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Summary

In this thesis we have presented studies on two problems in modern condensed matter physics
using field theoretical methods.

Firstly, we have presented a one-loop renormalization group based study of perturbative
Coulomb interaction in triple-Weyl semimetals. We found that the system is driven from its non-
interacting fixed point to an anisotropic fixed point where the Coulomb interaction is screened
only in the momentum direction in which the dispersion is linear. This gives logarithmic
corrections to specific heat and longitudinal conductivities. We also presented a RG study of the
effect of scalar Gaussian disorder in which we found that the system is perturbatively unstable to
it and is likely driven to a diffusive metal phase. These findings are qualitatively similar to the
double-Weyl semimetals, but with stronger (scaling) effects in the triple-Weyl case. In addition,
we also gave a Boltzmann transport calculation for longitudinal conductivities and presented
their scaling forms with temperature and chemical potential. Materials realizing the triple-Weyl
semimetals have been elusive so far, but it would be interesting to compare our results with the
experimental data once a material is synthesized.

Secondly, we studied bilayers and quasi-three-dimensional stacks formed from Jain’s frac-
tional quantum Hall states at ν = 2/5 and ν = 2/3, using their parton construction descriptions
and argued for their relevance to the situation when the interlayer couplings between the layers
is in the intermediate range. Using K-matrix descriptions of these theories, we calculated the
toric ground state degeneracies and quasiparticle properties of the bilayered systems and argued
that they are different from what one would have obtained for completely decoupled layers. In
the quasi-3D scenario, we found that in the quasi-3D bulk a gapless gauge mode emerges whose
origin is linked to the gauge interactions between the layers (generated through interlayer hop-
ping). We also discuss that studying their surface transport is difficult due to the gapless gauge
excitation in the bulk potentially destroying the energetic distinction between bulk and (gapless)
boundary modes.
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Chapter 1
Introduction and structure of thesis

1.1 A preface

Quantum field theory has found many applications, both conceptually and methodologically, in
many areas of condensed matter physics. In addition, many developments in field theory have
been inspired from problems in condensed matter physics.

Diagrammatic Feynman methods, renormalization group theory, path integrals, abelian and
non-abelian gauge theories, topological objects such as solitons and instantons, conformal field
theory, topological field theories such as the Chern-Simons theory, non-linear sigma models,
functional bosonization and many more topics in field theory have applications in modern
condensed matter theory, and several books have been written covering these ideas and methods
with the theme of "field theory in condensed matter physics", see for instance [11–44].

The common theme of this thesis is the use of some field theory methods in two problems in
two topics within contemporary condensed matter. The two topics covered are -

A - A renormalization group study of the effects of Coulomb interactions and scalar disorder
in the triple-Weyl semimetals.

B - A parton construction based study of bilayers, and quasi-three-dimensional limit, of Jain
series fractional quantum Hall states.

Since the two topics covered are independent of each other, in this introductory chapter we
give a very brief overview of the contents in the corresponding chapters.

1.1.1 Weyl semimetals

In many condensed matter systems in three dimensions, it can happen that a valence and a
conduction band touch each other at isolated points (nodes) ±k0 in the Brillouin zone. At
these isolated points, the gap thus closes and these systems are thereby called as semimetals.
When at least one of time or the inversion symmetry of the underlying system is broken, then
at and very near these nodes, the effective low-energy Hamiltonian takes the form of a Weyl

5



Chapter 1. Introduction and structure of thesis

equation (massless two-component Dirac equation), thus the name Weyl semimetal. That is,
H = v ±σ.k, where σ are the Pauli matrices denoting the pair of touching bands. These nodes
in the momentum space carry unit (±1) Berry monopole charge that are equal and opposite to
each other in such a manner that the Brillouin zone as a whole carries no net monopole charge
in order to obey the Nielsen-Ninomiya theorem [55, 66]. For example, when time reversal is
obeyed but inversion is broken, nodes at ±k1 have the same Berry monopole charge and thus
the Brillouin zone has to have at least two other nodes at ±k2 of opposite monopole charge,
and thus the Brillouin zone has a total minimum of 4 nodes. On the other hand, when inversion
symmetry is intact but time reversal is broken, nodes occuring at ±k1 are of opposite monopole
charge and thus the Brillouin zone has a minimum of 2 nodes [55, 66].

If additionally point group symmetries are present, [77] showed two more exotic possibilities,
whose arguments we briefly review in Chapter 2. The two possibilities are the double-Weyl
semimetals and the triple-Weyl semimetals. The former has quadratically dispersing bands in
two directions and linearly dispersing band in the third, and its nodes have monopole charge±2.
The latter has cubically dispersing bands in two directions and linearly dispersing band in the
third, and its nodes have monopole charge ±3. Expected material realizations of DWSM as yet
are HgCr2Se4 and SrSi2 [77–1010], while TWSM awaits material realizations.

Semimetals, of whichever type, owing to their vanishing density of states at Fermi level can
be readily affected by the long-range Coulomb interactions inherent in any system, as these long-
range interactions may not be screened to a short-range interaction as usually happens in normal
metals. In Chapter 2, after an introduction at the beginning with pointers to relevant studies in the
literature on regularWeyl and other semimetals, we present a study of how perturbative Coulomb
interactions effect the non-interacting triple-Weyl semimetals using renormalization group (RG)
method at one-loop. The RG is perfectly suited for this purpose as the whole framework of the
RG is to decide which sort of interactions are "relevant" or "irrelevant". A relevant one brings
the earlier system at its noninteracting "fixed point" to a new "fixed point" where the interactions
may produce a new phase, or a modified form of the original system such as, as in the case of
triple-Weyl semimetals, an anitropically screened interacting semimetal. The effect of this on the
analytical form of measurable quantities such as the specific heat is also presented. In addition,
we also present a perturbative RG study of the weak scalar disorder in a triple-Weyl semimetal,
finding that the system is perturbatively unstable to even a weak disorder. This study is based
on [1111]. We note that the published version [1111] contains an error in the section about disorder
and an erratum has been submitted to the journal. In this thesis we have presented the corrected
version of the disorder section.

Before we end this section of this introductory chapter, let us present a brief review of Berry
phases in band theory and Weyl semimetals.
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1.1. A preface

1.1.1.1 Berry phases, Band theory and Weyl nodes

In solid state band theory, one deals with periodic lattices in which electrons reside under a
potential function V (r) which is translationally invariant under translation by lattice vectors
b. Thus, Bloch’s theorem says that the eigenstates of the system can be labeled by the lattice
momentum k along with a band index label n,

|ψnk(r)〉 = exp(ik.r)|φnk(r)〉 (1.1)

where φnk(r) has inherits the lattice periodicity, and are called as the Bloch states. This also
restricts the lattice momentum k to lie in the first Brillouin zone (BZ). In a periodic system,
the BZ is also periodic and is geometrically often represented as a circle (in one dimensional
BZ) or a torus (in two dimensional BZ), and generally as a d-torus in d-dimensions, where a
d-torus = S1 × S1 × ...dtimes. The Bloch states are eigenstates of the Hamiltonian H(k) and
the corresponding eigenvalues εn(k) are also periodic in the momentum space with a period of
the reciprocal lattice vector.

Berry phases [1212] appear when a set of parameters in a Hamiltonian are varied adiabatically,
such that when the parameters return to their original values, the eigenstates attain an extra phase
factors, which are the Berry phases. In the above, k (within BZ) play the role of parameters over
the BZ, and one round of traversing the BZ constitutes the action of k returning to their initial
values. Thus, we illustrate the theory of Berry phase in this setting itself.

Suppose we adiabatically evolve the system in time t, and track the eigenstates φnk(t).
Adiabaticity means that the state φnk(t) is an instantaneous eigenstate of the Hamiltonian, but
it can in general pickup a phase as per quantum mechanical principles. This is akin to a gauge
redundancy in defining an (eigen)state. Thus, we can write the instantaneous eigenstate as,

|ψn(t)〉 = exp(iθn(t)) exp
(
− i
∫ t

0

dt′εn(k(t′))
)
|φn(k(t))〉. (1.2)

Substituting this into the Schroedinger equation, i∂t|ψn(t)〉 = H(k(t))|ψn(t)〉, multiplying from
the left by 〈ψn(t)|, some algebra yields the Berry phase,

θn[C] = i

∫
C
dk〈ψn(t)| ∂

∂k
|ψn(t)〉 =

∫
C
dk.An(k). (1.3)

The quantityAn(k) is known as the Berry connection or the Berry vector potential, and like any
vector potential or a connection field, it is gauge dependent. In the above, C is the closed contour
in the parameter (momentum) space. If a gauge transformation is performed on the eigenstates,
φn(k)→ exp(ig(k)φn(k(t)), the Berry connection is transformed as,

An(k)→ An(k)− ∂

∂k
g(k). (1.4)

Thus, we can define a gauge invariant quantity, the Berry curvature Ωn(k) from the Berry
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Chapter 1. Introduction and structure of thesis

connection, which in three dimensions can be concisely written as Ωn(k) = ∇×An(k). From
Stokes’ theorem then, we can equivalently write θn[C] =

∫
S dS.Ωn(k), where S is the surface

enclosed by the contour C.

In the parameter (momentum) space, the gauge invariant, and therefore physicallymeaningful,
Berry curvature plays the role of a magnetic field. Clearly, the Berry phase picks up values in
the multiples of 2π under varying the parameters (momenta) in closed contours. Moreover, the
Berry phase depends only the contour C and is therefore a geometric property of the parameter
space.

From the Berry curvature, one can define topological invariants by a global integration of
the curvature, a most useful one among them being the Chern number [1313]. When the parameter
(momenta) space is a surface S without boundaries such as the sphere or the torus, as is the
case with the BZ in our case, and since one can think of the Berry curvature as some abstract
magnetic field, there can exist a non-vanishing "flux" through the surface S. A powerful result
is that this flux is quantized,

1

2π

∫
S

Ωn(k)d2k = Cn, (1.5)

where Cn is the so-called Chern number (often also referred to in the context of Berry phases as
the Berry monopole charge for its close resemblance to Dirac’s monopole quantization) which
is always an integer, and is directly seen from the above to also be gauge-invariant, and thus has
physical meaning. Thus, every band n is labeled by an integer-valued topological invariant Cn.

