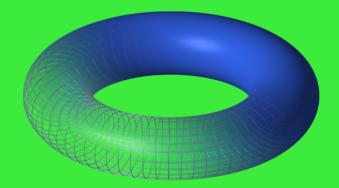
Definition

 β_k – a number of k-dimensional holes of an object or shape. Parameter k can take values from 0 < k < N, for a n-dimensional euclidean space. For N=3 we have

- **β**⁰ the number of independent components
- **β1 the number of tunnels/loops**
- **β**² the number of enclosed voids



 $\beta_0 = 1, \beta_1 = 0, \beta_2 = 1$



 $\beta_0 = 1, \beta_1 = 2, \beta_2 = 1$

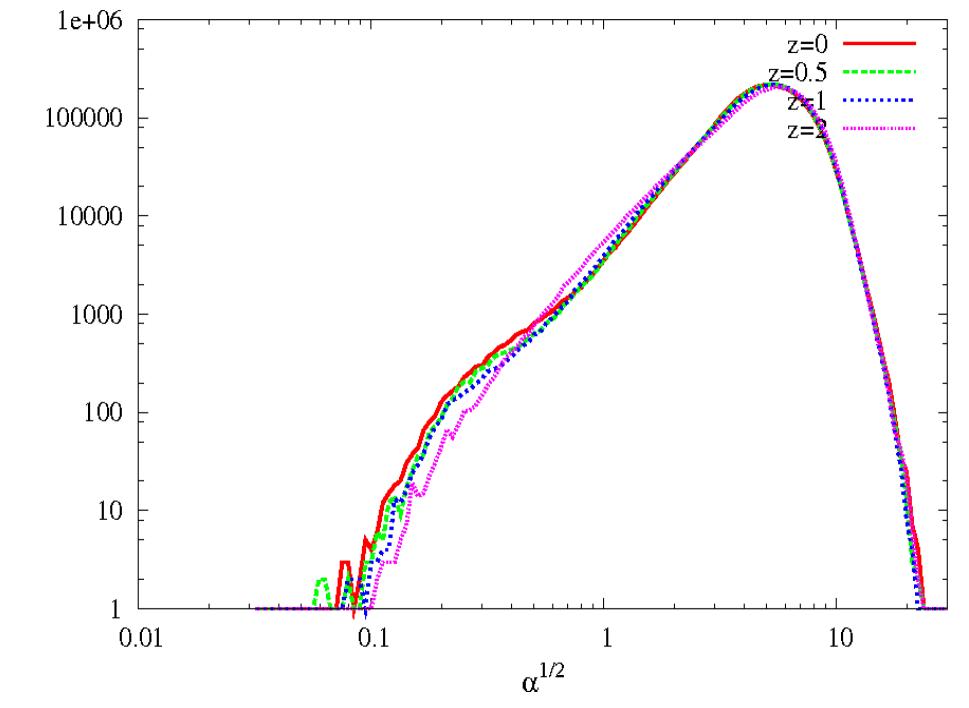
Betti Numbers and Genus

For a body with c components, the genus g specifies the number of handles on surface, and is related to the Euler characteristic via:

