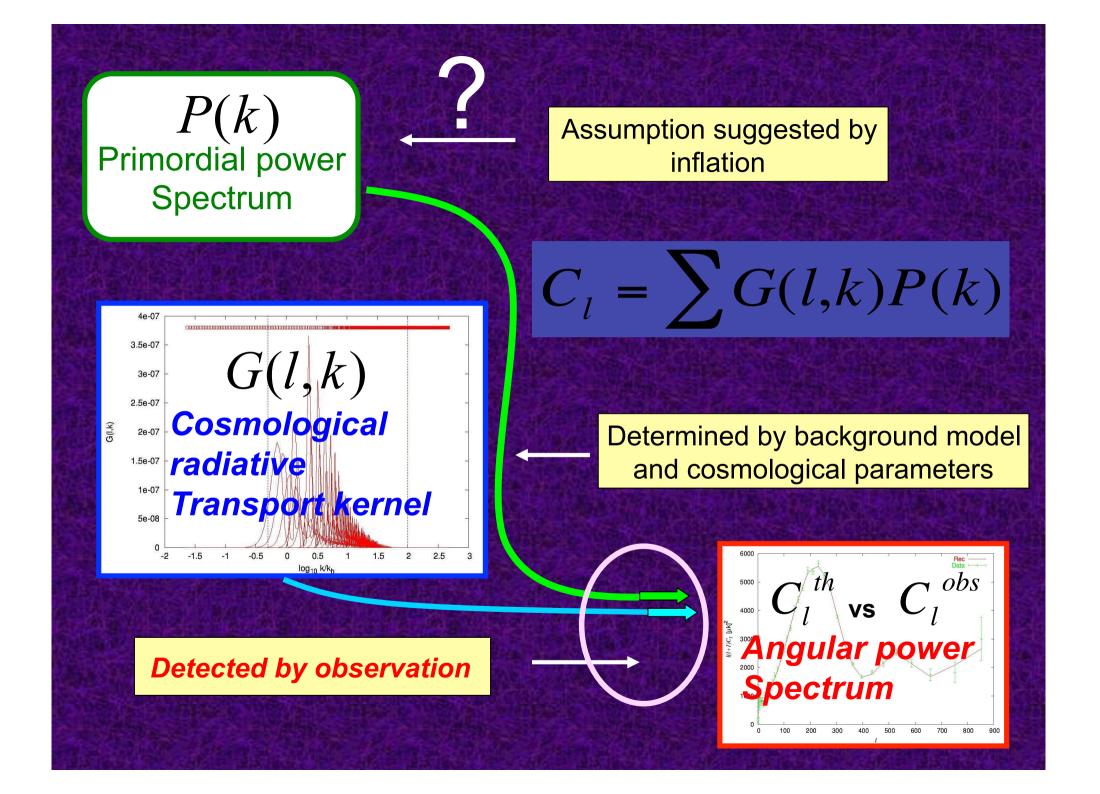
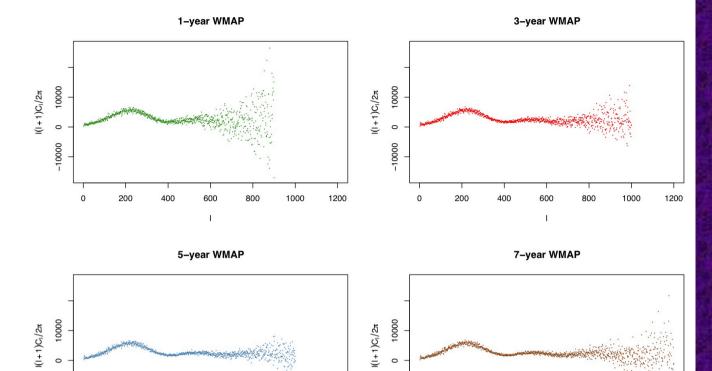
Inflation, Primordial Spectrum and Cosmological Parameter Estimation

Arman Shafieloo Institute for the Early Universe

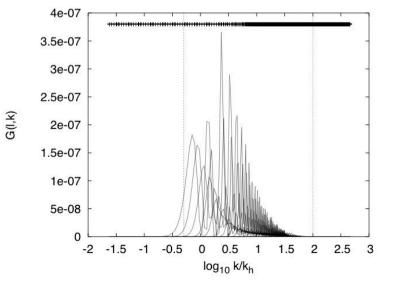

Meeting on primordial spectrum and non Gaussianities December 2010, HRI, Allahabad


Inflation

- Extreme accelerated expansion of the early universe.
- It can be realized by scalar fields (or some other mechanisms).
- So far the best theory that can resolve the magnetic monopole problem (absence of relics), flatness problem, horizon problem and explain the initial perturbations from quantum fluctuations.
- It has many many models.
- These models are different in their statistical properties and we may be able to distinguish between them using cosmological observations.

Constraints on inflationary scenarios from cosmological observations:

- Form of the primordial spectrum (degenerate with other cosmological quantities).
- Tensor-to-scalar ratio of perturbation amplitudes (near future potential probe)
- Primordial non-Gaussianities (near future potential probe)



-10000

Plot from Aghamousa, Mihir and Souradeep

-10000

Shape of the transfer kernel, G(I,k)

Observed angular power spectrum from WMAP

Shafieloo & Souradeep 2004

Standard Model of Cosmology-Vanilla Model

- Flat Lambda Cold Dark Matter Universe (LCDM) with power–law form of the primordial spectrum
- It has 6 main parameters:

 n_{s}

Cosmological Parameters from WMAP

WMAP Cosmological Parameters							
Model: lcdm+sz+lens							
	Data: wmap5						
$10^2\Omega_b h^2$	2.273 ± 0.062	$1 - n_s$	0.037+0.015				
$1 - n_{s}$	$0.0081 < 1-n_s < 0.0647~(95\%~{\rm CL})$	$A_{\rm BAO}(z=0.35)$	0.457 ± 0.022				
C_{220}	5756 ± 42	$d_A(z_{eq})$	14279 ⁺¹⁸⁶ ₋₁₈₉ Mpc				
$d_A(z_*)$	14115 ⁺¹⁸⁸ ₋₁₉₁ Mpc	Δ_R^2	$(2.41\pm 0.11)\times 10^{-9}$				
h	$0.719 \substack{+0.026\\-0.027}$	H _o	71.9 ^{+2.6} _{-2.7} km/s/Mpc				
keq	0.00968 ± 0.00046	leq	136.6 ± 4.8				
l.	302.08 ^{+0.83} -0.84	n_s	$0.963^{+0.014}_{-0.015}$				
Ω_b	0.0441 ± 0.0030	$\Omega_b h^2$	0.02273 ± 0.00062				
Ωε	0.214 ± 0.027	$\Omega_c h^2$	0.1099 ± 0.0062				
Ω_{Λ}	0.742 ± 0.030	Ω_m	0.258 ± 0.030				
$\Omega_m h^2$	0.1326 ± 0.0063	$r_{ m hor}(z_{ m dec})$	$286.0\pm3.4~{\rm Mpc}$				
$r_s(z_d)$	$153.3\pm2.0~{\rm Mpc}$	$r_s(z_d)/D_v(z=0.2)$	0.1946 ± 0.0079				
$r_s(z_d)/D_v(z=0.35)$	0.1165 ± 0.0042	$r_s(z_*)$	$146.8\pm1.8~{\rm Mpc}$				
R	1.713 ± 0.020	σ_8	0.796 ± 0.036				
A_{SZ}	$1.04^{+0.96}_{-0.69}$	to	$13.69\pm0.13~{\rm Gyr}$				
τ	0.087 ± 0.017	θ_*	0.010400 ± 0.000029				
$ heta_*$	0.5959 ± 0.0017 °	t_*	$380081^{+5843}_{-5841} \mathrm{yr}$				
$z_{ m dec}$	1087.9 ± 1.2	z_d	1020.5 ± 1.6				
$z_{ m eq}$	3176^{+151}_{-150}	$z_{\rm reion}$	11.0 ± 1.4				
	1090.51 ± 0.95	Table f	rom LAMBDA website				

Parameter estimation within a cosmological framework

Harisson-Zel'dovich (HZ)

n (HZ)	Power-Law (PL)
--------	----------------

Λ

	logical Parameters
	cdm+ns=1
Data	: wmap
$10^2\Omega_b h^2$	$2.405\substack{+0.046\\-0.047}$
$\Delta_{\mathcal{R}}^2(k=0.002/\mathrm{Mpc})$	$(23.1 \pm 1.2) \times 10^{-10}$
h	0.778 ± 0.032
H_0	$77.8\pm3.2~\mathrm{km/s/Mpc}$
$\Omega_b h^2$	$0.02405\substack{+0.00046\\-0.00047}$
Ω_{Λ}	0.788 ± 0.031
Ω_m	0.212 ± 0.031
$\Omega_m h^2$	$0.1271\substack{+0.0086\\-0.0087}$
σ_8	$0.796\substack{+0.053\\-0.054}$
A_{SZ}	$0.92^{+0.63}_{-0.61}$
t_0	$13.353\pm0.096~\mathrm{Gyr}$
au	0.141 ± 0.029
θ_A	$0.5986 \pm 0.0017\ ^{\circ}$
z_r	14.6 ± 2.0