Indeed, in the famous "TKNN" paper [1414], the authors showed using the Kubo formula for
the Hall conductivity and first order perturbation theory that the Hall conductivity σxy is directly
related to the Berry curvature and thus to the Chern number,

σxy =
e2

~2

∑
n

1

4π2

∫
d2kΩn(k), (1.6)

where the integration is performed over energy levels below some Fermi energy. When the Fermi
energy lies in a gap, the integral covers the entire BZ and then one has,

σxy =
e2

h

∑
n

Cn. (1.7)

Thus, the Hall conductivity is also a topological invariant, and this discovery marked the begin-
ning of the field of topological phases in condensed matter physics.

Coming to regular Weyl semimetals, using the above expressions, one can readily calculate
the Berry monopole charge associated to its Hamiltonian and find it to be ±1, and likewise for
double- and triple-Weyl semimetals to be ±2 and ±3 respectively. The Hall conductivity, owing
to the above discussion, similarly also distinguishes, as a measurable quantity, between these
semimetals.
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1.1. A preface

1.1.2 Jain’s FQH states

Fractional quantum Hall (FQH) effect is one of the most interesting and widely studied phe-
nomena in modern condensed matter physics [1515, 1616]. Here we present a brief overview of
the FQH physics. The idealized experimental system we have in mind is the two-dimensionally
confined electron gas kept in sufficiently strong perpendicular magnetic field such that the spins
of the electrons have been polarized and we can imagine the 2D quantum Hall strip to contain
effectively spinless electrons strongly interacting with each other through microscopic Coulom-
bic interactions while simultaneously also performing cyclotron motion in the plane due to the
perpendicular magnetic field.

The interplay between the inter-particle interactions, planar confinement, effectively quenched
kinetic energy due to the magnetic field transforming the system into a series of Landau levels,
and the consequent cyclotron motion, makes the problem highly non-perturbative, as within a
single Landau level (say the lowest one) the only energy scale is the Coulomb interaction scale
e2/`B, and there is no small parameter with which to construct a perturbation theory. From this
setting emerges a unique and non-perturbative many-body state at certain filling factors that are
called as the fractional quantum Hall states. We assume that the magnetic field is so strong that
all the electrons of the system have been forced to reside only in the lowest Landau level, and
the next Landau level is thus separated from the lowest one by a large cyclotron gap ~ω that
is unachievable by the electrons in the lowest Landau level, that is we assume no Landau level
mixing in this idealized scenario. The filling factor ν is defined as the ratio of the electron density
to the magnetic flux density of the confined 2D layer. At these fillings, the Hall conductivity σxy
is fractionally quantized as νe2/h. The Hall resistance exhibit quantized plateaus at these fillings
with respect to the magnetic field, where as the longitudinal resistance shows a deep minimum.
Moreover, the FQH states are "incompressible", meaning the ground state is gapped from the
excitations [1515, 1616].

1.1.2.1 Laughlin and Jain States

Let us review the two primary classes of FQH states observed in the experiments, the Laughlin
and the Jain states. The Laughlin states [1717] are states at filling factor ν = 1/m, with m an odd
integer (>1) for a fermionic system. The Jain states [1818], also called composite fermion states,
correspond to ν = m/(2pm ± 1) with both m and p integers. Note that the Jain class of states
subsume the Laughlin states.

The wavefunction of the fermionic Laughlin states take the form,

Ψ1/m = Πi<j(zi − zj)m exp(− 1

4`2

∑
i

|zi|2), (1.8)

where zi denote the coordinates of the ith electron written as a complex number on the plane, the
magnetic length ` = (~c/eB)1/2, B being the applied perpendicular magnetic field. The oddity
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Chapter 1. Introduction and structure of thesis

ofm ensures antisymmetry under fermionic exchange.
The Jain series of states view the FQH of the electrons as an effective integral quantum Hall

(IQH) effect of new emergent degrees of freedom called the composite fermions [1616, 1818]. In this
picture, each electron is imagined to bind with itself two (or any even number in general) units
of flux from the background magnetic field, and the resultant "composite fermion" object sees a
reduced total magnetic field. In other words, if ρ is the electron density, φo is the flux quantum,
and 2p denotes the even number of attached fluxes, then the effective reduced magnetic field seen
by the composite fermions (CFs) is,

B∗ = B − ρφo2p. (1.9)

The proposal of [1818] says that when the CFs have an IQH effect of their own, that is, their
effective filling factor is an integerm, where by definition of a filling factor,m = ρφo/|B∗|, and
since the density of CFs is the same as the density of electrons, from the above equation it is
directly seen that the electronic filling factor ν is simply,

ν = m/(2pm± 1) (1.10)

where the ± indicates whether the effective magnetic field experienced by the CFs B∗ points
in the same direction to B or opposite. We note that an important assumption is made in these
arguments - that the quantum Hall gap does not close during this imaginative process of flux
attachement.

The wavefunction for the states described in the CF framework can be written as,

Ψν = PLLLΦ±mΠi<j(zi − zj)2p exp(− 1

4`2

∑
i

|zi|2) (1.11)

where PLLL is formally an operator for projecting into the lowest Landau level the technicalities
of which we do not get into here [1616], and Φm is the Vandermonde determinant representing the
fact that the CFs occupym filled Landau levels, which form = 1 takes the simple form,

Φ1 = Πi<j(zi − zj)m exp(− 1

4`2

∑
i

|zi|2) (1.12)

For higher values ofm, it takes substantially more complicated forms [1616].
It is now clear from above that the Laughlin wavefunctions correspond to the m = 1 case

of the CF wavefunctions, that is, Laughlin states are described by CFs exhibiting an integral
quantum Hall effect of one (lowest) fully filled Landau level.

We would like to point out a few points in passing -
1 - Even though the above descriptive picture talks of attaching "flux" quanta to the electrons,

the actual CF wavefunction above instead attaches vortices to the electrons [1818], where a flux
quanta refers to the phase of the complex number (zi−zj) while a vortex is this complex number

10



1.1. A preface

of the Jastrow form itself. Indeed, the CF wavefunctions above take the Jastrow form and attach
2p vortices to the electrons. On the other hand, the field theoretic description of the CF physics
in terms of CF Chern-Simons theory [1919] attaches fluxes to the electrons at the mean field level
and the "flux attachement" procedure is thus named from this theory. We do not get into the CF
Chern-Simons description here and instead refer to its review in [11].

2 - The CF picture essentially reduces the problem of strongly interacting electrons in a
fractionally filled Landau level to a problem of effectively non-interacting CFs occupying fully
filled Landau levels. This lends the problem tractable to a large extent [1616].

1.1.2.2 Effective Chern-Simons theory

In this subsection, we briefly describe howChern-Simons (CS) theories [2020] capture the universal
low-energy picture of FQH physics. This particular view described below is often referred to
as the hydrodynamic theory of FQH effect [2121]. In the parton theory of FQHE, the CS theory
enters in this manner indeed and Chapter 3 begins with reviewing the parton theory of the Jain
states of relevance to the chapter. We consider just the basic case of an abelian CS terms, which
correspond to abelian FQH states only.

The "hydrodynamic" description is an effective description of the quantum Hall bulk that
is obtained only from considerations of universal physics of the low-energy. One begins with
asking the general form for a gauge field bµ(x) in two dimensions whose current is conserved,
that is, ∂µJµ = 0. This is identically true for

Jµ(x) =
1

2π
εµνλ∂νbλ. (1.13)

Under a local transformation bµ(x) → bµ(x) + ∂µφ(x), Jµ → Jµ, and so bµ(x) is indeed a
U(1) gauge field. One then asks the general form for the action for this theory in two space
dimensions that is time-reversal breaking and parity-breaking (as we want to describe a quantum
Hall system), gauge invariant and local. The first natural guess of aMaxwell action is not correct,
as it is invariant under time-reversal. Locality is demanded due to the fact that the QH bulk is an
incompressible, that is gapped, system and thus the low-energy action must be local.

It is here that the Chern-Simons term enters into the picture. It not only satisfies all the above
required conditions, but is more "relevant" in the low-energy than the Maxwell terms due to
containing only one derivative instead of two (in the case of Maxwell terms). Thus the leading
term in the effective theory is a CS term.

(Note that we are talking only about describing the QH bulk; for a QH system with boundary
the CS bulk theory is not gauge-invariant in the bulk separately, but instead produces non-
vanishing dynamics at the edges and gauge invariance is maintained only over the full system
[2121]. We do not get into these issues here.)

Thus, consider the Lagrangian,
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Chapter 1. Introduction and structure of thesis

L[bµ] =
m

4π
εµνλbµ∂νbλ + eJµAµ, (1.14)

where Aµ is the external electromagnetic (EM) field, e the charge of the incompressible fluid
constituents described by the currents Jµ, andm is an integer.

It is readily verifiable from here that the theory above describes a QH bulk. To capture the
Hall conductivity, we integrate out the bµ field to obtain an effective Lagrangian for the EM field,

Leff [Aµ] = − e2

4πm
εµνλAµ∂νAλ. (1.15)

From here, we have the induced current by definition,

eJ inducedµ = −δLeff
δAµ

=
e2

2πm
εµνλAµ∂νAλ. (1.16)

The Hall conductivity, in units of ~ = 1 and c = 1), follows from the above,

σxy =
1

m

e2

2π
. (1.17)

Thus, when m 6= 1, this describes an FQH system corresponding to the filling fraction
ν = 1/m, that is the Laughlin states. Likewise a description of this sort can be given for the
Jain states, and the parton theory of the Jain states reviewed in Chapter 3 shall serve partly as an
illustration in the same spirit as above, because in any parton description, the individual partons
are put into effective QH theories with appropriate CS terms in the same spirit as above.

Note that ifm is an even integer, the resultant theory describes a QH effect in a bosonic system
(bosonic because the corresponding wavefunction, say the Laughlin type, would be symmetric
under particle exchange). A composite boson CS theory of FQH effect was the first CS based
theory of FQHE that was proposed in [2222] and in a flux-attachement picture, a composite boson
results from attaching odd number of flux quanta to the electron as opposed to the even number
2p of them in the composite fermion picture.

