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Synopsis

Introduction

String Theory is a serious study for any aspiring theorist. The origin of the whole universe

including the space-time itself with its endless bounty of fundamental matter governed

by the four forces of nature can be traced back to a singular source, the fluctuations of

omnipresent tiny strings floating around in the extra-dimensional space-time. A truly pro-

found statement encouraging a unified outlook ! The concord is potentially illuminating,

reinforcing the mysterious symbiosis among several seemingly divergent arenas of the-

oretical and mathematical physics. One finds prime examples of such deep interplay in

the theoretical studies of black holes and in the equivalence of quantum field theories to

quantum gravity known colloquially as AdS/CFT correspondence.

Since its discovery in early 20th century black holes have been the muse of generations

of physicists. String theory in its attempt to unify the infinitely subtle quantum gravity

has benefited largely from the extensive studies on black holes as theoretical laboratories

allowing for controlled theoretical predictions. Black holes are space-times with special

properties, most notably the existence of Event horizon - a surrounding surface preventing

objects from escaping the black hole. Though it has a good classical description, the quan-

tum version behaves as a black body with a finite temperature (Hawking temperature) [1]

and hence is governed by the laws of thermodynamics. It emits Hawking radiation and

is described by a characteristic set of thermodynamic variables including an entropy pro-

portional to the Area of Event horizon (Bekenstein-Hawking entropy) [2]. One would

immediately question the origin of such an entropy and ask, do we have microstates from

the statistical point of view ?
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It is true that for generic black holes the answer is not known but in the past two decades

it has been worked out for special classes of black holes (Extremal Black holes) in string

theory [8,9,11,17]. Extremal black holes have zero temperature but they still carry a finite

entropy, plus without any Hawking radiation they are usually stable. Often they are invari-

ant under certain supersymmetries and hence the name BPS black holes. A microscopic

formulation typically involves fluctuations of fundamental strings over solitonic objects

(D-branes). In this picture gravity is weak, allowing us to calculate the degeneracy of

states but it is essentially supersymmetry (Witten/Helicity Trace Index) [3,40] that contin-

ues the result to strong coupling where the gravitational back-reaction becomes important

and the system is described by a single or multiple blackhole(s) [29]. For a wide class of

extremal BPS black holes in string theory the macroscopic picture of Bekenstein-Hawking

entropy match the degeneracy of BPS states in the microscopic picture.

The primary research presented in this thesis revolves around the central theme of black

hole entropy matching, widening its scope and applicability to further reinforce the inter-

nal consistency of string theory. Listed below are the major results of the such studies.

• We attempted to give a physical explanation behind a set of ad hoc rules necessary

to match the microscopic counting to the entropy of 1
4

BPS black holes in N = 4

string theory [4].

• We precisely reproduced certain logarithmic terms emerging from the large charge

expansion of twisted microscopic indices from respective quantum corrections to 1
4

BPS & 1
8

BPS black holes in N = 4 & N = 8 supergravity theories [5].

Following sections contain brief descriptions of the above results.
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Black Hole Bound State Metamorphosis

Among the varied microstates of N = 4 supersymmetric string theories an important

class are the so–called negative discriminant states carrying charges for which there are

no classical supersymmetric single centered black holes but whose microscopic index is

nevertheless non-zero [26]. All such states can be accounted for precisely as two–centered

black hole configurations, with each centre representing a small half-BPS black hole. To

avoid over–counting a crucial assumption is an ad hoc identification of two seemingly dif-

ferent configurations carrying the same total charge. This phenomenon is termed black

hole metamorphosis.

We attempted at understanding the physical phenomenon and justify the ad hoc pre-

scription. The existence of such two(multi)–centered black holes depends on the various

moduli (like axion–dilaton) of the theory and taking a queue from BPS wall crossing in

N=4 SUSY string theory [23], we can draw a codimension one surface called the wall of

marginal stability, effectively dividing the moduli space into two and separating the no-

solution and two–centered configurations [28]. On the walls of marginal stability the two

centers have infinite separation. For two two–centered configurations of the same total

charge there is an overlapping region of existence and hence the ad hoc identification. To

resolve certain singularities (Enhancon mechanism [36]) in the solution, we have replaced

one of the black hole centers with a smooth gauge theory dyon [35]. This reduces the

range of moduli for which each solution exists by effectively erecting another codimen-

sion one surface, separating the previously overlapping region. Now, at any given point in

the moduli space there is no overlap and the total contribution by all existing two–centered

configurations to the index adds up to match precisely the microscopic result for the same

index [4].
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Logarithmic Corrections to Twisted Indices from Quan-

tum Entropy Function

The computation of logarithmic corrections to macroscopic black hole entropy is per-

formed using the formalism of Quantum Entropy Function [31]. This proposal exploits

the AdS2 ⊗ S2 factor in the near-horizon geometries of spherically symmetric extremal

black holes. The full quantum degeneracy associated with the horizon is a string path

integral over all field configurations of fixed charges that asymptote to the attractor geom-

etry of the black hole. The divergences can be regulated in accordance with the AdS/CFT

correspondence [6]. The leading saddle point of the path integral is the attractor geometry

itself which equals the exponential of Wald entropy [7]. Further, by expanding the mass-

less fields of four-dimensional supergravity upto quadratic fluctuations (1-loop) about this

saddle point, the 1-loop exact logarithmic correction to Wald entropy can be extracted and

matched successfully to its microscopic index counterpart [54].

If we restrict ourselves to special subspaces of the moduli space which admit discrete

symmetry transformations say ZN , we can average over the generator of the group and

define the Twisted Indices (Helicity trace index) [64]. The large charge expansion of the

microscopic index for 1
4

BPS N = 4 & 1
8

BPS N = 8 SUSY theories results in vanishing

log corrections. On the macroscopic side, the original attractor solution is no longer an

admissible saddle–point, however the new solution is just a ZN orbifold of the original

solution carrying (1/N)th the previous Wald entropy. Moreover, the sub-leading ZN ×ZM

orbifold saddle points also contribute (1/(NM))th the original Wald entropy.

We attempted to compute the 1–loop exact log corrections about these orbifold saddle

points in the macroscopic picture. As a first step, while projecting to states invariant under

the ZN orbifold, we should account for the fact that various supergravity fields have non
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trivial transformations under the discrete group. The computation can be tricky, firstly

because we are evaluating Heat Kernels [70] over non-compact AdS2 background, sec-

ondly they diverge and finally there are infinitely many zero modes. However, there are

some simplifications in defining the Heat Kernels around the ZN orbifold of S2 ⊗ S2 and

then analytically continuing the results to the orbifold of AdS2 ⊗ S2. Finally we showed

that the log corrections vanish not only for the leading orbifold saddle point but also for

the subsequent sub-leading orbifold saddle points of the Twisted index [5], in complete

agreement with the microscopic results.

9





List of Figures

1.1 Black hole metamorphosis. . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1 The walls of marginal stability and the region of existence of the two–

centered configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2 The pictorial description of black hole metamorphosis. . . . . . . . . . . 35

11





List of Tables

B.1 The g–charges of the N = 4 multiplets. . . . . . . . . . . . . . . . . . . 120

13





CHAPTER 1
Introduction

“If the doors of perception were cleansed every thing would appear to man as

it is, Infinite. For man has closed himself up, till he sees all things thro’ narrow

chinks of his cavern."

– William Blake, The Marriage of Heaven and Hell.

1.1 Why String Theory?

Over many centuries physicists have tried to decipher reality, from the tiny to the enor-

mous, the freezing to the fiery. Their quest? To bring heaven, hell, and everything in

between under one set of rules. It’s been a long journey, with many dead ends and set-

backs. But some are hoping we’re nearly there.

Today we physicists subscribe to the idea of nature being governed by four fundamental

forces. While electromagnetism and gravity are familiar from everyday existence, strong

& weak nuclei forces are only relevant on tiny subatomic scales. Gravity affects the struc-

ture of space and time and is much weaker than all the other forces. All these forces are

transmitted by messenger particles. The best theories of the 20th & 21st centuries seems

to suggest that the universe is composed of tiny particles and they behave according to
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quantum mechanics. Unlike general relativity, it is a probabilistic theory. The uncertainty

principle and superfine discrete energy levels of particles leads to the concept of zero point

energy. Seemingly empty space (vacuum) is teeming with energy which causes particles to

pop in and out of existence. Quantum field theory extends quantum mechanics from single

localized particles to fields that exist everywhere. These fields also represent forces that

permeate all of space and time. Although QFT reproduces classical physics easily, naive

attempts to compute quantum corrections give infinite answer. Infinity is a physicist’s

brick wall - it is impossible for real things to have infinite value! As Wilson explained,

these infinities arise because the calculations incorrectly assumed QFT applied down to

infinitely short distances and renormalization is merely a sensible systematic procedure to

discard infinities and extract the finite testable probabilities. The second complication has

to do with the complicated machinery involved which allowed only approximate answers

through the perturbative approach.

Unfortunately, the problems don’t end there. Sadly, the techniques of QFT fail for the

fourth fundamental force - gravity. It is said to be non–renormalizable; the high energy

theory is worthless for making predictions since it requires an infinite number of constants.

For most part, small scale gravity is of no concern; we can safely ignore its tiny impact

on the behavior of atoms. But sometimes we would want to understand gravity in tiny

regions. The Big Bang theory predicts that the early universe was extremely dense and all

forces are on equal footing. Similarly, Black Holes are so massive that they crush space-

time to an infinitesimal point. We do need a quantum theory of gravity to explain such

scenarios.

The difficulties may be traced back to the mismatch between the fundamental principles

that govern general relativity and quantum mechanics. GR tells us that space and time

are not absolute but are dynamical objects. On the contrary in QFTs space and time are

16



the fixed background against which fields are defined. Furthermore, our interpretation of

quantum mechanics is inseparably entwined with the role we play as observers, but in GR

observer makes no difference to the theory. Finally, GR requires a smooth fabric of space

but quantum mechanics tells us that even empty space is foaming with quantum fluctua-

tions. Though it seems that the most essential elements of the theories are incompatible,

we believe that at high energies all forces will fit into a single theoretical framework,

sometimes called a Theory of Everything. Fifty years of progress in QFT has formed the

basis of the famous Standard Model of particle physics which gives a common framework

for the remaining three forces except gravity. The new theory could attempt to solve the

unification problems of GR and quantum mechanics or it may start afresh and establish

completely new ideas of reality. String theory is an example of such a theory.

In string theory, the nature of reality changes. We are used to thinking of the world as

composed of particles. However, in string theory, particles are no longer fundamental;

at very short distances they appear to be tiny vibrating strings. These strings play nicely

with both quantum mechanics and relativity and can easily give rise to the particles we

observe for both forces and matter. There are open strings which end on spacetime mem-

branes (D-branes) and closed strings which form a loop; they are the source of gravity.

Despite its apparent elegance, it requires many elaborate concepts: supersymmetry, extra

dimensions etc. but sadly to skeptics it provides no experimental evidence for these exotic

demands. Strings are probably incredibly small: Plank scale and thus would continue to

elude detection in current and future accelerators. There are many different ways of mush-

ing up the extra dimensions into a tiny space. The current research focuses on Calabi-Yau

manifolds as a promising group of compactification. Supersymmetry (SUSY) claims that

there’s a way to replace fermions (like electron, quark) with bosons (like photon, gravi-

ton) such that laws of physics remains the same. Including SUSY makes a big difference

to string theory; it removes the impossible negative mass2 particle (Tachyon) and lay the
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foundations of a ten dimensional superstring theory. Originally there were five consistent

and distinct superstring theories. It would take a revolution to realize that these were all

smoothly connected and part of a unified theory now called M–theory. In string theory we

witness a rich underlying structure magnified by appealing dualities, unexpectedly linking

diverse areas of mathematics and physics. It’s true framework is grander than its founders

could have possibly imagined.

It might happen that different mathematical theories describe the same physics. We shall

call this situation a duality. String theory is full of dualities and they offer us new per-

spective on reality, improve our ability to compute and more importantly unite disparate

areas of physics. Much of the modern research focuses on using these dualities to better

understand a broad spectrum of topics. T–duality is perhaps the simplest to appreciate;

small extra dimensions are equivalent to large extra dimensions, they produce identical

theories. An extension of T–duality is the mirror symmetry which states that Calabi-Yau

shapes comes in pairs. Perhaps on a more fundamental footing is S-duality which under-

pins the success of M–theory. Take two distinct string theories A and B, they each have

an adjustable coupling constant. If A has a large coupling constant and B a small one,

they predict exactly the same physics. M–theory is not just populated by strings, but also

by membranes called M–branes. These are multidimensional surfaces that move through

the eleven dimensions of M–theory. For example, a two–dimensional M–brane wrapped

around a tiny extra dimension will appear as a one–dimensional string or a D1–brane

moving through ten dimensions of the superstring theory. In recent years D–branes have

become a central ingredient in modern research. The study of D–branes has shed light on

some of the most elusive elements in the universe, black holes. Finally, they played an

essential role in the formulating the AdS/CFT correspondence. They are non–perturbative

objects allowing physicists to do calculations in regimes where interaction is strong. His-

torically this was uncharted terrain.
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String theory is not a monolithic topic. People differ in interests and aptitudes, and their

purposes vary widely. String theory is wielded to tackle quantum gravity and should

tackle situations when spacetime become infinitely bent, forming a point called a singu-

larity. In such situations general relativity as we know it breaks down so we can’t fathom

the physics! A particular example is that of orbifold singularities; it turns out the equations

of string theory continue to work nicely at such singularities. Hence strings enable us to

move beyond general relativity. More complicated are the conifold singularities where

the basic equations of string theory fails but including D–branes we can make the theory

consistent again, thereby allowing smooth transitions in spacetime. String theory gives

an intuitive picture for the disappearance of infinities. Infinities arise because we assume

the particles to be points but instead if we smear them out to extended strings then the

infinite answers disappear for distances smaller than the smearing scale. Thankfully it

has been confirmed by exact calculations in string perturbation theory. Though string the-

ory provide insights into physics beyond Standard Model, cosmology, strongly interacting

particles, mathematics and many more areas of active interests, we shall focus here on

AdS/CFT correspondence and black holes.

AdS/CFT correspondence is one of the largest industry of research in string theory. It

stand for Anti–de–Sitter space/Conformal Field Theory. It is a deeply surprising example

of duality between theories of gravity and quantum field theories. The original example

by Maldacena linked two very special theories. The gravitational side involved a partic-

ular geometry (5–dim. Anti–de–Sitter space) for a supersymmetric extension of gravity

(type IIB supergravity) and on the other side, the QFT (Super Yang–Mills theory) was the

unique theory with the largest possible amount of SUSY in four dimensions. There’s a

specific dictionary that translate between the two theories. This example has by now been

extended to gravitational theories in (N+1) dimensions, completely equivalent to non–

gravitational QFTs in N dimensions. It is more generally referred to as the gauge–gravity
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correspondence. The correspondence has a very useful property. When the gravitational

theory is hard to solve , the QFT is east to solve , and vice–versa. This opens doors to pre-

viously intractable strongly coupled regime of QFT through simple calculations in gravity

theories. Moreover AdS/CFT allows for a conceptual reworking of the classical problems

in general relativity. Indeed if GR is equivalent to QFT, then neither one of them is deeper

than the other. Finally, the correspondence indirectly brings string theory under experi-

mental scrutiny through it’s various application in condense matter physics, in particular

near phase transitions where the effective theory is a CFT.

Before we move on to the core topic of black holes in string theory, we shall present

a few thoughts on string theory’s struggle with philosophy and its limitations. Progress

in science is often based on a symbiotic allegiance between theory and experiments; a

methodology so far missing in string theory. Some would say that the concepts are so

deep and rich that they must describe nature, but skeptics would argue that it’s only a

mathematical framework, not a valid theory in itself. One of the biggest empirical prob-

lems string theory faces is under–determinism. M–theory has a very large number - some

estimates give 1020000 - of low energy solutions, but no idea which one describes our re-

ality. One way to deal with this is to apply the anthropic principle. This states that some

properties of our universe has no deep fundamental origin, but take values they do purely

because if they didn’t, we wouldn’t be here! String theory is not without it’s limitations,

particularly when we don’t yet know of any deep underlying principle. Why strings are

the fundamental objects of nature, rather than just a convenient concept. We could also

ask, what are the fundamental equations of spacetime? A background independent for-

mulation would be genuinely non–perturbative allowing generation of spacetime in the

quantum regime. So much remains mysterious to quantum gravity that only time will tell

how close we are with string theory. The truth we believe is out there!
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1.2 Black Holes in String Theory

A black hole is at once the most simple and the most complex object.

Since its discovery in early 20th century black holes have been the muse of generations of

physicists. They are one of the most famous predictions of Einstein’s theory of general

relativity. Black holes are one of the rare examples in the history of science where a scien-

tific idea has gestured and evolved over several decades into an important conceptual and

quantitative tool, almost entirely on the merits of theoretical considerations. That we have

journeyed so far with any confidence at all with very little guidance from the experiments

indicates the robustness of the basic tenets of physics.

Though black hole is now part of our vocabulary, it’s interesting to note that first black

hole solution written down over a century ago by Karl Schwarzschild was deemed inad-

missible by Einstein himself, for he and others believed that physical theories couldn’t

tolerate such singularities. The metric was immediately accepted as the correct static de-

scription of the gravitational field outside a symmetric mass such as a star like our sun. But

the bizarre part was the hidden implication that if the entire mass of the sun is concentrated

to a radius below 3 km we would have to face up with a singularity! Slowly, acceptance

grew with work of gravitational (stellar) collapse by Chandrasekhar, Oppenheimer and

others which sealed the fate of (super)massive stars, doomed to be reincarnated as black

holes. Normally, stars balance the gravitational force with the pressure from the nuclear

fusion reactions but when it gets old and burns up all its hydrogen and helium into heavier

non-fissile elements it either turns into a white dwarf, a neutron star for less than twice the

mass of our sun or collapse into a black hole. Astrophysicists now believe that our uni-

verse ought to contain many black holes. Cluster of stars collapse and create supermassive

black holes at the center of probably every galaxy, with a mass ten to one hundred million

times greater than the sun.
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Simply put, a black hole is a region of spacetime in which things can fall, or be thrown in,

but nothing comes out, not even light. The boundary from which no round–trip tickets are

available is called the event horizon. Event horizon and singularity are the two defining

features of a black hole. Its simplicity lie in the fact that it is completely specified by its

mass, spin and charge. This is a remarkable consequence of the so–called ‘No Hair Theo-

rem’. For an astrophysical object like the earth, the gravitational field will not only depend

on the mass but the distribution of the mass, on the shapes of valleys and mountains. Not

so for the black hole; once the star collapses to form a black hole, the gravitational field

around it forgets all details of its formation except for the mass, spin and charge. In this

respect, a black hole behaves much like a structure–less elementary particle.

What happens if we add quantum mechanics to the game? Hawking’s semiclassical anal-

ysis of QFT in a black hole background allows for the energy density of the curvature

around the horizon to decay into particle–antiparticle pairs [1]. Once in a while one of

the two falls into the black hole horizon, while the other escaped to spatial infinity. Con-

temporarily, Bekenstein realized that black hole must have entropy [2]. Otherwise, if we

throw a bucket of hot water into the black hole then the net entropy of the outside world

would seem to decrease, in violation of second law of thermodynamics. These obser-

vations paved way for understanding black holes as statistical ensembles and ultimately

lead to the formulation of laws of black hole thermodynamics; of particular interest is the

statement that entropy is proportional to the area of the event horizon. Entropy gives an

account of the number of microscopic states of a system and hence associates an incredi-

bly complex microstructure with the black hole. In this respect, a black hole is very unlike

an elementary particle.

Where are the microstates? We may also reflect upon the infamous Information paradox,

the failure of the semiclassical setup to establish an unitary evolution of a black hole pure
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state into thermal radiation. We would like to solve these problems. The solution is in the

study of black holes in a quantum gravity theory, that can unify classical GR with quan-

tum mechanics. String theory is a powerful mathematical framework uniquely equipped

to address exactly this. String theory in its attempt to unify the infinitely subtle quantum

gravity has benefited largely from the extensive studies on black holes as theoretical labo-

ratories allowing for controlled theoretical predictions. In any consistent quantum theory

of gravity such as the string theory, the requirement that the thermodynamic entropy must

equal the statistical entropy of black hole is an extremely stringent theoretical constraint.

Moreover, the constraint is also universal in that it must exist in any phase or compactifi-

cation of theory that admits a black hole. We shall use this freedom to study special class

of phases of string theory with a large amount of unbroken supersymmetry. Since these

phases have Bose–Fermi degenerate spectrum of states, they don’t describe the observed

world. Nevertheless, for the past two decades these extremal or BPS black holes enjoyed

a microscopic description within the framework of string theory [8,9,11,17]. Equality be-

tween mass and the charges leads to unbroken SUSY, which is ultimately responsible for

the disappearance of messy quantum corrections, so that physics near the horizon can be

found by relatively simple calculations. A microscopic formulation typically involves fluc-

tuations of fundamental strings over solitonic objects (D-branes). In this picture gravity is

weak, allowing us to calculate the degeneracy of states but it is essentially supersymmetry

(Witten/Helicity Trace Index) [3,40] that continues the result to strong coupling where the

gravitational back-reaction becomes important and the system is described by a single or

multiple blackhole(s) [29]. For a wide class of extremal BPS black holes in string theory

the macroscopic picture of Bekenstein-Hawking entropy match the degeneracy of BPS

states in the microscopic picture.

The primary research presented in this thesis revolves around the central theme of black

hole entropy matching, widening its scope and applicability to further reinforce the inter-
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nal consistency of string theory. We shall mainly focus on the macroscopic or supergravity

side of the story and allow for a large charge limit where the black hole description is valid.

We have looked at cases where there is a primary agreement between the microscopic and

the macroscopic descriptions, but upon closer examination mild disagreements surfaced.

Such finer disagreements and their resolutions are more than welcome in string theory as

they tend to be sensitive on the ‘phase’ under consideration and contains a wealth of infor-

mation about the details of compactification as well as the spectrum of non–perturbative

states in the theory. Below are the major results of the such studies.

• We attempted to give a physical explanation behind a set of ad hoc rules necessary

to match the microscopic counting to the entropy of 1
4

BPS black holes in N = 4

string theory [4].

• We precisely reproduced certain logarithmic corrections emerging from the large

charge expansion of twisted microscopic indices from respective quantum correc-

tions to 1
4

BPS & 1
8

BPS black holes in N = 4 & N = 8 supergravity theories [5].

Since both results are covered in complete detail in the subsequent chapters we shall only

provide very brief descriptions below.

1.2.1 Black Hole Bound State Metamorphosis

Among the varied microstates of N = 4 supersymmetric string theories an important

class are the so–called negative discriminant states carrying charges for which there are no

classical supersymmetric single centered black holes but whose microscopic index is nev-

ertheless non-zero [26]. The result for the degeneracy takes the form of an integration over

a three real dimensional subspace (a contour) of the Siegel upper half plane parametrizing

genus two Riemann surfaces, and the integrand involves inverse of a certain meromorphic

modular form of a subgroup of the Siegel modular group. On the macroscopic side, all

such states can be accounted for precisely as two–centered black hole configurations, with
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Figure 1.1: Black hole metamorphosis.

each centre representing a small half-BPS black hole. To avoid over–counting a crucial

assumption is an ad hoc identification of two seemingly different configurations carrying

the same total charge. This phenomenon is termed black hole metamorphosis.