WMAP Cosmological Parameters				
Model: lcdm				
Data:	wmap			
$10^2\Omega_b h^2$	2.229 ± 0.073			
$\Delta^2_{\mathcal{R}}(k=0.002/\mathrm{Mpc})$	$(23.5\pm1.3)\times10^{-10}$			
h	$0.732^{+0.031}_{-0.032}$			
H_0	$73.2^{+3.1}_{-3.2} \text{ km/s/Mpc}$			
$\log(10^{10}A_s)$	3.156 ± 0.056			
$n_s(0.002)$	0.958 ± 0.016			
$\Omega_b h^2$	0.02229 ± 0.00073			
$\Omega_c h^2$	$0.1054\substack{+0.0078\\-0.0077}$			
Ω_{Λ}	0.759 ± 0.034			
Ω_m	0.241 ± 0.034			
$\Omega_m h^2$	$0.1277^{+0.0080}_{-0.0079}$			
σ_8	$0.761\substack{+0.049\\-0.048}$			
au	0.089 ± 0.030			
$ heta_A$	$0.5952 \pm 0.0021 \ ^{\circ}$			
z_r	$11.0^{+2.6}_{-2.5}$			

PL with Running (RN)

WMAP Cosmological Parameters						
Model: lcdm+run						
	: wmap					
$10^2\Omega_b h^2$	2.10 ± 0.10					
$\Delta_{\mathcal{R}}^2(k=0.002/\mathrm{Mpc})$	$(23.9 \pm 1.3) \times 10^{-10}$					
$dn_s/d\ln k$	$-0.055\substack{+0.030\\-0.031}$					
h	$0.681\substack{+0.042\\-0.041}$					
H_0	$68.1^{+4.2}_{-4.1} \text{ km/s/Mpc}$					
$n_s(0.002)$	$1.050\substack{+0.059\\-0.058}$					
$\Omega_b h^2$	0.0210 ± 0.0010					
Ω_{Λ}	$0.703^{+0.056}_{-0.055}$					
Ω_m	$0.297\substack{+0.055\\-0.056}$					
$\Omega_m h^2$	$0.1350\substack{+0.0099\\-0.0097}$					
σ_8	$0.771^{+0.051}_{-0.050}$					
A_{SZ}	$1.06\substack{+0.62\\-0.65}$					
t_0	$13.97\pm0.20~{\rm Gyr}$					
au	0.101 ± 0.031					
$ heta_A$	$0.5940 \pm 0.0021 \ ^{\circ}$					
z_r	12.8 ± 2.8					

Tables from LAMBDA website

Parameter estimation within a cosmological framework

Harisson-Zel'dovich (HZ)

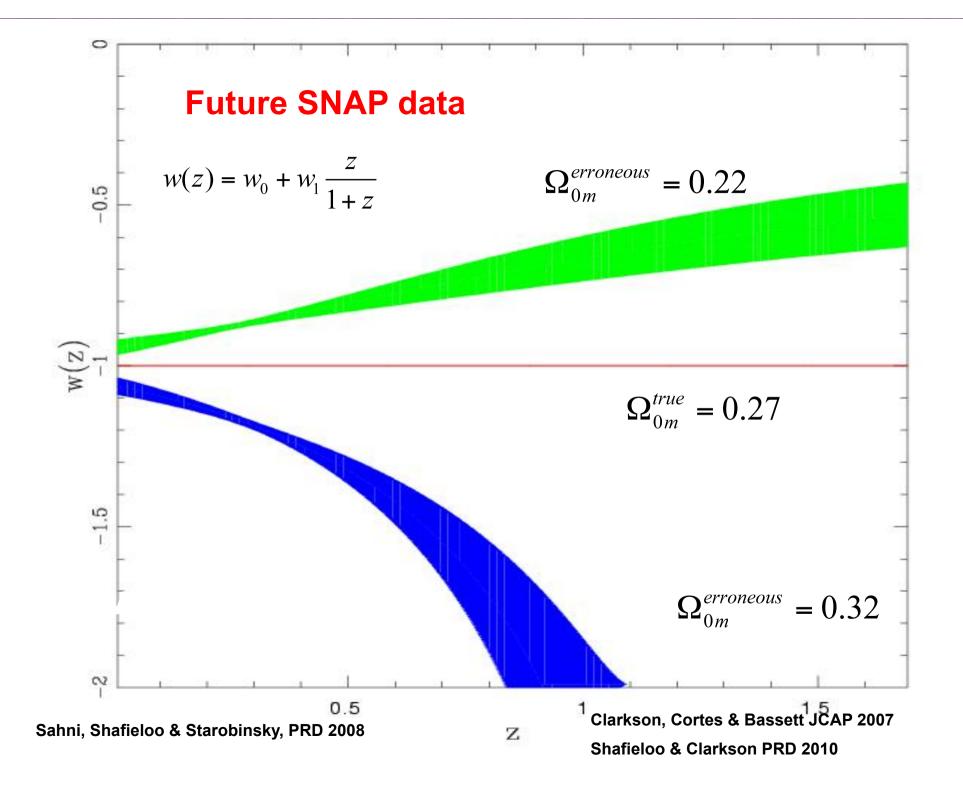
WMAP Cosmological Parameters Model: lcdm+ns=1 Data: wmap $10^2\Omega_b h^2$ $2.405^{+0.046}_{-0.047}$ $\Delta_{\mathcal{P}}^{2}(k = 0.002 / \text{Mpc})$ $(23.1 \pm 1.2) \times 10^{-10}$ 0.778 ± 0.032 h H_0 $77.8 \pm 3.2 \text{ km/s/Mpc}$ $0.02405\substack{+0.00046\\-0.00047}$ $\Omega_b h^2$ 0.788 ± 0.031 Ω_{Λ} Ω_m 0.212 ± 0.031 $0.1271_{-0.0087}^{+0.0086}$ $\Omega_m h^2$ $0.796\substack{+0.053\\-0.054}$ σ_8 $0.92^{+0.63}_{-0.61}$ Asz 13.353 ± 0.096 Gyr to 0.141 ± 0.029 Τ θ_A 0.5986 ± 0.0017 ° 14.6 ± 2.0 Zr

Power-Law (PL)

WMAP Cosmological Parameters Model: lcdm Data: wmap $10^2\Omega_b h^2$ 2.229 ± 0.073 $\Delta_{\mathcal{R}}^{2}(k = 0.002 / \text{Mpc})$ $(23.5 \pm 1.3) \times 10^{-10}$ $0.732^{+0.031}_{-0.032}$ h $73.2^{+3.1}_{-3.2} \text{ km/s/Mpc}$ H_0 $\log(10^{10}A_s)$ 3.156 ± 0.056 $n_s(0.002)$ 0.958 ± 0.016 $\Omega_b h^2$ 0.02229 ± 0.00073 $0.1054\substack{+0.0078\\-0.0077}$ $\Omega_c h^2$ 0.759 ± 0.034 Ω_{Λ} Ω_m 0.241 ± 0.034 $0.1277^{+0.0080}_{-0.0079}$ $\Omega_m h^2$ $0.761^{+0.049}_{-0.048}$ σ_8 0.089 ± 0.030 Τ θ_A 0.5952 ± 0.0021 ° $11.0^{+2.6}_{-2.5}$ z_r

PL with Running (RN)

	WMAP Cosmological Parameters					
	Model: lcdm+run					
Data	: wmap					
$10^2\Omega_bh^2$	2.10 ± 0.10					
$\Delta_{\mathcal{R}}^2(k=0.002/\mathrm{Mpc})$	$(23.9 \pm 1.3) \times 10^{-10}$					
$dn_s/d\ln k$	$-0.055\substack{+0.030\\-0.031}$					
h	$0.681^{+0.042}_{-0.041}$					
H_0	$68.1^{+4.2}_{-4.1} \ \rm km/s/Mpc$					
$n_s(0.002)$	$1.050\substack{+0.059\\-0.058}$					
$\Omega_b h^2$	0.0210 ± 0.0010					
Ω_{Λ}	$0.703^{+0.056}_{-0.055}$					
Ω_m	$0.297\substack{+0.055\\-0.056}$					
$\Omega_m h^2$	$0.1350\substack{+0.0099\\-0.0097}$					
σ_8	$0.771^{+0.051}_{-0.050}$					
$A_{\rm SZ}$	$1.06\substack{+0.62\\-0.65}$					
t_0	$13.97\pm0.20~{ m Gyr}$					
au	0.101 ± 0.031					
$ heta_A$	$0.5940 \pm 0.0021 \ ^{\circ}$					
z_r	12.8 ± 2.8					


Dark Energy Reconstruction

 Any uncertainties in matter density is bound to affect the reconstructed w(z).

$$H(z) = \left[\frac{d}{dz}\left(\frac{d_L(z)}{1+z}\right)\right]^{-1}$$

$$\omega_{DE} = \frac{\left(\frac{2(1+z)}{3}\frac{H'}{H}\right) - 1}{1 - \left(\frac{H_0}{H}\right)^2 \Omega_{0M} (1+z)^3}$$