What about excitations? Suppose in the low-energy hydrodynamic picture, the excitations
have smooth "worldlines" and can be represented by another current field jµ and they minimally
couple to the gauge fields bµ. The total Lagrangian now is,

L[bµ] =
m

4π
εµνλbµ∂νbλ + eJµAµ + jµbµ. (1.18)

Integrating the bµ we have,

Leff [Aµ, jµ] = − e2

4πm
εµνλAµ∂νAλ +

e

m
jµAµ −

π

m
jµBµ. (1.19)

Here, Bµ is a field generated due to the fact that we can always write jµ = εµνλ∂νBλ. This
term in the above action is responsible for giving the quasiparticle excitations fractional statistics
angle θ = π/m through a subtle "worldline picture" derivation given by Polyakov [2323] that we
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1.1. A preface

do not review here and instead refer to the original article of Polyakov and to [11] for an indepth
discussion of this.

However, let us show that the quasiparticle excitations carry fractional charge. The electro-
magnetic current is obtained from the above effective Lagrangian as,

eJEMµ = −δLeff
δAµ

=
e2

2πm
εµνλAµ∂νAλ −

e

m
jµ. (1.20)

If we assume that there is just one quasiparticle excitation at the origin, that is, j0 = δ(x) and
j = 0, then the above equation becomes,

eJEM0 =
e2

2πm
B − e

m
δ(x), (1.21)

where B is the external uniformly applied magnetic field. The second term in this equation
clearly tells us that the quasiparticle excitation’s charge is fractional at e/m.

A CS theory with coefficient m > 1 exhibits ground state degeneracy on torus = m (see
Appendix in Chapter 3 for a short demonstration). This is one of the ways in which FQH systems
are "topologically ordered" [11, 22, 2424, 2525].

These results are readily generalizable to a multicomponent CS theory described by the
K-matrix representation [2121, 2626], which will be used in Chapter 3 where we present a study of
bilayers and quasi-three-dimensional stacks formed from Jain FQH states at ν = 2/5 and 2/3

using their parton descriptions and the consequent K-matrix theories, based on [2727].
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Chapter 2
Effects of Coulomb interaction and
disorder on triple-Weyl semimetal

2.1 Introduction

As we reviewed in the introductory chapter, semimetals are systems with isolated band-touching
points in the Brillouin zone which have attracted a lot of interest and activity in recent years.
Near these band-touching points, quasiparticles typically obey a linearised dispersion. Prominent
examples include Dirac semimetals in two dimensions such as graphene, and Weyl semimetals
[55, 66, 2828] in three dimensions. It is also possible to have band-touching points with non-linear
dispersion in some or all directions, with the additional requirement of some lattice symmetry
protecting them. Examples include parabolic (or quadratic band-touching) semimetals in 2D
[2929] and 3D [3030], and double-Weyl and triple-Weyl semimetals [77].

Due to vanishing density of states (DOS) at Fermi level, semimetals in general behave
differently under long-range Coulomb interactions compared to normal Fermi liquids where due
to finite DOS Thomas-Fermi screening occurs and the long-range interactions are effectively
reduced to short-range. In semimetals, vanishing DOS implies no such screening, and long-
range interactions can drive a semimetallic system to a new non-trivial system such as, in case
of 3D quadratic band-touching (QBT) systems for instance, the Abrikosov-Luttinger non-Fermi
liquid [3030–3333] or a topological Mott insulator [3434]. In case of linearly dispersing semimetals
such as the undoped Dirac and Weyl semimetals, long-range interactions typically are irrelevant.
For DWSM, due to its somewhat higher DOS compared to linearly-dispersing WSM, it has been
shown that perturbative long-range Coulomb interaction drive the system to a new fixed point
where anisotropic screening of the Coulomb interaction occurs and variousmeasurable quantities
such as the specific heat, conductivities, etc acquire logarithmic corrections [3535, 3636]. Short-range
interactions are perturbatively irrelevant in semimetals in general, again due to vanishing DOS,
however sufficiently strong short-range interactions can induce interesting gapped phases. In 2D
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Chapter 2. Effects of Coulomb interaction and disorder on triple-Weyl semimetal

QBT models for instance they can result in nematic and quantum anomalous Hall states [2929] and
in Weyl semimetals resulting states can be charge and spin density waves and axionic insulators
[3737, 3838], excitonic insulators [3939], and superconductivity of both BCS and unconventional
FFLO/PDW type [4040–4343].

The difference with respect to long-range Coulomb interaction in the behaviour of linearly
dispersing semimetals compared to semimetals with higher power of dispersion stems from
the fact that while they all have vanishing DOS, the latter type still has higher DOS than the
former. In this chapter we will study the effects of long range Coulomb interaction in triple-Weyl
semimetals, which in the low-energy limit have higher DOS ∝ ε2/3 than DWSM with DOS ∝ ε

and regular WSM with DOS ∝ ε2. We will see that similarly to DWSM, TWSM also screen the
Coulomb interaction anisotropically and the screening effect is somewhat stronger compared to
DWSM, and we will show logarithmic corrections to measurable quantities such as the specific
heat and conductivities.

Subsequently, we will consider the case of weak scalar disorder in TWSM. The general
subject of disorder in semimetals has been an active and widely debated area of research. More
than 30 years ago, Fradkin [4444, 4545] studied the problem within a self-consistent approach and
found that Dirac (and Weyl) semimetals are stable with respect to weak disorder. Subsequently,
after the emergence of the field of topological semimetals, this problem was re-analysed using
RG and other methods with the same conclusion, see for instance [4646–5454]. However, recently it
was argued in [5555] that even weak disorder can induce rare-regions effects in Dirac (and Weyl)
semimetals (which are not accounted for in self-consistent Born apprimation and RG studies),
thereby threatening their stability against disorder. Related issues have also been studied in
[5656, 5757]. Moreover, in the presence of both disorder and Coulomb interactions, Dirac and Weyl
semimetals can show non-Fermi liquid behaviour [5858]. A good general review on disorder effects
in various semimetals is [5959].

Coming to multi-Weyl semimetals, for the case of DWSM, it is easy to argue that due to
higher DOS than regular DSM/WSM, disorder must have stronger effects on DWSM and indeed,
it was found that DWSM is unstable against weak scalar disorder in a one-loop RG analysis in
[6060, 6161]. We will see that TWSM is also unstable against weak scalar disorder.

Let us first begin with reviewing the arguments for the existence in principle of multi-Weyl
semimetals.

2.2 Generalities on multi-Weyl semimetals

In this section, we briefly review the general setting and arguments of [77] for the existence in
principle of multi-Weyl semimetals, and we choose to use their notational conventions. Let
Cn denote the rotation symmetry operator (about a chosen axis) of a three-dimensional lattice,
where n can take values (2, 3, 4, 6). Consider the operator Cm, where m is a factor of n, the
system obviously also remains invariant under Cm (we also assume translational symmetry). For
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2.2. Generalities on multi-Weyl semimetals

a tight-binding HamiltonianH(k), we have then

CmH(k)C−1
m = H(Rmk), (2.1)

where Rm is the corresponding rotation matrix about a chosen axis (which will be the z-axis
in the discussion below). In general there exist lines in momentum space for which Rmk = k

holds for all k in the Brillouin zone (BZ), and for generic non-identity rotation matrices. On
these lines then, the above equation directly implies,

[Cm,H(k)] = 0. (2.2)

Thus, all bands on these lines can be labeled by the respective eigenvalue(s) of Cm operator.
For semimetallic systems where the a valence band and a conduction band meet at k0 on a
Cm-invariant line, for a small in-plane deviation q around this point the Hamiltonian takes an
effective form near this point as,

Heff (k0 + q) = f(q)σ+ + f ∗(q)σ− + g(q)σz. (2.3)

Here, σ± = σx ± iσy, f and g are complex and real functions respectively, and the conduction
and valence bands correspond to the basis (1, 0)T and (0, 1)T respectively. It is readily seen that
in this basis, the matrix representation of Cm is diagonal, and we denote its diagonal elements as
uc and uv where the subscripts correspond to conduction and valence bands respectively.

An eigenvalue of Cm is of the general form αp = exp(2πip/m), with p = 0, 1, , ,m− 1. Let
then uc = αp and uv = αr. When p 6= r, the matrix representation of Cm is simply,

rep(Cm) = exp(iπ
p− r
m

σz). (2.4)

The general form of the effective Hamiltonian written above transforms under Cm as,

CmHeff (q)C−1
m = g(q)σz + f(q) exp(−2πi

p− r
m

)σ+ + h.c. (2.5)

whereas the momenta basis q± = qx ± iqy transforms under the rotation as,

Rm(q+, q−) = (q+ exp(
2πi

m
), q− exp(−2πi

m
)). (2.6)

From these, we have the following constraint equations on the form of f and g for a given
(p, q),

f(q+, q−) exp(−2πi
p− r
m

) = f(q+ exp(
2πi

m
), q− exp(

−2πi

m
)), (2.7)

G(q+, q−) = g(q+ exp(
2πi

m
), q− exp(

−2πi

m
)). (2.8)
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Chapter 2. Effects of Coulomb interaction and disorder on triple-Weyl semimetal

The essential message here is that in a lattice the rotational symmetry is discrete of a finite
order (m here) and thus total angular momentum is conserved only modulo m. So when p 6= r,
we have uc/uv = exp(2πi(p − r)/m), implying that the total angular momentum between the
valence and conduction bands differs by p− r. To conserve the total angular momentum modulo
m, the off-diagonal term in the effective Hamiltonian must have the momentum dependence of
the form qp−r− or qm−p+r+ .

These considerations gives the classification of Weyl-semimetals protected by the lattice
rotation symmetry as described in greater detail in, and listed in, [77]. The double-Weyl semimetal
corresponds to the case of C4 symmetry and uc/uv = −1, for which the effective Hamiltonian
takes the form, in terms of general complex parameters a, b, c in which a may be equal to b,

Heff (q) = (aq2
+ + bq2

−)σ+ + cσz + h.c., (2.9)

and a similar form is obtainedwhen the symmetry of the lattice isC6 withuc/uv = − exp(±2πi/3).
The triple-Weyl semimetal is obtained only in the case of lattice symmetry being C6 with

uc/uv = −1, and the effective Hamiltonian is of the form,

Heff (q) = (aq3
+ + bq3

−)σ+ + cσz + h.c., (2.10)

No higher order Weyl nodes are obtained from this analysis of [77]. From these effective
Hamiltonians, the Berry monopole charges can be directly evaluated and found to be±2 and±3

respectively for the DWSM and TWSM.