We attempted at understanding the physical phenomenon and justify the ad hoc pre-

scription. The existence of such two(multi)–centered black holes depends on the various

moduli (like axion–dilaton) of the theory and taking queue from BPS wall crossing in

N=4 SUSY string theory [23], we can draw a codimension one surface called the wall of

marginal stability (the lines L1 & L2 in Fig. 1.1), effectively dividing the moduli space into

two and separating the no-solution and two–centered configurations [28]. On the walls of

marginal stability the two centers have infinite separation and the original dyon becomes

marginally unstable against decay into a pair of half BPS dyons. Typically the spectrum

of the original dyon changes discontinuously as we move through these marginal stability

walls in the moduli space. For two two–centered configurations of the same total charge

there is an overlapping region of existence, where each configuration exists in the region

R′1 ∪ R′2 ≡ R in Fig. 1.1 and hence the ad hoc identification. The phenomenon of black

hole metamorphosis suggests the existence of a hypothetical line L, shown in Fig. 1.1,

such that the first configuration exists only in the region R′1 to the right of L and left of L1

and the second configuration exists only in the region R′2 to the left of L and the right of

L2. The line L is another codimension one surface erected to address certain singularities

25



(Enhancon mechanism [36]), which we resolved by replaced one of the black hole centers

with a smooth gauge theory dyon [35]. Now, at any given point in the moduli space there

is no overlap and the total contribution by all existing two–centered configurations to the

index adds up to match precisely the microscopic result for the same index [4].

1.2.2 Logarithmic Corrections to Twisted Indices from Quantum En-

tropy Function

The computation of logarithmic corrections to macroscopic black hole entropy is per-

formed using the formalism of Quantum Entropy Function [31]. This proposal exploits

the AdS2 ⊗ S2 factor in the near-horizon geometries of spherically symmetric extremal

black holes. The full quantum degeneracy associated with the horizon is a string path

integral over all field configurations of fixed charges that asymptote to the attractor geom-

etry of the black hole. The divergences can be regulated in accordance with the AdS/CFT

correspondence [6]. The leading saddle point of the path integral is the attractor geometry

itself which equals the exponential of Wald entropy [7]. Further, by expanding the mass-

less fields of four-dimensional supergravity upto quadratic fluctuations (1-loop) about this

saddle point, the 1-loop exact logarithmic correction to Wald entropy can be extracted and

matched successfully to its microscopic index counterpart [54].

If we restrict ourselves to special subspaces of the moduli space which admit discrete

symmetry transformations say ZN , we can average over the generator of the group and

define the Twisted Indices (Helicity trace index) [64]. The large charge expansion of the

microscopic index for 1
4

BPS N = 4 & 1
8

BPS N = 8 SUSY theories results in vanishing

log corrections. On the macroscopic side, the original attractor solution is no longer an

admissible saddle–point, however the new solution is just a ZN orbifold of the original

solution carrying (1/N)th the previous Wald entropy. Moreover, the sub-leading ZN ×ZM

orbifold saddle points also contribute (1/(NM))th the original Wald entropy.
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We attempted to compute the 1–loop exact log corrections about these orbifold saddle

points in the macroscopic picture. As a first step, while projecting to states invariant under

the ZN orbifold, we should account for the fact that various supergravity fields have non

trivial transformations under the discrete group. The computation can be tricky, firstly

because we are evaluating Heat Kernels [70] over non-compact AdS2 background, sec-

ondly they diverge and finally there are infinitely many zero modes. However, there are

some simplifications in defining the Heat Kernels around the ZN orbifold of S2 ⊗ S2 and

then analytically continuing the results to the orbifold of AdS2 ⊗ S2. Finally we showed

that the log corrections vanish not only for the leading orbifold saddle point but also for

the subsequent sub-leading orbifold saddle points of the Twisted index [5], in complete

agreement with the microscopic results..
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CHAPTER 2
Black Hole Bound State

Metamorphosis

2.1 Introduction

Matching of microscopic counting of BPS states to the entropy of supersymmetric black

holes is an important problem. Exact microscopic counting of BPS states, including the

dependence of the spectrum on the asymptotic moduli, has now been achieved for a wide

class of states inN = 8 supersymmetric string theories [8–10] and a wide class ofN = 4

supersymmetric string theories [11–25] in four dimensions. An important class of these

microscopic states are the so called negative discriminant states – states carrying charges

for which there are no classical supersymmetric single centered black holes but whose mi-

croscopic index is nevertheless non-zero. In particular such states are abundant in N = 4

supersymmetric string theories 1. It was shown in [26], following an earlier observa-

tion of [24], that all the known negative discriminant states in N = 4 supersymmetric

string theories, which appear in the microscopic counting of states, can be accounted for

precisely as 2-centered black hole configurations, with each center representing a small

1Note that we are not going to discuss positive discriminant states. The matter has been extensively

discussed in the literature with full agreement between microscopic and macroscopic counting.
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half-BPS black hole 2. This however required one crucial assumption: certain 2-centered

configurations, whose indices can be computed and shown to be the same, had to be treated

as identical configurations. This identification was ad hoc, since the configurations which

had to be identified appeared to be different configurations carrying the same total charge.

Nevertheless [26] gave a precise set of rules for determining when a pair of configurations

have to be identified. This phenomenon was called black hole metamorphosis. A similar

phenomenon in the context of supersymmetric gauge theories had been discussed earlier

in [27]. Note that not all negative discriminant states exhibit metamorphosis but only

states where either of the two centers carries charge Q2 = −2 or P 2 = −2 or both. In our

analysis we have omitted the more complicated case of both Q2 = −2 and P 2 = −2.

Our main goal in this chapter will be to understand the physical origin of this phenomenon,

and justify the ad hoc prescription of [26] for identifying certain apparently different con-

figurations of black holes. What we shall show is that precisely for the class of two cen-

tered solutions for which the ad hoc identification rule is to be imposed, one of the black

hole centers need to be replaced by a smooth gauge theory dyon to avoid certain singular-

ities in the solution. The effect of this is that the range of moduli for which each solution

exists is smaller than the one based on the naive analysis of a two centered black hole so-

lution. Taking into account this effect, we find that at any given point of the moduli space

the total index contributed by all the two centered configurations which exist at that point

adds up to match precisely the microscopic result for the same index. We shall relegate

subtleties arising from dimension reduction and certain computational steps to Appendix

A. Although we have carried out our analysis in the context of a specific theory – for

heterotic string theory on T 6 – and worked in a region of the moduli space where one of

the two centers is light and can be regarded as a test particle in the background produced

2Table 1 & 2 in [26]. For example, for net charges (Q2, P 2, Q ·P ) ≡ (2, 2, 3), it splits up into (Q,Q) +

(0, P −Q) and (2Q− P, 2Q− P ) + ((P −Q), 2(P −Q)).
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by the other center, we expect that our analysis captures the essential physics behind the

phenomenon of black hole bound state metamorphosis for more general theories and in

generic region of the moduli space.

2.2 Review of black hole metamorphosis

In this section we shall review the phenomenon of black hole bound state metamorphosis

discussed in [26]. Although this phenomenon takes place in all N = 4 supersymmetric

string theories, we shall consider in this chapter the concrete example of heterotic string

theory compactified on T 6. At a generic point in the moduli space this theory has 28 U(1)

gauge fields and hence a BPS state is characterized by a 28 dimensional electric charge

vector Q and a 28 dimensional magnetic charge vector P . We shall denote the combined

charge vector as (Q,P ). We can associate with these vectors T-duality invariant bilinears

Q2, P 2 and Q · P . We consider quarter BPS states carrying charges (Q̂, P̂ ) satisfying

(Q̂2P̂ 2 − (Q̂ · P̂ )2) < 0, and gcd{Q̂iP̂j − Q̂jP̂i, 1 ≤ i, j ≤ 28} = 1 . (2.2.1)

In this case there are no single centered black holes carrying these charges and the only

two centered configurations which can contribute to the index carry charges of the form 3

:

(aQ, cQ) and (bP, dP ) , (2.2.2)

for some vectors Q and P and

a b

c d

 ∈ SL(2, ZZ), carrying total charge

(aQ+ bP, cQ+ dP ) = (Q̂, P̂ ) (2.2.3)

3Note that as each center is half–BPS in N = 4 SUSY theory, the electric and magnetic charges are

parallel to each other.
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This two centered configuration exists in a certain region of the moduli space of the theory

determined by the rules given in [26] 4. Outside this region the configuration ceases to

exist and hence does not contribute to the index. The contribution to the index from this

configuration when it exists is given by

(−1)Q·P+1|Q · P | dh(Q2/2) dh(P
2/2) , (2.2.4)

where ∑
n

dh(n)qn = q−1

∞∏
k=1

(
1− qk

)−24
. (2.2.5)

Physically dh(n) denotes the index of half BPS states.

The phenomenon of metamorphosis takes place when either P 2 or Q2 (or both) take the

value −2. Let us suppose P 2 = −2. In that case the configuration

(a′Q′, c′Q′) and (b′P ′, d′P ′) ,

a′ b′

c′ d′

 ≡
a b− au

c d− cu


Q′ ≡ Q+ uP, P ′ ≡ P, u ≡ Q · P (2.2.6)

has the same total charge, satisfies

Q′2 = Q2, P ′2 = P 2, Q′ · P ′ = −Q · P , (2.2.7)

4For a typical two centered configuration like (2.2.2) the wall of marginal stability is an arc intersecting

the real axis of upper half τ–plane at b
d and a

c . For Q · P > 0, connecting b
d to a

c , the two centered

configuration is on the left side of the line of marginal stability. For Q · P < 0 they are on the right side.

The case c = 0 implies a = d = ±1 which in turn creates a line of marginal stability connecting ±b to i∞.

Also note that exercising S–duality we can bring (2.2.2) to (Q, 0) and (0, P ) and thus the degeneracy being

duality covariant is given by (2.2.4).
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and hence, according to (2.2.4) gives the same contribution to the index 5. Note that

configuration (2.2.6) is not S-dual to the configuration (2.2.2). Now suppose that the con-

figuration (2.2.2) exists in the region R1 in the moduli space and the configuration (2.2.6)

exists in the region R2. It turns out that R1 ∪ R2 spans the whole moduli space of the

theory. Thus naively one would expect that in the region R = R1 ∩ R2 the total contribu-

tion to the index from these two configurations will be given by twice of (2.2.4) whereas

outside this region the contribution to the index will be given by (2.2.4). However in order

to match the microscopic result we have to assume that in the region R the contribution to

the index is given by (2.2.4) while outside this region there is no contribution to the index

from these configurations.

The case where Q2 = −2 is related to the above by a duality transformation and need

not be discussed separately. In fact with the help of an S-duality transformation by the

matrix

 d −b

−c a

 we can map the configurations (2.2.2) and (2.2.6) to

(Q, 0) and (0, P ) , P 2 = −2, (2.2.8)

5The reason we should suspect the center(s) with charge2 = −2 is because there is no genuine black

hole solution, the metric agrees with that of a black hole only far away from the core. This has been termed

enhancon mechanism in [34]. On the other hand a Harvey-Liu dyon has the correct asymptotic behavior and

remains smooth all the way to the origin. This is the primary reason why we were able to replace one of the

centers with a Harvey-Liu dyon.

With hindsight, it can be shown that the configurations (Q, 0) + (0, P ) , (Q + (Q · P )P, 0) + (−(Q ·

P )P, P ) & (0, P + (Q · P )Q) + (Q,−(Q · P )Q) have overlapping contributions in certain region of the

moduli space. But we want more, for example for Q′ ≡ Q + (Q · P )P , P ′ ≡ P we shall demand (2.2.7).

Since, Q′ · P ′ ≡ (Q · P )(1 + P 2), the only choice is P 2 = −2. Similarly, for the other configuration we

get Q2 = −2. Also note that since we are looking at Heterotic on T 6 each individual center represents a

half–BPS state with Q2

2 , P
2

2 ≥ −1. Also note that for either Q2 = −2 or P 2 = −2 the discriminant is

negative and hence we don’t worry about these issues for positive discriminant states.

33



and

(Q+ uP, 0) and (−uP, P ), u ≡ Q · P , (2.2.9)

with each configuration carrying the same index as (2.2.4). Thus from now on we shall

focus on this configuration. In this case Fig. 2.1 shows the regions R1, R2 and R in the

upper half τ -plane [23] – where τ = τ1 + iτ2 denotes the asymptotic values of the axion-

dilaton modulus of the heterotic string theory on T 6– for fixed asymptotic values of the

other fields. The boundaries of R1, R2 marked by the thick lines L1 and L2 correspond

to walls of marginal stability beyond which the configurations (2.2.8) and (2.2.9) cease to

exist. The precise slope of these straight lines depend on the details of the charges and

the asymptotic values of the other moduli, and will be given in eqs.(2.4.27) and (2.4.38)

respectively.

The phenomenon of black hole metamorphosis suggests the existence of a hypotheti-

cal line L, shown in Fig. 2.2, such that the configuration (2.2.8) exists only in the region

R′1 to the right of L and left of L1 and the configuration (2.2.9) exists only in the region

R′2 to the left of L and the right of L2. In that case it would explain why the index is given

by (2.2.4) in the region R′1 ∪R′2 = R and vanishes outside this region. Our goal will be to

understand the physical origin of L 6.

6We could justifiably ask whether we would witness the phenomenon of metamorphosis in N = 8 and

N = 2 SUSY theories. AsN = 8 theories don’t have Q2 = −2 or P 2 = −2 states we would not encounter

metamorphosis. The situation for N = 2 would be very similar to N = 4 and metamorphosis can certainly

happen except for the fact that Q2 = −2 or P 2 = −2 states would have independent walls beyond which

the half–BPS configurations ceases to exist. Unfortunately for N = 2 SUSY theory, till date we don’t even

know how to extract the precise leading contribution to the entropy from the microscopic side and match

it with the entropy from single center supergravity black hole solutions. Though important for negative

discriminant states, metamorphosis is a sub–leading issue and hence we leave it till we know better!
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Figure 2.1: Figure illustrating the walls of marginal stability and the region of existence

of the configurations described in (2.2.8) and (2.2.9). In Fig. (a) the thick line L1 labels

the wall of marginal stability for the configuration (2.2.8) which exists in the region R1

to the left of L1 in the upper half plane. In Fig. (b) the thick line L2 labels the wall of

marginal stability for the configuration (2.2.9) which exists in the region R2 to the right

of L2 in the upper half plane. Fig. (c) labels the region R ≡ R1 ∩ R2. Thus naively we

expect both configurations to exist in the region R and one of the two configurations to

exist in the region outside R. However microscopic counting requires that only one of the

two configurations exist in the region R and none exist outside this region. In drawing

these figures we have implicitly taken u to be positive. If u is negative then each figure

has to be reflected about the vertical axis passing through the origin.

−u 0

R′1R′2

LL2 L1

Figure 2.2: The pictorial description of black hole metamorphosis.
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2.3 Review of multi-black hole solutions in N = 2 super-

gravity

Although heterotic string theory on T 6 describes an N = 4 supersymmetric string theory,

the multi-black hole solutions are best understood in the language of N = 2 supergrav-

ity. For this reason in this section we shall review multi-black hole solutions in N = 2

supergravity. The bosonic fields of an N = 2 supergravity coupled to nv vector multiplet

fields are the metric gµν , nv + 1 complex scalars XI , and nv + 1 gauge fields AIµ with

0 ≤ I ≤ nv. The theory has a complex gauge invariance under which all theXI’s scale by

an arbitrary complex function Λ(x), the metric scales by |Λ|−2 and the gauge fields remain

invariant. The action of the theory is completely fixed by the prepotential F which is a

meromorphic, homogeneous function of the XI’s of degree 2. If (q, p) denote the electric

and magnetic charge vectors carried by a state with q and p being nv + 1 dimensional

vectors, then we define

FI ≡ ∂F/∂XI , e−K ≡ i (X̄IFI −XIF̄I), Z(q, p) ≡ (qIX
I − pIFI)eK/2 . (2.3.1)

The gauge fields are normalized so that the action of a test particle carrying electric charges

q̂I and magnetic charges p̂I takes the form

1

2

∫
(q̂IAIµ − p̂IAIµ)dxµ, (2.3.2)

where AIµ denotes the usual gauge potential and AIµ denotes the dual magnetic potential.

Note, as customary inN = 2 supergravity we choose a symplectic inner product w.r.t. the

upper and lower index label I .

A general supersymmetric multi-centered black hole solution in such a theory was con-
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structed in [28, 29]. To describe the solution we introduce the functions:

HI =
∑
i

pI(i)
|~r − ~ri|

−2 Im
[
e−iα∞XIeK/2

]
∞ , HI =

∑
i

q(i)I

|~r − ~ri|
−2 Im

[
e−iα∞FIe

K/2
]
∞ ,

(2.3.3)

where ~ri are the locations of the centers in the three dimensional space, (q(i), p(i)) denote

the electric and magnetic charges carried by the i-th center, the subscript ∞ denotes the

asymptotic values of the various fields and

α∞ = Arg

[
Z

(∑
i

q(i),
∑
i

p(i)

)]
∞

. (2.3.4)

Now let

SBH({qI}, {pI}) = πΣ({qI}, {pI}) , (2.3.5)

be the entropy of a single centered black hole solution in this theory with charge (q, p).

There is a standard algorithm for computing the function Σ from the knowledge of the

function F – it is given by the extremum of |Z(q, p)|2 with respect to the scalar moduli

fields. We now define

χK({qI}, {pI}) ≡ −
∂Σ

∂qK
, χK({qI}, {pI}) ≡

∂Σ

∂pK
, (2.3.6)

gK({qI}, {pI}) = χK({qI}, {pI}) + i pK , gK({qI}, {pI}) = χK({qI}, {pI}) + i qK .

(2.3.7)

Then the solution for the scalar fields, metric and the gauge fields is given by

XK

X0
=
gK({HI(~r)}, {HI(~r)})
g0({HI(~r)}, {HI(~r)})

,
FK
X0

=
gK({HI(~r)}, {HI(~r)})
g0({HI(~r)}, {HI(~r)})

, (2.3.8)

ds2 = e2V (dt+ ~ω · d~x)2 + e−2V dxidxi , (2.3.9)

e−2V ≡ Σ({HI(~r)}, {HI(~r)}) , (2.3.10)
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AKµ dxµ = −Σ({HI(~r)}, {HI(~r)})−1χK({HI(~r)}, {HI(~r)})(dt+ ~ω · d~x)

−
∑
i

pK(i) cos θ(i)dφ(i),

AKµdxµ = −Σ({HI(~r)}, {HI(~r)})−1χK({HI(~r)}, {HI(~r)})(dt+ ~ω · d~x)

−
∑
i

q(i)K cos θ(i)dφ(i), (2.3.11)

where (θ(i), φ(i)) denote the polar and azimuthal angles of the spherical polar coordinate

system with origin at ~ri. The general solution for ~ω exists but we shall not need it, though

for single centered solution ~ω vanishes.

One clarification in necessary here. The combinations XI/X0, FI/X0 and the gauge

fields are invariant under the complex gauge transformation generated by Λ(x) and hence

it is not necessary to specify in which gauge we have given the solutions. However since

the metric is not invariant under this transformation we need to specify the gauge in which

the metric is given. (2.3.9) is given in the choice of gauge in which the Einstein-Hilbert

term takes the form [29]
1

16π

∫
d4x

√
− det g R . (2.3.12)

Finally consistency demands that the locations ~ri be subject to the constraint 7 :

n∑
j=1
j 6=i

q(i)Ip
I
(j) − q(j)Ip

I
(i)

|~ri − ~rj|
= 2 Im (e−iα∞Zi), Zi ≡ Z

(
q(i), p(i)

)∣∣
∞ (2.3.13)

For a 2-centered solution carrying charges (q(1), p(1)) at ~r1 and (q(2), p(2)) at ~r2, it gives

|~r1 − ~r2| =
q(2)Ip

I
(1) − q(1)Ip

I
(2)

2 Im(e−iα∞Z2)
, eiα∞ =

Z1 + Z2

|Z1 + Z2|
. (2.3.14)

When |Z(q(2), p(2))| is small and we can ignore the background field produced by the

second center in most of the space, then an independent way of arriving at the result

7Colloquially known as Denef’s rules for composite objects.
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(2.3.14) is as follows. Let us consider the background fields produced by a single centered

solution carrying charges (q(1), p(1)) placed at the origin. If we now place a test particle

carrying charge (q̂, p̂) in this background then the action of this test particle takes the form

St = −
∫
dτ |Z({q̂I}, {p̂I})|+

1

2

∫
(q̂IAIµ − p̂IAIµ)dxµ, (2.3.15)

where τ is the proper time (not to be confused with the axion-dilaton moduli), and xµ

denote the coordinates of the test particle. If the test particle is at rest then we have

dτ = eV dt and hence

St =

∫
dt

[
−eV |Z({q̂I}, {p̂I})|+

1

2
(q̂IAI0 − p̂IAI0)

]
. (2.3.16)

The equilibrium position of the test particle will be at the extremum of the integrand with

respect to the spatial coordinates x1, x2, x3. It can be shown that this gives us back (2.3.14)

with (q(2), p(2)) replaced by (q̂, p̂) if |Z(q(2), p(2))| is small so that we can treat the second

center as a test particle ignoring its backreaction on the geometry [28].

2.4 S-T-U model

In this section we shall analyze a class of 2-centered black hole solutions in heterotic string

theory on T 6 and propose a mechanism for black hole metamorphosis. Our analysis will

proceed in several steps.

• We shall describe a truncation of heterotic string theory on T 6 which can be mapped

to an N = 2 supergravity theory, known as the S-T-U model.

• We then describe the S-T-U model and the maps between the fields in the two de-

scriptions.

• We then consider a two centered configuration in this theory with one center carrying
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charge (0, P ) with P 2 = −2, and take a limit where the other center carrying charge

(Q, 0) becomes light and can be regarded as a probe. The technique reviewed in

§2.3 then enables us to easily construct the background field associated with the

heavy center and find the equilibrium position of the light center.

• We then analyze the solution carefully to find the region of the moduli space where

it exists. Although naively it exists in the region R1 to the left of the line L1 in

Fig. 2.1, we suggest a mechanism by which the region of existence gets truncated to

R′1 displayed in Fig. 2.2.

• This analysis also allows us to determine the precise location of the lineL in Fig. 2.2.

