CMB NON-GAUSSIANITIES: STATISTICAL METHODS AND THEIR APPLICATIONS

Graziano Rossi

Korea Institute for Advanced Study (KIAS)

"Primordial features and Non-Gaussianities"

HRI, Allahabad, India

December 16th, 2010

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

G. Rossi

INTRO TO NON-GAUSSIANITY

STATISTICAL TECHNIQUES

PIXEL STATISTICS

MINKOWSKI FUNCTIONALS

OUTLINE

- Non-Gaussianity: Brief Intro
- Statistical Techniques
- Pixel Statistics
- Minkowski Functionals
- Basic Highlights

MAIN REFERENCES

- G. Rossi, P. Chingangbam & C. Park (2010), MNRAS in press
- G. Rossi, R. K. Sheth, C. Park & C. Hernández-Monteagudo (2009), MNRAS, 399, 304-316
- P. Chingangbam, G. Rossi & C. Park, JCAP in prep.

INTRO TO NON-GAUSSIANITY

STATISTICAL TECHNIQUES

PIXEL STATISTICS

MINKOWSKI FUNCTIONALS

NON-GAUSSIANITY AS A PROBE OF NEW PHYSICS

Non-Gaussianity as a Probe of the Physics of the Primordial Universe and the Astrophysics of the Low Redshift Universe

E. Komatsu,^{1,2} N. Afshordi,³ N. Bartolo,⁴ D. Baumann,^{5,6} J.R. Bond,⁷ E.I. Buchbinder,³ C.T.Byrnes,⁸ X. Chen,⁹ D.J.H. Chung,¹⁰ A. Cooray,¹¹ P. Creminelli,¹² N. Dalal,⁷ O. Doré,⁷ R. Easther,¹³ A.V. Frolov,¹⁴ K.M. Górski,¹⁵ M.G. Jackson,¹⁶ J. Khoury,¹⁷ W.H. Kinney,¹⁸ L. Kofman,⁷ K. Koyama,¹⁹ L. Leblond,²⁰ J.-L. Lehners,²¹ J.E. Lidsey,²² ...

In the coming decade, *non-Gaussianity* will become an important probe of both the early and the late Universe. Specifically, it will play a leading role in furthering our understanding of two fundamental aspects of cosmology and astrophysics \rightarrow NEW PHYSICS RELATED TO COSMOLOGY

- The physics of the very early universe that created the primordial seeds for large-scale structures
- The subsequent growth of structures via gravitational instability and gas physics at later times

(日) (日) (日) (日) (日) (日) (日)

INTRO TO NON-GAUSSIANITY

STATISTICAL TECHNIQUES

PIXEL STATISTICS

MINKOWSKI FUNCTIONALS

WHY IS NON-GAUSSIANITY IMPORTANT?

CANONICAL SLOW-ROLL INFLATION

- φ free scalar field in ground state of Bunch-Davis vacuum
- $\mathcal{R} = -[H(\phi)/\dot{\phi}_0]\varphi$ primordial curvature pert. (linear order)
- If $p(\varphi) \rightarrow$ Gaussian then $p(\mathcal{R}) \rightarrow$ Gaussian

SLOW-ROLL INFLATION - BREAKING GAUSSIANITY

- $\bullet \ \ \text{NG} \rightarrow \text{Allow interactions between scalar fields}$
- NG \rightarrow Non-linear corrections to the relation $\mathcal{R} \rightarrow \phi$

BEYOND CANONICAL MODELS

- Non-standard inflationary models (ex. \rightarrow Sasaki 2008)
- Alternative early-universe models (ex. → Brandenberger 2009)

INTRO TO NON-GAUSSIANITY

STATISTICAL TECHNIQUES

PIXEL STATISTICS

MINKOWSKI FUNCTIONALS

HIGHLIGHTS

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ 三 ● ○○

WHY NG NOW?

