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Cosmological inflation

* A period of accelerated expansion before the radiation era
that solves the problems of the Hot Big-Bang model and
creates the seeds of the large scale structure of the universe.

* Primordial fluctuations adiabatic

o o7 _g «<— Primordial
T 5 curvature perturbation

 nearly scale invariant
» Gaussian

« Simplest implementation: single field with very flat potential.
Its predictions perfectly match the observations.



More?

Simplest models surprisingly difficult to embed in high-energy
physics models (eta-problem).

Many high energy physics models involve several scalar
fields. If several scalar fields are light enough during inflation

—, multifield inflation, changes a lot the predictions !
D-brane action: non-standard kinetic terms.
Alternatives: curvaton, ekpyrotic...

They are all almost degenerate at the linear level.

(cook up a model that matches two numbers...)



More?

Simplest models surprisingly difficult to embed in high-energy
physics models (eta-problem)

Many high energy physics models involve several scalar
fields. If several scalar fields are light enough during inflation

—, multi-field inflation, changes a lot the predictions !
D-brane action: non-standard kinetic terms.

Alternatives: curvaton, ekpyrotic...

How to discriminate
amongst them?



More?

Simplest models surprisingly difficult to embed in high-energy
physics models (eta-problem)

Many high energy physics models involve several scalar
fields. If several scalar fields are light enough during inflation

—, multi-field inflation, changes a lot the predictions !
D-brane action: non-standard kinetic terms.

Alternatives: curvaton, ekpyrotic...

How to discriminate

amongst them? NON GAUSSIANITIES




Non-Gau33|an|t|es

Beyond the power spectrum:
higher-order, connected,
n-point functions.

3-point function, the bispectrum

WMAP 5-yea
+200

<<—k1 Ck? Ck3> BC(kla ko, k3)(2ﬂ-)56 (kl + k2 + k3)
E> = ngL P (k1) Pe(k2) + perm.|

Connected 4-point function of zeta, the trispectrum
<Ck1 Ckz <k3 Ck4>C = TC(kh k27 k37 k4)(2’ﬂ')353(2 kl)




The Bispectrum
BC (A‘l , k{ﬂ)’ ]:;;3)
« Amplitude

A useful guidance: local-type non-Gaussianities

¢(=C(1+ fnréa)

_:- WMAP 5-year

Current constraints  f;, = O(100)
Planck accuracy Afng ~ 5
Slow-roll single field fy; ~ 1072

Each feature can rule out
large classes of models

« Scale-dependence (growing or shrinking on small scales?)

 Sign (more or less cold spots?)

« Shape (largest for which triangles?) Fergfsi?)iﬁh&eéﬁéﬁg% (08)



Various shapes

~Equilateral

Multiple

Non standard
fields

kinetic terms

¥ '° Periodic ~
Non Bunch-Dawe%/k

., background
evolution vacuum i

0. 5k3




Outline

| : Motivations

Il : The theorem and its implications
lll : The original proof

IV : ... and its weaknesses

V : Recent results



The single field consistency relation

* In every single field model, irrespective of kinetic terms,

potential, vacuum, slow roll ...: Maldacena (03), Creminelli &
Zaldarriaga (04)

_
» S ( J |
I (k1) = —(1 —ng(ky))
12 .
with [ (k) = llim fno(ki, ko, k3) — 3«
. 17:;—3’() 1

e Giventhat MNlg — 0.963 + 0.012 (GS%CL)

WMAP 7th year (2010
If  fx'r 21 is robustly detected, year (2010

all single field models would be ruled out!

+ Current constraints:  [1\7% = 32 4+ 21 (68% C'L)



Understanding the theorem (1)

* In the squeezed limit, one correlates one very long wavelength
mode with two shorter wavelength modes

k; = k3 ks = k1 =~ ko
= (Cha ChaCrs) = (Cha)?Chr)
. 2 -
» Question: why (Ck.)” should care about (k;, 2

* The theorem says it does not care if

(L is exactly scale-invariant.