2.4.1 Truncation of heterotic string theory on T 6

We shall now describe the truncation of heterotic string theory on T 6 that can be mapped

to an N = 2 supergravity theory. For this we take T 6 in the form of the product T 4 × T 2

and ignore all excitations of the components of the metric and 2-form fields with one or

both legs along T 4 and also all excitations of the ten dimensional gauge fields. This trun-

cated theory will have only four gauge fields corresponding to 4-µ and 5-µ components of

the metric and the 2-form gauge fields, with x4 and x5 denoting the coordinates along T 2

and xµ with 0 ≤ µ ≤ 3 denoting the coordinates along the 3+1 dimensional non-compact

space-time. The other relevant fields are the canonical metric gµν , the axion dilaton modu-

lus S = S1+iS2, the complex structure modulus U = U1+iU2 of T 2 and the complexified

Kahler modulus T = T1 + iT2 of T 2. The four components (Q1, Q2, Q3, Q4) of the elec-

tric charge vector Q correspond respectively to the number of units of momentum along

x5 and x4 respectively and winding numbers along x5 and x4 respectively. On the other

hand the components (P1, P2, P3, P4) of the magnetic charge P denote respectively the

heterotic five-brane winding numbers along T 4×x4-circle and T 4×x5-circle respectively

and Kaluza-Klein monopole charges associated with x5 and x4 directions respectively.
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The bilinears Q2, P 2, Q · P are given by

Q2 = 2(Q1Q3+Q2Q4), P 2 = 2(P1P3+P2P4), Q·P = Q1P3+Q2P4+Q3P1+Q4P2 .

(2.4.1)

Finally the entropy of a black hole carrying (electric, magnetic) charges (Q,P ) is given

by

SBH = π
√

Σ, Σ = Q2P 2 − (Q · P )2 . (2.4.2)

2.4.2 N = 2 description

This truncated theory can be mapped to an N = 2 supergravity theory coupled to three

vector multiplets, with prepotential

F = −X
1X2X3

X0
. (2.4.3)

In the notations of Appendix A, the scalar fields S, T and U introduced in §2.4.1 are given

by

S =
X1

X0
= Ψ + i e−Φ(4)

,

T =
X2

X0
= B̂45 + i

√
detĜ = i RR̃,

U =
X3

X0
=

(Ĝ45 + i Ĝ44)√
detĜ

= i
R̃

R
, (2.4.4)

where the expressions involving the R̃ & R (respective radii corresponding to the coordi-

nates 4 & 5) are true only when T & U are completely imaginary. The relations between

the gauge fields in the two descriptions can be described by giving the relations between

the charges {Qi, Pi} given above with the charges {qI , pI} in the N = 2 supergravity

41



description. This is as follows 8 (see e.g. [31] for a review 9)

Q ≡ (Q1, Q2, Q3, Q4) = (q0, q3,−p1, q2), P ≡ (P1, P2, P3, P4) = (q1, p
2, p0, p3) .

(2.4.5)

Eq.(2.4.2) now gives

Σ({qI}, {pI}) =
[
4(q2q3 − q0p

1)(p0q1 + p2p3)− (q0p
0 − q1p

1 + q2p
2 + q3p

3)2
]1/2

.

(2.4.6)

We shall denote the asymptotic values of the various moduli fields as

S|∞ = ζ ≡ ζ1 + iζ2, T |∞ = ρ ≡ ρ1 + iρ2, U |∞ = σ ≡ σ1 + iσ2 . (2.4.7)

As we shall see in (2.4.21), ζ is related to the modulus τ of §2.2 via the relation ζ = −τ̄ .

We also define

x0 ≡ X0
∞ . (2.4.8)

From (2.3.1), (2.4.3) and (2.4.7) it follows that

F0 =
X1X2X3

(X0)2
, F1 = −X

2X3

X0
, F2 = −X

1X3

X0
, F3 = −X

1X2

X0
. (2.4.9)

e−K = i (X̄1F1 −X1F̄1 + X̄2F2 −X2F̄2 + X̄3F3 −X3F̄3 + X̄0F0 −X0F̄0)

= i X0X̄0(−S̄TU + ST̄ Ū − T̄ SU + T S̄Ū − ŪST + US̄T̄

+STU − S̄T̄ Ū)

8This differs from the identification made in [30] by the transformation (Q1, Q2, Q3, Q4) →

(Q4, Q3, Q2, Q1), (P1, P2, P3, P4)→ (P4, P3, P2, P1).

9Together with the prepotential (2.4.3), charge redefinitions (2.4.5) and gauge choicew = 1, the entropy

functional eq. (3.2.5) and entropy eq. (3.2.13) of N = 2 supergravity given in [30] equals respectively eq.

(3.1.11) and eq. (3.1.23) of N = 4 supergravity.
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= 8X0X̄0S2T2U2 . (2.4.10)

and from (2.4.8) it follows that

e−K
∣∣
∞ = 8x0x̄0ζ2σ2ρ2 . (2.4.11)

2.4.3 The two centered solution

In the asymptotic background described above we construct a two centered solution with

the first center carrying charge (0, P ) and the second center carrying charge (Q, 0), with

Q = (a, b, c, d), P = (0,−1, 0, 1) . (2.4.12)

This gives, from (2.4.1)

Q2 = 2ac+ 2bd, P 2 = −2, u ≡ Q · P = b− d . (2.4.13)

We shall for definiteness take (b−d) > 0 so that u > 0. Since P 2 = −2 this configuration

should display the phenomenon of black hole bound state metamorphosis. In particular

there must exist a line L in the τ = −ζ̄ plane such that the bound state ceases to exist to

the left of this line. Our goal will be to understand the physical origin of this line L.

Now using (2.4.5) we see that in the language ofN = 2 supergravity the two centers carry

charges (q(1), p(1)) and (q(2), p(2)) where

p(1) = (0, 0,−1, 1), q(1) = (0, 0, 0, 0), p(2) = (0,−c, 0, 0), q(2) = (a, 0, d, b) .

(2.4.14)

We define

Z1 ≡ Z(q(1), p(1))|∞ =
[
eK/2(F2 − F3)

]
∞ =

√
x0

x̄0

1√
8ζ2ρ2σ2

ζ(ρ− σ) ,
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Z2 ≡ Z(q(2), p(2))|∞ =
[
eK/2(aX0 + dX2 + bX3 + cF1)

]
∞

=

√
x0

x̄0

1√
8ζ2ρ2σ2

(a+ dρ+ bσ − cρσ) . (2.4.15)

To simplify the analysis we shall work in the limit where ζ2 is large. In this limit |Z2| given

in (2.4.15) is small showing that the corresponding state is light. Hence we can ignore its

effect on the background field and treat this center as a probe. In this limit the background

geometry approaches that of a single centered black hole with charge (q(1), p(1)) placed at

~r1, and α∞ defined in (2.3.4) and the functions HI and HI introduced in (2.3.3) take the

form

eiα∞ =
Z1 + Z2

|Z1 + Z2|
' Z1

|Z1|
=

√
x0

x̄0

ζ

|ζ|
ρ− σ
|ρ− σ|

, (2.4.16)

(H0, H1, H2, H3) ' 1

|~r − ~r1|
(0, 0,−1, 1)− 2√

8ζ2ρ2σ2

Im

{
|ζ|
ζ

|ρ− σ|
ρ− σ

(1, ζ, ρ, σ)

}
.

(2.4.17)

(H0, H1, H2, H3) ' 2√
8ζ2ρ2σ2

Im

{
|ζ|
ζ

|σ − ρ|
ρ− σ

(−ζρσ, ρσ, ζσ, ζρ)

}
. (2.4.18)

From this we can construct the solution for the metric, scalars and gauge fields using the

prescription reviewed in §2.3. The separation between the two centers is given, according

to (2.3.14), by

|~r1 − ~r2| =
b− d

2

√
8ζ2σ2ρ2

|ζ||σ − ρ|
1

Im [(a+ dρ+ bσ − cρσ)/(ζ(ρ− σ))]
. (2.4.19)

Before we go on we must mention two subtle points in the relation between the N = 4

and N = 2 theory that will be important for our analysis. According to (2.4.15), the total

mass of the system is given by

|Z1 + Z2| =
1√

8ζ2ρ2σ2

√
|A|2 + |B|2|ζ|2 + 2 ζ1Re (AB∗) + 2 ζ2 Im (AB∗),
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A ≡ a+ dρ+ bσ − cρσ, B ≡ (ρ− σ) . (2.4.20)

Now consider a state carrying total charge (P, P ). The BPS mass of this state will be

given by setting a = c = 0 and b = −1, d = 1 in (2.4.20) and its dependence on the

axion dilaton modulus ζ will be proportional to
√
|1 + ζ|2/

√
ζ2. On the other hand in the

convention of [23, 26] which we used in presenting the results in §2.2, the dependence of

the BPS mass of a particle of charge (P, P ) on the axion dilaton modulus is proportional

to
√
|1− τ |2/√τ2. This shows that ζ and τ are related by

ζ = −τ̄ . (2.4.21)

To discuss the second subtlety, let us return to the general formula (2.4.20). The BPS mass

formula in the N = 4 supersymmetric theories (derived in [32, 33] and used e.g. in [23]

for the analysis of the walls of marginal stability) is given by the same formula as (2.4.20)

(after the identification (2.4.21)) except that the coefficient of ζ2 = τ2 under the square

root is given by 2|Im (AB∗)|. Thus the two formulæ agree when Im (AB∗) > 0, i.e.

(σ2− ρ2)(a+ dρ1 + bσ1− cρ1σ1 + cρ2σ2) + (ρ1− σ1)(dρ2 + bσ2− c(ρ2σ1 + ρ1σ2)) > 0 .

(2.4.22)

From now on we shall assume that this condition holds.

2.4.4 The region of existence of the solution

From (2.4.19) we can identify the wall of marginal stability as the curve in the ζ plane on

which the right hand side of (2.4.19) diverges. This implies

Im
[
(a+ dρ+ bσ − cρσ)ζ̄(ρ̄− σ̄)

]
= 0 (2.4.23)
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and gives
ζ1

ζ2

=
N

D
, i.e.

τ1

τ2

= −N
D
, (2.4.24)

where

N = −(σ2 − ρ2)(dρ2 + bσ2 − c(ρ2σ1 + ρ1σ2))

+(ρ1 − σ1)(a+ dρ1 + bσ1 − cρ1σ1 + cρ2σ2) ,

D = (σ2 − ρ2)(a+ dρ1 + bσ1 − cρ1σ1 + cρ2σ2)

+(ρ1 − σ1)(dρ2 + bσ2 − c(ρ2σ1 + ρ1σ2)) . (2.4.25)

Eq. (2.4.24) marks the location of the line L1 in Figs. 2.1 and 2.2. In particular the solution

exists when the right hand side of (2.4.19) is positive, i.e. for

ζ1 >
N

D
ζ2 for (b− d)D > 0 ,

<
N

D
ζ2 for (b− d)D < 0 . (2.4.26)

Since according to (2.4.22) we have D > 0, and we have assumed that b − d > 0, this

condition translates to

ζ1 >
N

D
ζ2 ι.e. τ1 < −

N

D
τ2 . (2.4.27)

Naively one may expect that (2.4.27) is the only condition on τ for the existence of the

solution, since as long as (2.4.27) is satisfied, |~r1 − ~r2| given in (2.4.19) remains positive.

However upon closer examination one discovers a peculiar property of the solution that

can be attributed to the special charge vector carried by the first center. If we take a test

particle of charge (P, 0) with P = (0,−1, 0, 1) as in (2.4.12), it maps to q = (0, 0, 1,−1),

p = (0, 0, 0, 0) in the N = 2 supergravity variables, and its mass at a point ~r is given by

1

8
√
S2(~r)T2(~r)U2(~r)

|T (~r)− U(~r)| . (2.4.28)
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Thus it vanishes when T (~r) = U(~r). Using (2.4.6) and eqs.(2.3.6)-(2.3.8)

χ2 = −1

2

1

Σ

[
4q3(p0q1 + p2p3)− 2(q0p

0 − q1p
1 + q2p

2 + q3p
3)p2

]
,

χ3 = −1

2

1

Σ

[
4q2(p0q1 + p2p3)− 2(q0p

0 − q1p
1 + q2p

2 + q3p
3)p3

]
, (2.4.29)

we see that

T (~r) = U(~r)⇒ X2(~r) = X3(~r)⇒ g2(~r) = g3(~r)⇒ (2.4.30)

−1
2

1
Σ

[4H3(H0H1 +H2H3)− 2(H0H
0 −H1H

1 +H2H
2 +H3H

3)H2] + i H2

= −1
2

1
Σ

[4H2(H0H1 +H2H3)− 2(H0H
0 −H1H

1 +H2H
2 +H3H

3)H3] + i H3 ,

requires H2 = H3 and H2 = H3. Now from (2.4.18) we see that the first condition is

satisfied automatically, while eq.(2.4.17) tells us that we have H2 = H3 when

|~r − ~r1| = re, re ≡
√

8ζ2σ2ρ2
|ζ|

ζ2|ρ− σ|
. (2.4.31)

This describes a spherical shell of radius re around ~r1 on which an electrically charged

test particle carrying charge (P, 0) becomes massless. Physically on this shell the radius

of the x4 direction reaches the self-dual point and hence we have massless non-abelian

gauge fields. This in turn shows that at this point the original solution describing the

background field produced by the charge (0, P ) breaks down and we should not trust the

solution for values of ~r for which |~r−~r1| is less than re defined in (2.4.31). This has been

named the enhancon mechanism in [34]. Indeed, if we ignore this effect and continue to

trust the solution for |~r − ~r1| < re, then at some point Σ({HI}, {HI}) computed from

(2.4.6), (2.4.17) and (2.4.18) vanishes and the solution becomes singular [34]. We shall

call re the enhancon radius. Thus a two centered solution, obtained by placing in the above
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background a test charge (Q, 0) at ~r2 is sensible only when we have

|~r1 − ~r2| > re . (2.4.32)

Using (2.4.19), (2.4.31) and the positivity of D and b− d, this translates to

ζ1 <
b− d
2D

ζ2|ρ− σ|2 +
N

D
ζ2 ι.e. τ1 > −

b− d
2D

τ2|ρ− σ|2 −
N

D
τ2 . (2.4.33)

As we shall see in §2.5, the correct description of the solution involves replacing it by a

gravitationally dressed smooth BPS dyon obtained by boosting the Harvey-Liu monopole

solution [35, 36] in an internal compact direction. As a result the solution begins to differ

from that given in §2.4.3 even for |~r− ~r1| > re. However for now we shall take the above

bound on ζ1 seriously and examine its consequences. In this case (2.4.33) gives us the

location of the left boundary L of the region R′1 in Fig. 2.2, with the right boundary L1 of

R′1 being given by the wall of marginal stability (2.4.27). In §2.5 we shall see that this in

fact is the exact result for the allowed range of ζ1 in the large ζ2 limit.

2.4.5 The second two centered solution

Next consider the two centered configuration with charges (−uP, P ) and (Q + uP, 0)

where u = Q · P = (b− d). In the language of N = 2 supergravity the two centers carry

charges (q(1), p(1)) and (q(2), p(2)) where

p(1) = (0, 0,−1, 1), q(1) = (0, 0,−u, u), p(2) = (0,−c, 0, 0), q(2) = (a, 0, d+u, b−u) .

(2.4.34)

Again one can argue that in the limit of large ζ2 the second center carrying only electric

charge (Q + uP, 0) is light and hence can be treated as a test particle. Furthermore,

for the first center the contribution to the background field from the electric component
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proportional to uP will be small and hence can be dropped. Thus the problem effectively

reduces to studying the test charge (Q+ uP, 0) in the background produced by the charge

(0, P ). Since according to (2.4.12), (2.4.13), Q+ uP differs from Q just by the exchange

of the quantum numbers b and d, we can derive the various results for this system simply

by exchanging b and d in the earlier results. In particular for this system the separation

between the two centers is given by

|~r1 − ~r2| =
d− b

2

√
8ζ2σ2ρ2

|ζ||σ − ρ|
1

Im [(a+ bρ+ dσ − cρσ)/(ζ(ρ− σ))]
. (2.4.35)

The wall of marginal stability, where |~r1 − ~r2| diverges, is at

ζ1 =
N ′

D′
ζ2 ι.e. τ1 = −N

′

D′
τ2 , (2.4.36)

where

N ′ = −(σ2 − ρ2)(bρ2 + dσ2 − c(ρ2σ1 + ρ1σ2))

+(ρ1 − σ1)(a+ bρ1 + dσ1 − cρ1σ1 + cρ2σ2) ,

D′ = (σ2 − ρ2)(a+ bρ1 + dσ1 − cρ1σ1 + cρ2σ2) = D

+(ρ1 − σ1)(bρ2 + dσ2 − c(ρ2σ1 + ρ1σ2)) . (2.4.37)

Eq. (2.4.36) marks the location of the line L2 in Figs.2.1 and 2.2. The solution exists for

ζ1 <
N ′

D
ζ2 ι.e. τ1 > −

N ′

D
τ2 . (2.4.38)

The enhancon radius remains at the same place as before. The condition that the location

of the second center lies outside the enhancon radius can be translated to

ζ1 >
d− b
2D

ζ2|ρ− σ|2 +
N ′

D
ζ2 ι.e. τ1 <

b− d
2D

τ2|ρ− σ|2 −
N ′

D
τ2 . (2.4.39)
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As before we shall take this to be our estimate for the right boundary of the region R′2 in

Fig. 2.2, with the left boundary L2 of R′2 being given by the constraint (2.4.38).

We now note that

b− d
2D
|ρ− σ|2 − N ′

D
=
d− b
2D
|ρ− σ|2 − N

D
, (2.4.40)

i.e. the right hand sides of (2.4.33) and (2.4.39) match. This in turn shows that the right

boundary of R′2 coincides with the left boundary L of R′1, and hence in any region of the

moduli space between the two walls of marginal stability L1 and L2 in Fig. 2.2, one and

only one of the two configurations exists. This is precisely what is required for the black

hole metamorphosis hypothesis to hold.

2.4.6 Special case of diagonal T 6

For later use we shall now write down the explicit solutions in the special case

σ1 = ρ1 = 0 , (2.4.41)

corresponding to setting the off-diagonal components of the metric and the 2-form field

along T 2 to zero at infinity. Furthermore we shall take the location of the first center at the

origin so that

~r1 = 0, |~r − ~r1| = r . (2.4.42)

Then we can express (2.4.17), (2.4.18) as

H0 =
2√

8ζ2ρ2σ2

sign(ρ2 − σ2)
ζ1

|ζ|
,

H1 =
2√

8ζ2ρ2σ2

sign(ρ2 − σ2)|ζ| ,

H2 = −1

r
+

2√
8ζ2ρ2σ2

sign(ρ2 − σ2)
ρ2ζ2

|ζ|
,
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H3 =
1

r
+

2√
8ζ2ρ2σ2

sign(ρ2 − σ2)
σ2ζ2

|ζ|
,

H0 = − 2√
8ζ2ρ2σ2

sign(ρ2 − σ2)ρ2σ2|ζ| ,

H1 =
2√

8ζ2ρ2σ2

sign(ρ2 − σ2)
ρ2σ2ζ1

|ζ|
,

H2 = 0 ,

H3 = 0 . (2.4.43)

From (2.4.43) we have H1H
1 = −H0H

0 and using this with (2.4.6), (2.3.6)-(2.3.11)

gives,

Σ({HI}, {HI}) =
[
−4H0H

1(H0H1 +H2H3)− (H0H
0 −H1H

1)2
] 1

2

= [−4H0H
1H2H3]1/2 .

S =
X1

X0
=
g1

g0
=

− 1
2Σ

[−4H0H0H
1 + 4H0H

0H1] + i H1

− 1
2Σ

[−4H1(H0H1 +H2H3)− 4H0(H0)2] + i H0

=
i H1

− 1
2Σ

[−4H1H2H3] + i H0

=
2iH0H

1

−Σ + 2iH0H0
.

Similarly,

T =
X2

X0
= −2iH0H

2

Σ
, U =

X3

X0
= −2iH0H

3

Σ
,

ds2 = −Σ−1 dt2 + Σ dxidxi ,

A0
µdx

µ = −2H1H2H3

Σ2
dt , A2

µdx
µ = −2H0H

0H2

Σ2
dt+ cos θdφ ,

A3
µdx

µ = −2H0H
0H3

Σ2
dt− cos θdφ, A1µdx

µ =
2H0H

2H3

Σ2
dt . (2.4.44)

Note that we have given the expressions for the electric potentials A0
µ,A2

µ,A3
µ and the

magnetic potential A1µ. This contains full information about all the gauge fields. Eq.

(2.4.44) shows that T and U remain purely imaginary for all values of ~r and hence the off
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diagonal components of the metric and the 2-form field along T 2 continue to vanish at all

points.

From eqs.(2.3.16) and (2.4.14) we get the Lagrangian of the test particle carrying charge

(q(2), p(2)) in this background to be

Lt = −Σ({HI}, {HI})−1/2 1√
8S2(~r)T2(~r)U2(~r)

|a+ d T (~r) + b U(~r)− c T (~r)U(~r)|

+
1

2
(cA10 + aA0

0 + dA2
0 + bA3

0)

= − 1

4H0

{
1 +

H0H1

H2H3

}1/2
[(

a− cH0

H1

)2

− H0

H1H2H3
(dH2 + bH3)2

]1/2

−1

4

{
− a

H0

+ d
H1

H0H3
+ b

H1

H0H2
+

c

H1

}
. (2.4.45)

The equilibrium separation (2.4.19) between the two centers can be found by extremizing

(2.4.45) with respect to r. The relevant parts of (2.4.45) are terms containing H2 & H3.

Corresponding result for the second system is obtained by exchanging b and d in (2.4.45).

2.5 Replacing the enhancon by the smooth solution

In this section we shall replace the solution in the S-T-U model described in §2.4.6 by a

smooth dyon solution and compute the range of values of ζ1 for which the solution exists.

Since the analysis of this section will be somewhat technical let us first summarize the

main result. We shall find that the net effect of smoothening the solution is to replace in

the expressions for Σ, S2, T , U , A0
0, A2

0, A3
0 and A10 given in (2.4.44), the variable r by r̂

where
1

r̂
=

1

r
− κ coth(κr) + κ, κ ≡

√
ζ2

8ρ2σ2

|ρ2 − σ2|
|ζ|

=
1

re
. (2.5.1)

This does not mean that the new solution is related to the old one by a coordinate transfor-

mation since for example the dxidxi term in the expression for the metric is still given by
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dr2 + r2dΩ2
2 with dΩ2 denoting the line element on a unit 2-sphere. Nevertheless it shows

that the potential for the test charge in this new background is given by (2.4.45) with r

replaced by r̂ everywhere. Thus for given values of the asymptotic moduli the equilibrium

position of the test charge (Q, 0) or (Q + uP, 0) is given by replacing |~r1 − ~r2| = |~r2|

by r̂2 in the S-T-U model results (2.4.19) and (2.4.35) respectively, where r̂2 is the value

of r̂ defined in (2.5.1) for r = |~r2|.10 Now since according to (2.5.1) r = 0 corresponds

to r̂ = re and r = ∞ corresponds to r̂ = ∞ we see that requiring 0 < |~r2| < ∞ cor-

responds to re < r̂2 < ∞ 11. This according to the analysis of §2.4 (with r replaced by

r̂) constraints τ to lie inside the region R′1 of Fig. 2.2 for the first configuration and the

region R′2 of Fig. 2.2 for the second configuration. Thus we conclude that the ranges of τ1

for which the solutions exists remain the same as what we derived in §2.4. However the

interpretation of what happens at the left boundary of R′1 and the right boundary of R′2 is

slightly different. At the left boundary of R′1, when τ1 saturates the bound (2.4.33), the

second center of the first configuration reaches the center of the smooth dyonic solution.