Shafieloo et al, MNRAS 2006 ; Shafieloo MNRAS 2007

Model Independent Estimation of Primordial Spectrum

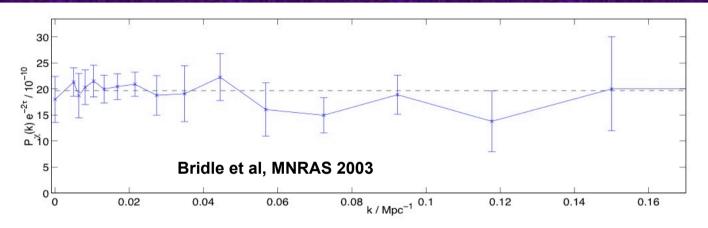
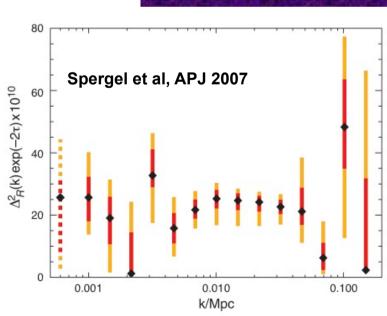
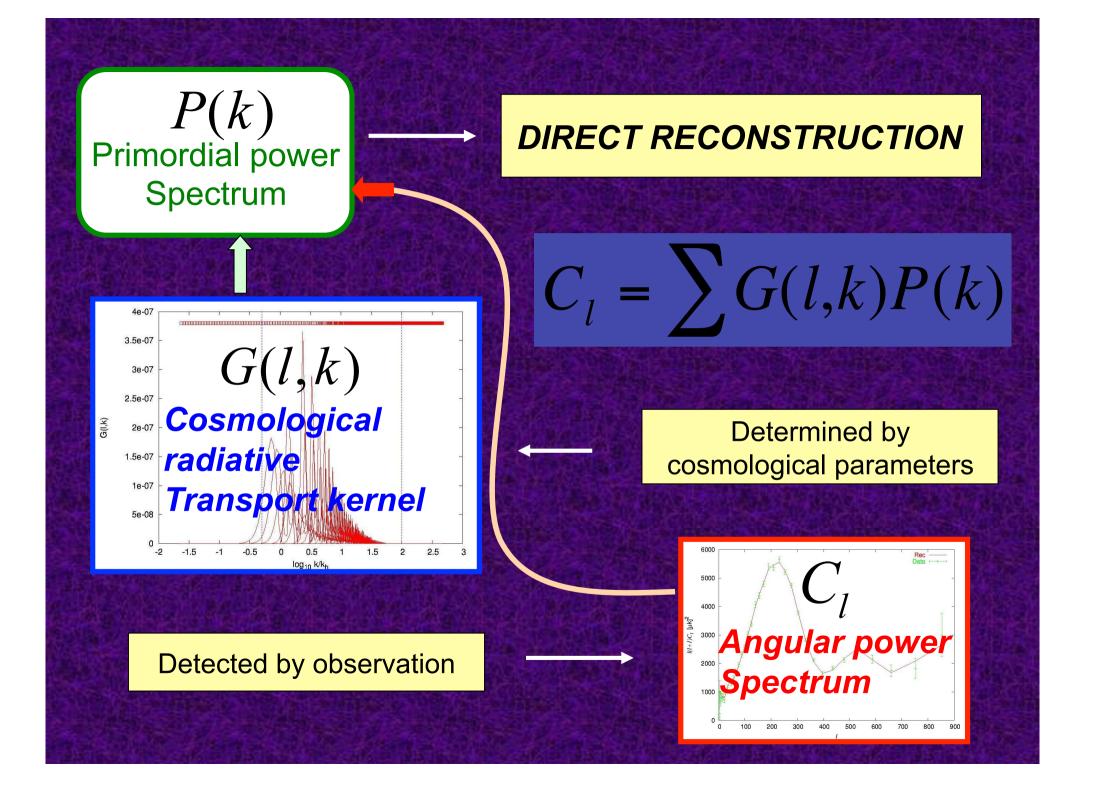




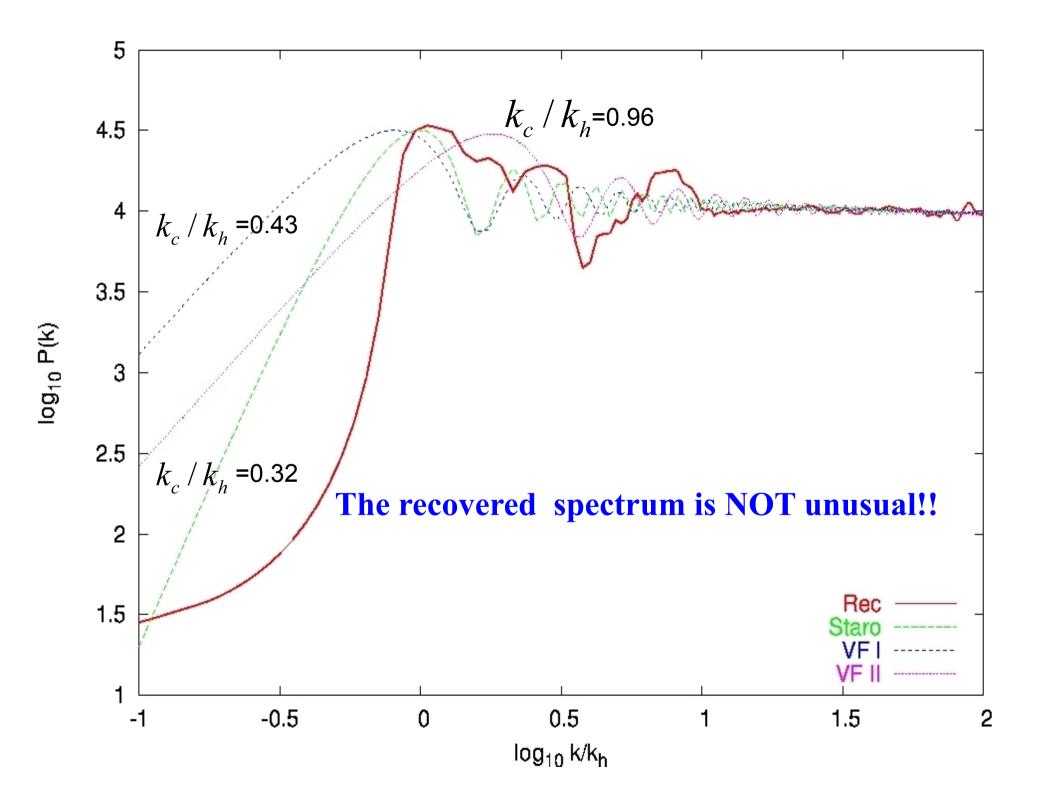
Figure 4. Reconstruction of the shape of the primordial power spectrum in 16 bands after marginalising over the Hubble constant, baryon and dark matter densities, and the redshift of reionization.

Binning Primordial Spectrum

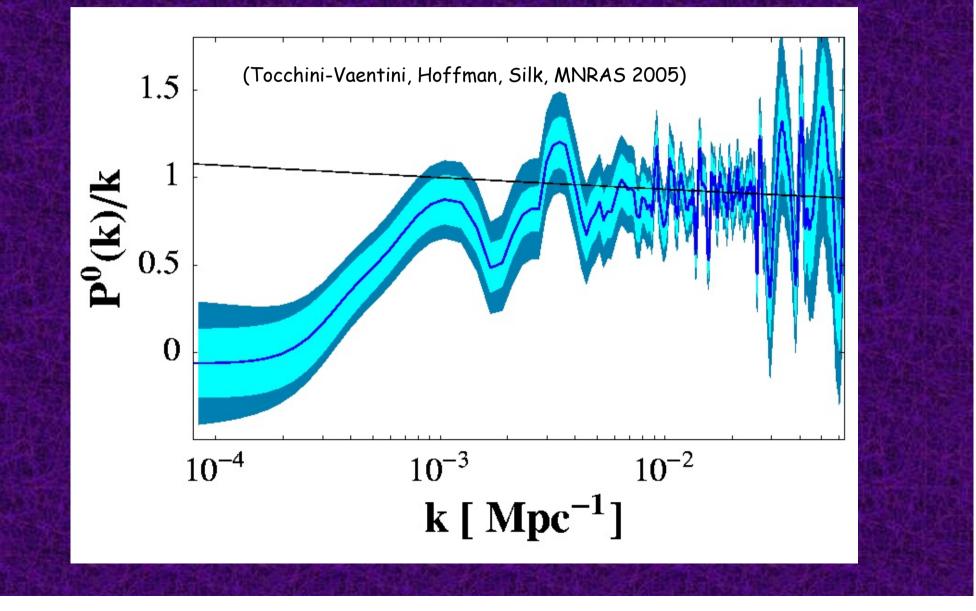
→ Paniez talk on optimal binning of the primordial spectrum

Richardson-Lucy Deconvolution

Method: Richardson-Lucy deconvolution
→ Iterative algorithm
→ Not sensitive to the initial guess.
→ Enforce positivity of P(k).
[G(l,k) is positive definite and C₁ is positive]


$$C_{l}^{(i)} = \sum_{l} G(l,k) P^{(i)}(k)$$
$$P^{(i+1)}(k) - P^{(i)}(k) = P^{(i)}(k) \sum_{l} G(l,k) \frac{C_{l}^{D}}{C}$$

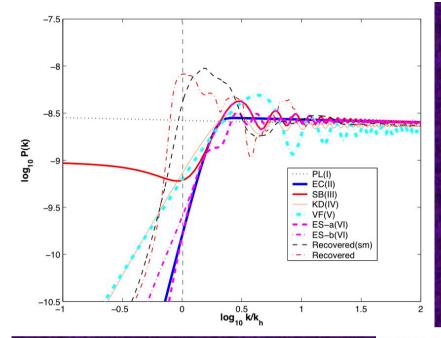
$$anh^{2} \frac{(C_{l}^{D} - C_{l}^{(i)})^{2}}{\sigma_{1}^{2}}$$


 $C^{(i)}$

 C_l^D has some finite error bars.