2.3 TWSM with Coulomb interaction

As reviewed above, the effectiveHamiltonian of a triple-Weyl semimetal takes the formH = ~dq.~σ,
where,

~dq ≈ [
q3
x − 3qxq

2
y

m
,
q3
y − 3qyq

2
x

m
, vzqz]. (2.11)

This Hamiltonian has been written after expanding the q± in the previous notations, and the
parameters being a = b = 1/m and c = vz .

Let the two nodal points be at ±Q. We can write the fermion operators near the nodes as,

Ψ(r) =

∫
d3k

(2π)3
ψ(k)eik.r

=

∫
d3k

(2π)3
ψQ(k)ei(k+Q).r +

∫
d3k

(2π)3
ψ−Q(k)ei(k−Q).r

= ΨQ(r)eiQ.r + Ψ−Q(r)e−iQ.r (2.12)

where Ψ±Q(k) = Ψ(k±Q). The charge density can then be written in terms of the low energy

18



2.4. Renormalization group analysis

fermions Ψ±Q as,

ρ(r) = ρQ(r) + ρ−Q(r) + (Ψ†−Q(rΨQ(r)ei2Q.r + hc), (2.13)

where ρ±Q(r) = Ψ†±Q(rΨ±Q(r). The additional finite momenta terms above may be neglected
due to the fast oscillating factor. Nextwe consider instantaneousCoulomb interactionV (r) = 1/r

(in Fourier space this is V (q) = 1/q2), with its corresponding action,

Sint =
g2

2

∫
d3rd3r′

ρ(r)ρ(r′)

4π|r − r′|

=
g2

2

∫
d3rd3r′

[ρQ(r) + ρ−Q(r)][ρQ(r′) + ρ−Q(r′)]

4π|r − r′|
. (2.14)

By Hubbard-Stratonovich transformation, we can decouple the four-fermion interaction by intro-
ducing a bosonic scalar field φ. The effective Euclidean Lagrangian for triple-Weyl semimetals
in the presence of Coulomb interaction then has the final form,

L = Ψ†(∂τ − igφ+H(−i~∇))Ψ

+
1

2

(
1
√
η

((∂xφ)2 + (∂yφ)2) +
√
η(∂zφ)2

)
, (2.15)

where φ denotes the Coulomb interaction scalar field, Ψ the nodal fermions, g is the Coulomb
coupling (∼ e/ε where ε is the dielectric constant of the material) and η is an anisotropic
parameter introduced due to the inherent anisotropic nature of the fermionic dispersion. Since
we are studying the problem of long-range interaction, or equivalently, since we are interested
in low momentum scales, we ignore the possible coupling between the two nodes which occurs
at a much larger and finite momentum scale. We also remark that we are considering only a
Thomas-Fermi like screening, that is, no dynamical screening (Lindhard screening) is being take
into account. All our calculations below are for instantaneous Coulomb interaction, which has
no dynamic component.

2.4 Renormalization group analysis

We will adopt the RG scheme of integrating q⊥ in a shell of momentum (Λe−`,Λ) while no such
momentum shell integration over qz. Here, Λ is some cutoff parameter. This procedure is similar
to the one adopted for the case of DWSM in [3535, 3636]. Defining b = el, l � 1, we write the
scaling dimensions as

τ = bzτR, x = bxR, y = byR, z = bz1zR, (2.16)

vz = Z−1
vz vzR,m = ZmmR, (2.17)

η = Z−1
η ηR, g = Z−1/2

g gR, (2.18)
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Chapter 2. Effects of Coulomb interaction and disorder on triple-Weyl semimetal

Ψ = Z
−1/2
Ψ ΨR, φ = Z

−1/2
φ φR. (2.19)

At tree level, we have [vz] = z − z1 , [m] = 3− z , [η] = 2(1− z1) , [g] = z−1
2
.

From the Lagrangian of a triple-Weyl semimetal with long-range Coulomb interaction given
in the main text, we have the fermion and boson Green’s functions as

Do(q0, ~q) =

√
η

q2
⊥ + ηq2

z

, (2.20)

Go(q0, ~q) =
iq0 + ~dq.~σ

q2
0 + E2

q

, (2.21)

where q2
⊥ = q2

x + q2
y and E2

q =
q6⊥
m2 + v2

zq
2
z .

The static boson self-energy at one-loop is

Π(~p) = g2

∫
d4q

(2π)4
tr(G0(q)G0(p+ q)) (2.22)

=
2g2

(2π)4

∫
dq0dqz

∫ ′
dqxdqy

−q2
0 + ~dq. ~dp+q

(q2
0 + E2

q )(q
2
0 + E2

p+q)
.

where the prime on the integral denotes that momentum-shell integration will be performed on
the corresponding variables. Recall that the RG scheme we have adopted is to integrate q⊥ in a
shell of momentum (Λe−`,Λ).

After doing the frequency integral, expanding and evaluating the momentum integrals to
quadratic order in the external momenta (as they are the slow modes), we get

Π(~p) =
−3g2p2

⊥`

2π2vz
− g2vzm

2p2
z`

6π2Λ4
. (2.23)

The corrected one-loop boson propagator then isD−1(p) = D−1
o (p)−Π(p). In terms of the

two dimensionless parameters

α =
m2g2vz√
ηΛ4

and β =
m2g4

Λ4
, (2.24)

we have the corrected bosonic propagator as

D−1(~p) =
1

2
√
η
p2
⊥

(
1 +

3β

π2α
`

)
+

√
η

2
p2
z

(
1 +

α

3π2
`
)
. (2.25)

The static fermion self-energy at one-loop is

Σ(~p) = −g2

∫
d4q

(2π)4
Go(q)Do(p− q). (2.26)
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2.4. Renormalization group analysis

After the frequency integral, we get

Σ(~p) = − g2

16π3

∫ ′
d3q

~d.~σ

Eq
I(q), (2.27)

where
I(q) =

√
η

(px − qx)2 + (py − qy)2 + η(pz − qz)2
. (2.28)

As before, the prime on the integral denotes momentum-shell integration declared earlier. The
correction to the σx term can be evaluated as

Σx =
tr(σx(∂

3
px − 3∂px∂

2
py)Σ(~p))

tr(σxσx)
|~p=0

≈ −
6c1g

2√η`
mvzπ2

,

where c1 ≈ 3.8. By symmetry of the dispersion in the (qx, qy) plane, Σy has the same value as
Σx. Similarly, the correction to the σz term can be evaluated as

Σz =
tr(σz∂pzΣ(~p)

tr(σzσz)
|~p=0

≈ −
c2g

2√η`
2π2

,

where c2 ≈ 0.5. Finally we have the one-loop corrected fermionic part of the Lagrangian in
terms of the dimensionless parameters as

= dxσx

(
1 +

6c1β`

απ2

)
+ dyσy

(
1 +

6c1β`

π2α

)
+dzσz

(
1 +

c2β`

2απ2

)
. (2.29)

The scaling dimensions at one-loop are

Zvz = e`(z−z1)

(
1 +

c2β`

2απ2

)
, (2.30)

Zη = e2`(1−z1)

(
1 +

α`

3π2

)(
1 +

3β`

απ2

)−1

, (2.31)

Zg2 = e`(z−1)

(
1 +

3β`

απ2

)− 1
2
(

1 +
α`

3π2

)− 1
2

, (2.32)

Zm = e−`(z−3)

(
1 +

6c1β`

απ2

)−1

, (2.33)

Zφ = e`(1+z)

(
1 +

3β`

απ2

) 1
2
(

1 +
α`

3π2

) 1
2

, (2.34)
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ZΨ = e`(2+z1). (2.35)

From the above we get the RG equations as

d ln η

d`
= 2(1− z1) +

α

3π2
− 3β

απ2
, (2.36)

d lnm−1

d`
= z − 3 +

6c1β

απ2
, (2.37)

d ln vz
d`

= z − z1 +
c2β

2απ2
, (2.38)

d ln g2

d`
= z − 1− 3β

2απ2
− α

6π2
. (2.39)

From the above equations we can determine the RG equations for the two dimensionless
parameters as

d ln β

d`
= 2z − 2− α

3π2
− 3β

απ2
, (2.40)

d lnα

d`
= z + z1 − 2− α

3π2
. (2.41)

together with the RG equations form and vz above.
The RG flow plot is shown in the figure below, from which we see that the fixed point at

(β, α) = (0, 0) is unstable and the stable fixed point lies at (β, α) = (0, 12π2).
We see that at this fixed point, from eq (3.5) above, the corrected bosonic propagator goes as

D−1(0, ~p) ≈ 1

2η
p2
⊥ +

η

2
p2
z(1 + 4`), (2.42)

implying the screening of the bosonic mode (and hence Coulomb interaction) only in the pz
direction. We expect the exact momentum dependence of the screened part to go as p2/3

z from
scaling arguments as well. This screening is somewhat larger than in double-Weyl semimetals
due to having more density of states at Fermi level. In real space, the anisotropic screening of
Coulomb potential takes the form V (r⊥, rz = 0) ∼ r−2

⊥ , and V (r⊥ = 0, rz) ∼ r
−7/3
z . At the

stable fixed point, z = z1 = 3, and g2√
η
approaches a fixed value while g2√η goes to zero, and

therefore η ∼ γ/α→ 0. While the Coulomb interaction is now irrelevant at the new fixed point,
it becomes infinitely anisotropically screened.

2.5 Effect on measurable quantities

In this section we will see that measurable quantities such as the specific heat and longitudinal
conductivities acquire a logarithmic correction due to long-range Coulomb interaction.