On the other hand at the right boundary of R′2, when τ1 saturates the bound (2.4.39), the

second center of the second configuration reaches the center of the smooth dyonic solution.

We shall now describe how these results arise.

10We are again setting ~r1 = 0 i.e. taking the location of the first center as the origin of the coordinate

system.

11From afar the smooth dyon solution behaves exactly like the black hole solution. Only when we move

close enough we realize that the black hole center is plagued by singularities due to the enhancon mechanism

whereas the dyon center is throughout smooth.
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2.5.1 Harvey-Liu monopole and dyon solutions in the ten dimensional

description

We shall consider a truncation of the effective action of ten dimensional heterotic string

theory where we keep only a single SU(2) gauge field V(a)
µ (1 ≤ a ≤ 3) out of SO(32) or

E8 × E8. This action is given by

S =
2π

(2π
√
α′)8

∫
d10x
√
− detGe−2Φ

[
R + 4GMN∂MΦ∂NΦ

− 1

12
GMM ′GNN ′GRR′HMNRHM ′N ′R′ −

α′

8
W(a)

MNW
(a)MN

]
,

W(a)
MN ≡ ∂MV(a)

N − ∂NV
(a)
M + εabcV(b)

M V
(c)
N , (2.5.2)

dH = −α
′

4
W(a)∧W(a), H ≡ 1

3!
HMNPdx

M∧dxN∧dxP , W(a) ≡ 1

2!
W(a)

MNdx
M∧dxN .

(2.5.3)

Here xM for 0 ≤ M ≤ 9 are the coordinates labelling the ten dimensional space-time,

GMN is the string metric, H is the 3-form field strength and Φ is the dilaton field. We now

compactify the theory on T 6 labelled by x4, · · ·x9 with period 2π
√
α′ and non-compact

coordinates labelled by x0, x1, x2, x3. In this theory we consider the Harvey-Liu monopole

solution [35, 36]12

V(a)
i = εiak

xk

r2
(K(C1r)− 1), V(a)

4 = C2
xa

r2
H(C1r), 1 ≤ i, k, a ≤ 3, r ≡

√
xkxk ,

H(x) ≡ x cothx− 1, K(x) = x/ sinhx ,

e2Φ = C2
3 +

α′

4
(C2

1 − r−2H(C1r)
2) ,

12Strictly speaking, if we take the circles labelled by x6, · · ·x9 to have self-dual radius, as is the case

for the metric given in (2.5.4), we shall get additional massless non-abelian gauge fields. We can avoid this

situation by taking the metric along the x6, · · ·x9 direction to beKmndx
mdxn for some constant symmetric

matrix K with detK = 1. This does not affect any of the subsequent analysis. Similarly we could also

break the rest of the ten dimensional gauge group (SO(32) or E8 ×E8) by turning on Wilson lines for these

gauge fields along the 6-7-8-9 directions without changing any of the subsequent analysis.
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ds2 = −(dx0)2 + e2Φ
(
(dx1)2 + (dx2)2 + (dx3)2 + C2

2(dx4)2
)

+ C2
4(dx5)2

+
9∑

m=6

dxmdxm ,

H4ij = −2C2 e
2Φ εijk∂kΦ 1 ≤ i, j, k ≤ 3 , (2.5.4)

where C1, C2, C3 and C4 are arbitrary constants, and εijk is the totally anti-symmetric

symbol with ε123 = 1. Since all the fields in (2.5.4) are invariant under changes in signs of

C1, C3 and C4, we can choose

C1, C4, C2C3 > 0 , (2.5.5)

without any loss of generality. Note that the solution described in (2.5.4) lies outside the

truncated theory described in §2.4.1 since we have non-trivial background values of the

ten dimensional gauge fields. However we shall see that (the dyonic generalization of) this

solution can be mapped to a solution inside the truncated theory by a duality rotation 13.

Physically (2.5.4) represents a gravitationally dressed BPS monopole solution of the SU(2)

gauge theory. We can construct from this a dyon solution by making the replacement (see

e.g. [37]) 14

x0 → cosh γ x0 + C2C3 sinh γ x4, x4 → C−1
2 C−1

3 sinh γ x0 + cosh γ x4 , (2.5.6)

13I.e. we need to map external gauge fields to gauge fields arising from the dimensional reduction of the

metric & the antisymmetric two form along directions 4 & 5.

14Note that (2.5.6) is nothing but a Lorentz boost along the directions x0 and x̃4 = C2C3x
4 with rapidity

factor γ. It is a new solution because the new x4 again has a period of 2π
√
α′ instead of 2π

√
α′ cosh γ.

Most importantly it generates electric fields by boosting magnetic fields.
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and taking the new x4 coordinate defined this way as being periodically identified with

period 2π
√
α′. This gives a solution:

V(a)
i = εiak

xk

r2
(K(C1r)− 1), V(a)

4 = C2 cosh γ
xa

r2
H(C1r) ,

V(a)
0 = C−1

3 sinh γ
xa

r2
H(C1r) ,

e2Φ = C2
3 +

α′

4
(C2

1 − r−2H(C1r)
2) ,

ds2 = −(dx0)2 + e2Φ
(
(dx1)2 + (dx2)2 + (dx3)2

)
+ C2

2C
2
3(dx4)2 + C2

4(dx5)2

+
9∑

m=6

dxmdxm +
(
e2ΦC−2

3 − 1
)

(sinh γ dx0 + C2C3 cosh γ dx4)2 ,

H4ij = −2C2 cosh γ e2Φ εijk∂kΦ ,

H0ij = −2C−1
3 sinh γ e2Φ εijk∂kΦ, 1 ≤ i, j, k, a ≤ 3 . (2.5.7)

The solutions given above are in the hedgehog gauge. For comparison with the solution

in the S-T-U model it will be more appropriate to express the solution in the string gauge

(see e.g. [36]). We can comb the the hedgehog gauge by a singular gauge transformation

U such that

U =
1√
2

(√
1 + n3 + i

n2σ1 − n1σ2

√
1 + n3

)
, (2.5.8)

where ~n is the normal vector in R3 and σ1,2,3 are the Pauli matrices. U is singular at

n3 = −1 and facilitates the use of

U †(naσa)U = σ3 . (2.5.9)

In this gauge the solution takes the form

V(3)
i dxi ' cos θdφ,

V(3)
4 = C2 cosh γ

1

r
H(C1r) ,

V(3)
0 = C−1

3 sinh γ
1

r
H(C1r)
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e2Φ = C2
3 +

α′

4
(C2

1 − r−2H(C1r)
2)

ds2 = −(dx0)2 + e2Φ
(
(dx1)2 + (dx2)2 + (dx3)2

)
+ C2

2C
2
3(dx4)2 + C2

4(dx5)2

+
9∑

m=6

dxidxi +
(
e2ΦC−2

3 − 1
)

(sinh γ dx0 + C2C3 cosh γ dx4)2

H4ij = −2C2 cosh γ e2Φ εijk∂kΦ,

H0ij = −2C−1
3 sinh γ e2Φ εijk∂kΦ, 1 ≤ i, j, k ≤ 3 . (2.5.10)

The ' in the first equation describes equality up to terms of order e−C1r and also additive

constants. From now on we shall work in the α′ = 16 unit. For reason that will become

clear later, we shall choose the constants Ci’s and γ such that

G44 + 4(V(3)
4 )2 = C2

2C
2
3 + 4C2

1C
2
2 cosh2 γ = 1 . (2.5.11)

2.5.2 Smooth dyon solution in the four dimensional description

We now translate the above solution into a field configuration in an effective four di-

mensional field theory. For this we dimensionally reduce the theory to four dimensions,

keeping a single U(1) gauge field V(3)
M in ten dimensions, and setting the components of

various fields along T 4, labelled by the coordinates x6, · · ·x9, to their background values

given in (2.5.10), and setting α′ = 16. This leads to an action whose bosonic part is given

by:

S =
1

32π

∫
d4x

√
− det g

[
R− 1

2S2
2

gµν∂µS∂νS̄ − S2F
(a)
µν (LML)abF

(b)µν

+S1F
(a)
µν LabF̃

(b)µν +
1

8
gµν Tr(∂µML∂νML)

]
. (2.5.12)

Here S = S1 + iS2 is a complex scalar field representing the heterotic axion - dilaton

system, F (a)
µν ≡ ∂µA

(a)
ν − ∂νA(a)

µ for 1 ≤ a ≤ 5 are the gauge field strengths associated

with five U(1) gauge fields A(a)
µ , F̃µν denotes the dual field strength of Fµν , L is the 5× 5
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matrix

L =


0 I2

I2 0

−1

 , (2.5.13)

with In denoting n× n identity matrix, and M is a matrix valued scalar field, satisfying

MLMT = L, MT = M . (2.5.14)

The precise relation between the fields appearing here and those in the ten dimensional

supergravity was given in [38] and reviewed in Appendix A 15. We shall use the normal-

ization convention of [39], keeping in mind that V(3)
µ is related to the ten dimensional

abelian gauge fields A(10)I
µ used in [39] as A(10)1

µ = 2
√

2V(3)
µ

16. In order to facilitate com-

parison with the fields of the S-T-U model as reviewed in §2.4, where the normalization

in front of the Einstein-Hilbert time is given by 1/16π, we shall make a gµν → 2gµν field

redefinition, so that the action takes the form:

S =
1

16π

∫
d4x

√
− det g

[
R− 1

2S2
2

gµν∂µS∂νS̄ −
1

2
S2F

(a)
µν (LML)abF

(b)µν

+
1

2
S1F

(a)
µν LabF̃

(b)µν +
1

8
gµν Tr(∂µML∂νML)

]
. (2.5.15)

If we denote the metric appearing in (2.5.10) by GMN and define

A4 = 2
√

2V(3)
4 , (2.5.16)

then using the results reviewed in Appendix A we find that the four dimensional field

15In the convention of [39] that we shall use, S corresponds to the field λ.

16We arrive at it by matching the ten dimensional action eq. (1) written in Section 2.1 of [39] and the

same action (2.5.2) written in §2.5.1.
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configuration corresponding to the background (2.5.10) is given by17

M =



G−1
55 0 0 0 0

0 G−1
44 0 1

2
G−1

44 A
2
4 G−1

44 A4

0 0 G55 0 0

0 1
2
G−1

44 A
2
4 0 (G44 + 1

2
A2

4)2G−1
44 (G44 + 1

2
A2

4)G−1
44 A4

0 G−1
44 A4 0 (G44 + 1

2
A2

4)G−1
44 A4 1 +G−1

44 A
2
4



=



G−1
55 0 0 0 0

0 G−1
44 0 1

2
G−1

44 A
2
4 G−1

44 A4

0 0 G55 0 0

0 1
2
G−1

44 A
2
4 0 G−1

44 G−1
44 A4

0 G−1
44 A4 0 G−1

44 A4 1 +G−1
44 A

2
4


, (2.5.18)

where in the last step we have used (2.5.11),

S2 = e−2ΦC2C4

√
e2Φ cosh2 γ − C2

3 sinh2 γ , (2.5.19)

S1 ' C2C3C4 sinh γ e−2Φ , (2.5.20)

{A(a)
0 } = −

√
2C3 sinh γ

(
e2Φ cosh2 γ − C2

3 sinh2 γ
)−1 ×

17In order to get the expression for S1 given in (2.5.20), we need to correct the formula for the 4-

dimensional 2-form field Bµν given in eq.(3) of [39]. The corrected expression is given by

Bµν = B(10)
µν −4B̂mnA

(m)
µ A(n)

ν −2
(
A(m)
µ A(m+6)

ν −A(m)
ν A(m+6)

µ

)
−2ÂIm

(
A(I+12)
µ A(m)

ν −A(I+12)
ν A(m)

µ

)
(2.5.17)

in the notation of [39]. The last term was missed in [39] but is needed to ensure thatBµν transforms correctly

under the gauge transformation of A(I+12)
µ .
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0

− 1
2
√

2
C−1

2 cosh γ(e2ΦC−2
3 − 1)

0
√

2C2 cosh γ r−2H(C1r)
2

r−1H(C1r)


,

{A(a)
i dxi} = −

√
2 cos θ dφ



0

0

0

0

1


, (2.5.21)

gµνdx
µdxν = − C2C4

2
√
e2Φ cosh2 γ − C2

3 sinh2 γ
(dx0)2

+
1

2
C2C4

√
e2Φ cosh2 γ − C2

3 sinh2 γ dxidxi . (2.5.22)

We now take the 5× 5 matrix

W ≡


I2/
√

2 I2/
√

2

I2/
√

2 −I2/
√

2

1



I3

0 1

1 0



I2/
√

2 I2/
√

2

I2/
√

2 −I2/
√

2

1



=



1 0 0 0 0

0 1
2

0 1
2

1√
2

0 0 1 0 0

0 1
2

0 1
2
− 1√

2

0 1√
2

0 − 1√
2

0


, (2.5.23)

satisfying

W TW = I5, W TLW = L , (2.5.24)
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and make the field redefinition 18:

M → WMW T , F (a)
µν → WabF

(b)
µν . (2.5.25)

The action in the new variables takes the same form as (2.5.12). After this transformation

the solution (2.5.18) for M becomes

M =



R̃−2 0 0 0 0

0 R−2 0 0 0

0 0 R̃2 0 0

0 0 0 R2 0

0 0 0 0 1


, (2.5.26)

where

R̃2 = G55 = C2
4 , R2 =

1− 1√
2
A4

1 + 1√
2
A4

=
1− 2V(3)

4

1 + 2V(3)
4

=
1− 2C2 cosh γ r−1H(C1r)

1 + 2C2 cosh γ r−1H(C1r)
.

(2.5.27)

18The necessity for the above redefinition lies with the fact that (2.5.21) is not in the correct form and

should be brought to the form presented in (2.5.28). It can be achieved in two steps, at first the second matrix

in (2.5.23) flips the coordinates 4 & 5 in (2.5.21) and then upon acting with the first matrix in (2.5.23) the

the pair of coordinates 1 & 2 mimics 3 & 4 but with a opposite sign. We need the third term in (2.5.23) as it

by itself don’t satisfy (2.5.24).
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The gauge field background takes the form, up to constant shifts (see Appendix A),

{A(a)
0 } = C3C

2
2 sinh γ

1

r
H(C1r)



0

{2C2 cosh γ r−1H(C1r)− 1}−1

0

{2C2 cosh γ r−1H(C1r) + 1}−1

0


,

{A(a)
i dxi} ' cos θ dφ



0

−1

0

1

0


. (2.5.28)

The metric and the axion-dilaton fields remain unchanged under this field redefinition.

We now note that for the solution described above the matrix M and the gauge fields

are non-trivial only along the first four rows and columns. This corresponds to setting to

zero all ten dimensional gauge fields and also setting all components of the metric and 2-

form fields with one or both legs along T 4 to trivial values. This is precisely the condition

under which the solution can be embedded in the S-T-U model. Rescaling xi and x0 as

xi →
√

2

C2C3C4

xi, x0 → x0

√
2C3

C2C4

, (2.5.29)

and identifying RR̃ with T2 and R̃/R with U2 we see that in the variables of the S-T-U

model the scalar fields and the metric takes the form:

T1 = 0, U1 = 0,

T2U2 = C2
4 ,

T2

U2

=
1− C2 cosh γ

√
2C2C3C4 r

−1H(
√

2C1r/
√
C2C3C4)

1 + C2 cosh γ
√

2C2C3C4 r−1H(
√

2C1r/
√
C2C3C4)

,
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S2 = e−2ΦC2C4

√
e2Φ cosh2 γ − C2

3 sinh2 γ,

S1 ' C2C3C4 sinh γ e−2Φ ,

gµνdx
µdxν = −e2V (dx0)2 + e−2V dxidxi ,

e2Φ = C2
3 + 4

(
C2

1 −
C2C3C4

2 r2
H(
√

2C1r/
√
C2C3C4)2

)
,

e2V ≡ C3√
e2Φ cosh2 γ − C2

3 sinh2 γ
. (2.5.30)

To find the gauge fields in the S-T-U model notation we first note that after the coordinate

change (2.5.29) the first four components of gauge fields A(a)
µ given in (2.5.28) takes the

form

{A(a)
0 } = C2

3C
2
2 sinh γ

1

r
H(
√

2C1r/
√
C2C3C4)

0{
2C2 cosh γ

√
C2C3C4

2
r−1H(

√
2C1r/

√
C2C3C4)− 1

}−1

0{
2C2 cosh γ

√
C2C3C4

2
r−1H(

√
2C1r/

√
C2C3C4) + 1

}−1


,

{A(a)
i dxi} ' cos θ dφ



0

−1

0

1


. (2.5.31)

Now it was shown in [39] that a test charge (Q, 0) couples to this gauge field background

through the action

±1

2

∫
dxµA(a)

µ Qa = ±1

2

∫
dxµ

[
A(1)
µ Q1 + A(2)

µ Q2 + A(3)
µ Q3 + A(4)

µ Q4

]
= ±1

2

∫
dxµ

[
A(1)
µ q0 + A(2)

µ q3 − A(3)
µ p1 + A(4)

µ q2

]
. (2.5.32)

The ± sign reflects the fact that the analysis of [39] determines the normalization but not
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the sign of the coupling of the gauge fields to the charges since the bosonic action involving

the U(1) gauge fields has an Aµ → −Aµ symmetry. Comparing this with (2.3.2) we get



A0
µ

A3
µ

A1µ

A2
µ


= ±



A
(1)
µ

A
(2)
µ

A
(3)
µ

A
(4)
µ


. (2.5.33)

Eq.(2.5.31) now shows that the magnetic part of the field is given by

A3
i dx

i ' ∓ cos θdφ, A2
i dx

i = ± cos θdxi . (2.5.34)

On the other hand (2.4.44) shows that the expected magnetic field in the S-T-U model,

produced by the first center, is given by

A3
i dx

i = − cos θdφ, A2
i dx

i = cos θdxi . (2.5.35)

Comparing (2.5.34) and (2.5.35) we see that we must use the top sign in (2.5.33). This

can now be used to express the electric potentials given in (2.5.31) as



A0
0

A3
0

A10

A2
0


=



A
(1)
0

A
(2)
0

A
(3)
0

A
(4)
0


= C2

3C
2
2 sinh γ

1

r
H
(√

2C1r/
√
C2C3C4

)
×



0{
2C2 cosh γ

√
C2C3C4

2
r−1H(

√
2C1r/

√
C2C3C4)− 1

}−1

0{
2C2 cosh γ

√
C2C3C4

2
r−1H(

√
2C1r/

√
C2C3C4) + 1

}−1


.

(2.5.36)
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Finally, adding constant terms to the gauge potential, we can bring (2.5.36) to the form:



A0
0

A3
0

A10

A2
0


= C2

3C
2
2 sinh γ

1

2C2 cosh γ

√
2

C2C3C4

×



0{
2C2 cosh γ

√
C2C3C4

2
r−1H(

√
2C1r/

√
C2C3C4)− 1

}−1

0

−
{

2C2 cosh γ
√

C2C3C4

2
r−1H(

√
2C1r/

√
C2C3C4) + 1

}−1


.

(2.5.37)

For example, to match A3
0 from (2.5.37) to the expression written in (2.5.36) we have to

add the constant (− sinh γ C2
3C

2
2)/(
√

2C2 cosh γ
√
C2C3C4).

Defining
1

r̂
= κ− 1

r
H(κr) =

1

r
− κ coth(κr) + κ, (2.5.38)

where

κ =

√
2C1√

C2C3C4

, (2.5.39)

we can express (2.5.37), (2.5.30) as



A0
0

A3
0

A10

A2
0


=

1

2

C3

C2C4

sinh γ

cosh2 γ



0{
−1−2C1C2 cosh γ

2C1C2 cosh γ
κ− 1

r̂

}−1

0{
−1+2C1C2 cosh γ

2C1C2 cosh γ
κ+ 1

r̂

}−1


,

T1 = 0, U1 = 0,

T2U2 = C2
4 ,

T2

U2

=
1− C2 cosh γ

√
2C2C3C4 (κ− r̂−1)

1 + C2 cosh γ
√

2C2C3C4 (κ− r̂−1)
,
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S2 = e−2ΦC2C4

√
e2Φ cosh2 γ − C2

3 sinh2 γ ,

S1 ' C2C3C4 sinh γ e−2Φ ,

gµνdx
µdxν = −e2V (dx0)2 + e−2V dxidxi , (2.5.40)

e2Φ = C2
3 + 4

(
C2

1 −
C2C3C4

2
(κ− r̂−1)2

)
, e2V ≡ C3√

e2Φ cosh2 γ − C2
3 sinh2 γ

.

For large r we have H(r) ' r − 1 and hence r̂ ' r up to exponentially suppressed

corrections. In that case the field configurations given in (2.5.40) agree with those given

in (2.4.44) (up to constant additive terms in the gauge potential) with the choice

ρ2 = C4

√
1− 2C1C2 cosh γ

1 + 2C1C2 cosh γ
, σ2 = C4

√
1 + 2C1C2 cosh γ

1− 2C1C2 cosh γ
,

ζ2 =
C2C4

C3

, ζ1 =
C2C4

C3

sinh γ . (2.5.41)

We can easily check (2.5.41) by taking the r →∞ limit of the S, T, U fields in (2.5.40).

Under this identification, κ given in (2.5.39) becomes (see Appendix A)

κ =

√
ζ2

8ρ2σ2

|ρ2 − σ2|
|ζ|

=
1

re
. (2.5.42)

Now note that for finite r the solutions for S2, T , U , V and AI0, AI0 are given by the same

expressions as in the case of S-T-U model described in §2.4 with the replacement of r by

r̂. Since these are the fields which determine the location of the test particle charge (by the

extrema of (2.4.45)), we can directly take the results of section 2.4 with r replaced by r̂ for

determining the location of the test charge. Now from (2.5.38) we see that the condition

r > 0 corresponds to r̂ > 1/κ = re. Thus requiring |~r2| to be positive corresponds to

requiring r̂2, – the value of r̂ corresponding to the vector ~r2 – be larger that re. On the

other hand for large r we have r ' r̂. Thus the condition 0 < |~r2| < ∞ translates to

re ≤ r̂2 <∞. Since we can use the results of §2.4 for determining the location of the test
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charge with r replaced by r̂, we see that the condition re ≤ r̂2 <∞ translates to requiring

τ1 to lie inside the range given in (2.4.27), (2.4.33) for the first configuration and inside

the range given in (2.4.38), (2.4.39) for the second configuration. These two ranges do

not overlap, and together they make up the region R′1 ∪ R′2 of the moduli space shown in

Fig. 2.2 – precisely in agreement with the microscopic result for the index.