GAUSSIANITY

- 1980-1989 → 153 titles, 1387 abstracts
- 1990-1999 \rightarrow 723 titles, 5835 abstracts
- 2000-2010 \rightarrow 3466 titles, 14946 abstracts

NON-GAUSSIANITY

- 1980-1989 \rightarrow 0 titles, 0 abstracts
- **1990-1999** \rightarrow 31 papers titles, 85 abstracts
- 2000-2010 → 495 titles, 1266 abstracts

"VIVE LA RESOLUTION" \rightarrow BOUCHET'S TALK

- **1980-1989** \rightarrow No powerful observational probes
- 1990-1999 → COBE
- 2000-2010 → WMAP, PLANCK

INTRO TO NON-GAUSSIANITY

STATISTICAL TECHNIQUES

PIXEL STATISTICS

MINKOWSKI FUNCTIONALS

HIGHLIGHTS

MARKARA EN EN VKO

Describing NG: the f_{NL} or g_{NL} business

$$\begin{split} \langle \Phi(\mathbf{k}_1) \Phi(\mathbf{k}_2) \Phi(\mathbf{k}_3) \rangle &= (2\pi)^3 \delta^3(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3) F(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3) \\ \Phi &= \phi_{\mathrm{L}} + f_{\mathrm{NL}} \cdot (\phi_{\mathrm{L}}^2 - \langle \phi_{\mathrm{L}}^2 \rangle) + g_{\mathrm{NL}} \cdot \phi_{\mathrm{L}}^3 + \dots \end{split}$$

- Source of density perturbation \rightarrow second light scalar field σ

$$F(k_1, k_2, k_3) = t_{\rm NL}^{\rm local} 2\Delta_{\Phi}^2 \left(\frac{1}{k_1^3 k_2^3} + \frac{1}{k_1^3 k_3^3} + \frac{1}{k_2^3 k_3^3}\right)^{-1}$$

- Amplitude of bispectrum of "squeezed" triangles
- Curvaton scenario, variable decay width model, ...

• Single-Field Models
$$\rightarrow$$
 Break Slow-Roll

$$F(k_1, k_2, k_3) = \frac{f_{\rm NL}^{\rm equil}}{6\Delta_{\Phi}^2} \left(\frac{1}{k_1 k_2^2 k_3^3} + \dots\right)$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

- Amplitude of bispectrum of "equilateral" configurations
- Preheating, field-dependent variable, ...
- Alternative Models
- Ekpyrotic scenario
- String gas
- Cosmic strings

INTRO TO NON-GAUSSIANITY

STATISTICAL TECHNIQUES

PIXEL STATISTICS

MINKOWSKI FUNCTIONALS

Inflation Models $ightarrow \mathit{f}_{NL}$ and g_{NL}

MODEL	f _{NL} (k₁, k₂)
Canonical inflation	$\simeq 0.1$
Curvaton	5/4r
Modulated reheating	-5/4 - 1
Multi-field inflation	large?

MODEL	f _{NL} (k₁, k₂)
Ekpyrotic models	$-50 < f_{\rm NL} < 200$
Generalized slow-roll	$f_{\rm NL} \gg 1$
Warm inflation	typically $\simeq 0.1$
Multi-DBI inflation	

WMAP7 (95 % CL)

$$\bullet \ -10 < \textit{f}_{\rm NL}^{\rm local} < 74$$

•
$$-151 < f_{\rm NL}^{\rm equil} < 253$$

MODEL	$g_{NL}(\mathbf{k_1}, \mathbf{k_2})$
Slow-roll inflation (including multiple fields)	$O(\epsilon,\eta)$
Curvaton scenario	$ g_{ m NL} \simeq 10^5$
Inhomogeneous reheating	$(5/3)f_{\rm NL}^2 + \dots$
DBI inflation	$\simeq 0.1c_s^4$
Ekpyrotic models	$ g_{\rm NL} \le 10^4$

OTHER PROBES (95 % CL)

- $-29 < f_{\rm NL}^{\rm local} < 70$ (Slosar et al. 2009)
- $-4 < f_{\rm NL}^{\rm local} < 80$ (Smith et al. 2009)
- $-36 < f_{\rm NL}^{\rm local} < 58$ (Smidt et al. 2010)

SDSS + *N*-BODY

 $-3.5 imes 10^5 < g_{
m NL} < +8.2 imes 10^5$ (Desjacques & Seljak 2010)

INTRO TO NON-GAUSSIANITY

STATISTICAL TECHNIQUES

PIXEL STATISTICS

MINKOWSKI FUNCTIONALS

NG: EVIDENCE? DETECTION?