For convenience we can focus on the line α = 12π2 for general γ, following the approach
used in [6262]. At this point it is convenient to define a parameter γ = β/α. The RG flow for γ
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Figure 2.1: RG plot in the parameter space of the two dimensionless parameters defined in the
main text. The stable fixed point lies at β = 0,α = 12π2.
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along this path is
dγ

d`
= −γ

2

π2

(
3 +

c2

2

)
, (2.43)

from which we get the solution
γ =

γo

1 + γo
(

6+c2
2π2

)
`
. (2.44)

Consider the scaling of free energy density F . It enters the action as
∫
d3xdτF , so its scaling

is of the form F = e−`(2+z+z1)FR. From the definition of specific heat, C = −T ∂2F
∂T 2 , we see that

it scales as C = e−`(2+z1)CR, where we have used ` = 1
3

ln To
T
. From this the RG equation for

specific heat follows

dC

d`
= −(2 + z1)C = −(5− 6c1γ

π2
+
c2γ

2π2
)C, (2.45)

where we have used eq (2.37). Solving this equation together with eq.(2.41) gives

C ∼ T
5
3

(
1 + γo

(
6 + c2

6π2

)
ln
To
T

) c2−12c1
c2+6

∼ T
5
3

(
1 + γo

(
c2 − 12c1

6π2

)
ln
To
T

)
. (2.46)

where we have used the non-interacting specific heat C ∼ T
5
3 which is due to DOS ∝ ε2/3. We

see that the specific heat receives a logarithmic correction.
We note that such logarithmic corrections to measurable quantities is typical of marginal

Fermi liquids (MFL) [6363]. By this analogy, we can consider this new fixed point as a marginal
Fermi liquid phase. However, an important and subtle distinction needs to be made at this
point. Our system is inherently a semimetal (and therefore, vanishing density of states at Fermi
level), while a Fermi liquid (marginal or otherwise) is understood as a state of fermions with a
Fermi surface (and therefore a finite density of states). Therefore, in our view, the logarithmic
corrections to measurable quantities should at best be considered as a MFL-like behaviour.

2.6 Model with disorder

We will now present a short study of the effect of weak (Gaussian) scalar disorder on TWSM.
To the non-interacting action of the TWSM, we add the following disorder term,

Sdis =

∫
d4xV (x)Ψ†σ0Ψ, (2.47)

where V (x) is a white-noise Gaussian disorder potential with zero mean,

< V (x)V (x′) >= λδ3(x− x′). (2.48)
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After applying the standard replica-averaging (labeled by indices i and j), the disorder term
generates a four-fermion interaction term

Sdis = −λ
2

∫
d3xdτdτ

′
(Ψ†iσ0Ψi)~x,τ (Ψ

†
jσ0Ψj)~x′,τ . (2.49)

We can choose to carry out the RG calculations either on the four-fermion terms or on the
disorder vertex terms. Making the latter choice, a simple one-loop calculation at zero external
frequency (static disorder) for the disorder vertex obtains the following RG equation,

dλ

d`
=

mλ

4πvzΛ2
. (2.50)

It is clear from the above equation that λ = 0 is the only fixed point and it is unstable, which
means that the TWSM is unstable to weak scalar disorder in general and likely flows to a diffusive
metal phase, as argued in [6464] in which the case of vector disorder has also been considered in
detail. We note that the normal Weyl semimetal also flows to a diffusive metal phase but only
when the disorder strength is strong enough [5959].

2.7 Some Boltzmannian transport properties

Here we present a Boltzmannian calculation of longitudinal conductivities of the non-interacting
TWSM.

The Boltzmann equation for the distribution function reads as [6565],

∂f

∂t
+ ~v · ~∇rf + e ~E · ~∇kf = Icoll. (2.51)

In the standard relaxation time approximation,

Icoll = −
f(k, r, t)− feq

τ
, (2.52)

where τ is a scattering time scale (lifetime of the carriers).
Assuming the following steady-state solution valid in the linear response regime [6565],

f = feq + τ(ε(k))

(
−∂feq

∂ε

)
~v ·
(
−e ~E +

ε(k)− µ
T

(−~∇T )

)
, (2.53)

the thermoelectric response are obtained from (in the notation of [6565])

Jα = L11
αβEβ + L12

αβ(−~∇βT ), (2.54)

Jq,α = L21
αβEβ + L22

αβ(−~∇βT ), (2.55)

where the Ls are the required transport coefficients, with L11
αα = σαα = L0

α, L21
αα = TL12

αα = −L1α
e
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and L22
αα = L2αα

e2T
. The thermal conductivities are

καβ = L22
αβ − L21

αγ

(
L11
γρ

)−1
L12
ρβ. (2.56)

The explicit forms of the L coefficients are

Lnα = e2
∑
s=±

∫
d3k

(2π)3
τ (εsk))

(
− ∂f

∂εsk

)(
1

~
∂εsk
∂kα

)2

×

(εsk − µ)n . (2.57)

For TWSM, we have

ε =

√
v2
zq

2
z +

q6
⊥
m2

. (2.58)

Converting the integrals over momenta to integral over energy via the density of states, and
using the above formulas for the conductivity, one gets

σxx = σyy =
15e2τβ

64πh3vz

∫
dεε2I(ε), (2.59)

and
σzz =

5e2τβvzm
2/3

24πh3

∫
dεε2/3I(ε), (2.60)

where
I(ε) = (sech2(

β(ε+ µ)

2
) + sech2(

β(ε− µ)

2
). (2.61)

The full expression of these integrals are complicated but the important leading order terms
in the quantum limit µ� T are obtained as

σxx = σyy ≈
15e2τ

64πh3vz
(

(
µ2 +

π2

3
(kBT )2

)
), (2.62)

σzz ≈
5e2m2/3vz

24πh3
τµ2/3. (2.63)

Likewise, the thermal conductivities are obtained as

κxx = κyy ≈
5µ2τT

18h3vz
(1 +

π2T 2

9µ2
), (2.64)

κzz ≈
6πvzm

2/3µTτ

35h3
. (2.65)
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2.8 Summary

Finally, we comment on the possible fate of TWSM in the simultaneous presence of bothCoulomb
interactions and disorder, as is typically the case in real materials. In this situation, combining
the separate effects of Coulomb interactions and Gaussian scalar disorder, we would expect the
system to be perturbatively unstable to the simultaneous presence of both Coulomb interactions
and disorder. More precisely, since the effect of disorder is more drastic, we would expect
the system to flow to a diffusive metal phase [6464]. However, as with the case of normal Weyl
semimetals [5858], if the bare Coulomb interaction strength is sufficiently strong, we can expect
a stable non-Fermi liquid phase in the simultaneous presence of disorder. Indeed, recently [6464]
has studied this problem and claim to have found this result for certain generic classes of disorder
potentials. We do not review their results here and instead refer to their original article.

To summarise, in this chapter we have presented a study of the effects of long-range Coulomb
interactions on triple-Weyl semimetals. Similar to double-Weyl semimetals, we have found
that the Coulomb interaction drives the noninteracting system to a new fixed point where it
is anisotropically screened in the z−direction. The screening is somewhat stronger than in
DWSM due to higher (but still vanishing) DOS compared to DWSM. We have also found
that measurable quantities such as the specific heat receives logarithmic corrections due to the
anisotropic screening of Coulomb interaction. Similar studies have also been done in [6666, 6767],
and our results are in agreement although some of the technical details differ due to somewhat
different methods used. We have also shown that TWSM are unstable against perturbatively
weak scalar disorder, which also can be attributed to its somewhat larger DOS.
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Chapter 3
Bilayers and multilayers of Jain fractional
quantum Hall states

3.1 Introduction

In the introductory chapter, we reviewed some aspects of the fractional quantum Hall (FQH)
effect. While the essential physics of the effect is strictly two-dimensional, much research has
been done to study the consequences of the third spatial direction on FQH systems. Naturally,
the main method for such purposes is to construct multilayer systems whose individual layers
are FQH liquids, and then exploring the resultant phase or phases as a function of the separation
between the layers (which effectively controls the interactions or hopping of electrons between
the layers).

A panoply of emergent phases can result from the coupling between the FQH layers. Cou-
plings can come from either interlayer Coulomb interactions or interlayer electron hopping, both
of which depend on the interlayer separation d, and their overall effect depends on the ratio of the
interlayer separation to the intrinsic magnetic length scale of the FQH layers `B ∝ 1/

√
B, where

B is the magnetic field. When d/`B � 1, such that barely any interlayer coupling exists, the
result is essentially a system of decoupled FQH layers, such as those studied in [6868] for the case
of ν = 1/3 Laughlin states in each layer. On the other hand, when d/`B � 1 in a bilayer, the
individual layers may lose their FQH identity and effectively fuse together into a new, generally
non-FQH phase such as exciton superfluid states formed from pairing between particles of one
layer with holes of the other [6969, 7070], or interlayer paired composite fermion condensates [7171–7575]
for the case when each layer is the half-filled Halperin-Lee-Read state [7676]. The latter phases
may also emerge when d < `B (but not � `B), while when d > `B Halperin (m,m, n) states
[7777] may emerge if interlayer hopping is suppressed (infinite multilayered Halperin (m,m, n)

states have been studied in [7878, 7979]).

However, it is much less clear, even theoretically, what the situation might be when d ∼ `B.
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Chapter 3. Bilayers and multilayers of Jain fractional quantum Hall states

This intermediate regime is our interest in this article. For this regime, in [8080] Levin and Fisher
proposed a theoretical candidate multilayered state for the case of Laughlin states in each layer,
which we generalize to Jain states in each layer in this article. Let us first see this regime in
terms of various energy scales. Each layer as a cyclotron scale ω = eB/m and an intralayer
Coulomb scale ε1 = e2/`B. In addition, we have the interlayer Coulomb scale ε2 = e2/d and
interlayer hopping scale tint. Firstly, we assume ω is much larger than other scales. Our regime
is concerned with the situation when the interlayer Coulomb scale is comparable to intralayer
Coulomb scale.

The theoretical method is based on the general paradigm of parton description [8181, 8282] of
fractional quantum Hall states. In this description, an electron is imagined to be made up of
constituent partons, which are glued together through a gauge field, which arises physically
from the redundancy in the labeling of partons, or equivalently, as a Lagrange multiplier for
the constraints demanding that the individual parton currents be equal to each other to be able
to coherently form an electron. The deconfinement phase of the resultant parton-gauge theory
corresponds to the fractionalized physics of the fractional quantum Hall states [11, 8282, 8383]. In
[8080], the authors leveraged the parton description of the Laughlin state ν = 1/3 to propose
candidate states for the multilayered situation in the intermediate energy scale regime described
above. We note that the details of Parton construction in [8080] are quite different from those in
more conventional Parton constructions as in [8181, 8282]. We may therefore at times refer to the
method of [8080] (which we also follow) as a variant of Parton description which is similar is spirit
to the more conventional one. We note that proposed partonic states may compete with a nearby
Halperin states (of same filling factor) in a real experiment.

