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Summary

• Review Inflation and non-Gaussianity

• Introduce New Estimators 

• Discuss Constraints Using Estimators

• Implications for future. 
(Fisher estimates, etc...)

• Show how we can measure lensing in the CMB 
using the same methods with results.
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Gaussianity And The CMB

• WMAP measures differences in temperature.

• If CMB is Gaussian: 2-Point function contains all 
information:

• If non-Gaussian, we must calculate higher order n-
point functions:

(credit : WMAP Team)

θ =
δT

T
=

�

lm
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Trispectrum

Examples:

(credit : WMAP Team)
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Example: Bispectrum 

• We can measure non-Gaussianity looking at 
Bispectrum:

In Fourier space, modes form triangles. 

�al1m1al2m2al3m3� = Bl1l2l3

�
l1 l2 l3
m1 m2 m3

�

|li − lj | ≤ lk ≤ li + lj

Similarly, for trispectrum: (quads)

�θ(l1)θ(l2)θ(l3)� = (2π)2δ(l1 + l2 + l3)B(l1l2l3)

Flat sky.
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Inflation and NG

• Simplest Inflation models don’t produce 
detectable non-Gausianity in curvature 
perturbations.

• Furthermore, the alm are sourced by curvature 
perturbations:

alm = 4π(−i)l

�
d3k

(2π)3
Φ(k)gTlY

∗
lm
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Models And Shapes

• Different inflationary models predict maximal signal for 
different triangle configurations.

• Example: Some Multifield models peak for squeezed 
shapes.

In plot, k1 = 1

(k1 ∼ k3 � k2)
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Shapes of non-Gaussianity

• Common shapes: Equilateral, Squeezed, etc...

SqueezedEquilateral
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Why Shapes Are Important.

• 3-Point Shapes. (Well understood.)

• Multi-Field: squeezed.

• Non-Canonical Kinetic Terms: equilateral.

• Non-Adiabatic Vacuum: flattened.

• Possible to have linear combinations.

• 4-point shapes: (From Trispectrum)

• Example: Self interactions produces different 
squeezed shaped quadrilaterals.
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The Local Model

• It’s convenient to parameterize non-Gaussianity to 
second order as:

• This is called the local model.
 (Dominant For Squeezed Shapes)

• We introduce: 

(You’ll see why in next slide.)

Φ = Φg + fNL

�
Φ2

g − �Φg�2
�
+ gNLΦ

3
g

ANL ≡
τNL

(6fNL/5)2

fNL (l1 ∼ l2 � l3) τNL (l1 ∼ l2 � L) gNL (l1 ∼ L� l2)
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Single Field Inflation Is Special

• For single field: (N = e-folds)

• One can show:

• ANL not equal to unity rules out single field 
inflation.

• Robust, even for curvaton models, DBI, etc...

5
3
Φ ≡ δN = N �δφ +

1
2
N ��δφ2 +

1
6
N ���δφ3 + ...

fNL =
5
6

N ��

(N �)2
τNL =

(N ��)2

(N �)4
gNL =

25
54

N ���

(N �)3
=> ANL = 1

fNL

τNL gNL

τNL = (5/6fNL)2
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New Estimators And Measurements

• Relevant Papers:
[Smidt et al. (2009) PRD. 80, 123005]

[Calabrese, Smidt et al. (2010) PRD. 81,043529]

[Smidt et al. (2009) Arxiv:1001.5026]

[Smidt et al. (2010) PRD 123007]

• Collaborators:
Alexandre Amblard, Christian Byrnes, Erminia Calabrese, 

Peter Coles, Asantha Cooray, Alan Heavens, Alessandro Melchiorri, 
Dipak Munshi and Paolo Serra
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Extracting Non-Gaussianity : 

(credit : WMAP Team)

alm = 4π(−i)l

�
d3k

(2π)3
Φ(k)gTlY

∗
lm

Reminder, we can write out curvature perturbations:

We can extract this information from CMB since:

Examples:

Φ = Φg + fNL

�
Φ2

g − �Φg�2
�
+ gNLΦ

3
g

< al1m1al2m2al3m3al4m4 >c=
�

LM

T l3l4
l1l2

(L)
�

l1 l2 L
m1 m2 M

� �
l3 l4 L
m1 m2 −M

�

�al1m1al2m2al3m3� = Bl1l2l3

�
l1 l2 l3
m1 m2 m3

�

Friday, December 17, 2010



Our Recipe For Analysis

Calculate Bispectrum/Trispectrum estimators 
theoretically.  (Codes like CAMB, CMBFast...)

Extract these same quantities in the Data.