Shafieloo & Souradeep PRD 2004 ; Shafieloo et al, PRD 2007; Shafieloo & Souradeep 2008; Nicholson & Contaldi JCAP 2009 **Regularizing function**

Regularized Least Square Method



Inflationary scenarios

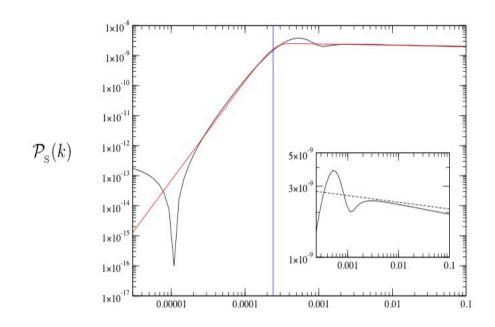
Is the recovered spectrum unusual for inflationary scenarios?

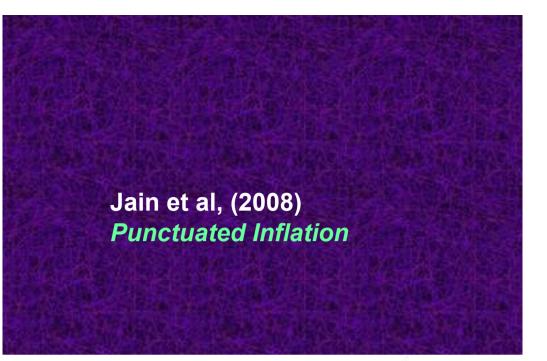
- Starobinsky (1992): sharp changes in the slope in the inflation potential.
- Vilenkin and Ford (1982): pre-inflationary radiation dominated epoch.

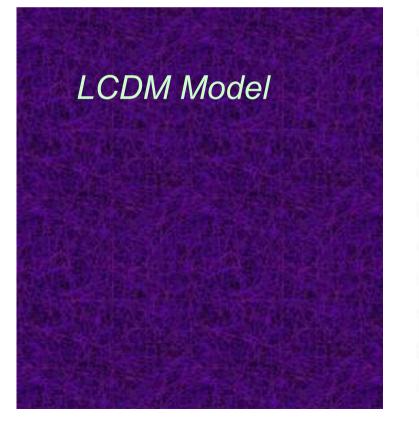
$$P(k) = P_0(k)D(k,k_c,r) = A_s k^{1-n_s} [1 - 3(r-1)\frac{1}{y}((1 - \frac{1}{y^2})\sin 2y + \frac{2}{y}\cos 2y + \frac{9}{2}(r-1)^2\frac{1}{y^2}((1 + \frac{1}{y^2})\cos 2y - \frac{2}{y}\sin 2y)]$$

Starobinsky
$$P(k) = A_s k^{1-n_s}\frac{1}{4y^4} |e^{-2iy}(1 + 2iy) - 1 - 2y^2|^2$$

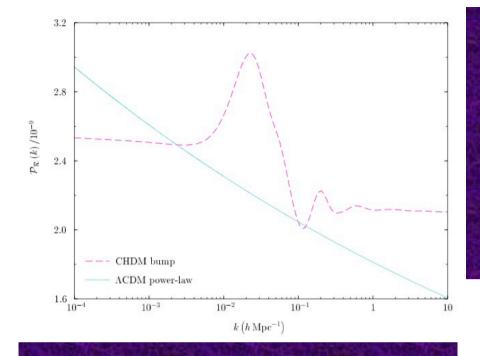
Vilenkin and Ford


Starobinsky (1992) *Kink in the potential* Vilenkin and Ford (1982) *Pre-inflationary radiation dominated era* Contaldi et al, (2003) *Pre-inflationary kinetic dominated era* Cline et al, (2003) *Exponential cut off* Shafieloo & Souradeep (2004) *Direct Reconstruction*

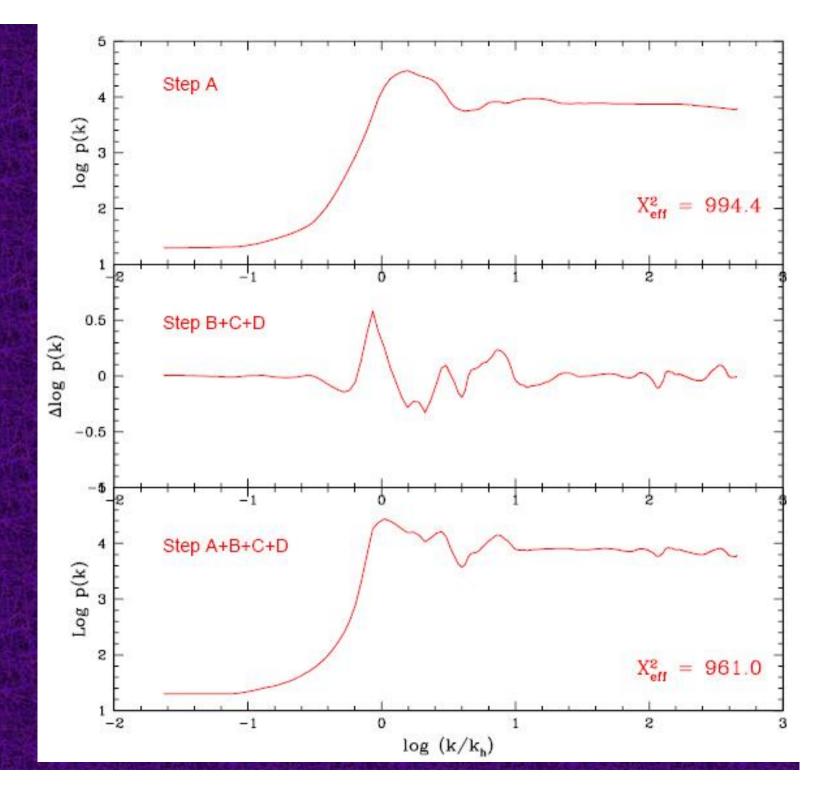

TABLE II: Best fit values of parameters specifying the initial power spectrum (k_*, α, R_*, n_s) and other relevant cosmological parameters for a class of model power spectra with a infrared cutoff (dataset used: WMAP TT data).


Parameter	Expo-cutoff EC(II)	Starobinsky SB(III)	Kin. Dom. KD(IV)	VF VF(V)	$\frac{\text{Expo-staro}(\mathbf{a})^{\dagger}}{\text{ES-a}(\text{VI})}$	$\begin{array}{c} Expo-staro(b)^{\ddagger} \\ ES-b(VI) \end{array}$	Power Law PL(I)
$k_*(\times 10^{-4}) {\rm Mpc}^{-1}$	$3.0^{+4.8}_{-2.9}$	$3.1^{+5.8}_{-2.8}$	$3.5^{+3.0}_{-3.3}$	$0.4^{+0.7}_{-0.3}$	$\mathbf{3.0_{-2.0}^{+0.5}}$	$3.1^{+5.8}_{-2.1}$	-
α	$9.6^{+0.3}_{-8.6}$	_	_	_	$0.58\substack{+4.6\\-0.43}$	$0.72^{+9.1}_{-0.55}$	<u></u>
R_*	_	$0.73\substack{+0.25 \\ -0.14}$	-	-	$0.17\substack{+0.80\\-0.15}$	$0.35\substack{+0.63\\-0.20}$	-
n_s	$0.95\substack{+0.16 \\ -0.03}$	$0.98\substack{+0.14 \\ -0.07}$	$1.4\substack{+0.09 \\ -0.90}$	$1.0\substack{+0.04 \\ -0.15}$	$0.96\substack{+0.15 \\ -0.08}$	$0.99\substack{+0.08\\-0.12}$	$0.96\substack{+0.30 \\ -0.05}$
τ	$0.014\substack{+0.37\\-0.004}$	$0.15\substack{+0.25 \\ -0.14}$	$0.17\substack{+0.09 \\ -0.15}$	$0.01 {}^{+0.35}_{-0.001}$	$\mathbf{0.26^{+0.15}_{-0.08}}$	$0.28\substack{+0.12 \\ -0.27}$	$0.014\substack{+0.500\\-0.004}$
$z_{re}{}^a$	$3.2^{+21.7}_{-0.7}$	$16.3^{+11.5}_{-13.9}$	$17.8^{+4.9}_{-15.2}$	$2.7\substack{+23.5 \\ -0.22}$	${\bf 23.8^{+5.9}_{-5.0}}$	$23.5^{+3.9}_{-21.0}$	$3.2^{+26.6}_{-0.83}$
Ω_{Λ}	$0.70\substack{+0.16 \\ -0.18}$	$0.71\substack{+0.17\\+0.24}$	$0.70\substack{+0.13 \\ -0.21}$	$0.71\substack{+0.12 \\ -0.20}$	$0.74\substack{+0.13 \\ -0.10}$	$0.75_{-0.23}^{+0.12}$	$0.65\substack{+0.24 \\ -0.23}$
$\Omega_b h^2$	$0.022\substack{+0.006\\-0.001}$	$0.023\substack{+0.005\\-0.004}$	$0.024\substack{+0.001\\-0.002}$	$0.023\substack{+0.005\\-0.002}$	$0.023\substack{+0.004\\-0.003}$	$0.025\substack{+0.002\\-0.005}$	$0.023\substack{+0.009\\-0.002}$
$-\ln \mathcal{L}$	484.89	484.89	485.18	486.46	483.44	484.45	486.28
$\chi^2_{ m eff} \equiv -2 \ln {\cal L}$	969.78	969.78	970.36	972.92	966.88	968.90	972.56
d.o.f.	891	891	892	892	890	890	893