$$g = c - \frac{1}{2}\chi$$

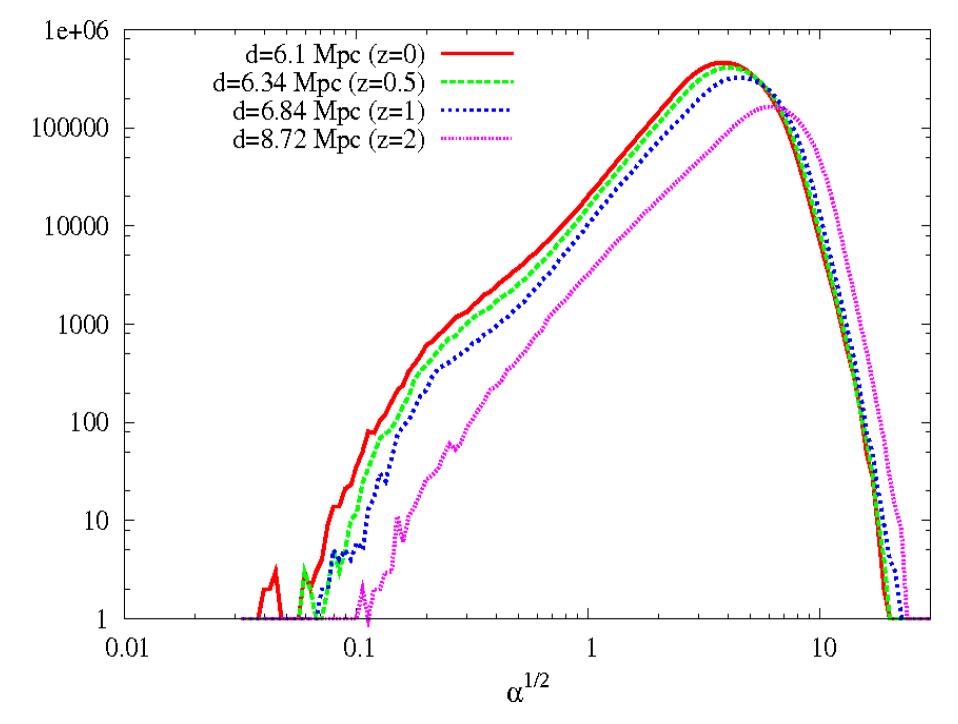
$$\chi = 2(\beta_0 - \beta_1 + \beta_2)$$