This still leaves open the question as to how the two configurations metamorphose into

each other at the boundary L of R′1 and R′2. To examine this we apply the inverse

of the duality transformation (2.5.23) to map the test electric charges Q =



a

b

c

d

0


and

Q+ uP =



a

d

c

b

0


to



a

(b+ d)/2

c

(b+ d)/2

(b− d)/
√

2


and



a

(b+ d)/2

c

(b+ d)/2

(d− b)/
√

2


. (2.5.43)

The last entry represents electric charge under the T 3 generator of the SU(2) group. Now

at the center of the dyon solution the SU(2) gauge symmetry is restored. Thus at no cost

in energy, the test electric charge can undergo an SU(2) rotation of π about the 1-axis
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flipping the sign of the T 3 charge. This exchanges the quantum number b and d, precisely

transforming the test electric charges of the two configurations to each other. Thus we see

that the two configurations can transform into each other at the boundary L between R′1

and R′2. The excess charge −uP is dumped into the background, but we do not detect it

in the probe approximation that we are using.

As a parting comment we would like to highlight the fact that whole analysis has been

done in the probe approximation where we focused on the large τ2 region of the moduli

space and as a result we could ignore the backreaction of the center with charge (Q, 0) on

the background set by the other center (0, P ). We believe that the arguments leading up

to the line of metamorphosis are fairly general and with more hard work or at least nu-

merically both centers could have been dealt equitably. Also, it should be possible make

progress on the relatively complicated case of both Q2 = −2 and P 2 = −2. We leave

these to future studies.
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CHAPTER 3
Logarithmic Corrections to Twisted

Indices from the Quantum Entropy

Function

3.1 Introduction and Review

In the previous chapter we witnessed one instance of the correct macroscopic interpreta-

tion of a collection of BPS states prevalent in the microscopic regime. We have shown that

for certain negative discriminant states in four dimensionalN = 4 superstring theories, we

should replace the two–centered black hole configuration with a BPS configuration con-

sisting of a single–centered black hole and a gauge theory dyon. In the last two decades

of matching the microscopic and the macroscopic regimes of black hole entropy, such

instances of finer attention are rare. In the current chapter we shall present another such

instance where the primary, zeroth order matching of entropy from the macroscopic side

is relatively straightforward but not enough. Amongst various higher order corrections we

shall particularly focus on the logarithmic corrections to black hole entropy.
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Indices carry important information about the spectrum of dyons in string theory. In par-

ticular, in four dimensional string theories the helicity trace index, defined by [40, 41]

B2n =
1

(2n)!
Tr
[
(−1)2h (2h)2n

]
, (3.1.1)

receives contributions only from those BPS states in the string theory which break less

than 4n supersymmetries. Here the trace is over all states in the string theory that carry

some specified electric and magnetic charges. As mentioned in Chapter 2, this has now

been computed exactly for a wide class of N = 4 and N = 8 string theories [8–13,

16–19, 42–44]. In an expansion in large charges it may be shown that this reproduces

the correct semiclassical entropy of an extremal black hole carrying the same charges

as the dyons. In many cases, higher-derivative and quantum corrections have also been

computed on the macroscopic side and the results have been successfully matched with the

corresponding corrections computed from the microscopic formula. We refer the reader

to the reviews [31, 45–47] covering various aspects of this program for details and a more

complete set of references.

3.1.1 Quantum Entropy Function & Log corrections

The computation of the quantum corrections is performed using the formalism of the

Quantum Entropy Function [48, 49]. This proposal exploits the fact that the near–horizon

geometry of extremal black holes always contains an AdS2 factor [50, 51]and as such ap-

plies AdS/CFT correspondence. In particular, for spherically symmetric black holes in

four dimensions, the near–horizon geometry, embedded in 10–dimensional supergravity,

contains an AdS2 ⊗ S2 factor coupled to background U(1) fluxes and scalar fields. The

entire configuration is completely determined by the SO(2, 1)⊗SO(3) isometry of the so-

lution, along with the electric and magnetic charges carried by the black hole. In Euclidean
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signature, this configuration is given by

ds2 = a2
(
dη2 + sinh2 ηdθ2

)
+ a2

(
dψ2 + sin2 ψdφ2

)
, 0 ≤ η <∞, 0 ≤ θ < 2π,

F
(i)
ηθ = ei sinh η, F

(i)
ψφ =

pi
4π

sinψ, Φw = uw, 1 ≤ i ≤ r, 1 ≤ w ≤ s.

(3.1.2)

where the background has r U(1) fluxes and s scalar fields, and a is a function of the elec-

tric and magnetic charges of the black hole, determined in terms of the (ei, pi).

Using this fact it has been argued that the quantum degeneracy dhor (~q) associated with

the horizon of an extremal black hole carrying charges ~q ≡ qi is given by the unnormal-

ized string path integral, with a Wilson line insertion 1, over all field configurations that

asymptote to the attractor geometry of the black hole. In particular, [48, 49]

dhor (~q) ≡
〈

exp

[
i

∮
qidθAiθ

]〉finite
AdS2

. (3.1.3)

The subscript ‘finite’ reminds us that the path integral naively contains a volume diver-

gence due to the presence of the AdS2 factor. Regulating this divergence is carried out in

accordance with the AdS/CFT correspondence.

According to the AdS/CFT dictionary, we have

ZAdS2 = ZCFT1 = Tr
(
e−LH

)
=

L→∞
d0e
−LE0 . (3.1.4)

1 Near the AdS2 boundary: Aη = 0, Aθ = C1 + C2 cosh η. Here C1 is a chemical potential and a

normalizable mode whereas C2 is the electric charge and a non–normalizable mode. Fluctuations of the

non–normalizable modes should be kept fixed at the boundary which in this case amounts to fixed field

strength at the boundary and insertion of the Wilson line to properly implement the boundary conditions.

Hence, AdS2 path integral computes entropy in the microcannonical ensemble.
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whereH is the hamiltonian of the dual boundaryCFT1, L the infinite length of the bound-

ary and (d0, E0) are respectively the degeneracy and energy of states in the CFT1. In the

microscopic regime, the CFT1 is the quantum mechanics describing the infrared limit

of the brane system. The ground states form a finite dimensional Hilbert space and they

should be identified with the degeneracy associated with the horizon of the black hole. On

the other hand the AdS2 partition function at large L limit takes the form

ZAdS2 =
L→∞

eCL × dhor . (3.1.5)

Where we should think of C as the redefinition of the ground state energy and the finite

part as dhor of (3.1.3). Alternately, the full quantum corrected entropy is

Smacro = ln dhor = lim
L→∞

(
1− L d

dL

)
lnZAdS2 . (3.1.6)

The near–horizon AdS2 space has SL(2, R) isometry and the supersymmetric blackholes

we consider are invariant under four supersymmetries. The closure of the symmetry alge-

bra requires many more generators, and leads to the su(1, 1|2) algebra. The corresponding

symmetry group contains an SU(2) subgroup which can be identified with the spatial ro-

tation group associated with the sphere S2 and hence the solution carries zero angular

momentum. Upon dimensional reduction to AdS2, the angular momentum behaves as

electric charge and following footnote 1, should be fixed for all fluctuations. This implies

all allowed fluctuations carry zero angular momentum. After accounting for the BPS mul-

tiplet in the helicity trace index (3.1.1), the remaining (−1)2h factor is always 1 on the

macroscopic side. Hence, (3.1.3) which computes a degeneracy rather than an index can

be compared with the microscopic result [52].

Since its proposal, the conjecture of [48, 49] has been put to a variety of tests. Firstly,

the leading saddle-point of the path integral is the attractor configuration (3.1.2) itself,
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and it may be shown that the value of the path integral (3.1.3) at this saddle-point is the

exponential of the Wald entropy associated with the black hole 2. Further, by expanding

the massless fields of four–dimensional supergravity in quadratic fluctuations about this

saddle-point, the logarithmic correction to the Wald entropy may be extracted from (3.1.3)

and matched with the microscopic answer [53] 3. This has been successfully carried out

for the 1
4
–BPS black holes in N = 4 supergravity and 1

8
–BPS black holes in N = 8

supergravity [54, 55] and for rotating extremal black holes in [56]. The corresponding ex-

pressions for 1
2
–BPS black holes inN = 2 supergravity have also now been obtained [57],

however in this case the microscopic results are so far not available. Recently, [58] pre-

sented a new approach to the computation of logarithmic terms from (3.1.3) which greatly

simplifies the intermediate steps encountered in the calculations of [55–57]. We also note

here that (3.1.3) has been exactly evaluated for N = 4 and N = 8 string theories us-

ing localization in [59–63] and the answer obtained precisely reproduces the microscopic

expressions computed from the indices Bn.

2Lets focus on the classical limit of (3.1.5), we have

ZAdS2
= exp

[
−Action − iqi

∮
∂(AdS2)

dθAiθ

]
classical

L = a sinh η0

= exp
[
−2π

(
qiei −

√
det gAdS2

LAdS2

)
(cosh η0 − 1)

]
= exp

[
−2π

(
qiei −

√
det gAdS2LAdS2

)
+ CL

]
= exp [SWald + CL] . (3.1.7)

Throwing away the infinite term we are left with the degeneracy which at zeroth order is exponential of the

Wald entropy.

3For massive particles propagating in the loops we could write down an effective 1P1–action and di-

rectly apply Wald’s analysis [12,16,19]. Integrating out massless modes would however generate a non–local

1P1–action and hence Wald’s analysis is not valid.
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3.1.2 Twisted Indices & Log corrections

If we restrict ourselves to special subspaces of the moduli space which admit discrete

symmetry transformations generated by an element g and also require that the charges of

the dyons be g–invariant, then we may define twisted indices as

Bg
2n ≡

1

(2n)!
Tr
[
g (−1)2h (2h)2n

]
. (3.1.8)

The group generated by g is taken to be isomorphic to ZN . These indices were computed

in [64, 65], and a proposal for their macroscopic interpretation was also presented in [64].

In particular, [64] considered Type II string theory compactified onM⊗ T 2, whereM

could be either T 4 or K3, and g was the generator of a geometric ZN symmetry that acts

onM and preserves 16 supercharges. The twisted index Bg
6 , which receives contributions

from dyonic states which preserve 4 supersymmetries all of which are g–invariant, was

then computed. It was found that the answer in the large–charge limit takes the form [45]

Bg
6 (Q,P ) = e

π

√
Q2P2−(Q·P )2

N (O (1) + . . .) , (3.1.9)

where contrary to the eΛ2 scaling of the exponential term in (3.1.9) under the large Λ

scaling Q→ ΛQ ,P → ΛP , the O (1) term represents functions with arguments like Q·P
P 2

which don’t scale with Λ, while the terms represented by the . . . scale with inverse powers

of Λ2. Therefore, if we assign an ‘entropy’ to the index by taking its logarithm then we

find that

ln |Bg
6 (Q,P ) | = SBH

N
+O (1) , (3.1.10)

i.e. the logarithmic correction to the entropy vanishes (there is no term which goes like

ln Λ under the above scaling). Here

SBH = π

√
Q2P 2 − (Q · P )2, (3.1.11)
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is the Wald entropy of an extremal black hole carrying electric and magnetic charges

(Q,P ). This is also the asymptotic expansion arrived at from Type IIB string theory on

the CHL orbifold [65]. In this chapter we shall show how this result arises from a macro-

scopic computation of the kind performed in [54, 55, 66, 67] for the entropy of the black

hole.

Before we do so, we briefly review the proposal made in [64] regarding the macroscopic

interpretation of the index Bg
6 . The key ingredient of the proposal is that Bg

6 is indeed cap-

tured by a string path integral of the type (3.1.3) in AdS2. However, the path integral must

now be carried out over fields which obey twisted boundary conditions along the θ–circle

of the AdS2. In particular, as θ shifts by 2π the fields must transform by g. This partition

function was denoted by Zg in [64]. When we impose these boundary conditions then

the attractor geometry itself is no longer an admissible saddle–point of the path integral

as the θ–circle is contractible in the interior of AdS2, which leads to a singularity. Let us

instead consider the following ZN orbifold of the attractor geometry (3.1.2), generated by

the identification

g̃ : (θ, φ) 7→
(
θ +

2π

N
, φ− 2π

N

)
. (3.1.12)

Then it may be shown by an appropriate change of coordinates that the resulting field

configuration still asymptotes to the full attractor geometry (3.1.2) 4. Additionally, this

orbifold preserves enough supersymmetry that its contribution to the path integral (3.1.3)

does not automatically vanish by integration over the fermionic zero modes associated to

broken supersymmetries. For these reasons, these field configurations are also admissible

4Rescaling θ → θ
N and r = cosh η → Nr, the orbifold metric becomes,

ds2AdS2
= a2

(
(r2 −N−2) dθ2 +

dr2

r2 −N−2

)
, (3.1.13)

which asymptotes to the AdS2 part of the attractor geometry (3.1.2) with θ → θ + 2π.
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saddle–points of the quantum entropy function (3.1.3).5 Using these inputs, [64] proposed

that Zg would receive contributions from the saddle–point obtained by imposing a ZN

orbifold generated by the action of g̃ on the attractor geometry, with a combined action of

g̃ and g–twisted boundary conditions imposed on the fields. It was further shown that the

value of Zfinite
g at the saddle–point was given by e

SBH
N

6 , in agreement with the asymptotic

growth of Bg
6 from the microscopic side.

3.1.3 Strategy

In this chapter we will show that the correspondence between Zg and Bg
6 exists even at the

quantum level. In particular, we will compute the log correction to the ‘entropy’ given by

logZg by expanding about the ZN orbifold of the black hole attractor geometry generated

by the action of g̃, where we impose g–twisted boundary conditions on the fields. We

will find that the answer vanishes, in accordance with the microscopic results. In order to

compute log corrections, we shall use the fact that the contributions of the form log a to

5These orbifolds have fixed points at the origin of the AdS2 times the north or south poles of S2 and a

priori it is not clear whether or not this is a consistent orbifold of string theory in the presence of background

fluxes. If however the 10–dimensional attractor geometry also contains a circle C which is non–contractible

at the origin of AdS2, then one way to avoid this potential pitfall is to accompany the orbifold (3.1.12) by

a translation by 1
N units along C. The orbifold group then acts freely over the 10–dimensional attractor

geometry. If the radius of the circle C does not scale with the AdS2 and S2 radii a, the precise details of the

shift will not be relevant for us [53]. We do assume tacitly in our analysis that the generator g̃ includes such a

shift along the internal directions as well. Such orbifolds have been explicitly defined in the 10–dimensional

theory in [52, 68].

Even if we consider a genuine fixed point which would lead to twisted states contributing to the partition

function, they shouldn’t matter as we are only interested in the log correction. The twisted states would

localize around the fixed points in AdS2 × S2, completely oblivious to the radius a. Since log correction

scales as a, its unchanged.

6Naively we expect it to be 1
N e

SBH but it is e
SBH
N << 1

N e
SBH . It signals a very delicate distribution

of ZN quantum number amongst the eSBH states.
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the partition function of a theory defined with a length scale a are completely determined

from the one-loop fluctuations about the saddle-point, where we may focus exclusively on

massless fields and further neglect higher-derivative terms [53]. Therefore the only fields

that can contribute to the log term in logZg are the massless fields about its admissible

saddle–points. We shall compute the log correction, focussing on modes which obey ap-

propriate twisted boundary conditions, and find that the answer vanishes. While we do

this computation explicitly for N = 8 string theory obtained by compactifying Type II

string theory on T 6, this is only for definiteness and we shall see that the results obtained

would carry over to the N = 4 case as well.

We now give a brief overview of the computation, emphasizing the overall strategy and

the important differences from the analyses previously carried out in [66] and [67]. We

will decompose the N = 8 supergravity multiplet into irreducible representations of the

N = 4 subalgebra which commutes with g. These are one N = 4 gravity multiplet, four

N = 4 gravitini multiplets and six N = 4 vector multiplets, each of which are charged

under g as enumerated in Appendix B. Importantly for us the N = 4 gravity multiplet is

uncharged under g, and therefore obeys untwisted boundary conditions. Its contribution

to the logarithmic term in the large charge expansion of Zg is therefore identical to that

computed in [67]. The contributions of the gravitini and vector multiplets are however

different from [67], and are computed in this chapter.

A brief overview of the chapter is as follows. In section 3.2 we compute the heat ker-

nel for scalars, Dirac fermions and ‘discrete modes’ of the spin–1 and spin–3
2

fields on(
AdS2 ⊗ S2

)
/ZN with twisted boundary conditions. This is an extension of the analysis

of [66] where the heat kernel over orbifold–invariant modes on these spaces was com-

puted. We find that the answer again assembles into a global part, which obeys untwisted

boundary conditions, plus conical contributions which are finite in the limit where the heat
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kernel time t approaches zero. We put these results together to evaluate the contributions

of N = 4 vector and gravitino multiplets that obey twisted boundary conditions in sec-

tion 3.3. We find that the contribution to the log term vanishes for any non-zero value

of the twist. These results demonstrate explicitly that the log term in Bg
6 vanishes for

N = 8 string theory and N = 4 string theory. We then discuss how our results also prove

that the log term vanishes even about exponentially suppressed corrections to the leading

asymptotic formula for Bg
6 and conclude.

3.2 The Heat Kernel for the Laplacian on
(
AdS2 ⊗ S2

)
/ZN

with Twisted Boundary Conditions

The goal of this chapter is to compute logarithmic corrections to the partition function Zg

defined as the path integral (3.1.3) with g–twisted boundary conditions. These corrections

only receive contributions from the one-loop fluctuations of massless fields over the ZN

orbifold of the attractor geometry generated by g̃. The one–loop partition function about

this background is determined in terms of the determinant of the kinetic operator D evalu-

ated over the spectrum of the theory. We shall define this determinant by the means of the

heat kernel method [70].

3.2.1 The Heat Kernel

We shall focus on operators of Laplace–type defined over fields on a manifoldM with a

length scale a. The eigenvalues of such operators scale as 1
a2

and are denoted by κn
a2

and

the corresponding degeneracies are dn. With these inputs the one–loop partition function

for a d+ 1 dimensional theory with overall length scale a takes the form

Z1–loop = (det
′
(D))−

1
2 · Zzero(a) . (3.2.1)
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The prime indicates the determinant is evaluated on non–zero modes of the operator D .

Z(a) is the zero mode contribution to the partition function and the argument a reminds

us that the zero mode contribution also scales non-trivially with a. The determinant of D

may be defined via

− ln detD′ =

∫ ∞
ε

dt

t
Tr ′
(
e−tD

)
=

∫ ∞
ε
a2

ds̄

s̄
K ′ (s̄) , (3.2.2)

where ε is a UV cutoff and s̄ = t
a2

. We may define the integrated heat kernel (referred

from now on as simply ‘the heat kernel’) as

K (t) = Tr
(
e−tD

)
=
∑
n

dne
− t
a2
κn

=
∑
n

dn∑
m=1

∫
M
dd+1x

√
gψ∗n,m(x)ψn,m(x)e−

t
a2
κn

=

∫
M
dd+1x

√
gK(x, x; t) . (3.2.3)

Note that the expression is perfectly well defined for compact manifolds like S2, but is

naively divergent for non–compact spaces like hyperboloids. Moreover, for homogeneous

spaces like S2 and AdSd+1 the unintegrated heat kernel K(x, x; t) doesn’t depend on the

spatial coordinates and hence K(t) is proportional to the volume spanned by the spatial

coordinates. However, this divergence may be regulated in accordance with the general

principles of AdS/CFT correspondence and a sensible answer can be extracted for K(t)

[54, 55]. This involves putting a cutoff on the radial coordinate of the global AdS2 and

extracting the order one term in the large radius (η0) expansion. This procedure also

extends nicely to quotients of hyperboloids both with and without fixed points [66,67,76].

We shall denote the orbifold of the space M by Mβ , where β is the cone angle 2π/N .

Normally, the heat kernel K(t) in (3.2.3) is evaluated over all the eigenfunctions of D,

including the zero modes. To obtain the determinant over the non–zero modes one has to
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subtract out the zero mode contribution

ln det
′
(D) = −

∫ ∞
ε

dt

t

(
K(t)− n0

D

)
, (3.2.4)

where n0
D is the number of zero modes ψ0,m of the operator D,

n0
D =

n0
M∑

m=1

∫
M
dd+1x

√
gψ∗0,m(x)ψ0,m(x), D|ψ0,D〉 = 0 . (3.2.5)

The heat kernel has a divergent small t expansion of the form

K(t) =
1

(4π)
d+1
2

∞∑
n=0

tn

t
d+1
2

∫
M
dd+1x

√
gan(x) , (3.2.6)

where a few leading coefficients an are known explicitly for the Laplacian on both smooth

and conical spaces [70]. The contribution from ln det
′
D that scales as ln a comes from

the t0 term in the heat kernel expansion.

ln det
′
D =

(
1

(4π)
d+1
2

∫
M
dd+1x

√
g a d+1

2
(x)− n0

D

)
ln a+ . . . (3.2.7)

where the ‘. . .’ denote terms that are not of the form ln a. From this expression, the

term proportional to ln a in lnZ may be extracted. Logarithmic corrections to black

hole entropy have been computed from the quantum entropy function in this manner

in [54–57, 66, 67].

Before proceeding further, we shall remind the reader that the zero mode contribution

needs to be analyzed separately [53–55, 71] when the operator D is only positive semi–

definite, i.e. has zero modes. The kinetic operator for which we compute the heat kernel

is the one studied in [54, 55, 66, 67]. This has zero modes over spin–2, spin–3
2

and spin–1

fields. However, the zero modes of the graviton and gravitino arise only within theN = 4
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gravity multiplet [55] which obeys untwisted boundary conditions in the path integral Zg

and have therefore already been accounted in the analysis of [67]. Additionally, it may

be shown that the log term for vectors may as well be extracted out by defining the heat

kernel over all eigenvalues κn, including the zero eigenvalue, and extracting the O (s̄0)

term as before [54]. We will therefore ignore the presence of zero modes in our present

analysis but the interested reader will find a selective summary in §3.3.3.