LCDM Model

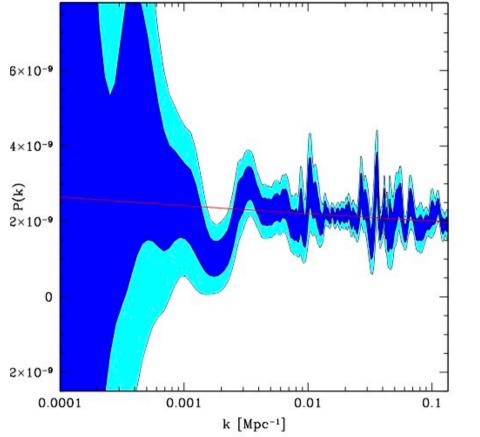

Sinha & Souradeep PRD 2005

Parameter	Reference model	Our model
$\Omega_{ m b}h^2$	$0.02242^{+0.00155}_{-0.00127}$	$0.02146^{+0.00142}_{-0.00108}$
$\Omega_{ m c} h^2$	$0.1075^{+0.0169}_{-0.0126}$	$0.12051\substack{+0.02311\\-0.02387}$
θ	$1.0395\substack{+0.0075\\-0.0076}$	$1.03877^{+0.00979}_{-0.00931}$
au	$0.08695\substack{+0.04375\\-0.03923}$	$0.07220^{+0.04264}_{-0.02201}$
$\log [10^{10} A_{\rm s}]$	$3.0456^{+0.1093}_{-0.1073}$	
$n_{ m s}$	$0.9555\substack{+0.0394\\-0.0305}$	
$\log [10^{10} m^2]$	<u>10</u>	$-8.3509^{+0.1509}_{-0.1473}$
ϕ_0	<u>e 1</u> 0	$1.9594^{+0.00290}_{-0.00096}$
a_0		$0.31439^{+0.02599}_{-0.02105}$


Hunt & Sarkar, (2008) Bump model

	WMAP	+SDSS	+LRG	+SDSS+LRG
$\Omega_{ m b}h^2$	$0.01748\substack{+0.00073\\-0.00071}$	$0.01762^{+0.00080}_{-0.00078}$	$0.01692\substack{+0.00047\\-0.00047}$	$0.01688\substack{+0.00044\\-0.00045}$
θ	$1.0365^{+0.0051}_{-0.0051}$	$1.0378^{+0.0049}_{-0.0049}$	$1.0300^{+0.0040}_{-0.0040}$	$1.0300^{+0.0039}_{-0.0039}$
au	$0.078^{+0.012}_{-0.011}$	$0.079^{+0.012}_{-0.012}$	$0.071^{+0.011}_{-0.011}$	$0.071^{+0.012}_{-0.011}$
$f_{ u}$	$0.096^{+0.017}_{-0.023}$	$0.103^{+0.011}_{-0.011}$	$0.1360\substack{+0.0092\\-0.0092}$	$0.1353^{+0.0075}_{-0.0067}$
$10^4 k_1/{\rm Mpc}^{-1}$	86^{+15}_{-13}	$82^{+11}_{-9.8}$	77^{+12}_{-10}	$77^{+11}_{-9.5}$
$10^4 k_2 / {\rm Mpc}^{-1}$	527^{+78}_{-78}	539^{+84}_{-82}	380^{+24}_{-24}	379^{+22}_{-22}
$\ln\left(10^{10}\mathcal{P}_{\mathcal{R}}^{(0)}\right)$	$3.282^{+0.047}_{-0.047}$	$3.276^{+0.045}_{-0.046}$	$3.270^{+0.046}_{-0.046}$	$3.270^{+0.046}_{-0.047}$
$b_{ m LRG}$			$2.99_{-0.16}^{+0.16}$	$2.99^{+0.16}_{-0.16}$
$\Omega_{ m c}h^2$	$0.155^{+0.012}_{-0.011}$	$0.1539^{+0.0084}_{-0.0083}$	$0.1387^{+0.0041}_{-0.0044}$	$0.1387^{+0.0037}_{-0.0036}$
$\Omega_{ m d} h^2$	$0.1712^{+0.0063}_{-0.0062}$	$0.1715\substack{+0.0061\\-0.0059}$	$0.1605\substack{+0.0030\\-0.0031}$	$0.1604^{+0.0030}_{-0.0030}$
Age/GYr	$15.01\substack{+0.27\\-0.27}$	$14.99_{-0.27}^{+0.26}$	$15.48^{+0.14}_{-0.14}$	$15.48^{+0.14}_{-0.14}$
σ_8	$0.668^{+0.093}_{-0.089}$	$0.648^{+0.053}_{-0.054}$	$0.565\substack{+0.032\\-0.033}$	$0.565^{+0.029}_{-0.028}$
$z_{ m reion}$	$13.6^{+3.1}_{-3.1}$	$13.6^{+3.0}_{-3.1}$	$12.7^{+3.1}_{-3.1}$	$12.7^{+3.1}_{-3.2}$
h	$0.4344^{+0.0078}_{-0.0077}$	$0.4348\substack{+0.0079\\-0.0076}$	$0.4212\substack{+0.0037\\-0.0038}$	$0.4211^{+0.0038}_{-0.0038}$
Δm_1^2	$0.07476^{+0.00070}_{-0.00071}$	$0.07468^{+0.00068}_{-0.00069}$	$0.07459^{+0.00068}_{-0.00069}$	$0.07459^{+0.00068}_{-0.00070}$
Δm_2^2	$0.1510^{+0.0013}_{-0.0013}$	$0.1508\substack{+0.0012\\-0.0013}$	$0.1507\substack{+0.0012\\-0.0013}$	$0.1507\substack{+0.0012\\-0.0013}$
$\widetilde{t}_2 - \widetilde{t}_1$	$1.82^{+0.16}_{-0.18}$	$1.89^{+0.15}_{-0.19}$	$1.62^{+0.12}_{-0.17}$	$1.62^{+0.11}_{-0.17}$
χ^2	11247	11265	11297	11315
$\Delta_{ m AIC}$	0	0	28	29

CHDM Model


Hunt & Sarkar, PRD 2008

Wavelet analysis of the recovered features

Shafieloo et al, PRD 2007

Combining different CMB data sets

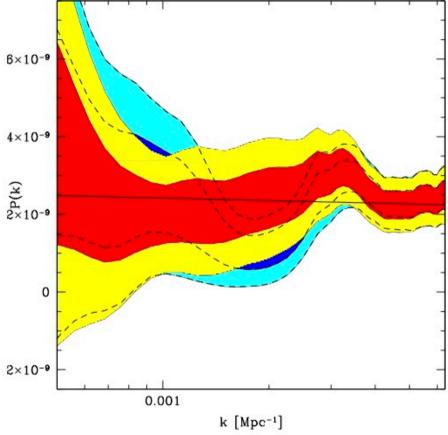
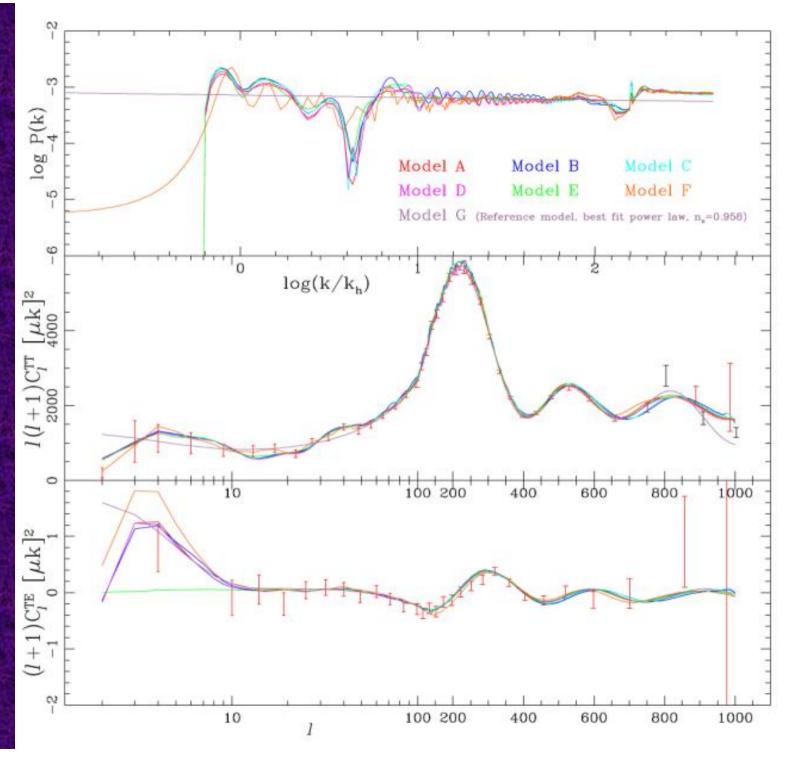


FIG. 3: Current limits from a combination of CMB data sets (WMAP, ACBAR, QUaD, BOOMERanG and CBI). There is some evidence of a dip in power at around $k \approx 0.002$ below the best fit power law model. Shaded regions are defined as in Fig. 2

FIG. 4: As an indication of the origin of the dip at $k \approx 0.002$ Mpc⁻¹ we remove the data between $\ell = 18$ and $\ell = 26$ and re-run the estimator. The red/yellow contours show the effect of the removal over the original estimate (blue/cyan).