 $\lambda=8.0\ Mpc$

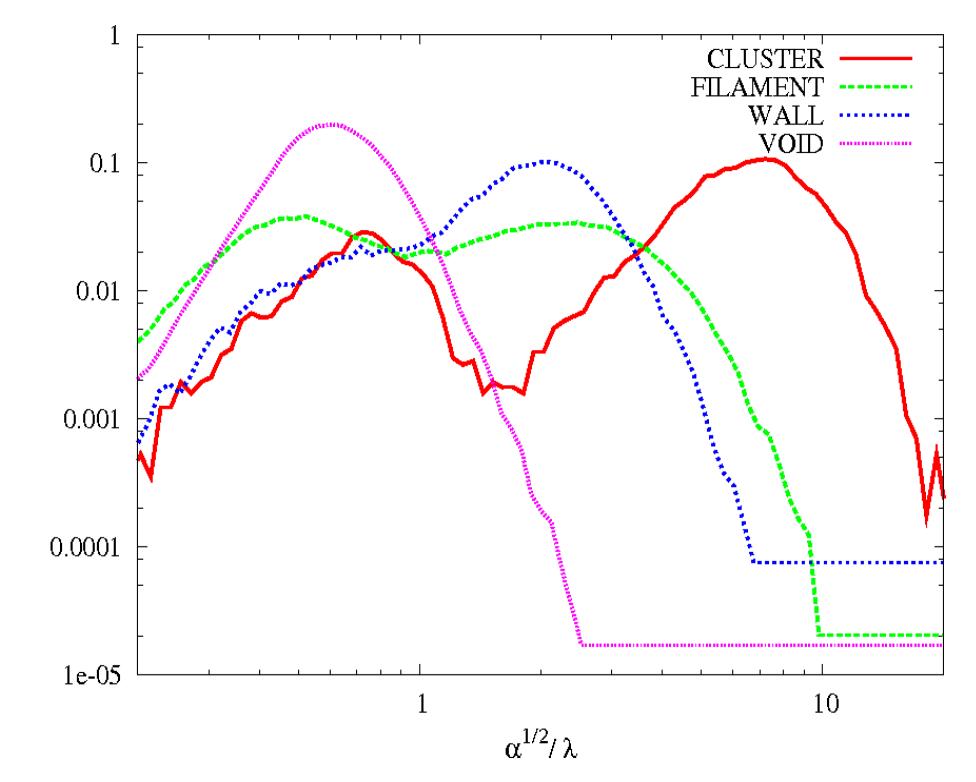


 $\mathbf{B}_{\mathbf{I}}$

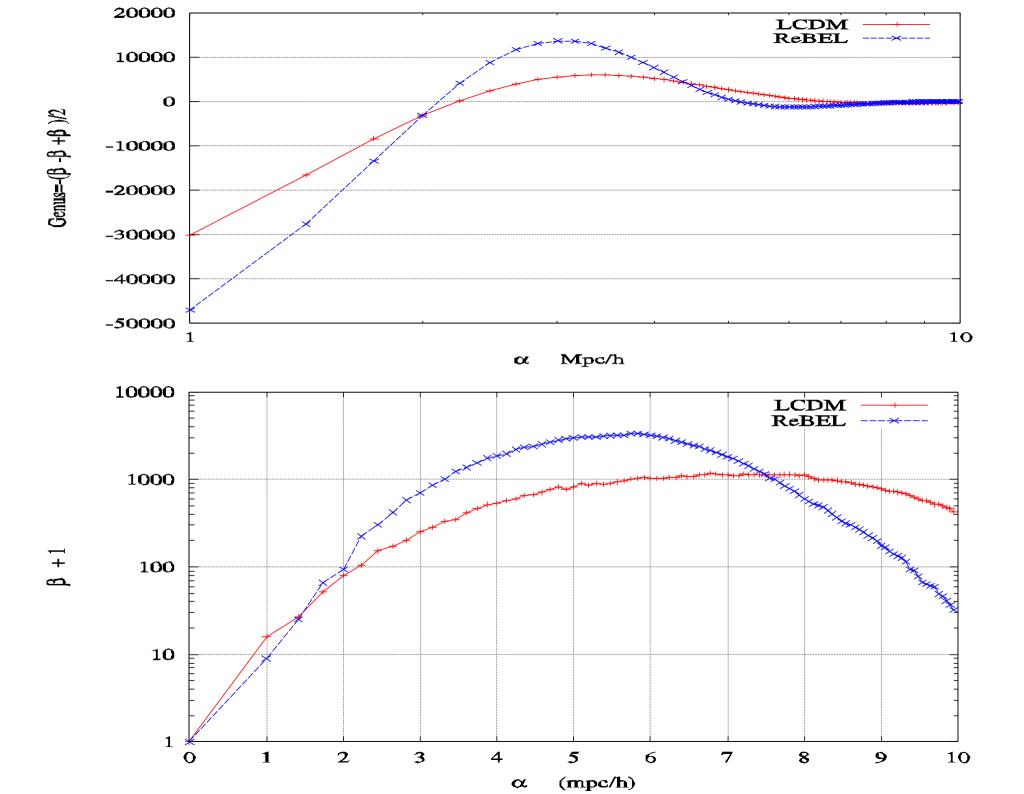
mass cut = 7.9E+11



 $\boldsymbol{\beta}_1$



 β_1 /N

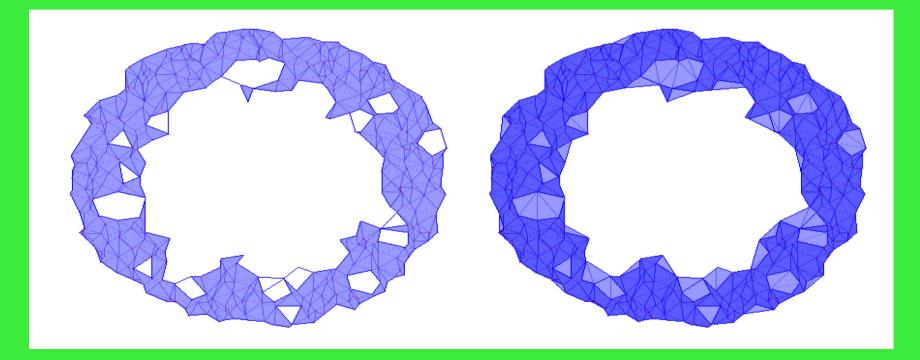


Persistence: Search for topological reality

Formalism to quantize the "life-span" of structures

Segregate real structure from noise for a single-scale distribution