Understanding the theorem (2)

A very long wavelength mode acts as a local rescaling
of the spatial coordinates (equivalently, of the scale factor)

ds® ~ —dt* + a(t)?e**' (dx)?
=

r — x e’

A conformal rescaling of the spatial coordinates can not
change the amplitude of the small-scale perturbation if
<k Is scale invariant.
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Creminelli & Zaldarriaga (04)
A formal prOOf Cheung et al (08)

1) Local rescaling of coordinates

(€O i(x1,x2) = (CCho(e |x1 — x2|)



Creminelli & Zaldarriaga (04)
A formal proof  cheungetal (08)
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Creminelli & Zaldarriaga (04)
A formal proof  cheungetal (08)

1) Local rescaling of coordinates

(€O i(x1,x2) = (CCho(e |x1 — x2|)

2) Linear expansion in (;
X1 + X2> d
2 dlog(|x1 — x2])

(CCh(x1,%2) = (COhollx1 — Xal) + & ( (ol — xs)

3) Algebra

I d
(COu(ler. ke) = (COolkes) = Glkr) g5 g (KGO (k)
with ki =ki+ky ="k =k

(k) (CCulcr o)) = =20 (3 ) P i) Peln) 35 e [4C00 (k)]
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Some concern  Chen(10)

* Loop corrections

* Finite kg/lﬁ corrections:
real triangles are not infinitely squeezed

* The proof uses classical arguments only whereas correlation
functions are calculated in a quantum set-up:

we assumed that the effect of of the long-wavelength mode is
a constant background rescaling, i.e. we assume there is no
iInteraction when all modes are within the horizon.



Cosmological correlations from quantum
field theory and primordial non-Gaussianities

« Keldysh-Schwinger formalism Schwinger (61), Keldysh (64),
Weinberg (05)

(O(t)) = (0| [Texp (z /_toc Hf(t’)dt’>] o' (t) [Texp (—z‘/_; Hl(t”)dt”)] 0) .

| = interaction picture.
* All fields are free Gaussian fields

* Requires integrals over time:
The oscillations of the mode functions inside the horizon are

usually destructive, but not always: models with a step, periodic
background evolution ... Chen et al (06,08)

* One expects the theorem to be satisfied for
ks < k., < ki ~ ko Where k. is any characteristic scale.
Example: Flauger & Pajer (10)

Interaction Hamiltonian
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Recent results (1)

 In a quantum framework, exact (tree level) expression of the
squeezed bispectrum (in terms of integrals of the free mode
functions) for standard single field inflation. Ganc & Komatsu (2010

» Generalization to k-inflation: Renaux-Petel (2010)

P(X, @) with X = — 5(’)/,'(,5")(')“(;‘)
- Standard kinetic term: [ = X — X(o)

(%1 2f ()X — 1) V(e

* Non trivial example: DBI /7 = —



Recent results (2)

Explicit verification of the consistency relation:

« for an exactly solvable class of models with a non-trivial
speed of sound.

» at first non trivial order in a slow-varying approximation in

k-inflation (a known result) Chen et al (2006)
Cheung et al (2007)

» at second order in a slow-varying approximation in standard
single field inflation.



The strategy (1)

 Calculate the squeezed limit of the bispectrum without first
calculating the full bispectrum

+ We still calculate (Ck, CkCks) = {(Ck; Cka) ks Cks)

 For that purpose, we split zeta into a large-scale, classical,
part and a small-scale quantum part:

dk3 . dk3 |
G = / s / el
kek, (2m)3 ksk, (2m)3

with kg < k* < k'l =~ kQ



The strategy (2)

» We introduce ( = (; + (s into the second- and
third-order action

2
* Terms of order Cg (from the second-order action)
|:> free mode functions

* Terms of order Cf Q (from the third-order action)
are treated as perturbations in the Keldysh-Schwinger formalism

+ In the infinitely squeezed limit k3 — 0
one can neglect time and space derivatives of the long
wavelength mode.



Action

» With the redefined field Cs — Cn | 772 Cn =+
we obtain )

Sy = / dtd’x :a3c%(i,12 — ae(0¢,)?],
5 [a’e
Sint,(3) — /dtd (‘4 (6 -3+ 3( )Clgn 2 (6 —2s+1— C )Cl(a(n)

3
a~ € .
+ C% (g) CZCTLC’RI

P
1 2 — sX
with  ¢; = Pyt 2XPxx
. H é c,
an €= ——— n=—, s =
2’ ' =TT He.



Quantization

Mode expansion

0= [ e s et

Canonically normalized field

Z//
/! 21.2
a /—26 Up + (CS]C - >
U — ZUE

Cs % ! 5

UV =

Power spectrum

Pg(k') — lim | |uk|2



Interactions and general result
Tree level Keldysh-Schwinger formalism:

t
Conter D nea D)rr, = —i / AE(0[Conses (B)Cosea () H 1.3 (£)]0) + c.c.