Model A: SDSS Model B: 2df Model C: BAO Model D: SN +BAO Model E: WMAP1 Model F: SCDM Model G: PL

Shafieloo & Souradeep, PRD 2008



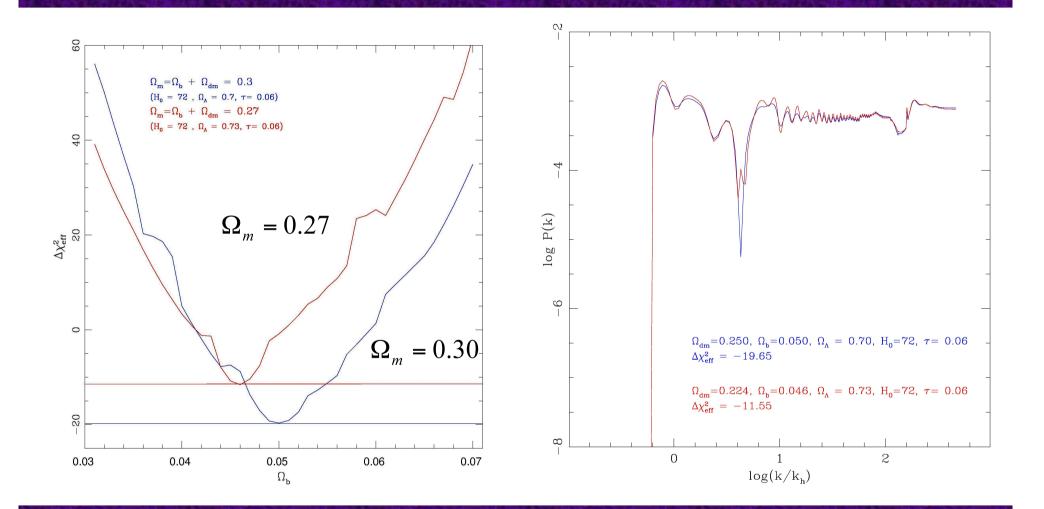
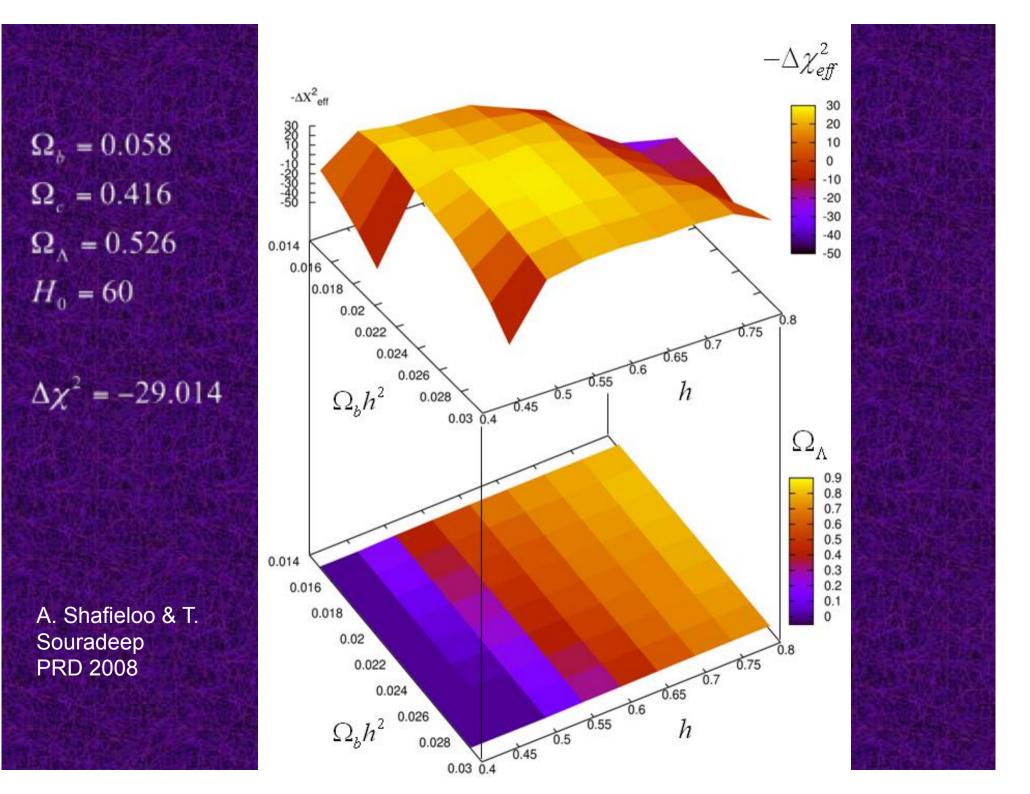
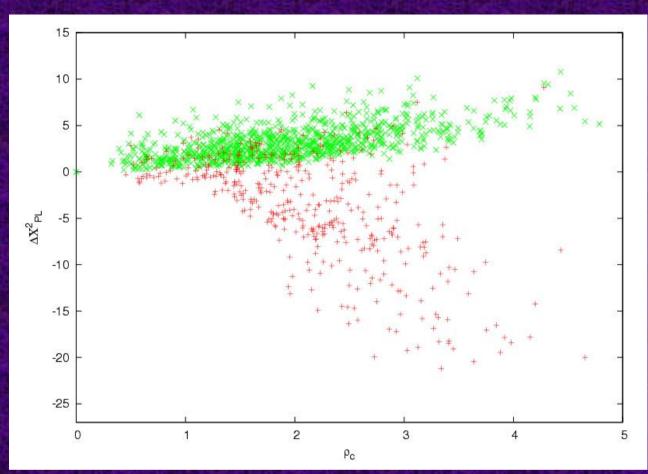


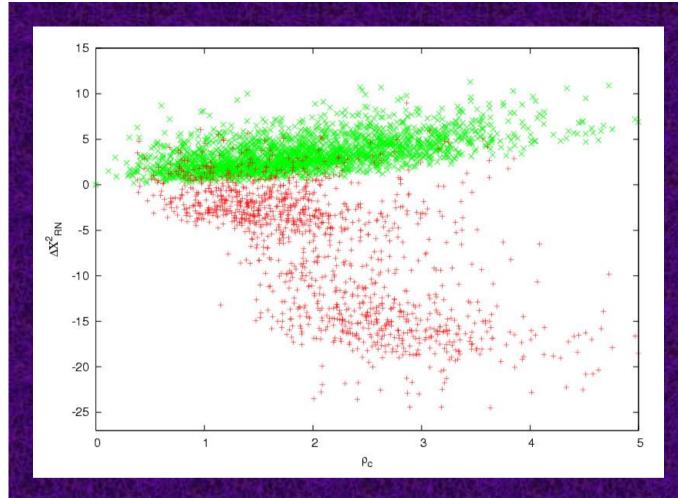
TABLE I: Different points in the parameter space and their resultant effective likelihood from the reconstructed primordial spectrum using WMAP 3 year data. The $\Delta \chi^2_{\text{eff}}$ is with respect to the best driven result in the whole parameter space by assuming scale invariant form of the primordial spectrum.