Investigate structures at a particular scale for multi-scale distributions

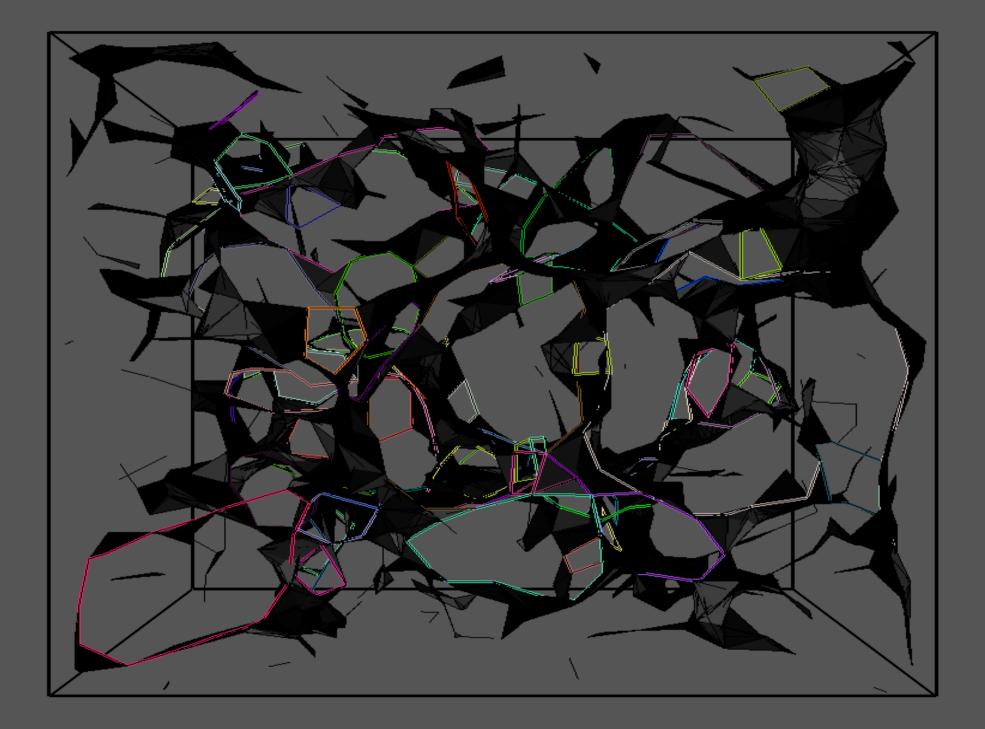


Concept introduced by Edelsbrunner:

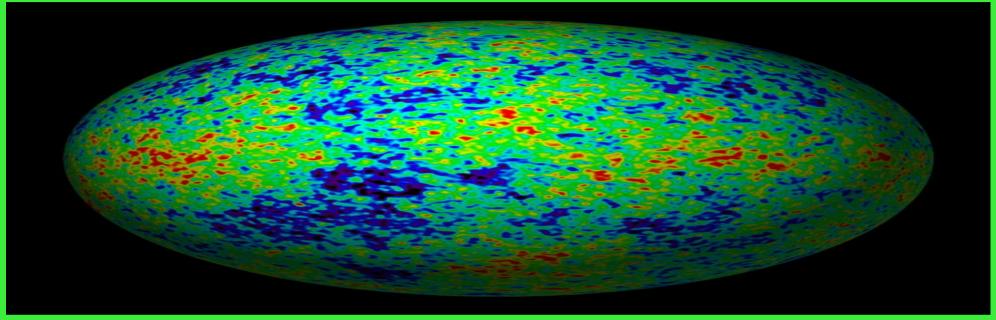
Reality of features (eg. voids) determined on the basis of interval between "birth" and "death" of features

Persistence Diagram





CMB Topology



Concepts for analysis similar as described above

Points replaced by Pixels

Topology as a function of level-sets