Compare these two to get a measure for the amount 
of non-Gaussianity.

Use Gaussian simulations to calculate error bars.
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The Theoretical Bispectrum

αl(r) ≡ 2
π

�
k2dkgTl(k)jl(kr)

βl(r) ≡ 2
π

�
k2dkPΦ(k)gTl(k)jl(kr)

For the local model:

where :

(for fnl=1)
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The WMAP Estimator: Skewness

S3 ≡
�

r2dr

�
dΩ̂A(r, Ω̂)B2(r, Ω̂)

S3 = fNL

�

l1

�

l2

�

l3

�
Bl1l2l3Bl1l2l3

Cl1Cl2Cl3

�

Common way to compute non-Gaussianity: the 
“skewness” estimator 

                             It turns out:     

A(r, Ω̂) ≡
�

lm

Ylm(Ω̂)Alm(r); Alm(r) ≡ αl(r)
Cl

blalm

B(r, Ω̂) ≡
�

lm

Ylm(Ω̂)Blm(r); Blm(r) ≡ βl(r)
Cl

blalm

Komatsu  et al. (2005) ApJ, 634, 14  

B MapA Map
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Quantities Versus Look-back Time
τ is the look-back time to end

of decoupling

B Map   0.04τ

A Map 0.04τ A Map 1.0τ

B Map   1.0τ
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Decompressing the skewness estimator :

CA,B2

l ≡ 1
2l + 1

�
r2dr

�

m

A∗
lm(r)B(2)

lm (r); CAB,A
l ≡ 1

2l + 1

�
r2dr

�

m

(AB)∗lm(r)Blm(r)

C2,1
l

We used optimized skewness power spectrum 
estimators

Advantage over skewness estimator: scale 
dependance.

C2,1
l ≡

�
CA,B2

l + 2CAB,B
l

�
=

fNL

(2l + 1)

�

l2

�

l3

�
Bll2l3Bll2l3

ClCl2Cl3

�
The skewness power spectrum :

Cooray (2001)PRD, 64, 043516
Munshi et al. (2010) MNRAS, 401, 2406
Smidt et al. (2009) PRD 80, 123005
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Testing Estimator

Franz Elsner and Benjamin D. Wandelt have 
released non-Gaussian simulations. 

We can make maps for any fnl using:

alm = aG
lm + fNLaNG

lm

Gaussian Map non-Gaussian Map
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Results of Simulations

Run our estimator on 100 of them gives:

Good as fisher error estimate is  +/- 13

fnl = 2 +/- 14 fnl = 101 +/- 14
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Wait, Primordial Signal Could Be Contaminated!

E(n̂) ≡
�

lm

Ylm(n̂)Elm(r) Elm(r) ≡ bl

Cl
alm

E2−1
l =

1
(2l + 1)

�
�

l�l��

�
B

PS,bps=1
ll�l�� B̂�

ll�l��blb�lb
��
l

ClCl�Cl��

��

E2−1
l = CE,E2

l ≡ 1
2l + 1

�
�

m

Real
�
Elm

�
E2

�
lm

�
�

Estimator optimized for point sources :
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Primordial NG
fnl=1

Point Sources
bps=1

Separating the sources in Cl2-1:
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Estimating Cl
(2,1) and El

(2,1) on WMAP5 data

J. Smidt et al. (2009) PRD, 80, 123005 

Analyzed three frequencies bands: Q, V and W (40, 60 and 90 
GHz respectively)

250 Simulations of CMB and WMAP5 noise

Smidt et al. (2009) PRD 80, 123005
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Simulations

To determine error we Created 250 masked 
Gaussian maps with proper noise.

For simulated maps:

Gives covariance matrix
aS

lmbl + nlm = aD
lm
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Side By Side

May help to see figures side by side.

Data Simulations
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Removing Masking Effects

• To correct for cut sky we use a method devoloped 
by Hivon et al. 2001.
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Parameter Estimation Explain How To get 
C matrix and show it

χ2 = (y −M · p)T C−1(y −M · p)

p = (MT C−1M)−1MT C−1 · y

∆p = (MT C−1M)−1

Calculate Cov. Matrix from 250 binned simulations:

To determine best fit values and errors we need to 
minimize
 

We set the above’s derivative to zero and solve for our 
parameters

Our error for each parameter is

Cij = �XiXj� − �Xi� �Xj�
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Fit for fnl with the skewness power spectra :

fnl from Cl(2,1) estimator :

V: 15.7 ± 38.9,    W: -13.5 ± 39.8,    V+W: 14.3 ± 37.6

fnl from Cl(2,1) and El(2,1) estimator :