Model	H_0	Ω_{dm}	Ω_{bm}	Ω_{Λ}	au	$\Delta\chi^2_{ m eff}$
Model A (compatible with SDSS)	72.0	0.246	0.050	0.704	0.06	-18.76
Model B (compatible with 2df)	63.0	0.251	0.041	0.708	0.06	-4.38
Model C (compatible with BAO)	68.0	0.229	0.052	0.719	0.06	-2.93
Model D (compatible with SN Ia + BAO)	72.0	0.229	0.046	0.725	0.06	-14.52
Model E (compare to WMAP1)	71.0	0.226	0.044	0.730	0.0	-13.40
Model F (compatible with flat CDM)	50.0	0.904	0.096	0.0	0.06	-26.70


Shafieloo & Souradeep, PRD 2008

Towards Cosmological Parameter Estimation

Shafieloo & Souradeep, PRD 2008

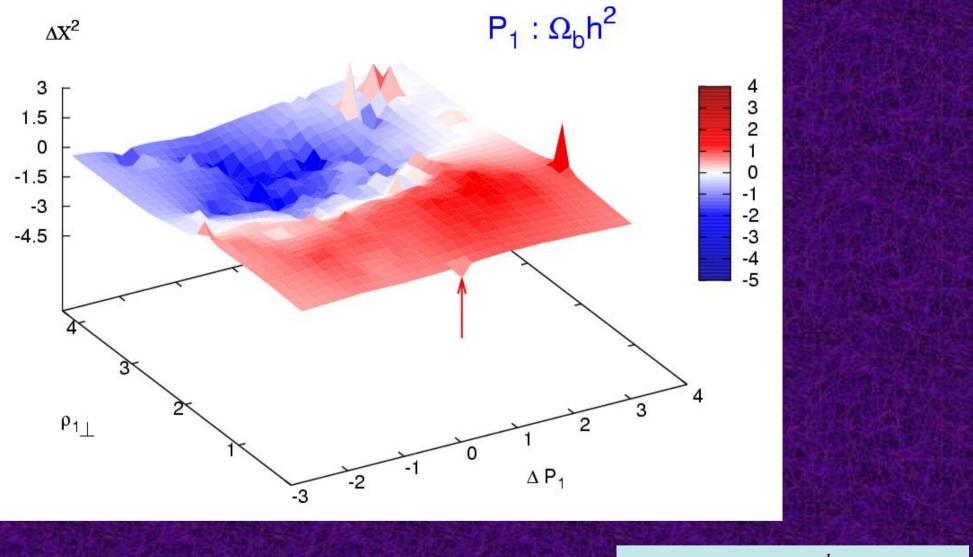

$\rho(a,b) \neq \rho(b,a)$ $\Omega_{_b}h^2$ h $\Omega_{_{0m}}h^2$ τ $\rho(HZ, PL) = 6.89$ $\rho(RN, PL) = 4.85$ $\rho(HZ, RN) = 11.09$ $\rho(PL, RN) = 2.44$ $\rho(PL, HZ) = 14.56$ $\rho(RN, HZ) = 43.79$

 $\rho(a,b) = \sqrt{\frac{1}{2}}$

Power Law Assumption

Optimized over Primordial Spectrum

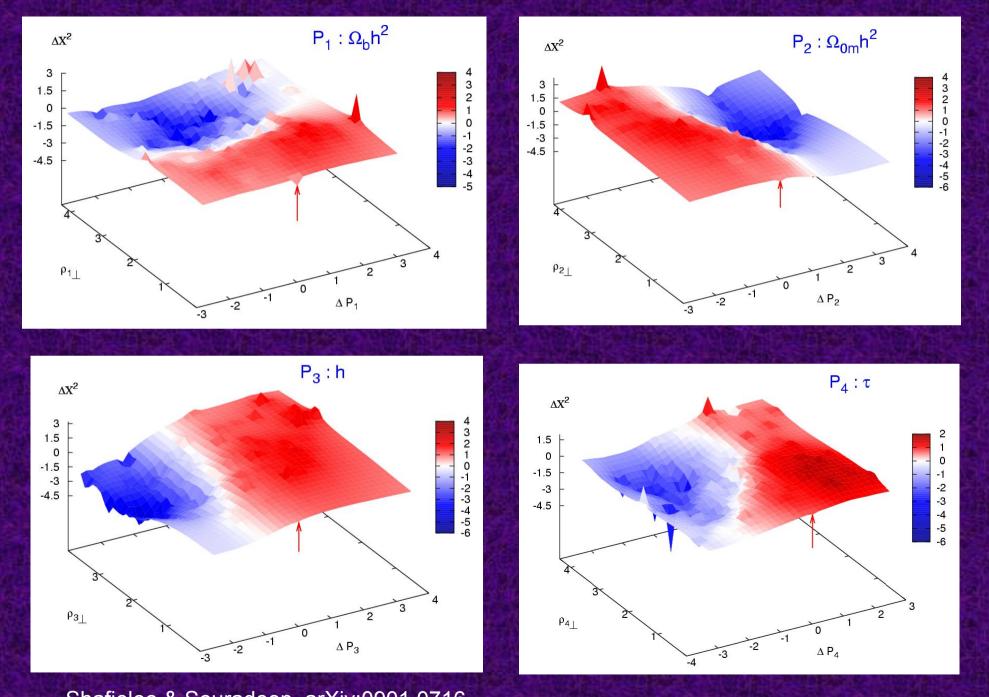
Shafieloo & Souradeep, 2009



Power Law with Running Assumption

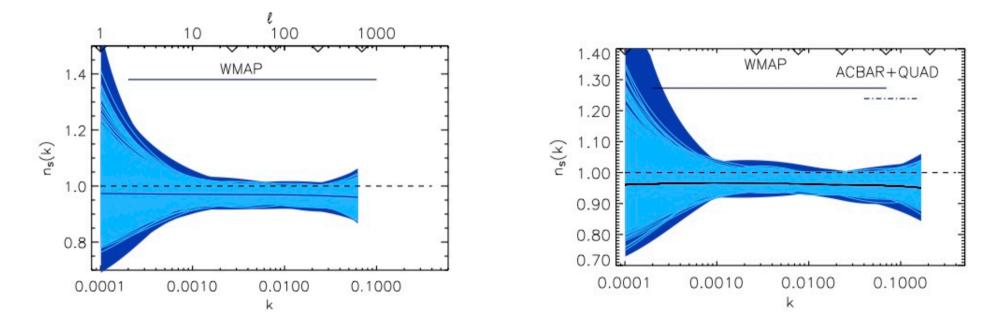
Optimized over Primordial Spectrum

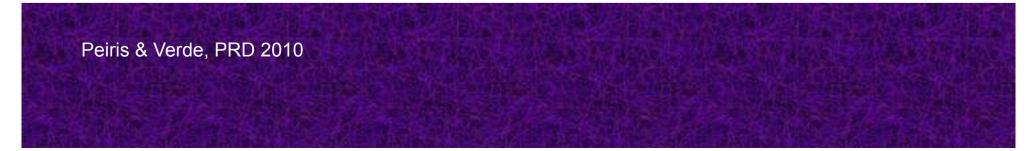
Shafieloo & Souradeep, arXiv:0901.0716


 $\rho(a,b) =$ $\rho(a,b) \neq \rho(b,a)$ $\Omega_{_b}h^2$ h $\Omega_{_{0m}}h^2$ τ $\rho(HZ, PL) = 6.89$ $\rho(RN, PL) = 4.85$ $\rho(HZ, RN) = 11.09$ $\rho(PL, RN) = 2.44$ $\rho(PL, HZ) = 14.56$ $\rho(RN, HZ) = 43.79$

Using Power Law Sample

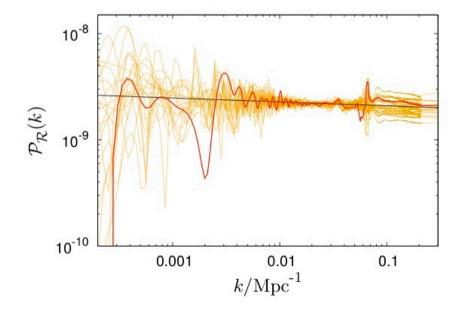
Shafieloo & Souradeep, arXiv:0901.0716

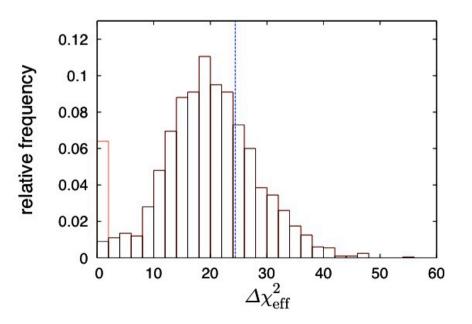

 $\Delta P_i = \frac{P_i^a - P_i^b}{\sigma_i^b}$ $\sum_{j\neq i} \frac{(P_j^a - P_j^b)^2}{(\sigma_j^b)^2}$ $\rho_{i\perp}$ =



Shafieloo & Souradeep, arXiv:0901.0716

Testing the Standard Power-Law form of PPS


Smoothing Spline Method along with Cross Validation



Testing the Standard Power-Law form of PPS

Frequentist test using IRL deconvolution method

It is evident that the spectrum reconstructed from real data does not have an unusual amount of features. The apparent feature at 0.05 Mpc < k < 0:07 Mpc is caused by the noise term becoming dominant at the corresponding multipoles in the WMAP data.