We now turn to the main computation of this section, which will provide us with the essen-

tial tools we need to compute logarithmic corrections to the partition function Zg. These

are the heat kernels of the Laplacian over scalar fields and of the Dirac operator over spin-

1
2

fields on
(
AdS2 ⊗ S2

)
/ZN , where the ZN orbifold is generated by g̃. The heat kernel

over the fluctuations invariant under the g̃–generated ZN orbifold was computed and the

log term extracted in [66, 67]. The analysis of this section is entirely analogous, with the

only difference being that we now focus on modes which obey twisted boundary condi-

tions under the g̃ orbifold. We find that the essential steps carry over directly from [66,67]

with only minor modifications. Further, as has been shown in [54, 55], the higher–spin

fields in the supergravity multiplets may be expanded in a basis obtained by acting on

the scalar with the background metric and covariant derivatives and acting on the spin–1
2

field with gamma matrices and covariant derivatives. It turns out that the heat kernel over

all quadratic fluctuations may be organized into the heat kernel over scalars and spin–1
2

fermions with appropriate multiplicities and shifts in eigenvalues 7. This will also be of

7 For example, let us consider a U(1) gauge field with euclidean action and gauge fixing term

SA + Sgf = −1

4

∫
d4x
√

det gFµνF
µν +

(
−1

2

)∫
d4x
√

det g (DµA
µ)2

= −1

2

∫
d4x
√

det gAµ(∆A)µ , (3.2.8)

where

(∆A)µ ≡ −�Aµ +RµνA
ν , �Aµ ≡ gρσDρDσAµ . (3.2.9)
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great utility in our present analysis. Finally, we note that the heat kernel expression (3.2.3)

contains both eigenvalues and degeneracies of the kinetic operator D. On manifolds like

AdS2 the notion of degeneracy is subtle and requires a careful definition. It takes the form

of the Plancherel measure [72–74]. On quotients of AdS spaces, it turns out to be useful

to exploit the fact that harmonic analysis on AdS is related to the sphere by an analytic

continuation [72–74]. By exploiting this analytic continuation, one may obtain the heat

kernel and degeneracies of the Laplacian on these orbifolded spaces as well [66,67,75,76].

We shall adopt this approach in this chapter as well.

To start with, we will consider the geometry given by

ds2 = a2
1

(
dχ2 + sin2 χdθ2

)
+ a2

2

(
dψ2 + sin2 ψdφ2

)
, (3.2.12)

Here d denotes the exterior derivative operator and δ the operator − ∗ d∗ where ∗ denotes the Hodge dual

operation. then the Laplacian, ∆ may be expressed as ∆ ≡ (dδ + δd).

With the choice of harmonic gauge the kinetic operator on AdS2 ⊗ S2 can be expressed as sum of the

kinetic operators in S2 and AdS2, and a vector in AdS2 ⊗ S2 decomposes into a (vector, scalar) plus a

(scalar, vector). Now, suppose that we have a scalar field Φ on AdS2 or S2 satisfying

∆Φ ≡ δdΦ ≡ −�Φ = κΦ . (3.2.10)

Then we can construct two configurations for the gauge field A with the same eigenvalue κ of ∆ and the

same normalization as Φ:

A(1) = κ−
1
2 dΦ, A(2) = κ−

1
2 ∗ dΦ . (3.2.11)

There are however some corrections to this both in S2 and AdS2 due to global issues. On S2, the constant

mode of the scalar don’t generate any non–trivial gauge field configuration and hence there contribution

should be removed. On the other hand on AdS2 we have an extra set of discrete modes (3.2.56). Similar

decompositions and global issues are present for the metric, p–forms and the gravitino.

82



which is related via the analytic continuation

(a1, a2) 7→ (ia, a) , χ 7→ iη, (3.2.13)

to the
(
AdS2 ⊗ S2

)
/ZN geometry

ds2 = a2
(
dη2 + sinh2 ηdθ2

)
+ a2

(
dψ2 + sin2 ψdφ2

)
. (3.2.14)

The ZN orbifold generated by g̃ acts on both these spaces via

g̃ : (θ, φ) 7→
(
θ +

2π

N
, φ− 2π

N

)
. (3.2.15)

Following the strategy of [66,67,75,76], we will do the computation on
(
S2 ⊗ S2

)
/ZN and

analytically continue the result to
(
AdS2 ⊗ S2

)
/ZN . We will however need to be mindful

of an important subtlety while performing this analytic continuation which arises due to

a class of ‘discrete modes’ of the vector and spin–3
2

fields in AdS2 [72, 73]. These are

normalizable eigenfunctions of the Laplacian over AdS2 which are not related to normal-

izable eigenfunctions of the Laplacian over S2. Their contribution is computed separately

in Section 3.2.4.

3.2.2 The Heat Kernel for Scalars on
(
AdS2 ⊗ S2

)
/ZN

In order to compute the heat kernel for the scalar Laplacian on
(
AdS2 ⊗ S2

)
/ZN , we will

first enumerate its spectrum [72]. The eigenvalues of the scalar Laplacian are

Eλ,` =
1

a2

(
λ2 +

1

4
+ ` (`+ 1)

)
, (3.2.16)
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and the corresponding eigenfunctions are given by [72]

Φλ,`,m,n (η, θ, ψ, φ) = fλ,m (η, θ)Y`,n (ρ, φ) , (3.2.17)

where, omitting normalization factors,

fλ,m (η, θ) =
(

sinh|m| η
)

2F1

(
iλ+ |m|+ 1

2
,−iλ + |m|+ 1

2
, |m|+ 1,− sinh2 η

2

)
eimθ,

0 < λ <∞, m ∈ Z, (3.2.18)

and the Y`,ns are the usual spherical harmonics on S2. We will impose the projection

(3.2.15) generated by g̃ on the modes (3.2.17) as in [66]. Concentrating on the θ and φ

coordinates, we have

Φλ,l,m,n ' eimθei nφ . (3.2.19)

The modes invariant under this orbifold are those for which m − n = Np, where p is an

integer. The heat kernel was computed over such modes in [66]. We will look at the more

general case for which

m− n = Np+ q, p ∈ Z, 0 ≤ q ≤ N − 1, q ∈ Z. (3.2.20)

We will refer to these as q-twisted boundary conditions. Here, q refers to the inherent

phase picked up by the fields themselves under the ZN twist, i.e.

Φ→ e−
2πi q
N Φ . (3.2.21)

However, as mentioned above, we will carry out the computation by imposing the pro-

jection (3.2.15) on eigenfunctions of the scalar Laplacian on S2 ⊗ S2, which are given

by

Ψ˜̀,m,`,n (χ, θ, a1, ρ, φ, a2) = Y˜̀,m (χ, θ, a1)Y`,n (ρ, φ, a2) . (3.2.22)
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The corresponding eigenvalue is given by

E˜̀,` =
1

a2
1

˜̀
(

˜̀+ 1
)

+
1

a2
2

` (`+ 1) , (3.2.23)

which is related to Eλ` by the analytic continuation

˜̀= iλ− 1

2
, (a1, a2) 7→ (ia, a) . (3.2.24)

Using the methods of [66], we find that the heat kernel on q–twisted modes on
(
S2 ⊗ S2

)
/ZN

is given by

Kq
s =

∞∑
l,l̃=0

l∑
m=−l

l̃∑
n=−l̃

δm−n−q,Npe
−tEl,l̃ . (3.2.25)

We will now use the following representation of the Kronecker delta function

δa−b,Np =
1

N

N−1∑
s=0

e
2πi(a−b)s

N . (3.2.26)

Then the heat kernel becomes

Kq
s =

1

N

N−1∑
s=0

∞∑
`,˜̀=0

∑̀
m=−`

˜̀∑
n=−˜̀

e
2πims
N e

−2πins
N e

−2πiqs
N e−tE`˜̀

=
1

N

N−1∑
s=0

∞∑
`,˜̀=0

χ`,˜̀
(πs
N

)
e
−2πiqs
N e−tE`˜̀

=
1

N
Ks +

1

N

N−1∑
s=1

∞∑
`,˜̀=0

χ`,˜̀
(πs
N

)
e
−2πiqs
N e−tE`˜̀ , (3.2.27)

where we have separated out the s = 0 term Ks, the scalar heat kernel on the full unquo-

tiented S2⊗S2 space and the sum from s = 1 toN−1 represents the contribution from the

conical singularities and is expressed in terms of χ`,˜̀ , the SU(2)⊗SU(2) Weyl character

χ`,˜̀
(πs
N

)
≡ χ`

(πs
N

)
χ˜̀

(πs
N

)
≡

sin (2`+1)πs
N

sin
(
πs
N

) sin
(2˜̀+1)πs

N

sin
(
πs
N

) , (3.2.28)
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where χ` and χ˜̀ are SU(2) Weyl characters. Formally, Ks is

Ks =

(
∞∑
l=0

(2l + 1)e−t
l(l+1)

a2

) ∞∑
l̃=0

(2l̃ + 1)e−t
l̃(l̃+1)

a2

 . (3.2.29)

and the t0 may be extracted following [54]. Also in (3.2.27) we can do the sum over `, ˜̀

to find that

Kq =
1

N
Ks +

1

N

N−1∑
s=1

1

4 sin4 πs
N

e
−2πiqs
N e−tE`˜̀. (3.2.30)

For the case q = 0 the sum over s could also be evaluated in t→ 0 limit and we had found

1

4N

N−1∑
s=1

1

sin4 πs
N

=
(N2 − 1) (N2 + 11)

180N
. (3.2.31)

For general q the sum remains to be done.

We digress here to remind the reader of the discussion in [69, 70] which will be helpful

in motivating (3.2.27) and similar expressions encountered in the later sections. Consider

the integrated heat kernel over a manifoldMβ with conical singularities located at points

pi. Then the heat kernel overMβ may be decomposed into integrals over the small neigh-

borhoods of the singular points and an integral over the rest if the manifold, which is

smooth.

∫
Mβ

K(x, x; t) =

∫
Mβ−{∪ εi}

K(x, x; t) +
∑
i

∫
εi

K(x, x; t) . (3.2.32)

The integrated heat kernel on the smooth manifoldMβ − {∪ εi} admits an expansion in

powers of t where the coefficients are expressible in terms of volume integrals of the local

general–coordinate invariant quantities, for example the curvatureR, RµνRµν etc. As S2

is homogeneous, these invariants are independent of the location on S2 (or its quotients),

and these integrals on such manifolds are just the volume of the manifold times a con-
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stant. On
(
S2 ⊗ S2

)
/ZN (once the singular points, the north and south poles, have been

removed) therefore, the answer is 1/N times the answer on S2 ⊗ S2. As there are four

conical singularities on S2 ⊗ S2, each cone contributes

1

4N

N−1∑
s=1

∞∑
`,˜̀=0

χ`,˜̀
(πs
N

)
e
−2πiqs
N e−tE`˜̀ . (3.2.33)

Coming back to our main focus, the analytic continuation proceeds in the same way as

for the untwisted case [66, 67]. Firstly, the heat kernel over the unquotiented S2 ⊗ S2 gets

continued to the heat kernel over AdS2 ⊗ S2. Then the eigenvalue E ˜̀̀ gets continued to

Eλ` via (3.2.24), and the Weyl character χ˜̀ gets continued to the Harish–Chandra (global)

character for sl(2, R) [77]

χbλ

(πs
N

)
=

cosh
(
π − 2πs

N

)
λ

cosh (πλ) sin
(
πs
N

) , (3.2.34)

and the conical terms get multiplied by an overall half [66]. The factor of half accounts

for the fact that under the ZN orbifold (3.2.15), AdS2 ⊗ S2 has half the number of fixed

points as does S2 ⊗ S2. Finally, the sum over ˜̀ gets continued to an integral over λ. We

then obtain the heat kernel for the scalar on
(
AdS2 ⊗ S2

)
/ZN with the q-twisted boundary

condition to be

Kq
s =

1

N
Ks +

1

2N

N−1∑
s=1

∞∑
`=0

∫ ∞
0

dλχbλ,`

(πs
N

)
e−

2πiqs
N e−tEλ` , (3.2.35)

where

χbλ,`

(πs
N

)
= χbλ

(πs
N

)
χ`

(πs
N

)
. (3.2.36)
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By doing the integral over λ and the sum over ` as in [67] and Appendix C we find that

(3.2.35) reduces to

Kq
s =

1

N
Ks +

1

2N

N−1∑
s=1

1

4 sin4 πs
N

e−
2πiqs
N +O (t) . (3.2.37)

This is the expression we shall use to compute logarithmic corrections. It contains two

terms. The first is the heat kernel of the untwisted scalar evaluated on the unquotiented

space AdS2 ⊗ S2. The second term is the contribution of the conical singularities. As ob-

served in [67] for the untwisted modes, this term is finite in the limit where t approaches

zero. Hence the contribution of this term to the O (t0) term in the heat kernel expansion

is independent of the eigenvalue Eλ`. This will be of great utility in our further computa-

tions. Finally we note that the expressions (3.2.35) and (3.2.37) are divergent due to the

infinite volume of AdS2. However, using the prescription of [48, 49] this divergence may

be regulated and a well–defined finite term extracted even on these quotient spaces [66,67].

At this point we shall digress a bit to mention a caveat associated with the analytic con-

tinuation of the unquotiented heat kernels. The analytic continuation of the S2 to AdS2

should be performed on the unintegrated heat kernel and then multiplied by the appropri-

ate regularized volume to arrive at the integrated heat kernel. Since both S2 and AdS2 are

homogeneous spaces, we have

Ks
S2 = Vol.S2Ks

1(a), Ks
AdS2

= Vol.AdS2K
s
2(a) , (3.2.38)

where Ks
1 and Ks

2 are the coincident (unintegrated) heat kernels over S2 and AdS2 respec-

tively. Both of them have been explicitly computed in [66] but they are also related by

analytic continuation. In particular,

Ks
1 =

1

12πa2
+

1

4πt
+

t

60πa4
+O

(
t2
)
,
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Ks
2 = − 1

12πa2
+

1

4πt
+

t

60πa4
+O

(
t2
)
. (3.2.39)

The volume of S2 is 4πa2 but AdS2 volume given by

VAdS2 =

∫ ∞
0

∫ 2π

0

dηdφ a2 sinh η , (3.2.40)

is clearly divergent. We shall put a cutoff on η at a large value η0, which gives the regulated

volume of AdS2 to be

Vreg = 2πa2(cosh η0 − 1) = 2πa2

(
1

2
eη0 − 1 +O

(
e−η0

))
' −2πa2 . (3.2.41)

Following the discussion in [71], the divergent term eη0 may be expressed in terms of the

radius of curvature of the boundary and as such can be cancelled by boundary countert-

erms. Once this is done, we obtain a well–defined expression for the degeneracy dsλ` of

the eigenvalue Eλ` in the q–twisted set of modes on
(
AdS2 ⊗ S2

)
/ZN . This is given by

dsλ` = − 1

N
(λ tanhπλ) (2`+ 1) +

1

2N

N−1∑
s=1

χbλ,`

(πs
N

)
e−

2πiqs
N . (3.2.42)

where − (λ tanhπλ) (2`+ 1) is the regularized degeneracy associated with the unquo-

tiented AdS2 scalar heat kernel 8 .

3.2.3 The Heat Kernel for Fermions on
(
AdS2 ⊗ S2

)
/ZN

We will turn to the heat kernel of the Dirac operator evaluated over Dirac fermions on(
AdS2 ⊗ S2

)
/ZN with q–twisted boundary conditions. The computations are entirely

similar to those carried out in [66,67] once the q–twist has been accounted for as we have

8As the eigenfunctions (3.2.18) vanishes at η = 0 for m 6= 0, only m = 0 states will contribute to the

coincident scalar heat kernel for AdS2. At η = 0 the m = 0 state has the value
√

(λ tanhπλ)/
√

2πa2.
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for the scalar in Section 3.2.2. We briefly recollect facts about the spectrum of the Dirac

operator on S2. Eigenmodes are χ±`m and η±`m. Again, concentrating on the θ and φ coor-

dinates,the χ’s are modded by ei(m+ 1
2)φ, while the η’s are modded by e−i(m+ 1

2)φ, where

0 ≤ m ≤ ` and 0 ≤ ` <∞.

It is more convenient to define the eigenfunctions being modded as

eim̃φ, m̃ = −
(
`+

1

2

)
, . . . ,−1

2
,
1

2
, . . . ,

(
`+

1

2

)
, (3.2.43)

and the wavefunctions themselves being ΨI
`m̃, where

Ψ1
`m̃ = χ+

`m, m̃ > 0, Ψ1
`m̃ = η+

`m, m̃ < 0, (3.2.44)

and Ψ2 = (χ−, η−). It is easier to impose the orbifold in this language. Imposing the

projection (3.2.15) generated by g̃ on these modes we have

m̃− ñ = Np, p ∈ Z. (3.2.45)

We will consider modes which obey the q-twisted boundary conditions

Ψ 7→ e−
2πiq
N Ψ , (3.2.46)

and therefore have to impose the condition

m̃− ñ = Np+ q, p ∈ Z, (3.2.47)
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where 0 ≤ q ≤ N − 1. Then the heat kernel over the q-twisted modes on S2 ⊗ S2 is given

by 9

Kq = −4
∞∑

`,˜̀=0

`+ 1
2∑

m̃=−`+ 1
2

˜̀+ 1
2∑

ñ=−˜̀+ 1
2

δm̃−(ñ+q),Npe
−tE`,˜̀ . (3.2.48)

As for the scalar, we may expand the conical term in a power series in t omitting theO (t)

and higher terms. Using (3.2.26), the representation of the delta function and carrying out

the sum over m̃ and ñ, we find that the heat kernel for a Dirac fermion is given by

Kq
f =

1

N
Kf −

4

N

N−1∑
s=1

∞∑
`,˜̀=0

χf
`+ 1

2
,˜̀+ 1

2

(πs
N

)
e−

2πiqs
N +O (t) , (3.2.49)

which reduces to

Kq
f =

1

N
Kf −

1

N

N−1∑
s=1

cos2
(
πs
N

)
sin4

(
πs
N

) e− 2πiqs
N +O (t) , (3.2.50)

on summing over ` and ˜̀. These expressions may be analytically continued to
(
AdS2 ⊗ S2

)
/ZN

to obtain

Kq
f =

1

N
Kf −

2

N

N−1∑
s=1

∞∑
˜̀=0

∫ ∞
0

dλχf
λ,˜̀+ 1

2

(πs
N

)
e−

2πiqs
N +O (t) , (3.2.51)

and

Kq
f =

1

N
Kf −

1

2N

N−1∑
s=1

cos2
(
πs
N

)
sin4

(
πs
N

) e− 2πiqs
N +O (t) , (3.2.52)

where we have defined

χf
λ,`+ 1

2

(πs
N

)
= χfλ

(πs
N

)
χ`+ 1

2

(πs
N

)
, (3.2.53)

9For the fermionic heat kernels the − 1
2 in (3.2.1) is absent and as a consequence we put an extra −ve

sign in the definition of the heat kernel.
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and χfλ is the Harish–Chandra character for sl(2, R) as given in [77]

χfλ

(πs
N

)
=

sinh
(
π − 2πs

N

)
λ

sinh (πλ) sin
(
πs
N

) . (3.2.54)

We will use (3.2.52) in our computations for the log term in Section 3.3. We shall just

mention the final result for the degeneracy of eigenvalues labelled by the quantum numbers

λ, ` in the q–twisted set of modes on
(
AdS2 ⊗ S2

)
/ZN .

dfλ` = − 8

N
(λ cothπλ) (`+ 1) +

2

N

N−1∑
s=1

χf
λ,`+ 1

2

(πs
N

)
e−

2πiqs
N . (3.2.55)

3.2.4 The Heat Kernel over Discrete Modes

Vectors, gravitini and gravitons on the product space
(
AdS2 ⊗ S2

)
/ZN may be expanded

in a basis constructed from the background metric, Gamma matrices and covariant deriva-

tives, allowing us to express the heat kernel of the kinetic operator over supergravity fields

in terms of the heat kernel over scalars and spin–1
2

fields [54, 55]. However, this analytic

continuation fails to capture a set of discrete modes, labelled by a quantum number `, on

the AdS space for the spin–1 and higher spin fields [72–74]. The heat kernel over such

modes needs to be computed directly on
(
AdS2 ⊗ S2

)
/ZN . The origin of these modes is

the following discrete set of modes over AdS2.

fma = ∇aφ
m, φm =

√
1

2π|m|

[
sinh η

1 + cosh η

]|m|
eimθ, m ∈ Z− {0}. (3.2.56)

They tensor with scalar modes on S2 to produce discrete modes of the vector field in

AdS2 ⊗ S2 and its ZN orbifold. We will calculate the heat kernel contribution of these

modes (3.2.56) when they obey the twisted boundary conditions.

K(vd,s) =
∑

m∈Z−{0}

∞∑
`=0

∑̀
n=−`

∫ η0 √
gdηdθgabf ∗ma fmb δm−(n+q),Npe

− t
a2
`(`+1) (3.2.57)
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=
1

N

N−1∑
s=0

 ∑
m∈Z−{0}

tanh
(η0

2

)2|m|
eim

2πs
N

 ∞∑
`=1

χ`

(πs
N

)
e−

2πiqs
N e−

t
a2
`(`+1) .

The expression in the brackets involving tanh
(
η0
2

)
sums up to

T (s) =
1

1− tanh2
(
η0
2

)
e

2πis
N

− 1 +
1

1− tanh2
(
η0
2

)
e−

2πis
N

− 1 . (3.2.58)

Further,

T (0) ' 1

2
eη0 − 1 +O

(
e−η0

)
, T (m) ' −1 +O

(
e−η0

)
, 1 ≤ m ≤ N − 1 . (3.2.59)

We may then retain the order–one term only to find that

K(vd,s) = −1

[
1

N

N−1∑
s=0

∞∑
`=0

χ`

(πs
N

)
e−

2πiqs
N e−

t
a2
`(`+1)

]
. (3.2.60)

We find that the degeneracy of an eigenvalue E` of the Laplacian over vector discrete

modes obeying q–twisted boundary conditions is given by10

dvd` = −2`+ 1

N
− 1

N

N−1∑
s=1

χ`

(πs
N

)
e−

2πiqs
N . (3.2.61)

Using the methods of [66,67], the degeneracy over the q–twisted gravitino discrete modes

is given by

dfd` = 8

(
`+ 1

N

)
− 4

N

N−1∑
s=1

sin 2πs(`+1)
N

sin πs
N

cos
πs

N
e−

2πiqs
N . (3.2.62)

10 We point out here that the modes with ` = 0 correspond to vector zero modes of the kinetic operator

[54] and hence dvd`=0 corresponds to the regularized number of vector zero modes of the kinetic operator.

Explicitly evaluating (3.2.61) with ` = 0, so that χ`
(
πs
N

)
= 1 ∀s, we find that dvd`=0 vanishes when non-

trivial q–twisted boundary conditions are imposed. This is in contrast to the untwisted case, where dvd`=0 =

−1 [66].
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Using the degeneracies (3.2.61) and (3.2.62), we can write down corresponding expres-

sions for the heat kernels over these modes, though we do not do so explicitly here.

3.3 Logarithmic Corrections to the Twisted Index

We now turn to the computation of logarithmic corrections to Zg. We will carry out this

computation for Type II string theory on T 6. This compactification preserves 32 super-

charges of which 16 commute with g. Also, as we have previously discussed, the only

fields which can contribute to the log a term are the massless fields in AdS2 ⊗ S2. These

are just the fields of four–dimensional N = 8 supergravity. We will therefore find it use-

ful to organize the spectrum of N = 8 supergravity in terms of representations of the

N = 4 subalgebra which commutes with g. All the fields in a single N = 4 multiplet are

characterized by a common g-eigenvalue which in turn dictates which twisted modes on(
AdS2 ⊗ S2

)
/ZN should the heat kernel be computed over. This information is summa-

rized in Table B.1. In this section we shall compute the contribution of each multiplet in

Table B.1 to the log term in Zg, which requires us to compute the contribution to Zg from

quadratic fluctuations of massless fields about the ZN orbifold generated by the action

(3.2.15) of g̃ on the attractor geometry of the black hole. To do so, we shall compute the

heat kernel of the kinetic operator derived in [54, 55] about this orbifolded background,

imposing g–twisted boundary conditions on the fields as we act on the background with

g̃. Therefore, the results of Section 3.2 will be useful for us.