We consider specifically two representative Jain states ν = 2/5 and ν = 2/3, as these are
experimentally the most prominent ones among the Jain hierarchy. Generalization to other Jain
states is straightforward. We begin with the parton description of the Jain’s states in the following.

3.2 Parton description of the Jain states

We shall consider the closely related cases of ν = 2/5 and ν = 2/3 FQH states. Among the
states in Jain hierarchy, these two are the most prominent ones in experiments. Generalization
to general states in the Jain states is straightforward.

In the language of composite fermions (CF) [1616, 1818], both the states corresponds to integral
quantum Hall effect of the CFs at their effective filling of 2. However, the difference arises,
within this framework, in the fact that for the ν = 2/3 state, the CFs see a negative (with respect
to a fixed conventional direction) effective magnetic field.

We first review the notion of parton description of these states in general terms. In this
description, one imagines the electron to be made of constituent partons. That is, the electron
operator is written as c = f1f2f3. For the ν = 2/5th state, f1, f2 carry electrical charge of
2e/5 and f3 carries e/5. For the ν = 2/3rd state, f1, f2 carry electrical charge of 2e/3 and f3
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3.2. Parton description of the Jain states

carries −e/3. As we will see, the parsons are coupled to an emergent gauge degree of freedom
which results from the condition that the patrons constitute a composite object (the electron). A
fractionalized emergent phase of matter in which the partons are themselves the basic degrees
of freedom and not the composite object (electrons) corresponds to the deconfined phase of the
resulting gauge-matter theory arising out of this description. The next step in this description is
to make an ansatz that the individual partons occupy an integral quantum Hall state themselves.
A parton description in this way is thus an effective shortcut to describe or obtain a low energy
field theory for a given fractional quantum Hall state. For the ν = 2/5th state, f1, f2 are in ν ′ = 1

state while f3 is in ν ′ = 2 state, and for the ν = 2/3rd state, f1, f2 are in ν ′ = 1 state while f3 is
in ν ′ = −2 state.

We note here that the more canonical ways of parton descriptions such as in [8282] are based on
demanding that the partons coherently form an electron, thus their individual currents be equal
to each other, which results in an gauge degree of freedom coming up as essentially a Lagrange
multiplier. This is not directly the case with the approach of [8080] which we use, where as we will
see below, a gauge degree of freedom arises from demanding that fluctuations in the hopping
amplitudes of the individual partons be such that there is no fluctuation in the hopping of the
composite object (the electron). As such, we see that the exact origin of the gauge degree of
freedom in the two approaches is somewhat different and this is one crucial technical difference
between the two approaches, and it appears to us that the latter approach is better suited in a
lattice setup which is the starting point of [8080] as well as ours, particularly when dealing with
more than one layer of a quantum Hall system since the gauge degree of freedom in the lattice
approach (arising from hopping fluctuations over a mean-field theory, as we will see below) is
more amenable to the kind of multilayer scenarios studied in [8080] (and in this chapter) than the
direct field theoretical approach of [8282]. See also a remark on this after eq (3.11).

3.2.1 The lattice setup

3.2.1.1 Single layer case

Figure 3.1: The square lattice with electrons (marked with circles) at the sites, and a flux (shown
by the circular arrows) per plaquette of 2π/M . The 1 − 2 axis correspond to the x1 and x2

directions used in the text.

We begin the discussion with a lattice version of the single layer system, in which the
Hamiltonian is defined on a square lattice with the (electromagnetic) flux through each plaquette
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Chapter 3. Bilayers and multilayers of Jain fractional quantum Hall states

taken to be 2π/M (this puts the lattice EM field periodic in a unit cell of sizeM ), and the electron
density to be 2/(5M) for the ν = 2/5 state and 2/(3M) for the ν = 2/3 state, with the limit
M →∞. The lattice Hamiltonian for the electrons (denoted by creation-annihilation operators
c†x, cx below) consists of the hopping terms and whichever type of interactions present between
them,

H = −
∑
x,i

(
tc†xe

iÃx,icx+x̂i

)
+ interactions (3.1)

where x are site indices, i labels the two directions in the square lattice and the electromagnetic
lattice field Ãx,i is defined on the links between x and x+ x̂i with the convention that Ãx,i defines
the field on the link starting at site/vertex x and directed towards ith direction/link. Since the flux
per plaquette is 2π/M , we have that ∆1Ãx,2 −∆2Ãx,1 = 2π/M , where the lattice derivative in
the x̂i directions is defined as ∆ifx = fx+x̂i − fx. In the Hamiltonian above, we now substitute
for c = f1f2f3, which makes the hopping terms look like tf †3,xf

†
2,xf

†
1,xe

iÃx,if1,x+x̂if2,x+x̂if3,x+x̂i .
At this stage the general procedure in interacting systems is to consider saddle-point/mean-field
approximations which turn these three-body terms into mean-field one-body terms. Various
forms of interactions may stabilize any of these saddle-point mean-field Hamiltonians, and
precisely which saddle-point is stabilized depends on the details of the interactions.

We now assume that the interactions are such that a particular type of saddle-point mean-
field Hamiltonian is stabilized which leads to a parton description (in lattice form) of FQH states
of our interest. This is essentially an ansatz in any parton description of an FQH state, and
different such ansatz lead to different FQH states. We consider the mean-field Hamiltonian of
the following form,

Hmf = −
∑
x,i

∑
m=1,2

tm,x,if
†
m,xe

iĀ
(1)
x,ifm,x+x̂i −

∑
x,i,m=3

tm,x,if
†
m,xe

iĀ
(2)
x,ifm,x+x̂i + h.c. (3.2)

where, the lattice EM flux density seen by the parton fp (p = 1, 2, 3) is qp times the EM
flux density seen by the electron, where qp is the electromagnetic charge for the pth par-
ton. Thus, for the ν = 2/5 case, the lattice EM flux densities seen by the partons f1, f2

are ∆1Ā
(1)
x,2 −∆2Ā

(1)
x,1 = 4π/(5M) and that seen by f3 is ∆1Ā

(2)
x,2 −∆2Ā

(2)
x,1 = 2π/(5M). Since

the density of partons is the same as their parent electron, that is, 2/(5M), this puts f1 and f2

in a QH state of filling ν ′ = 1 and f3 in a QH state of filling ν ′ = 2. Likewise, for the ν = 2/3

case, we have ∆1Ā
(1)
x,2 −∆2Ā

(1)
x,1 = 4π/(3M) and ∆1Ā

(2)
x,2 −∆2Ā

(2)
x,1 = −2π/(3M), which puts

f1 and f2 in ν ′ = 1 and f3 in ν ′ = −2. Here, the parton hopping amplitudes tm,x,i described the
hopping of the parton typem to the site x from the site x+ x̂i. In the mean-field situation (that
is, without any fluctuations), the hopping amplitudes are independent of x, i and can be simply
written as tm (that is, constants over the lattice, but different for various partons types).
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3.2. Parton description of the Jain states

Next we consider fluctuations over this mean-field setup (we thank M. Levin for a helpful email
correspondence about some of what follows below), which are considered through fluctuations
in the hopping amplitudes of the form tm,x,i → tm,x,ie

iθm,x,i with θ1,x,i + θ2,x,i + θ3,x,i = 0. Here,
θm,x,i denote the phase of the hopping amplitude of the parton type m on the link connecting
x and x + x̂i. This constraint among the θm,x,i arises because of the essential requirement that
the parton hopping fluctuations should not affect the composite object’s (that is, the electron’s)
hopping amplitude. The mean-field Hamiltonian is for the partons dynamics and likewise the
fluctuations of the hopping amplitudes is for the partons, but none of this should affect the
electron Hamiltonian that we began with because the electron Hamiltonian is not directly being
subjected to a mean-field plus fluctuation analysis (which is being done on the partons). Hence
the constraint equation for the sum of θm,x,i is that the sum should go to zero (modulo 2π),
which leaves the electron’s hopping amplitude invariant to the fluctuations in the hopping am-
plitudes of the partons. Since we have three phase variables and one equation for them, we can
parametrize them as θm,x,i = qmnA(n)

x,i , where A
(n)
x,i (n = 1, 2), denote new U(1) lattice gauge

fields that live on the links connecting x and x + x̂i, and we make the choice qm1 = (1,−1, 0)

and qm2 = (0,−1, 1) (this choice is not unique). We thus have two U(1) gauge fields to which
the partons are coupled due to fluctuations. So now we have the total Hamiltonian including the
fluctuations as H = Ht +Hg, where,

Ht = −
∑
x,i

∑
m=1,2

tm,x,if
†
m,xe

iĀ
(1)
x,i+iqmnA

(n)
x,i fm,x+x̂i

−
∑

x,i,m=3

tm,x,if
†
m,xe

iĀ
(2)
x,i+iqmnA

(n)
x,i fm,x+x̂i + h.c. (3.3)

and, the lattice gauge field dynamics term consists of (or is assumed to have) the canonical
"electric" field and "magnetic" field terms [22, 8484],

Hg =
∑
x,i,n

g

2
(E

(n)
x,i )2 −

∑
x,n

J cos(∆1A(n)
x,2 −∆2A(n)

x,1) (3.4)

The weak fluctuation regime of our interest is g <<< J, tm,x,i.

3.2.1.2 Multilayer case

We can similarly give a lattice setup for the multilayered cases (assuming a general N number
of layers). Here, in addition to the hopping and gauge dynamics terms for each layer (that is,
intralayer terms), we will have interlayer hopping and gauge dynamics terms. The physical
origin of the interlayer gauge dynamics is the same as before, that is - to begin with we have an
interlayer electron hopping term (but without any interlayer background EM field) which under
mean-field decomposition in terms of partons yields interlayer parton hopping terms. Accounting
for fluctuations of the interlayer hopping amplitudes gives rise to two U(1) gauge fields which
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Chapter 3. Bilayers and multilayers of Jain fractional quantum Hall states

live in the direction between the layers (that is the perpendicular direction for each layer). The
coupling "charges" denoted previously by qmn can be chosen to be the same as before, and the
partons are minimally coupled to these interlayer gauge degrees of freedom with their coupling
charges being qmn.