V: 16.7 ± 27.1,     W:  18.7 ± 27.2,     V+W: 11.0 ± 24

fnl variation with scales :

Smidt et al. (2009) PRD 80, 123005
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fnl comparison :

WMAP 5-Year, Skewness :                              51 ± 30 (E. Komatsu et al. 2009, ApJS, 180,330)

WMAP 5-Year, Minkowski Functions :     −57 ± 61 (E. Komatsu et al. 2009, ApJS, 180,330)

WMAP 5-year, Wavelets :                                31 ± 25 (A. Curto et al. 2009, ApJ, 706, 399) 

WMAP 5-year, Needlets  :                               84 ± 40 (O. Rudjord et al. 2009, ApJ, 701, 369)

WMAP 5-year, N-point PDF :                        30 ± 62 (P. Vielva et al. 2009, MNRAS, 397, 837)

WMAP 5-Year, Optimal Estimator :              32 ± 21 (K. Smith et al. 2009, JCAP, 909,6)

WMAP 5-year, Skew-power spectrum        11.0 ± 24(Smidt et al. 2009, PRD, 80, 123005)

The error bars of the skewness power spectrum is comparable to best 
estimates but it does not find any hint of non-zero fnl
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Scale Dependance of fnl

The literature also describes another parameter, 
nfNL,that measures the scale dependance of fnl:

We may approximate a constraint on this parameter 
as follows:

From data we constrain nfNL(l) = -0.1 ±  1.2

Consistent with no scale dependance.

nfNL(k) ≡ d ln |fNL(k)|
d ln k

fNL(l) = fNL200

�
l

l200

�nfNL (l)

[Smidt et al. (2010) PRD 123007]
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Let’s Complicate It:Trispectrum
Remember, We can look to the four point function 
for non-Gaussianity:

< al1m1al2m2al3m3al4m4 >c=
�

LM

T l3l4
l1l2

(L)
�

l1 l2 L
m1 m2 M

� �
l3 l4 L
m1 m2 −M

�

T l1l2
l3l4

(L) = 4f2
NLhl1l2Lhl3l4L

�
r2
1dr1

�
r2
2dr2FL(r1, r2)αl1(r1)βl2(r1)αl3(r2)βl4(r2)

+gNLhl1l2Lhl3l4L

�
r2drβl2βl4(αl1(r)βl3(r) + αl3(r)βl1(r))

hl1l2l3 =

�
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

�
l1 l2 l3
0 0 0

�

FL(r1, r2) =
2
π

�
k2dkPΦjL(kr1)jL(kr2)
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Kurtosis Power Spectrum For Trispectrum

New estimators for the trispectrum that constrain τnl ( a 
function of fnl2 and gnl: 2 parameters are 2nd order

with :
A(3,1)

l = 4
�

r2
1dr1

�
r2
2dr2J AB2,A

l (r1, r2) B(3,1)
l = 2

�
r2drLAB2,M

l (r)

A(2,2)
l = 4

�
r2
1dr1

�
r2
2dr2J AB,AB

l (r1, r2) B(2,2)
l = 2

�
r2drLAB,BM

l (r)

[Smidt et al. (2010) PRD 123007]

K(2,2)
l =

�

li

T l3l4
l1l2

(l)T l3l4
l1l2

(l)
Cl1Cl2Cl3Cl4

K(3,1)
l =

�

liL

T l1l2
l3l (L)T l1l2

l3l (L)
Cl1Cl2Cl3Cl

Theory:

From Maps:
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Comparing data and simulations

Kl(3,1)

Kl(2,2)

[Smidt et al. (2010) PRD 123007]
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V band (95% c.l.)

W band (95% c.l.)

V+W band (95% c.l.)

V W V+W

gnl 4.2±53x 104 4.1±59 x 104 4.2 ± 39 x 104

τnl 1.32±1.27 x 104 1.39±1.31 x 104 1.35±0.98 x 104

Results: (First Measurement.)
Smidt et al.(2010) Arxiv:1001.5026

previous constraint on τnl from COBE was <108
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Summary of Results

The skewness power spectrum gives fnl = 11.0 ± 27, 
consistent with 0.

The trispectrum estimate gives gnl < 8.2 x 105 (95% c.l.).

The trispectrum estimate gives τnl < 3.3 x 104 (95% c.l.).

Constraint on single field consistency relation is:
 ANL = 9.2 ±  6.1.