Finally, as in [54, 55, 66, 67], we need to compute the heat kernel over the supergravity

fields taking into account their couplings to the background graviphoton fluxes and scalar

fields. As shown in [54, 55], the heat kernel over the various quadratic fluctuations can be

expressed in terms of the heat kernel over scalars, spin-1
2

fermions and discrete modes of

higher–spin fields. The coupling to the background fields however changes the eigenval-
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ues of the kinetic operator from those when fields are minimally coupled to background

gravity. The new eigenvalues can in principle be computed by rediagonalizing the kinetic

operator. However, the flux does not change the degeneracy of the eigenvalue. Hence, to

compute the heat kernel over the supergravity fields with our choice of background and

boundary conditions, we can use the shifted eigenvalues computed in [54, 55] and the de-

generacies computed in Section 3.2. On doing so, we find two more simplifications that

are of great benefit. Firstly, as observed in [67], the contribution of the conical terms to the

heat kernel is finite in the t 7→ 0 limit. Hence the contribution to the O (t0) term from the

conical terms is insensitive to the eigenvalues and can be computed from the degeneracies.

Secondly, the other contribution to the O (t0) term in the heat kernel originates from the

O (t0) term in the heat kernel computed for the full attractor geometry without imposing

any twist on the boundary conditions. This has already been computed in [54, 55]. Using

these results, and the g–charges computed in Table B.1, we can now compute the heat

kernel over the various supergravity fields and extract the O (t0) term in the heat kernel,

which will yield the log term. With these results, we now turn to the main computation of

this chapter.

We firstly note that the N = 4 gravity multiplet is g–invariant, and hence its heat ker-

nel should be computed over untwisted modes. It has already been shown in [66] that the

contribution of these modes to the log term vanishes. Additionally, the contribution of

any g–invariant N = 4 vector multiplet to the log term also vanishes [66]. Therefore we

shall concentrate on the gravitino multiplets and the N = 4 vector multiplets which carry

a non–trivial g charge, which corresponds to a non–zero twist in the boundary conditions.

We find below that the contribution of these multiplets also vanishes for any arbitrary

choice of twisting. This is in contrast to the untwisted case where while the contribution

of the vector multiplet did vanish, the gravitino multiplet contribution was non-vanishing

and was responsible for the non-zero log correction the entropy of 1
8
–BPS black holes in
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N = 8 supergravity [67].

3.3.1 The Heat Kernel for the N = 4 Vector Multiplet

We will now put the results of Section 3.2 together, using the arguments presented above,

to prove the first of our main results : the log correction in Zg receives vanishing contribu-

tion from anyN = 4 vector multiplet with q–twisted boundary conditions. As in [54,66],

the heat kernel for any N = 4 vector multiplet receives contributions from two Dirac

fermions, 6 real scalars and one gauge field, along with two scalar ghosts. We will focus

on the contribution of the conical terms to the O (t0) term in the heat kernel. We denote

this contribution byKc (t; 0). Firstly the contribution from the two Dirac fermions is given

by

KF
c (t; 0) = − 1

N

N−1∑
s=1

cos2
(
πs
N

)
sin4

(
πs
N

) e− 2πiqs
N . (3.3.1)

We now turn to the contribution from the integer–spin fields. These are the 6 real scalars,

the gauge field and two scalar ghosts. Two of the scalars mix with the gauge field due to

the graviphoton flux [54] and we have

KB = 4Ks +K(v+2s) − 2Ks, (3.3.2)

where Ks is the scalar heat kernel along
(
AdS2 ⊗ S2

)
/ZN with q–twisted boundary con-

ditions, and K(v+2s) is the heat kernel of the mixed vector–scalar fields due to the back-

ground graviphoton flux. As we have previously argued, to extract the t0 term from the

fixed–point contribution to the heat kernel, we don’t have to take into account the cou-

pling of the gauge field to the scalars via the graviphoton flux and can just add the various

contributions piecewise. We therefore find that (3.3.2) reduces to

KB
c = 6Ks

c +Kv
c − 2Ks

c = 4Ks
c +Kv

c . (3.3.3)
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Ks
c can be read off from (3.2.37), but we need to compute Kv

c . As shown in [54], the

heat kernel Kv of a vector field over AdS2 ⊗ S2 may be decomposed into K(v,s), which

is the heat kernel of a vector field along AdS2 times the heat kernel of a scalar along S2

and K(s,v), the heat kernel of a vector field along S2 times the heat kernel of a scalar

along AdS2. Further, the modes of the vector field along AdS2 and S2 may be further

decomposed into longitudinal and transverse modes. There is an additional discrete mode

contribution from the vector field on AdS2. These statements carry over to the case of

the ZN orbifolds with twisted boundary conditions as well. Kv therefore receives the

following contributions.

Kv = K(vT+vL+vd,s) +K(s,vT+vL). (3.3.4)

Now the modes of longitudinal and transverse vector fields along AdS2 and S2 are in one–

to–one correspondence with the modes of the scalar with the only subtlety being that along

S2 the ` = 0 mode of the scalar does not give rise to a non-trivial gauge field [54] (see

footnote 7). We therefore have

K(vT ,s) = K(vL,s) = Ks, K(s,vT ) = K(s,vL) = Ks −K(s,`=0), (3.3.5)

where, as we have mentioned previously,Ks is the scalar heat kernel along
(
AdS2 ⊗ S2

)
/ZN

with q–twisted boundary conditions, and K(s,`=0) is again the scalar heat kernel along(
AdS2 ⊗ S2

)
/ZN , however we only sum over the modes with ` = 0 along the S2 direc-

tion. We therefore find that the contribution of the conical terms(3.3.4) reduces to

Kv
c (t; 0) = 4Ks

c (t; 0) +K(vd,s)
c (t; 0)− 2K(s,`=0)

c (t; 0) . (3.3.6)
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Further, using (3.2.42), we may show that 11

K(s,`=0)
c (t; 0) =

1

4N

N−1∑
s=1

1

sin2
(
πs
N

)e− 2πiqs
N , (3.3.7)

and that Ks
c (t; 0) is given by

Ks
c (t; 0) =

1

2N

N−1∑
s=1

1

4 sin4 πs
N

e−
2πiqs
N . (3.3.8)

Finally, using (3.2.61), K(vd,s)
c (t; 0) is given by

K(vd,s)
c (t; 0) = − 1

2N

N−1∑
s=1

1

sin2
(
πs
N

)e− 2πiqs
N . (3.3.9)

Using (3.3.3) and (3.3.6), and then putting (3.3.7), (3.3.8) and (3.3.9) together, we find

that the total integer–spin contribution is given by

KB
c (t; 0) =

1

N

N−1∑
s=1

e−
2πiqs
N

(
1− sin2

(
πs
N

)
sin4

(
πs
N

) )
. (3.3.10)

Then the total contribution of the conical terms from bosons and fermions is obtained by

adding (3.3.1) and (3.3.10) to obtain

Kc (t; 0) = KB
c (t; 0) +KF

c (t; 0) =
1

N

N−1∑
s=1

e−
2πiqs
N

(
1− sin2

(
πs
N

)
− cos2

(
πs
N

)
sin4

(
πs
N

) )
= 0.

(3.3.11)

This vanishes for arbitrary values of q. Now, using the arguments at the beginning of the

section, the heat kernel for theN = 4 vector multiplet about the g̃–generated ZN orbifold

11An easier approach is to read off the result directly from (3.2.37). In (3.2.37) for S2⊗S2, each sum over

0 to∞ for l and l̃ gives χl or l̃

(
πs
N

)
= 1

2 sin2 πs
N

. Remembering χl̃=0

(
πs
N

)
= 1 and analytically continuing to

AdS2 ⊗ S2 we get the desired result.
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of the attractor geometry is given, on imposing q–twisted boundary conditions, by

Kq =
1

N
K +Kc (t; 0) +O (t) , (3.3.12)

whereK is the heat kernel on the unquotiented near–horizon geometry. We therefore have,

for the t0 term in the heat kernel expansion,

Kq (t; 0) =
1

N
K (t; 0) +Kc (t; 0) . (3.3.13)

We have shown in 3.3.11 that Kc (t; 0) equals zero. In addition, it was shown in [54]

that K (t; 0) also vanishes. This implies that Kq (t; 0) also vanishes, which proves that

the contribution to the log term from the vector multiplet vanishes even for q–twisted

boundary conditions12.

3.3.2 The Heat Kernel for the N = 4 Gravitino Multiplets

We now compute the contribution of the N = 4 gravitino multiplets to the log term in

Zg for N = 8 string theory. From Table B.1, we see that the N = 4 gravitino multiplets

obey q–twisted boundary conditions. There are four such multiplets, where the highest-

weight field is a Majorana spin–3
2

fermion, which we organize into two multiplets where

the highest–weight field is a Dirac spin–3
2

fermion. One multiplet obeys twisted boundary

conditions with q = +1, and the other with q = −1. Further, since we are consider-

ing quadratic fluctuations, the background flux in the attractor geometry does not cause

gravitino multiplets with different g–charge, and hence different q–twist, to mix with each

12We emphasize here that though the contribution of anN = 4 vector multiplet vanishes for both twisted

and untwisted boundary conditions, the origin of the result is different in both cases. For the untwisted case,

the zero and non–zero modes of the kinetic operator give non–vanishing contributions to the log term which

cancel against each other [66], while for the twisted case these contributions are individually zero as shown

in this section and in footnote 10 of this chapter.
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other. We will therefore focus on the contribution of the log term from one q–twisted mul-

tiplet where the highest–weight field is a Dirac spin–3
2

fermion.

Now we shall compute the contribution of the conical terms to the t0 term in the heat

kernel expansion for this multiplet. Firstly, we focus on the integer–spin fields. There are

8 gauge fields and 16 real scalars. Further, gauge fixing introduces two ghost scalars for

every gauge field. Hence the contribution of the integer–spin fields to theO (t0) term from

the conical terms in the heat kernel is

KB
c (t; 0) = 8Kv

c (t; 0) + 16Ks
c (t; 0)− 16Ks

c (t; 0) = 8Kv
c (t; 0) , (3.3.14)

which therefore implies that

KB
c (t; 0) =

4

N

N−1∑
s=1

1

sin4 πs
N

e−
2πiqs
N − 8

N

N−1∑
s=1

1

sin2 πs
N

e−
2πiqs
N . (3.3.15)

We have used (3.3.6) with (3.3.7), (3.3.8) and (3.3.9) to arrive at this expression. We now

turn to the contribution of the half–integer spin fields. We will focus on the contribution

of one Dirac gravitino multiplet, which contains one Dirac gravitino and 7 Dirac spin-1
2

fields. The degrees of freedom reorganize themselves into in 4 Dirac fermions with ` ≥ 0,

6 Dirac fermions with only ` = 0 modes along the S2, 7 Dirac fermions with only ` ≥ 1

modes along the S2, one discrete Dirac fermion, and 3 ghost Dirac fermions [55, 67] 13.

We can then show that

KF
c (t; 0) = 8Kf

c (t; 0)−K(f,`=0)
c (t; 0) +Kfd

c (t; 0) , (3.3.16)

13(4− 3 = 1) Dirac fermions + ((7 Dirac fermions with l ≤ 1) + (7 l = 0 modes) = 7 Dirac fermion) +

(−7 + 6 = −1, l = 0 modes).
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where Kf is the heat kernel for the Dirac fermion, K(f,`=0) is the heat kernel for the Dirac

fermion with only ` = 0 modes along the S2 and Kfd is the heat kernel over one discrete

Dirac fermion. Now

Kf
c (t; 0) = − 1

2N

N−1∑
s=1

cos2 πs
N

sin4 πs
N

e−
2πiqs
N , (3.3.17)

and

K(f,`=0)
c (t; 0) = − 2

N

N−1∑
s=1

cos2 πs
N

sin2 πs
N

e−
2πiqs
N . (3.3.18)

Further, using (3.2.62), we find that the discrete mode contribution from the conical terms

is given by

Kfd
c (t; 0) = +

2

N

N−1∑
s=1

cos2 πs
N

sin2 πs
N

e−
2πiqs
N . (3.3.19)

We finally obtain that the full half–integer spin contribution is given by

KF
c (t; 0) = − 4

N

N−1∑
s=1

1

sin4 πs
N

e−
2πiqs
N +

8

N

N−1∑
s=1

1

sin4 πs
N

e−
2πiqs
N − 4

N

N−1∑
s=1

e−
2πiqs
N . (3.3.20)

Adding (3.3.15) and (3.3.20), we find that the conical contribution to the t0 term in the

heat kernel for a given value of q is

Kc (t; 0) = − 4

N

N−1∑
s=1

e−
2πiqs
N = +

4

N
, (3.3.21)

which is independent of q. Then the contribution of the g–twisted N = 4 gravitino multi-

plets to the log term in Zg is given by

Kg (t; 0) =
1

N
K (t; 0) + 2Kc (t; 0) , (3.3.22)

where K (t; 0) is the coefficient of the t0 term in the heat kernel expansion of the gravitino

multiplets about the unquotiented near–horizon geometry. This was computed to be −8
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in [55]. We therefore find that Kg (t; 0) is given by

Kg (t; 0) = − 8

N
+

8

N
= 0. (3.3.23)

Hence, the contribution of the N = 4 gravitini multiplets to the logarithmic term in Zg

also vanishes.

3.3.3 The Zero Mode Analysis

We will now take into account the presence of zero modes of the kinetic operator for

N = 8 supergravity fields expanded about the black hole near horizon geometry. The final

result, as mentioned above, is that the zero mode analysis of [67] goes through unchanged,

but since the zero mode analysis is an important part of the computation, we shall present

the setup in some detail and then quote the results. The following general result [54, 55],

see also [71], will be useful for us 14.

To start with, let Aµ be the vector field on AdS2 ⊗ S2 and gµν be the background metric

of the form a2g
(0)
µν where a is the radius of both S2 and AdS2 and g(0)

µν is independent of a.

We normalize the path integral over Aµ such that

∫
[DAµ] exp

[
−
∫
d4x
√

det ggµνAµAν

]
= 1,∫

[DAµ] exp

[
−a2

∫
d4x
√

det g(0)g(0)µνAµAν

]
= 1 . (3.3.24)

From above we infer that [DAµ] actually corresponds to the integration with measure

Πµ,xd(aAµ(x)). Zero modes for the gauge fields are associated with deformations pro-

duced by non–normalizable gauge transformation parameters: δAµ ∝ ∂µΛ(x) for some

14Unless we subtract the zero modes from the heat kernel the integration over s̃ is divergent. A constant

term in the heat kernel will never produce a factor of ln a2 as they arise from terms which remain constant

in the range a−2 << s̃ << 1 and fall off for s̃ >> 1.
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Λ(x) with a–independent integration range. The Jacobian picks up a factor of a for each

zero mode and for n0 such modes we shall get a overall factor of an0 . Note that n0 is infi-

nite butAdS2 volume regularization gives a finite result 15. Remember that the eigenvalues

in the heat kernel scales as a−2 and upon integration the non–zero modes produces a factor

proportional to a. Including the zero mode contribution to the heat kernel is equivalent to

counting the same factor of a from integration over the zero modes as well. Thus, when

we remove from the determinant the contribution of the zero modes, we remove a factor

of a for each zero mode. Then for the vector zero modes as long as we keep n0 finite there

is no need to explicitly subtract and then add the contribution of the zero modes to the heat

kernel 16 . As we shall see this is not true for the gravity or the gravitino zero modes.

The effect of integrating over the zero mode fluctuations hµν of the metric can be found

15 For example, let fma denote the set of normalized discrete zero mode wave functions of the gauge

fields on AdS2 given in (3.2.56), where index m denotes modes invariant under twisting. For the case of

untwisted modes i.e. q = 0, the the total number of zero modes would be

n0 =
∑

p∈Z−{0}

∫
dθdη

√
det gAdS2

gabAdS2
fm∗a fmb where m = Np

=
∑

p∈Z−{0}

∫ η0

AdS2

dθdη
√

det gAdS2
gabAdS2

fNp∗a fNpb =
∑

p∈Z−{0}

(
tanh

η0
2

)2N |p|
= 2

(
tanh η0

2

)2N
1−

(
tanh η0

2

)2N ' 1

2N
eη0 − 1 +O (t)

(
e−η0

)
, (3.3.25)

in the large η0 limit. We drop the divergent factor in AdS radial coordinate and keep the order one term as

the number of zero modes. Hence for the quotient space AdS2/ZN , the number of zero modes is given by

n0AdS2/ZN = −1 . (3.3.26)

The case for non–zero q is discussed in footnote 10.

16This is almost true except that the dimensional reduction of the metric on S2 produces a massless

SU(2) gauge field with zero modes on AdS2. They scale as metric zero modes scale i.e. a2 rather than a.
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by replacing (3.3.24) with

∫
[Dhµν ] exp

[
−
∫
d4x
√

det ggµνgρσhµρhνσ

]
= 1,∫

[Dhµν ] exp

[
−
∫
d4x
√

det g(0)g(0)µνg(0)ρσhµρhνσ

]
= 1 . (3.3.27)

The zero modes are associated with diffeomorphisms with non–renormalizable parame-

ters: hµν ∝ Dµξν + Dνξµ, with the diffeomorphism parameter ξµ having a independent

integration range. Lowering the index of ξµ gives a factor of a2, leading to a factor of

a2 for each zero mode through the Jacobian. Note removal of zero modes from the heat

kernel still takes away a factor of a. Similarly, for gravitino zero modes 17 we have

∫
[Dψµ]

[
Dψ̄µ

]
exp

[
−
∫
d4x
√

det ggµνψ̄µψν

]
= 1 ,∫

[Dψµ]
[
Dψ̄µ

]
exp

[
−a2

∫
d4x
√

det g(0)g(0)µνψ̄µψν

]
= 1 . (3.3.28)

indicating that aψµ and aψ̄µ are the correctly normalized integration variables. The fermionic

zero modes are associated with asymptotic supersymmetry transformations, with the anti–

commutator of a pair of supersymmetry transformations generating a diffeomorphism with

parameter ε̄Γµε. Since Γµ ∼ a−1, and ε̄Γµε is a independent, the correct normalization for

ε is ε = a
1
2 ε0, where ε0 has a a independent integration range. Thus a ψµ zero mode

is equivalent to aψµ ∼ a
3
2 ε0, producing a factor of a−

3
2 . Since the kinetic operator for

fermion is of order a−1, removing a fermion zero mode takes away a factor of a−
1
2 . The

net effect is to add back three times the amount we remove from the heat kernel.

To summarize, consider a theory with a length scale a and fields φi such that the kinetic

operator for quadratic fluctuations about a given background has n0
φi
≥ 0 number of zero

17Naively, integration over fermion zero modes should vanish but in supersymmetric theories the zero is

cancelled by the infinities coming from integration over bosonic zero modes of the metric.
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modes. Further, let the zero mode contribution to the path integral scale with a as

Z ' an
0
φi
βφiZ0, (3.3.29)

where Z0 does not scale with a, and the numbers βφi have been explicitly determined as

above for the vector, gravitino and metric zero modes. In particular

βv = 1, β 3
2

= 3, βg = 2. (3.3.30)

In that case, the log term for the partition function is given by

lnZlog =

(
K (0; t) +

∑
φi

n0
φi

(βφi − 1)

)
ln a, (3.3.31)

where K (0; t) is the coefficient of the t0 term in the heat kernel expansion of the kinetic

operator over of all fields φi, evaluated on both zero and non–zero modes. Further, for the

N = 8 kinetic operator, all the zero modes of the spin–3
2

and spin–2 fields are contained

in theN = 4 gravity multiplet [55]. This is quantized with untwisted boundary conditions

(very similar to footnote 15) and its contribution has already been evaluated on the orbifold

space in [67], where it was determined that

n 3
2

= 2, ng = −2. (3.3.32)

3.3.4 Logarithmic Corrections to the Twisted Index

Now we are in a position to put together the above results to show that the logarithmic

corrections to the partition function Zg vanish for the N = 8 theory. To do so, we will

need the coefficients K (0; t) from the N = 4 vector, gravitini and gravity multiplets, as

well as the corresponding zero mode contributions. It has already been proven in [66] that

an untwisted N = 4 vector multiplet has a vanishing contribution to the log term about
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our background. Further, we have seen in Section 3.3.1 that K (0; t) for theN = 4 vector

multiplet with twisted boundary conditions vanishes, and in (3.3.23) that K (0; t) for the

N = 4 gravitini multiplets with twisted boundary conditions also vanishes. Hence, the

only non–vanishing contributions to ln (Zg)log come from the N = 4 gravity multiplet,

which obeys untwisted boundary conditions. For this multiplet (see Eq. 5.46 of [67])

K (0; t) = −2. (3.3.33)

Putting these results in (3.3.31) with (3.3.32), we find that

ln (Zg)log = 0, (3.3.34)

which completes the proof that the logarithmic term in Zg vanishes, in accordance with

the microscopic results for Bg
6 for N = 8 string theory.

3.4 Conclusions

In this chapter we exploited the heat kernel techniques developed in [66] to compute the

logarithmic terms in the large charge expansion of the twisted index Bg
6 in N = 8 string

theory. These vanish, matching perfectly with the microscopic computation. Further, the

result may be extended to the N = 4 case as follows. Firstly, since g commutes with

all 16 supercharges in this case, we continue to classify fields into multiplets of the four–

dimensional N = 4 supersymmetry algebra. Secondly, we need to focus only on the

massless supergravity fields over the near–horizon geometry as only these can contribute

to the log term. Finally, the g action on the various N = 4 multiplets can be found out

using techniques similar to the ones employed in the N = 8 case. Since g acts geometri-

cally on the compact directions, the N = 4 gravity multiplet still does not transform, and

its contribution to the log term vanishes as per the analysis of [67]. The N = 4 vector
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multiplets would carry non–trivial g–charges, corresponding to non–trivial q–twists for

these fields in the path integral Zg. We have already seen that the contribution to the log

term fromN = 4 vector multiplets vanishes for arbitrary twists q. Therefore, the log term

vanishes even for N = 4 string theory.

As a final observation, we note that the microscopic expression for Bg
6 contains expo-

nentially suppressed corrections of the form

Bg
6,p (Q,P ) ' e

π

√
Q2P2−(Q·P )2

NM (O (1) + . . .) , M ∈ Z+, M ≥ 2. (3.4.1)

Using the arguments of [66] for the untwisted index we find that the logarithmic correction

vanishes about these saddle–points as well. Following through the arguments of [64], a

natural candidate for the macroscopic origin of these corrections corresponds to a saddle–

point of Zg obtained by taking a ZNM orbifold of the attractor geometry, where again

g–twisted boundary conditions should be imposed on the fields in the path integral. From

the analysis presented in this chapter, it follows that the log corrections to Zg vanish about

these saddle–points as well, which matches with the expectation from the microscopic

side.
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APPENDIX A
Dimensional Reduction &

Computational details

A.1 10D to 4D map

Following [38, 39] we begin with a N = 1 supergravity theory coupled to N = 1 su-

per Yang-Mills theory in ten dimensions and dimensionally reduce it to four dimensions.