Profound implications if non-Gaussianity detected

Non-Gaussianity \rightarrow Evidence? Detection?

- One-point statistics (Jeong & Smoot 2007)
- Bispectrum estimator (Yadav & Wandelt 2008)

ANOMALIES OF ANY KIND

- "The mystery of the WMAP cold spot" (Naselsky et al. 2008)
- "The CMB cold spot: texture, cluster or void?" (Cruz et al. 2008)
- "CMB cold spot: a gate to extra dimensions?" (Cembranos et al. 2008)
- Asymmetries, alignments (i.e. Kim & Naselsky 2010)

INTRO TO NON-GAUSSIANITY

STATISTICAL TECHNIQUES

PIXEL STATISTICS MINKOWSKI FUNCTIONALS HIGHLIGHTS

NG IN THE CMB: METHODS AND PHILOSOPHY

- Real-space methods (selection)
 - Pixel statistics
 - Peak statistics
 - Morphology of hotspots
 - Fractal analysis
 - Minkowski functionals

Harmonic-space methods (selection)

- Bispectrum
- Trispectrum
- Wavelets

MODUS OPERANDI

- Choose a priori the statistics
- Select type of primordial NG
- Test statistics performance under assumed NG

CONCEPTUAL POINTS

- Choice of statistics \rightarrow a priori!
- Type of primordial NG is unknown
- A posteriori statistics → misleading
- Concept of "optimal" → related to the type of NG

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

Geometrical and topological tests

INTRO TO NON-GAUSSIANITY

STATISTICAL TECHNIQUES

PIXEL STATISTICS

MINKOWSKI FUNCTIONALS

NG in the CMB: Strategy

STRATEGY

(1) Theory (2) Simulations (3) Data Analysis

MAP-MAKING PROCEDURE

Method:

$$\Delta T(\hat{n}) = \sum_{\ell m} \mathbf{a}_{\ell m} \mathbf{Y}_{\ell m}(\hat{n})$$

Rewrite $a_{\ell m}$ as real space integral

$$a_{\ell m} = \int dr \, r^2 \Phi_{\ell m}(r) \Delta_{\ell}(r)$$

$$\Phi_{\ell m}(r) \equiv \Phi^{G}_{\ell m}(r) + f_{NL} \Phi^{NG}_{\ell m}(r) + g_{NL} \Phi^{NNG}_{\ell m}(r)$$

INTRO TO NON-GAUSSIANITY

STATISTICAL TECHNIQUES

PIXEL STATISTICS

MINKOWSKI FUNCTIONALS

HIGHLIGHTS

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

TECHNIQUE, ASSUMPTIONS, NOTATION

MAIN TECHNIQUE

Statistics of hot and cold pixels above threshold (excursion sets)

ASSUMPTIONS

 $D = T - \langle T \rangle \equiv \delta T = \mathbf{s} + \mathbf{n}$

Signal: homogeneous, may have spatial correlations *Noise*: independent of signal, inhomogeneous, spatial correlations

BASIC NOTATION

p(D): observed one-point distribution of D

G(s): distribution of s

 $p(\sigma_n)$: rms noise distribution

 $g(n|\sigma_n)$: distribution of the noise when its rms value is σ_n

INTRO TO NON-GAUSSIANITY

STATISTICAL TECHNIQUES

PIXEL STATISTICS

MINKOWSKI FUNCTIONALS

ONE- AND TWO-POINT FUNCTIONS

ONE-POINT FUNCTION

$$p(D) = \int d\sigma_n \, p(\sigma_n) \int ds \, G(s) \, p(D-s|\sigma_n)$$
$$= \int d\sigma_n \, p(\sigma_n) \, p(D|\sigma_n)$$