Scale dependance is constrained to: nfNL(l) = -0.1 ±  1.2

[Smidt et al. (2009) PRD. 80, 123005]

[Smidt et al. (2010) PRD 123007]
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Expectations for Planck and EPIC
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Ability To Rule Out Single Field Inflation
Anywhere in white region, ANL equal to unity is ruled 
out by > 5 σ.  

Circle is current 68% confidence region.

[EPIC][Planck]
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Finally, for Planck trispectrum may be  more 
important  then bispectrum.
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Measuring ClΦΦ directly from the 
trispectrum of the CMB.

[Smidt et al. 2010.  arxiv:1012:1600]  
      (Accepted by ApJ Letters!)
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Weak Lensing

• Photons leave surface of last scattering.

• Deflected by large scale structure.

Deflection Angle α = ∇φ

Gravitational Potential φ

(Credit: S. Colombi (IAP), CFHT Team)
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Previous Detections Of Lensing.

• Using Galaxy Shapes (Whittman et al. 2000, 
COSMOS)
Out to z = 2.   

• Redshifts above 2 effect the power spectrum by 
~30%.  CMB z = 1100.

• Evidence from 
cross-correlations:
Hirata et al. 2008 (2.5 σ),
Smith et al. 2007 (3.4 σ)

Lewis & Challinor 2006
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Extracting lensing

Θ(n) = Θ(n +∇φ)

Θ(n) =
�

∆T

T

�
(n)

∼ Θ̃(n) +∇iφ(n)∇iΘ̃(n)

δΘlm = Θl�m� +
�

LM

�

l�m�

φLM Θ̃l�m�(−1)m

�
l l� L
m m� −M

�
Fll�L

=
�

lm

ΘlmY ∗
lm(n)

Fll�L =

�
(2l + 1)(2l� + 1)(2L + 1)

4π

�
l l� L
0 0 0

�
1
2
[L(L + 1) + l�(l� + 1)− l(l + 1)]
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The Trispectrum

�

LM

(−1)MT l1l2
l3l4

(L)
�

l1 l2 l3
m1 m2 −M

� �
l3 l4 L
m3 m4 M

�
�Θl1m1Θl2m2Θl3m3Θl4m4�c ∼

T l1l2
l3l4

(L) = Cφφ
L

�
C̃l2Fl1l2L + C̃l1Fl2l1L

� �
C̃l4Fl3l4L + C̃l3Fl4l3L

�

(Hu (2001) Phys.Rev.D64:083005)
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Lensing
Reminder: For local non-Gaussianity, trispectrum 
was of the form:

where F is a separable function for each l. 

For weak-lensing the trispectrum is:

This means we can measure ClΦΦ similar to how 
we measured τnl. (changing F appropriately)

This decomposes into 36 pieces giving 36 
weightings for CMB maps.

T l1l2
l3l4

(L) = τNLhl1l2Lhl3l4LF (l1, l2, l3, l4, L)

T l1l2
l3l4

(L) = Cφφ
L hl1l2Lhl3l4L (Cl2Cl4Il1l2LIl1l2L + (3 perm.))

Il1l2l3 = [l3(l3 + 1) + l2(l2 + 1)− l1(l1 + 1)]
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So We Play The Same Game
• We weight maps.

• We compare to theoretical 2-2 estimator

K(2,2)
l(Lens) =

Cφφ
l

(2l + 1)

�

li

1
(2l + 1)

T l3l4
l1l2

(l)T̂ l1l2
l3l4

(l)
Cl1Cl2Cl3Cl4

;

Example Weighted Maps
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Test With Simulations

• Make 400 Gaussian Maps

• Used Lenspix to seed 400 Gaussian maps with 
arbitrary ClΦΦ.

• Use Gaussian Maps to subtract off Gaussian piece.
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Results From Simulations
• Remember:

• We can constrain ClΦΦ directly: 

K(2,2)
l(Lens)|Data = Cφφ

l K(2,2)
l(Lens)|Theory

Cφφ
l =

K(2,2)
l(Lens)|Data

K(2,2)
l(Lens)|Theory
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Results From WMAP Data

• Results from V and W band WMAP 7 data. 

• Also a null test V - W.

• Use     and the covariance matrix as before.χ2
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A 2σ Excess For Lensing.
• To measure the lensing amplitude we 

constrain Al ClΦΦ 

• Al = 0 is for unlensed sky.  Al = 1 is fiducial.

• Use CosmoMC. (2 sigma measurement of 
lensing amplitude.)
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In Conclusion

• These new estimators are powerful.

• Can constrain many non-Gaussianity parameters 
directly with scale dependance.

• May also be used to constrain things in addition to 
NG such as lensing.

• Thanks for listening.
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