Though we start with a super Yang-Mills theory, at generic points in the moduli space

only abelian gauge fields gives rise to massless fields in four dimensions and hence we

will restrict to one U(1) gauge field. The ten dimensional action is given by

1

32π

∫
d10x

√
−G(10)eΦ(10)

(
R(10) +G(10)MN∂MΦ(10)∂NΦ(10) − 1

12
H

(10)
MNPH

(10)MNP

−1

4
F

(10)I
MN F (10)IMN

)
, (A.1.1)

where G(10)
MN , B

(10)
MN , A

(10)I
M , and Φ(10) are the ten dimensional metric, anti-symmetric two

form field, U(1) gauge field and the scalar dilaton respectively (0 ≤M ≤ 9, I = 1), and

F
(10)I
MN = ∂MA

(10)I
N − ∂NA(10)I

M .

H
(10)
MNP =

(
∂MB

(10)
NP −

1

2
A

(10)I
M F

(10)I
NP

)
+ cyclic permute. inM, N, P .(A.1.2)
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For dimensional reduction it is convenient to introduce the four dimensional fields Ĝmn,

B̂mn, Â
I
m, A

(a)
µ , Gµν , Bµν . We will denote the corresponding ten dimensional fields by a

superscript (10), for example G(10)
µν . As we are only concerned with the coordinates 4 &

5, the range of indices are (1 ≤ m ≤ 2, 0 ≤ µ ≤ 3, 1 ≤ a ≤ 5). The map from the ten

dimensional fields to four dimensional fields are given below. The main idea is to make

apparent the four dimensional gauge transformations as derived from the ten dimensional

gauge transformations .

Ĝmn = G
(10)
m+3,n+3, B̂mn = B

(10)
m+3,n+3, ÂIm = A

(10)I
m+3 ,

A(m)
µ =

1

2
ĜmnG

(10)
n+3,µ, AI+4

µ = −
(

1

2
A(10)I
µ − ÂInA(n)

µ

)
,

A(m+2)
µ =

1

2
B

(10)
(m+3)µ − B̂mnA

(n)
µ +

1

2
ÂImA

(I+4)
µ ,

Gµν = G(10)
µν −G

(10)
(m+3)µG

(10)
(n+3)νĜ

mn

Bµν = B(10)
µν − 4B̂mnA

(m)
µ A(n)

ν − 2
(
A(m)
µ A(m+2)

ν − A(m)
ν A(m+2)

ν

)
−2ÂIm

(
A(I+4)
µ A(m)

ν − A(I+4)
ν A(m)

µ

)
,

Φ(4) = Φ(10) − 1

2
ln det Ĝ . (A.1.3)

Here Ĝmn denotes the inverse of the matrix Ĝmn. We now combine the scalar fields Ĝmn,

B̂mn, and ÂIm into O(2, 3) matrix valued scalar field M . For this we regard Ĝmn, B̂mn,

and ÂIm as 2 × 2, 2 × 2, and 2 × 1 matrices respectively, and Ĉmn = 1
2
ÂImÂ

I
n as a 2 × 2

matrix, and define M to be the 5× 5 dimensional matrix

M =


Ĝ−1 Ĝ−1(B̂ + Ĉ) Ĝ−1Â

(−B̂ + Ĉ)Ĝ−1 (Ĝ− B̂ + Ĉ)Ĝ−1(Ĝ+ B̂ + Ĉ) (Ĝ− B̂ + Ĉ)Ĝ−1Â

ÂT Ĝ−1 ÂĜ−1(Ĝ+ B̂ + Ĉ) 1 + ÂT Ĝ−1Â

 .

(A.1.4)

Note that throughout Chapter 2 of the thesis we have relabelled coordinate 4 as coordinate

5 and vice versa. For example, following (A.1.3) we should have Ĝ11 = G
(10)
44 and Ĝ22 =
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G
(10)
55 but instead we have Ĝ22 = G

(10)
44 and Ĝ11 = G

(10)
55 .

The canonical metric gµν is related to the string metric Gµν through the relation

gµν = e−Φ(4)

Gµν . (A.1.5)

The field strength Hµνρ corresponding to the antisymmetric two form Bµν is dual to a

scalar field Ψ through the relation

Hµνρ = −
(√
−g
)−1

e2Φ(4)

εµνρσ∂σΨ . (A.1.6)

The axion-dilaton modulus is

S = S1 + S2 = Ψ + i e−Φ(4)

. (A.1.7)

A.2 A rough guide to computations

The computations in §2.5 are fairly algebraic and we will supplement them with few more

steps here in this section. This is by no means comprehensive. Also note that in the final

expressions of §2.5 we have omitted the superscript (10) from all ten dimensional fields.

In the paragraphs below we shall mention the equation number from Chapter 2 followed

by a few steps.

In arriving at (2.5.18) we have used

Ĝ−1 =

G−1
55 0

0 G−1
44

 , Ĉ =

0 0

0 1
2
(A4)2

 , B̂ = 0 ,
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Ĝ−1(B̂ + Ĉ) =

0 0

0 1
2
G−1

44 (A4)2

 , Ĝ−1Â =

 0

G−1
44 ,


(Ĝ− B̂ + Ĉ)Ĝ−1(Ĝ+ B̂ + Ĉ) =

G55 0

0
(
G44 + 1

2
(A4)2

)2
G−1

44

 , (A.2.8)

where

Ĝ11 = C2
4 , Ĝ12 = G

(10)
54 = G

(10)
45 = Ĝ21 ,

Ĝ22 = G
(10)
44 = −C2

2C
2
3 sinh2 γ + C2

2e
2Φ cosh2 γ ,

G
(10)
40 = C2C3

(
e2ΦC−2

3 − 1
)

sinh γ cosh γ ,

G
(10)
00 = − cosh2 γ + C−2

3 e2Φ sinh2 γ . (A.2.9)

To obtain (2.5.19), first we should note that the ten dimensional dilaton (A.1.1) is twice

the dilaton associated with the Harvey-Liu monopole (2.5.4).

S2 = e−Φ(4)

= e−2Φ
√

det Ĝ

= e−2ΦC2C4

√
e2Φ cosh2 γ − C2

3 sinh2 γ . (A.2.10)

To obtain (2.5.22) we have used

G00 = G
(10)
00 − (G

(10)
40 )2Ĝ44 =

G44G
(10)
00 − (G

(10)
40 )2

Ĝ44

=
1

Ĝ44

[(
C2

2C
2
3 +

(
e2ΦC−2

3 − 1
)
C2

2C
2
3 cosh2 γ

) (
−1 +

(
e2ΦC−2

3 − 1
)

sinh2 γ
)

−
(
e2ΦC−2

3 − 1
)

sinh2 γ cosh2 γC2
2C

2
3

]
= − e2Φ(

e2Φ cosh2 γ − C2
3 sinh2 γ

) ,
g00 = e−φ

(4)

G00 = − C2C4√
e2Φ cosh2 γ − C2

3 sinh2 γ
. (A.2.11)
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Recall that the gµν here is twice the gµν of the S-T-U model. Hence, the g00 for the S-T-U

model is

g00 = − C2C4

2
√
e2Φ cosh2 γ − C2

3 sinh2 γ
. (A.2.12)

To obtain (2.5.21), first we have to remember that all fields are independent of the coordi-

nates 4 & 5. Secondly, we have to list the values of ten dimensionalB(10)
MN fields to evaluate

the four dimensional gauge fields. Lastly, in r, θ, φ coordinates

εrθφ = r2 sin θ ε̂rθφ where ε̂rθφ = 1 . (A.2.13)

We also have

Â1
1 = A

(10)1
5 = 0, Â1

2 = A
(10)
4 = 2

√
2C2 cosh γ

1

r
H(C1r) . (A.2.14)

Choose partial gauge fixing B(10)
05 = B

(10)
i 5 = 0, we have from Harvey–Liu solution,

H
(10)
045 = ��

��
∂0B

(10)
45 −

1

2
A(10)

�
�
�

F
(10)
45 +��

��
∂5B

(10)
04 −

1

2�
��A
(10)
5 F

(10)
04 +��

��
∂4B

(10)
50 −

1

2
A

(10)
4 �

�
�

F
(10)
50

= 0 ,

H
(10)
r45 = ∂rB

(10)
45 −

1

2
������
A(10)
r F

(10)
45 − 1

2�
��A
(10)
5 F

(10)
r4 − 1

2
A

(10)
4 �

�
�

F
(10)
5r

= 0 . (A.2.15)

Similar zero results for θ&φ coordinates implies B̂12 = B
(10)
54 = 0. Again fromH

(10)
0 i 4 = 0

we get B(10)
40 = 0 and from H

(10)
4rθ = 0 we get B(10)

θ4 = 0. From (2.5.10) in the large r limit,

we get

H
(10)
4θφ = −C2 cosh γ r2 sin θ ∂re

2φ

= 8C2 cosh γ rH(C1r)∂r

(
H(C1r)

r

)
sin θ
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= 8C2 cosh γ rH(C1r)∂r

(
C1 coth(C1r)−

1

r

)
=

r→∞
8C2 cosh γ

H(C1r)

r
sin θ . (A.2.16)

Writing H(10)
4θφ in terms of B(10)

MN and then matching with the large r behavior of (A.2.16)

we get

H
(10)
4θφ = ����

∂4B
(10)
286 −

1

2
A

(10)
4 F

(10)
θφ +

�
���

∂φB
(10)
4θ −

1

2
A

(10)
φ �

��F 10
4θ + ∂θB

(10)
φ4 −

1

2�
��A
(10)
θ F

(10)
φ4

= 4C2 cosh γ sin θ
1

r
H(C1r) + ∂θB

(10)
φ4 ,

B
(10)
φ4 =

r→∞
−4C2 cosh γ cos θ

1

r
H(C1r) . (A.2.17)

Finally, coming back to (2.5.21) we have

A
(1)
0 =

1

2
Ĝ55

�
�
�

G
(10)
50 = 0 ,

A
(2)
0 =

1

2
Ĝ44G

(10)
40 =

C3

(
e2ΦC−2

3 − 1
)

sinh γ cosh γ

2C2

(
e2Φ cosh2 γ − C2

3 sinh2 γ
) ,

A
(5)
0 = −

(
1

2
A

(10)
0 −

�
��A
(10)
5 A

(1)
0 − A

(10)
4 A

(2)
0

)
= −

√
2 r−1H(C1r)

(e2Φ cosh2 γ . . . )

[
1

2
C−1

3 sinh γ
(
e2Φ cosh2 γ − C2

3 sinh2 γ
)

−1

2
cosh γ C3

(
e2ΦC−2

3 − 1
)

sinh γ cosh γ

]
= −

√
2 r−1H(C1r)

(e2Φ cosh2 γ . . . )
[C3] ,

A
(4)
i =

1

2
B

(10)
4 i +

1

2
A

(10)
4 A

(5)
i ,

A
(4)
φ =

1

2
B

(10)
4φ − 2C2 cosh γ

1

r
H(C1r) cos θ

=
r→∞

0 ,

A
(5)
i = −

(
1

2
A

(10)
i −

�
��A
(10)
5 A

(1)
0 − A

(10)
4 �

��A
(2)
i

)
=

r→∞
−
√

2 cos θ dφ . (A.2.18)
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To obtain (2.5.20) we begin with the four dimensional Hµνρ

Hµνρ = ∂µBνρ + 2A(a)
µ LabF

(b)
νρ + c.p.

= ∂µBνρ + 2
�
��A(1)
µ F (3)

νρ + 2A(2)
µ F (4)

νρ + 2
�

��A(3)
µ F (1)

νρ + 2A(4)
µ F (2)

νρ − 2A(5)
µ F (5)

νρ + c.p.

= ∂µ

[
B(10)
µν − 2

(
�����A(1)
µ A(3)

ν −�����
A(1)
ν A(3)

ν

)
− 2

�
��A
(10)
5

(
A(5)
µ A(1)

ν − A(5)
ν A(1)

µ

)
−2A

(10)
4

(
A(5)
µ A(2)

ν − A(5)
ν A(2)

µ

)]
+ 2A(2)

µ F (4)
νρ + 2A(4)

µ F (2)
νρ − 2A(5)

µ F (5)
νρ + c.p.

= H(10)
µνρ +

1

2
A(10)
µ F (10)

νρ − 2∂µ

[
A

(10)
4

(
A(5)
µ A(2)

ν − A(5)
ν A(2)

µ

)]
+ 2A(2)

µ F (4)
νρ

+2A(4)
µ F (2)

νρ − 2A(5)
µ F (5)

νρ + c.p. ,

H0θφ = H
(10)
0θφ + 2A

(10)
4 A

(2)
0 F

(10)
θφ

= −2C−1
3 sinh γ r2 sin θ e2Φ∂rΦ−

8C3 cosh2 γ sinh γ r−1H(C1r)
(
e2ΦC−2

3 − 1
)(

e2Φ cosh2 γ − C2
3 sinh2 γ

)
=

r→∞

8C3 sinh γ sin θ r−1H(C1r)(
e2Φ cosh2 γ . . .

) [
C−2

3

(
e2Φ cosh2 γ . . .

)
− cosh2 γ

(
e2ΦC−2

3 − 1
)]

=
r→∞

8C3 sinh γ r2 sin θ(
e2Φ cosh2 γ . . .

) H(C1r)

r3
=

r→∞
−C3 sinh γ r2 sin θ(

e2Φ cosh2 γ . . .
)∂r ( 1

e−2Φ

)
=

r→∞

C3 sinh γ r2 sin θ(
e2Φ cosh2 γ . . .

)e4Φ∂r
(
e−2Φ

)
. (A.2.19)

From (A.1.6) and matching with (A.2.19) we get

H0θφ = −C2C4 r
2 sin θ e2Φ(4)

∂rS1 = − C2C4 r
2 sin θ e4Φ∂rS1

C2
2C

2
4

(
e2Φ cosh2 γ − C2

3 sinh2 γ
) ,

S1 =
r→∞

−C2C3C4 sinh γ e−2Φ . (A.2.20)

Following the discussion around (2.4.21) we note that the S1 associated with the S-T-U

model is minus (A.2.20).

The next step is to enforce the field redefinitions (2.5.23) primarily on the gauge fields.
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In obtaining (2.5.28) we encounter the following redefinitions of {A(a)
0 } and {A(a)

i dxi} :

{A(a)
0 } →



0

1
2
A

(2)
0 + 1

2
A

(4)
0 + 1√

2
A

(5)
0

0

1
2
A

(2)
0 + 1

2
A

(4)
0 − 1√

2
A

(5)
0

1√
2
A

(2)
0 − 1√

2
A

(4)
0


,

{A(a)
i dxi} →



0

1
2
A

(4)
i + 1√

2
A

(5)
0

0

1
2
A

(4)
i − 1√

2
A

(5)
0

− 1√
2
A

(4)
0


. (A.2.21)

Let us focus on one example term 1√
2
A

(2)
0 − 1√

2
A

(4)
0 ,

1√
2
A

(2)
0 −

1√
2
A

(4)
0 =

(
− 1

2
√

2
(
e2Φ cosh2 γ − C−2

3 sinh2 γ
)C−1

2 C3 sinh γ cosh γ

)
[(
e2ΦC−2

3 − 1
)

+ C2
2

(
H(C1r)

r

)2
]

= (. . . )
[
e2ΦC−2

3 − 1 + c2
2C

2
3 + 4C2

2C
2
1 − C2

2e
2Φ
]

= (. . . )4C−2
3 C2

1C
2
2

[
e2Φ cosh2 γ − C−2

3 sinh2 γ
]

= −
√

2C2
1C2C

−1
3 sinh γ cosh γ = const. ' 0 . (A.2.22)

We can obtain (2.5.42) by noting that from (2.4.44) and (2.5.40) we get,

T2

U2

=
H2

H3
=

1
r

+ 2√
8ξ2ρ2σ2

ρ2ξ2
|ξ|

1
r

+ 2√
8ξ2ρ2σ2

σ2ξ2
|ξ|

=

−1
C2 cosh γ

√
2C2C3C4

+ κ− 1
r̂

−1
C2 cosh γ

√
2C2C3C4

− κ− 1
r̂

. (A.2.23)
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which for r →∞ implies

κ =

√
ζ2

8ρ2σ2

sign(ρ2 − σ2)(ρ2 − σ2)

|ζ|
=

√
ζ2

8ρ2σ2

|ρ2 − σ2|
|ζ|

. (A.2.24)
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APPENDIX B
The g–Charges for the N = 8

Supergravity Fields

In this appendix we shall review how the g–twist acts on the fields of four–dimensional

N = 8 supergravity. As g commutes with theN = 4 subalgebra of the fullN = 8 algebra,

we expect that the N = 8 gravity multiplet will decompose into N = 4 multiplets, each

of which carry some charge under g. We shall obtain these charges by working with Type

IIB supergravity compactified on T 4⊗T 2 and studying the action of g on the supergravity

fields, which are the graviton hMN , the two–form BMN , the three–form flux CMNP and

two 16–component Majorana–Weyl spinors.1 This action of the g-twist on the Type IIB

supergravity fields compactified on T 4⊗T 2 can be realized in an appropriate complex

coordinate system(z1, z2) on T 4 and (z3) on T 2 as [31].

dz1 → e
2πi
N dz1 , dz2 → e−

2πi
N dz2 , dz̄1 → e−

2πi
N dz̄1 , dz̄2 → e

2πi
N dz̄2 ,

dz3 → dz3 , dz̄3 → dz̄3 . (B.0.1)

1The indices M,N take values 0, . . . , 9, while µ, ν will take values 0, . . . , 3 which label the non–

compact directions. The indices m,n will take values 4, . . . , 9 and label the compact directions.
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Multiplet Number of Multiplets g–Eigenvalue

Gravity 1 1

Gravitino 2 e−
2πi
N

Gravitino 2 e
2πi
N

Vector 4 1

Vector 1 e−
4πi
N

Vector 1 e
4πi
N

Table B.1: The g–charges of the N = 4 multiplets. It is natural to expect the gravity

multiplet to remain invariant since the 4D spacetime metric hµν is a spacetime field and is

unaffected by coordinate transformations on the internal directions.

These transformations can be thought of as individual rotations along the two cycles of

T 4. The g–action on the ten dimensional fields is realized as a field transformation under

the different representations of the Lorentz group. In the four dimensional theory obtained

on compactification, the g–action may be thought of as an internal symmetry.

The compactification of the N = 2 supergravity fields on T 4⊗T 2 gives one N = 8

gravity multiplet in four dimensions. This contains one graviton hµν , 8 spin–3
2

Majorana

fields, 28 spin–1 fields, 56 spin–1
2

Majorana fields and 70 real scalars. The spin–2 field hµν

is just the spacetime metric. The spin–1 fields come from Gµm, Bµm, Cmnµ and Aµ. The

scalars come from Gmn, Bmn, Am, Cmnp, dualizing the components Cmµν of the three–

form field, and the axion and the dilation. The origin of the 8 spin–3
2

fields and 48 spin–1
2

fields lie in the spin–3
2
ψαµ and spin–1

2
ϕαm multiplets obtained on compactification of the

two 16 component Majorana–Weyl spinors over T 6. Eight of the remaining spin–1
2

fields

come from the compactification of the two ten-dimensional ψα[10] spinors.
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The g–twist commutes with 16 of the 32 supersymmetries. Hence we split the N = 8

gravity multiplet into one N = 4 gravity multiplet, four gravitino, and six vector multi-

plets. As g commutes with the N = 4 subalgebra, all the members of a given N = 4

multiplet carry the same g–charge. The g-charge of every field has been found to conform

with the g-charge of the membership multiplet. The final results of this computation have

been summarized in Table B.1.
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APPENDIX C
Useful Summation Formulae

In this appendix we shall list various formulae useful when summing over the conical

terms in the Heat Kernels. Let us denote the SU(2) Weyl character as χl and the sl(2, R)

Harish-Chandra (global) character as χλ, then

χl

(πs
N

)
=

sin
[
πs(1+2l)

N

]
sin
[
πs
N

] , χl+ 1
2

(πs
N

)
=

sin
[

2πs(1+l)
N

]
sin
[
πs
N

] ,

χbλ

(πs
N

)
=

cosh
(
π − 2πs

N
λ
)

cosh(πλ) sin
(
πs
N

) , χfλ

(πs
N

)
=

sinh
(
π − 2πs

N
λ
)

sinh(πλ) sin
(
πs
N

) , (C.0.1)

where b & f respectively denote bosons and fermions.

In the bosonic computation, the following formulae will be useful,

∞∑
l=0

χl

(πs
N

)
=

1

2 sin2
[
πs
N

] , ∞∑
l=1

χl

(πs
N

)
=

cos
[

2πs
N

]
2 sin2

[
πs
N

] ,
∞∑
l=0

∫ ∞
0

dλχbλ

(πs
N

)
χl

(πs
N

)
=

1

4 sin4
[
πs
N

] ,
∞∑
l=1

∫ ∞
0

dλχbλ

(πs
N

)
χl

(πs
N

)
=

cos
[

2πs
N

]
4 sin4

[
πs
N

] . (C.0.2)
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In the fermionic computation, the following formulae will be useful,

∞∑
l=0

χl+ 1
2

(πs
N

)
=

cos
[
πs
N

]
2 sin2

[
πs
N

] , ∞∑
l=1

χl+ 1
2

(πs
N

)
=

cos
[

3πs
N

]
2 sin2

[
πs
N

] ,
∞∑
l=0

∫ ∞
0

dλχfλ

(πs
N

)
χl+ 1

2

(πs
N

)
=

cos2
[
πs
N

]
4 sin4

[
πs
N

] ,
∞∑
l=1

∫ ∞
0

dλχfλ

(πs
N

)
χl+ 1

2

(πs
N

)
=

cos
[
πs
N

]
cos
[

3πs
N

]
4 sin4

[
πs
N

] . (C.0.3)

Also, the following summation formulae will be useful

N−1∑
s=1

1

sin2
[
πs
N

] =
N2 − 1

3
,

N−1∑
s=1

sin2
[πs
N

]
=
N

2
,

N−1∑
s=0

cos2
[πs
N

]
=
N

2
,

N−1∑
s=1

1

sin4
[
πs
N

] =
N4 + 10N2 − 11

45
,

N−1∑
s=1

cos
[

2πs
N

]
sin2

[
πs
N

] =
N2 − 6N + 5

3
,

N−1∑
s=1

cos
[

4πs
N

]
sin2

[
πs
N

] =
N2 − 12N + 23

3
,

N−1∑
s=1

cos
[

2πs
N

]
sin4

[
πs
N

] =
N4 − 20N2 + 19

45
,

N−1∑
s=1

cos
[

4πs
N

]
sin4

[
πs
N

] =
N4 − 110N2 + 360N − 251

45
. (C.0.4)
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