TWO-POINT FUNCTION

$$p(D_1, D_2|\theta) = \int_0^\infty d\sigma_1 \int_0^\infty d\sigma_2 \, p(\sigma_1, \sigma_2|\theta) \, p(D_1, D_2|\sigma_1, \sigma_2, \theta)$$

- Assume PDFs to be Gaussian or non-Gaussian
- Measure $p(\sigma_n)$ and $p(\sigma_1, \sigma_2 | \theta)$ from data

GAUSSIANITY STATISTICAL TECHNIQUES PIXEL STATISTICS MINKOWSKI FUNCTIONALS

INTRO TO NON-

NUMBER DENSITY AND CLUSTERING

ightarrow Merge the noise model into the two-point statistics formalism

- \rightarrow Obtain the two-point function above or below threshold
- ightarrow Provide analytic formulae in the weak non-Gaussian limit

Main Goals \rightarrow ND & Clustering

Number Density
$$\rightarrow n_{\text{pix}}(\nu) = \frac{N_{\text{pix,tot}}}{4\pi} \cdot P_1,$$
 (1)

Clustering
$$\rightarrow 1 + \xi_{\nu}(\theta) = P_2/P_1^2$$
, (2)

$$P_1 = \int_{\nu}^{\infty} p(D) \mathrm{d}D \tag{3}$$

$$P_{2} = \int_{\nu}^{\infty} \mathrm{d}D_{1} \int_{\nu}^{\infty} \mathrm{d}D_{2} \ \rho(D_{1}, D_{2}, w) \tag{4}$$

GAUSSIANITY STATISTICAL TECHNIQUES

INTRO TO NON-

PIXEL STATISTICS

MINKOWSKI FUNCTIONALS HIGHLIGHTS

◆□▶ ◆□▶ ◆三≯ ◆三≯ ◆□▶

EDGEWORTH EXPANSIONS

- Conceptually simple
- Use Edgeworth expansion around a Gaussian field

$$p(\mu)\mathrm{d}\mupproxrac{1}{\sqrt{2\pi}}e^{-\mu^2/2}\Big\{1+rac{\sigma\mathcal{S}^{(0)}}{6}\mu(\mu^2-3)\Big\}\mathrm{d}\mu,$$

$$n_{\text{pix}}^{\text{NG}}(\nu) = n_{\text{pix}}^{\text{G}}(\nu) + n_{\text{pix}}^{\text{f}_{\text{NL}}}(\nu)$$
(6)

$$n_{\rm pix}^{\rm f_{\rm NL}}(\nu) = \frac{N_{\rm pix,tot}}{4\pi} \Big\{ \frac{\sigma S^{(0)}}{6\sqrt{2\pi}} (\nu^2 - 1) e^{-\nu^2/2} \Big\}.$$
 (7)

$$p(\mu_{1},\mu_{2},w)d\mu_{1}d\mu_{2} \approx \frac{1}{2\pi\sqrt{1-w^{2}}}\exp\left\{-\frac{\mu_{1}^{2}+\mu_{2}^{2}-2\mu_{1}\mu_{2}w}{2(1-w^{2})}\right\}$$
$$\times \left[1+\sigma S^{(0)}\left(\frac{H_{30}+H_{03}}{6}\right)+\lambda\left(\frac{H_{21}+H_{12}}{2}\right)\right]d\mu_{1}d\mu_{2} \quad (8)$$

▲日▼▲□▼▲回▼▲回▼ 回 ろく⊙

STATISTICAL TECHNIQUES PIXEL STATISTICS MINKOWSKI FUNCTIONALS HIGHLIGHTS

(5)

INTRO TO NON-GAUSSIANITY

Main motivation \rightarrow WMAP5 anomalies

Noise is inhomogeneous

FIGURE: Joint distribution $p(\sigma_1, \sigma_2 | \theta)$ at four different angular distances