Explicitly, in the mean-field limit we have (we add another label for the layer z for the
partons),

Hmf = −
∑
x,i,z

∑
m=1,2

tm,x,if
†
m,x,ze

iĀ
(1)
x,ifm,x+x̂i,z −

∑
x,i,z,m=3

tm,x,if
†
m,x,ze

iĀ
(2)
x,ifm,x+x̂i,z

−
∑
x,z

∑
m=1,2

tm,x,3f
†
m,x,zfm,x,z+1 −

∑
x,i,m=3

tm,x,3f
†
m,x,zfm,x,z+1 + h.c. (3.5)

where tm,x,3 are the hopping amplitudes of the partons at sites labelled x (in their respective
layers) between the layers z and z + 1, that is, these are the interlayer hopping amplitudes. Now
after considering the gauge fluctuations (which give rise to two additional U(1) gauge fields
living in the space between the layers), we have the total Hamiltonian,

H =
N∑
z=1

(Ht,z +Hg,z) +
N−1∑
z=1

(Ht,z,z+1 +Hg,z,z+1) (3.6)

whereHt,z andHg,z describe intralayer hopping and gauge dynamics terms (the intralayer gauge
field also is labelled with the layer index z),

Ht,z = −
∑
x,i

∑
m=1,2

tm,x,if
†
m,x,ze

iĀ
(1)
x,i+iqmnA

(n)
x,i,zfm,x+x̂i,z

−
∑

x,i,m=3

tm,x,if
†
m,x,ze

iĀ
(2)
x,i+iqmnA

(n)
x,i,zfm,x+x̂i,z + h.c.

Hg,z =
∑
x,i,n

g

2
(E

(n)
x,i,z)

2 −
∑
x,n

J cos(∆1A(n)
x,2,z −∆2A(n)

x,1,z) (3.7)

and Ht,z,z+1 and Hg,z,z+1 describe interlayer hopping and gauge dynamics terms,

Ht,z,z+1 = −
∑
x,z

∑
m=1,2

tm,x,3f
†
m,x,ze

iqmnA(n)
x,z,3fm,x,z+1

−
∑

x,i,m=3

tm,x,3f
†
m,x,ze

iqmnA(n)
x,z,3fm,x,z+1 + h.c. (3.8)

Hg,z,z+1 =
∑
x,n

g′

2
(E

(n)
x,z,3)2 −

∑
x,i,n

J ′ cos(∆iA(n)
x,z,3 −A

(n)
x,i,z +A(n)

x,i,z+1)

whereA(n)
x,z,3 denotes the gauge fields corresponding to the fluctuations of the hopping amplitudes
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3.2. Parton description of the Jain states

for partons at sites labelled x (in their respective layers) between the layers z and z + 1. As
before, our weak fluctuation regime corresponds to the coupling constants of the electric field
terms being much smaller than the hopping amplitudes and magnetic field couplings.

3.2.2 Single layer continuum theory

From here we now go to the continuum limit for the single layer case (bilayers and multilayers
will be considered in the next sections). For the purpose of describing this as a continuum
field theory, let us introduce for f1, f2 their respective parton gauge fields α(1), α(2) and write
their currents as j(m)

µ = 1
2π
εµνλ∂να

(m)
λ for the partons f1, f2, i.e., m = 1, 2 here. For the third

parton f3, since it occupies a ν ′ = ±2 quantum Hall state (respectively for ν = 2/5, 2/3),
we have to introduce two parton gauge fields α(3a),(3b) with which to express its current as
j

(3)
µ = 1

2π
εµνλ∂να

(3a)
λ + 1

2π
εµνλ∂να

(3b)
λ . The hopping Hamiltonian above is described as an

effective theory by the total Lagrangian, for the case of ν = 2/5 state, by the standard Chern-
Simons terms for the parton fields along with the minimal coupling of their currents to the two
U(1) gauge fields,

L2/5 =
1

4π

∑
m=1,2

εµνλα
(m)
µ ∂να

(m)
λ +

1

4π
εµνλα

(3a)
µ ∂να

(3a)
λ

+
1

4π
εµνλα

(3b)
µ ∂να

(3b)
λ +

n=1,2∑
m=1,2

1

2π
εµνλqmnA(n)

µ ∂να
(m)
λ

+
1

2π
q3nεµνλA(n)

µ ∂ν(α
(3a)
λ + α

(3b)
λ ), (3.9)

and likewise for the ν = 2/3 state,

L2/3 =
1

4π

∑
m=1,2

εµνλα
(m)
µ ∂να

(m)
λ − 1

4π
εµνλα

(3a)
µ ∂να

(3a)
λ

− 1

4π
εµνλα

(3b)
µ ∂να

(3b)
λ +

n=1,2∑
m=1,2

1

2π
εµνλqmnA(n)

µ ∂να
(m)
λ

− 1

2π
q3nεµνλA(n)

µ ∂ν(α
(3a)
λ + α

(3b)
λ ). (3.10)

As for the continuum terms corresponding to Hg, we see that the electric field term is quadratic
and expanding the cosine term (the magnetic field term) to leading order in the variables A(n)

x,i

also gives a quadratic term, so we have Maxwell terms for these gauge fields in the continuum
(as expected, since the lattice terms were also Maxwell). Since integrating out the gapped
partons would produce Chern-Simons terms for the dynamics of the gauge fields A(n)

µ , with
respect to which the Maxwell terms are irrelevant in the low-energy effective theory, we can
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Chapter 3. Bilayers and multilayers of Jain fractional quantum Hall states

safely ignore/drop them at the outset. We will later see that in the multilayer situations, this will
generally not be the case for the interlayer gauge field that we will introduce later. For brevity we
have also not explicitly written the terms corresponding to the minimal coupling of the parton
currents to the external electromagnetic field.

Let us verify that our Lagrangians above do indeed describe the intended quantum Hall states
of ν = 2/5, 2/3. To do so, we now integrate the gauge fieldsA(n)

µ , which produces the constraints
that the parton currents are fixed to be equal to each other. That is, j(1)

µ = j
(2)
µ = j

(3)
µ . A general

solution to this can be taken as α(1)
µ = α

(2)
µ = α

(3a)
µ + α

(3b)
µ = αµ. Denoting α(3a)

µ = βµ, we thus
have two independent fields αµ and βµ. Substituting these in the Lagrangians above, we have,

L2/5 =
2

4π
εµνλαµ∂ναλ +

1

4π
εµνλβµ∂νβλ

+
1

4π
εµνλ(α− β)µ∂ν(α− β)λ +

1

2π
eAEM,µ∂ναλ

=
3

4π
εµνλαµ∂ναλ +

2

4π
εµνλβµ∂νβλ −

1

4π
εµνλαµ∂νβλ

− 1

4π
εµνλβµ∂ναλ +

1

2π
eAEM,µ∂ναλ (3.11)

We note that we could have obtained the above Lagrangian directly in the continuum by arguing
that because the partons have to be confined to each other to form an electron, their individual
currents must equal each other (which is what we obtained above after integrating out the fields
A(n)
µ , which would have yielded the above Lagrangian directly. However, an approach that

directly starts with the field theoretic constraint of the parton currents being equal to each other
results in a SU(3) gauge field that couples to the partons and keeps them "glued" to each other
to form an electron [8585]. In our language presented above following [8080], this would have meant
that assuming that the hopping amplitudes for all the partons are equal to each other, which is
a different saddle point choice than the one we (and [8080]) have made. It appears that choosing
the saddle point that has the parton hopping amplitudes different from each other is a more
general scenario which in particular seems to be more suitable for considering interlayer hopping
in the bilayer and multilayer scenarios because it enables to treat the interlayer hopping in this
seemingly more general scenario where the partons may hop between the layers with different
amplitudes. With this remark, we now continue with this approach.

Using the K-matrix notation, we introduce a two-component vector Λ = (α, β)T , and s =

(1, 0), and write the above Lagrangian as,

L2/5 =
1

4π
K2/5εµνλΛµ∂νΛλ +

1

2π
esAEM,µ∂νΛλ (3.12)

where,
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3.3. Bilayer continuum theory

K2/5 =

 3 −1

−1 2

 (3.13)

This matrix is related to the one in [8282] by a similarity transformation, which means that the
theory described by our K-matrix is in the same topological class as that in [8282]. In addition, the
ground state degeneracy on a torus of a quantum Hall state whose effective theory is described
through such a K-matrix is given by |det(K)|. We give a simple derivation of this in the Appendix
I at the end of this chapter. For the above K-matrix then the ground state degeneracy on torus is
5, as it should be for the FQH state at ν = 2/5.

Likewise, for the ν = 2/3 state,

L2/3 =
2

4π
εµνλαµ∂ναλ −

1

4π
εµνλβµ∂νβλ

− 1

4π
εµνλ(α− β)µ∂ν(α− β)λ +

1

2π
eAEM,µ∂ναλ

=
1

4π
εµνλαµ∂ναλ −

2

4π
εµνλβµ∂νβλ −

1

4π
εµνλαµ∂νβλ

− 1

4π
εµνλβµ∂ναλ +

1

2π
eAEM,µ∂ναλ

=
1

4π
K2/3εµνλΛµ∂νΛλ +

1

2π
esAEM,µ∂νΛλ

where,

K2/3 =

 1 −1

−1 −2

 (3.14)

As before, this matrix is also equivalent by a similarity transformation to the one in [8282]. The
ground state degeneracy on torus of our theory is 3, as is should be for the FQH state at ν = 2/3.

Thus we have described the effective theories of ν = 2/5, 2/3 starting from a parton con-
struction. Now in the following sections, we shall use similar procedure to describe bilayers and
quasi-3D limit of these states.

3.3 Bilayer continuum theory

3.3.1 the ν = 2/5 case

The case of bilayer corresponds to N = 2 in our previous discussion of multilayer lattice setup.
The main difference here from the single layer case comes from the terms corresponding to the
interlayer hopping (and the consequent interlayer gauge field) of the partons. As before, the
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Chapter 3. Bilayers and multilayers of Jain fractional quantum Hall states

intralayer gauge field’s Maxwell terms can be ignored at the outset in the low-energy limit as
the more dominant Chern-Simons terms for these gauge fields will be induced by the partons.
However, this is not the case with the interlayer gauge field, and thus its Maxwell terms have
to be considered in the continuum theory, and this is ultimately responsible for the "coupling"
between the layers in the continuum picture.