<Cn,k1 @Cn,kz (E)>Cl,k3 — Fcl,krl-kz

2€
02

4 2
Fo— iuzl(i—)/ dTL:(e—S—i-Sc) 2(ufr )2 + =

2e Ui 3, 1%
+é(c_2> a u;gluh] + c.cC.

(1—c?+e—2s)a’ki(uy,)’

Final result:

Jim, (G, Giey Giea ) = (27) 353(2 k;) P (ks) (P (k1)

n(t)
c2(t)

+ F)



The slow varying approximation (1)
€, 7,5 — O(G) << 1 and % (é’ .77’ S) _ 0(62)

ur(y) = 2\/\;_ \/[;% k:31/2 (1+ : 5+ %) y32HM (1 + €+ s)y) (1+0(e))

Chen et al (06)

" ke 3 tet N n S
wi Y= and V=—=+€E+ -+ =
aH 2 2 2
|:> Scalar spectral index at second order
Hpg _ ik
up (1) = - (14 ikcgper)e oK™ 0" order

\/4€KCSKIC



The slow varying approximation (2)

Fy + F5 + F3
L / dTg1<T>a2<u;;>2] qi(r) =

4PC (k‘l) Re
4PC (kl) Re

4PC (kl) Re

g3

with

:_Z'/_TOO drga(T)a” k7 (uy, ) ] 92(T) =

- 7
. 3 1%
—z/ drgs(T)a ukluh], g3(7) =
L — OO

0—4(3 30 —6)

(1—(' + € — 25)

)

IS higher order in the slow varying approximation



A warm-up: canonical inflation
at leading order

* Coupling treated as constants
« Zeroth-order mode functions

a [ 2ik
= —ei kRe [—z/ dre” T]
P (k) o
I €K . /T dr o ik
= ——Re|— — (1 — ik T
Pe(k) k e[ L,_OOTQ( tkT)%e
i (G GaG) = =m0 (ki) Pelk) P (ks) (=26 = i + O(e)

= —(2m)*0® (> ki) Pe(k1)Pe(ks) (—2e, + iy — O(€?))

—) The theorem is verified



The case of an arbitrary speed of sound
at leading order (1)

« Same type of calculation:
Fhaive - 2¢ — 3s
- 2
Pe (k) C3
» But the calculation is not consistent at this stage: by treating
all the slow-varying parameters as constant, we neglected O(e)

corrections, which, multiplied by the l/cﬁ — 1 factorin g1
and g2, compete with the above result.




The case of an arbitrary speed of sound
at leading order (2)

« 3 types of 0(6) corrections:

- to the scale factor:

1 € €
a(T) = -

B B 2
Hor  Heor T Heo In(7/7x) + O(€?)

- to the coupling « constants »:

dg 1 T
)= qg(7Tr ) — In — + O(€
9(7) = 9(7K) 7 T TK+ (“9)
- to the mode functions themselves:
complicated!




The case of an arbitrary speed of sound
at leading order (3)

Lots of integrals ... with special functions derived from
Hankel functions ...

7](7_-) F . nNK Fnaive AF p
20 T Rm (K AT P<<k->> (1+0(e)

2¢ — 38 1
— (Z?K + KCQ K (62 _1> (26K+77K—38K)+48K> (1+0(6))
sK sK sK

= 2 + 1N +SKg + 0(62)
= 2, + M + s + O(€2)

and the theorem is satisfied.



Canonical inflation at next to leading order

. O(E) corrections to the previous result for F] + F2

» Calculation of F3 (naively divergent):

Fi ( Nk ) ( NK ) _ 9
— N + nk In(—k7) + O(7
P ( k) Hrnw | K Hing 1K In( ) (77)

* The term from the field redefinition is evaluated at the
late time 7 and not at horizon crossing:

_ NK _ 2
=5 1 — In(—K
n(T) = Nk ( Hen n(—K7)+ O(e ))

Useful check of the calculation: arbitrariness of the
pivot scale K.



Conclusion

* Theoretical relevance of the consistency relation.

« “A convincing detection of a bispectrum signal in the
squeezed limit (from primordial origin) would rule out all

single field models of inflation” ...
up to models with interactions under the horizon
(features).

« Checked by explicit calculations and different types of

methods. Seery & Lidsey (05), Chen et al (06), Cheung et al
(07), Ganc & Komatsu (10), Renaux-Petel (10)

» Subtleties at second order and use of an arbitrary pivot
scale.