・ロマ・前・・前・・ 日・

INTRO TO NON-GAUSSIANITY STATISTICAL

TECHNIQUES

FUNCTIONALS

HIGHLIGHTS

PIXEL STATISTICS

Main motivation \rightarrow WMAP5 anomalies

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

NON-GAUSSIAN SIMULATIONS: *f_{NL}* MOCK MAPS

POWER SPECTRA AND TEMPERATURES

PIXEL NUMBER DENSITY AND NG

Rossi, Chingangbam & Park (2010)

Solid lines \rightarrow Theory predictions using the Edgeworth expansion (1) Regions where NG is maximized (2) Non-optimal ν (3) f_{NL} and ND TECHNIQUES PIXEL STATISTICS MINKOWSKI FUNCTIONALS HIGHLIGHTS

INTRO TO NON-

GAUSSIANITY

▲□▶▲□▶▲□▶▲□▶ ■ のへぐ

Number Density and $NG \rightarrow A$ New Estimator

Derived quantity which amplifies the $f_{\rm NL}$ contribution

◆□ > ◆母 > ◆臣 > ◆臣 > ○臣 の Q @

PIXEL CLUSTERING AND NG

 $|\nu|=2.00, f_{\rm NL}=500
ightarrow {
m cold}$ pixel clustering enhanced around $heta\simeq 75'$

PIXEL CLUSTERING AND NG

Rossi, Chingangbam & Park (2010)

INTRO TO NON-

GAUSSIANITY

THE COSMIC VARIANCE PROBLEM

ROSSI, CHINGANGBAM & PARK (2010)

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

MINKOWSKI FUNCTIONALS: THEORY

GOTT ET AL (1990)

Threshold:
$$\nu \equiv \frac{\Delta T}{\sigma_0}, \ \sigma_0 = \sqrt{\langle \Delta T \Delta T \rangle}.$$

- Area fraction above threshold $\sim V_0(\nu)$
- Contour length of iso-temperature contours $\sim V_1(\nu)$
- Genus = number of hot spots number of cold spots $\sim V_2(\nu)$

For Gaussian field:

$$V_k(\nu) \propto \left(\frac{\sigma_1}{\sigma_0}\right)^k \exp^{-\nu^2/2} H_{k-1}(\nu), \quad \sigma_1 = \sqrt{\langle |\nabla(\Delta T)|^2 \rangle}$$

INTRO TO NON-GAUSSIANITY

STATISTICAL TECHNIQUES

PIXEL STATISTICS

MINKOWSKI FUNCTIONALS

HIGHLIGHTS

▲□▶▲□▶▲□▶▲□▶ ■ のへの

SUMMARY

NON-GAUSSIANITY: NEW FRONTIER

- Reliable theoretical prediction of NG from models
- Extract information on non-Gaussianity from data
- * Characterization of non-Gaussian confusion effects

ACHIEVEMENTS: OBSERVATIONAL SIDE

- New model for the effects of inhomogeneous noise
- Anomalies detected and plausible explanations

ACHIEVEMENTS: THEORETICAL SIDE

- Excursion set statistics extended to *f*_{NL} models
- Theoretical insights: optimal thresholds, Edgeworth approximation
- New statistical tests, in order to minimize cosmic variance

INTRO TO NON-GAUSSIANITY

STATISTICAL TECHNIQUES

PIXEL STATISTICS

MINKOWSKI FUNCTIONALS

WAITING FOR PLANCK ...

Constraining/detecting NG smoking-gun for non-standard inflation models

- Planck gains a factor of 2.5 in angular resolution and up to 10 in instantaneous sensitivity with respect to WMAP
- Nearly photon noise limited in the CMB channels
- Temperature PS limited by ability to remove foregrounds
- 2 acoustic peaks above WMAP V band
- Polarization, NG, SZ clusters
- Most accurate microwave experiment to date in terms of control, reduction and correction of systematic and stochastic noise

INTRO TO NON-GAUSSIANITY

STATISTICAL TECHNIQUES

PIXEL STATISTICS

MINKOWSKI FUNCTIONALS

Kamsahamnida!

G. Rossi

INTRO TO NON-GAUSSIANITY

STATISTICAL TECHNIQUES

PIXEL STATISTICS

MINKOWSKI FUNCTIONALS