P-value = 26%

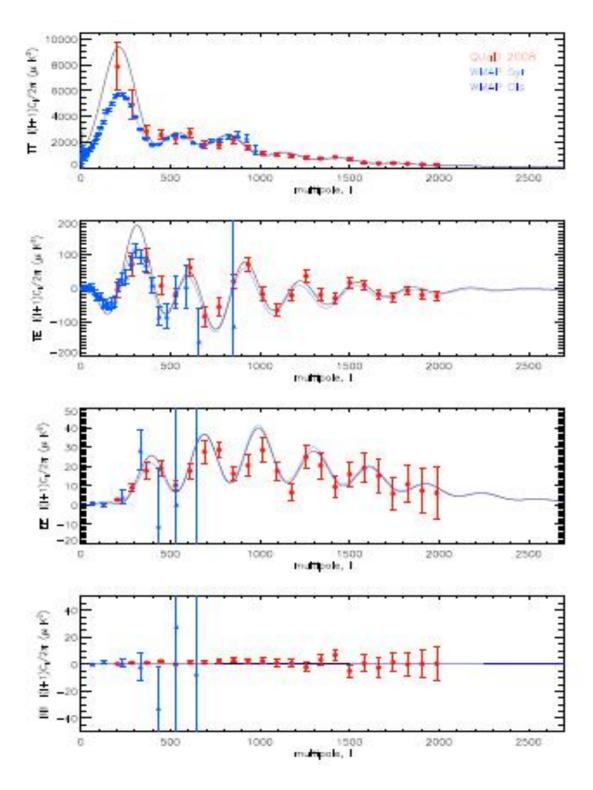
Hamann, Shafieloo & Souradeep, JCAP 2010

Full picture

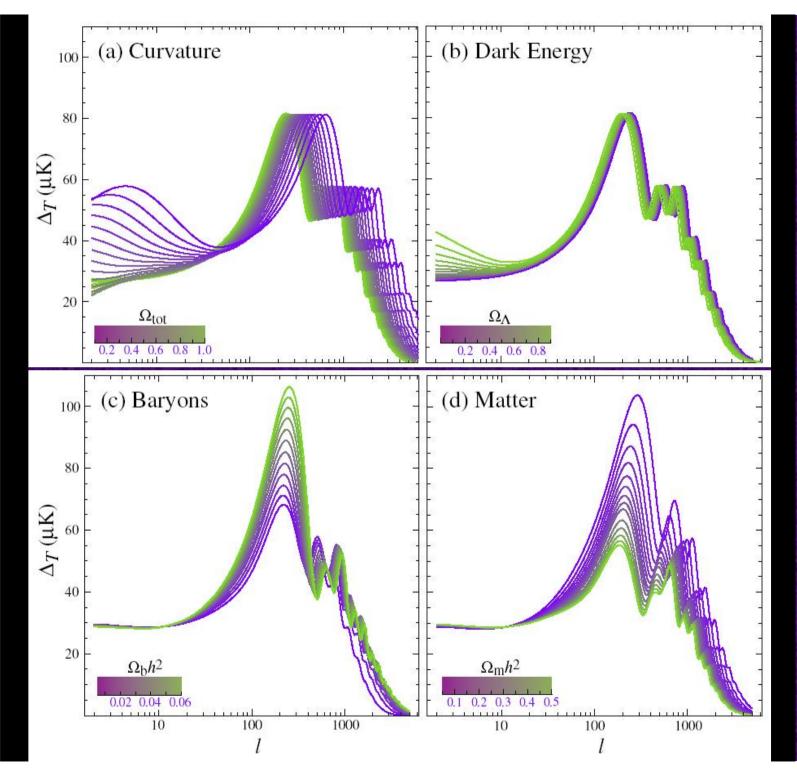
$$C_{\ell}^{TT} = \int \frac{dk}{k} P(k) \quad G_{\ell}^{TT}(k)$$
$$C_{\ell}^{EE} = \int \frac{dk}{k} P(k) \quad G_{\ell}^{EE}(k)$$
$$C_{\ell}^{BB} = \int \frac{dk}{k} P(k) \quad G_{\ell}^{BB}(k)$$
$$C_{\ell}^{TE} = \int \frac{dk}{k} P(k) \quad G_{\ell}^{TE}(k)$$

 $P_{S}(k), P_{T}(k), P_{iso}(k)$

Primordial power spectra from Early universe Post recombination Radiative transport kernels in a **given** cosmology


 $G_{\ell}^{TT}(k), G_{\ell}^{EE}(k), G_{\ell}^{BB}(k), G_{\ell}^{TE}(k)$

Summary


- By assuming any form of PPS, we in fact find a region in the parameter space which prefers these specific forms.
- The regions where considerably better likelihoods are obtained allowing free PPS lie outside these basins.
- The current cosmological parameters estimates are strongly prejudiced by the assumed form of PPS.
- Our results strongly motivate approaches toward simultaneous estimation of the cosmological parameters and the shape of primordial spectrum from upcoming cosmological data.
- Though standard power-law form of the PPS is very well consistent to the data, It is also important to keep an open mind towards early universe scenarios that produce features in the PPS.

Polarization Data

QUaD Collaboration 2009

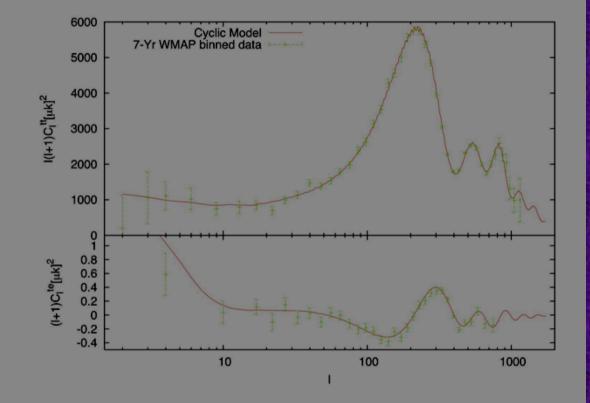
Sensitivity of the CMB acoustic temperature spectrum to four fundamental cosmological parameters. **Total density Dark Energy** Baryon density Matter density.

From Hu & Dodelson, 2002

Beyond the Standard Model of Cosmology

 The universe may be more complicated than its current standard model (Vanilla Model).

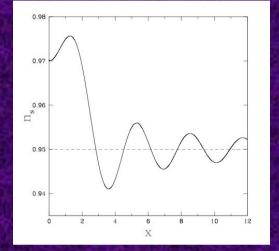
 There might be some extensions to the standard model in defining the cosmological quantities.


 This needs proper investigation, using advanced statistical methods, high performance computational facilities and high quality observational data.

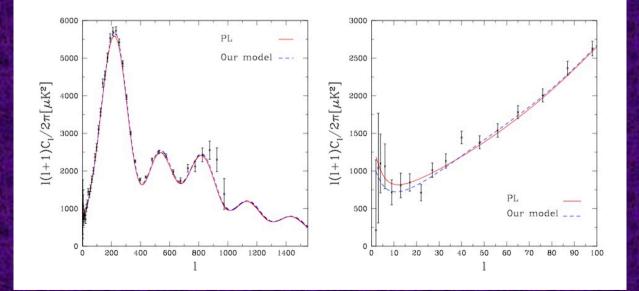
Standard Model of Cosmology

Universe is Flat Universe is Isotropic Universe is Homogeneous (large scales) Dark Energy is Lambda (w=-1) Power-Law primordial spectrum (n s=const) Dark Matter is cold All within framework of FLRW

Insensitivity of the Data to Various Models

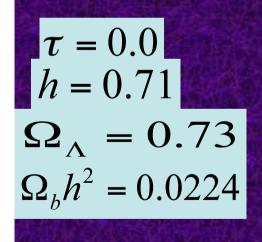


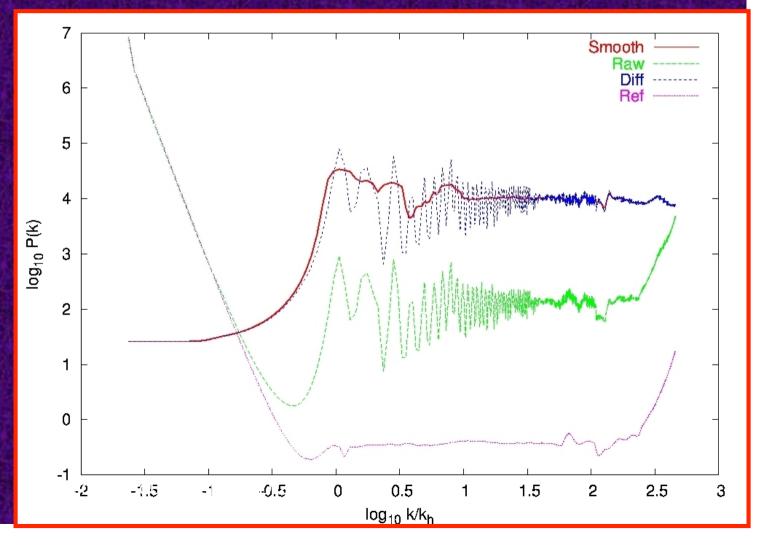
Power spectrum from non-singular cyclic inflation


-2In(L)=-7470.5 to WMAP 7 data

Biswas, Mazumdar & Shafieloo, 2010

Insensitivity of the Data to Various Models




step in the second derivative of the inflaton potential leads to a step in the spectral index

Joy, Shafieloo, Sahni, Starobinsky JCAP 2009

THE RECOVERED SPECTRUM

Power spectrum	$\chi^2_{\rm eff} \equiv -2\ln \mathcal{L}$	k_c/k_h a
		$(k_h = 4.5 \times 10^{-4} \text{Mpc.}^{-1})$
Direct Recovered	956.76	0.71
Flat Harrison Zeldovich	1007.28	
Power Law	978.60	
$(n_s = 0.95)$		
Exponential cutoff	978.08	0.64
$(n_s = 0.95, \alpha = 3.35)$		
Exponential cutoff	977.84	0.64
$(n_s = 0.95, \alpha = 10)$		
Starobinsky break	973.86	0.32
$(n_s = 0.95, r = 0.01)$		
Vilenkin & Ford (VF-I)	976.88	0.43
$(n_s = 0.95)$		
Vilenkin & Ford (VF-II)	978.66	0.96
$(n_s = 0.95)$		
	S	Shafieloo & Souradeep, PRD 2004