Following the conventions of [8080], we enlarge, notationally, our A(n)
µ fields from having two

spatial components to now having three spatial components (the first two spatial components of
this enlarged notation come from the intralayer gauge fields, while the third spatial component
is just the interlayer gauge field). We label the parton fields with the layer indices, α(m)

l,µ , as well
as the gauge fields, A(n)

l,µ . The total effective action is L(blr)
2/5 =

∑
l=1,2

Ll2/5 + L⊥ , where i = 1, 2

denotes the planar spatial indices, and,

Ll2/5 =
1

4π

∑
m=1,2

εµνλα
(m)
l,µ ∂να

(m)
l,λ +

1

4π
εµνλα

(3a)
l,µ ∂να

(3a)
l,λ

+
1

4π
εµνλα

(3b)
l,µ ∂να

(3b)
l,λ +

n=1,2∑
m=1,2

1

2π
εµνλqmnA(n)

l,µ ∂να
(m)
l,λ

+
1

2π
q3nεµνλA(n)

l,µ ∂ν(α
(3a)
l,λ + α

(3b)
l,λ ), (3.15)

and

L⊥ =
∑
n=1,2

η1(∂0A(n)
1,3 −A

(n)
1,0 +A(n)

2,0 )2

−
i=1,2∑
n=1,2

η2(∂iA(n)
1,3 −A

(n)
1,i +A(n)

2,i )2. (3.16)

where η1 = 1/g′ and η2 = J ′/2 in terms of the coupling constants defined on the lattice
previously, and the layer spacing has been put to unity.

Let us again explain our notation here, which has been adopted from [8080] (see for instance eq.(25)
in that article). The L⊥ term is a generic Maxwell-like term for the dynamics of the interlayer
gauge field (layer spacing has been put to unity here). The corresponding U(1) gauge fields,
which we may call a(n)

l (l is the layer index, and n = 1, 2), exists only in the third (or z-) direction
(i.e., a(n)

l,3 is the only non-vanishing component of this field), while the intralayer gauge fields
have spatial components in only the planar 1-2 (or x-y) directions (i.e., A(n)

l,(1,2)). In writing the
above equation, we have thus simply enlarged the notational definition (which we so far used) of
A(n)
l,(1,2) to contain as its third spatial component the field a(n)

l,3 , to write it in its enlarged form as
A(n)
l,(1,2,3). The (1, 2) components of this enlarged field now are the intralayer gauge fields while

the (3) component is simply the interlayer a(n)
l,3 . Note also that the first term in the above equation
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3.3. Bilayer continuum theory

is just the electric field term in the interlayer direction and the second term is the magnetic field
term in the interlayer direction.

We now choose the gaugeA(n)
1,3 = 0, go to the basisA(n)

±,µ = A(n)
1,µ±A

(n)
2,µ, the total Lagrangian

becomes,

L(blr)
2/5 =

1

4π

l=1,2∑
m=1,2

εµνλα
(m)
l,µ ∂να

(m)
l,λ +

1

4π

∑
l=1,2

εµνλα
(3a)
l,µ ∂να

(3a)
l,λ

+
1

4π

∑
l=1,2

εµνλα
(3b)
l,µ ∂να

(3b)
l,λ

+
∑
n

η1(A(n)
−,0)2 −

∑
n,i

η2(A(n)
−,i)

2

+
1

4π

n=1,2∑
m=1,2

∑
±

εµνλqmn(A(n)
±,µ∂ν(α

(m)
1,λ ± α

(m)
2,λ ))

+
1

4π

n=1,2∑
±

εµνλq3n(A(n)
±,µ∂ν(α

(3a)
1,λ ± α

(3a)
2,λ ± α

(3b)
1,λ ± α

(3b)
2,λ )).

To obtain an effective theory in terms of the parton fields, we now integrate out the A(n)
±,µ fields.

Clearly, integrating out theA(n)
−,µ fields generate Maxwellian terms for the parton fields which are

irrelevant compared to the Chern-Simons terms and thus may be ignored hereafter. Integrating
out the A(n)

+,µ fields produce the constraints that the parton currents (for each parton type) over
both the layers are equal to each other, that is (suppressing the vector indices for notational clarity
for now), α(1)

1 + α
(1)
2 = α

(2)
1 + α

(2)
2 = α

(3a)
1 + α

(3a)
2 + α

(3b)
1 + α

(3b)
2 = a. We have eight field

variables and two equations, thus there are six independent field variables. Parametrizing the
various variables as α(1)

1 = a − b1, α(1)
2 = b1, α(2)

1 = a − b2, α(2)
2 = b2 , α(3a)

1 = b3, α(3a)
2 = b4,

α
(3b)
1 = b5, α(3b)

2 = a− b3 − b4 − b5, substituting these in the Lagrangian above and introducing
the vector α̃ = (a, b1, b2, b3, b4, b5)T , we have the effective Lagrangian of the bilayer as,

LbA =
1

4π
KbAεµνλα̃µ∂να̃λ +

1

2π
esAEM,µ∂να̃λ (3.17)

where the charge vector is s = (1, 0, 0, 0, 0, 0) and

KbA =



3 −1 −1 −1 −1 −1

−1 2 0 0 0 0

−1 0 2 0 0 0

−1 0 0 2 1 1

−1 0 0 1 2 1

−1 0 0 1 1 2


(3.18)

Let us see some observable properties of this effective theory. The ground state degeneracy
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Chapter 3. Bilayers and multilayers of Jain fractional quantum Hall states

of this bilayered system on a torus is |det(KbA)| = 20. This differentiates the partonic bilayer
from a system of two decoupled ν = 2/5 layers whose toric ground state degeneracy (by which
we mean ground state degeneracy on torus) would be 25, as from a FQH state of total filling
factor ν = 2/5 + 2/5 = 4/5, whose toric ground state degeneracy would be 5.

A K-matrix theory also allows us to readily calculate the statistics of parton excitations
described by the theory. To do this, let us first label the partons with their corresponding vectors
k1 = (0, 1, 0, 0, 0, 0)T , k2 = (0, 0, 1, 0, 0, 0)T and k3 = (1, 0, 0, 0, 0, 0)T . Then, the self-exchange
statistics of a parton labeled by ki is given by θi = πkTi K

−1ki and the mutual exchange statistics
between partons labeled by ki and kj is given by θij = 2πkTi K

−1kj [2626].

Thus, for the K-matrix of the partonic bilayer given above, KbA, we have θ1 = θ2 = 7π/10

and θ3 = 4π/5. This is distinct from the self-exchange statistical angle of 2π/5 for the 2e/5

charged excitations and 3π/5 for the e/5 charged excitations of the ν = 2/5 FQH state. The
mutual braiding statistics of the partons in our bilayer is given as θ12 = θ23 = θ13 = 4π/5.

3.3.2 the ν = 2/3 case

Similar considerations follow as in the case of the above subsection, except with the changes
in the Lagrangians corresponding to the individual layers as described in the previous section.
For the sake of not cluttering the article, we do not repeat writing the steps of the calculation,
and simply present below the final expression for the effective Lagrangian of the bilayer after
simplification in terms of the K-matrix,

LbB =
1

4π
KbBεµνλα̃µ∂να̃λ +

1

2π
esAEM,µ∂να̃λ (3.19)

where the charge vector is s = (1, 0, 0, 0, 0, 0) and

KbB =



2 −1 −1 1 1 1

−1 2 0 0 0 0

−1 0 2 0 0 0

1 0 0 −2 −1 −1

1 0 0 −1 −2 −1

1 0 0 −1 −1 −2


(3.20)

The ground state degeneracy of this bilayer system on a torus is |det(KbB)| = 28. This
differentiates the partonic bilayer from a system of two decoupled ν = 2/3 layers whose toric
ground state degeneracy would be 9, as from a FQH state of total filling factor ν = 2/3 + 2/3 =

1 + 1/3, whose toric ground state degeneracy would be 3. The parton self-exchange statistical
angle for this case are θ1 = θ2 = 9π/14 and θ3 = 4π/7. The mutual exchange statistical angles
are θ12 = θ23 = θ13 = 4π/7.
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3.4 quasi-3D multilayers

Let us review our procedure so far. We described the bilayers as follows - we started from a
parton description of an individual layer (described by a corresponding gauge theory with Chern-
Simons terms) which captures the essential low-energy physics of the layer, in addition we had
an interlayer gauge degree of freedom with Maxwell-like dynamics, and finally we integrated out
the various gauge fields to obtain effective K-matrix theory of the bilayered system in terms of the
parton fields. This procedure can be straightforwardly generalized to constructing a quasi-three
dimensional multilayer formed from stacking a very large number of layers, which we describe
below.

The total Lagrangian is readily written, L(3d) =
∑
l

Ll2/5 + L⊥, where Ll2/5 is as in eq(3.9), l

labels the layers, and

L⊥ =
l∑

n=1,2

η1(∂0A(n)
l,3 −A

(n)
l,0 +A(n)

l+1,0)2

−
i=1,2∑
n=1,2

∑
l

η2(∂iA(n)
l,3 −A

(n)
l,i +A(n)

l+1,i)
2. (3.21)

As before, intralayer Maxwell terms have been ignored for our purposes of being in the low-
energy limit. As before, we may integrate out the intralayer and interlayer gauge fields A(n)

l,µ and
generate an effective theory in terms of a large number N of parton fields, and then take the
limit N → ∞ to access the quasi-three dimensional limit. However, this requires dealing with
a very large K-matrix of dimension of the order of N × N . An alternative is, for the case of
many layers, to instead integrate out the parton fields and generate an effective theory in terms
of the gauge fields A(n)

l,µ . This, as we shall see, generates an effective theory with much smaller
K-matrix, which makes the theory easier to analyse for calculating, for eg., its dispersion.

Integrating out the gapped parton fields yields the effective Lagrangian as (all summations
over n = 1, 2 and i = 1, 2 below),

L(3d) =
1

4π

∑
l

εµνλKATl,µ∂νAl,λ

+
∑
n,l

η1(∂0A(n)
l,3 −A

(n)
l,0 +A(n)

l+1,0)2

−
∑
n,i,l

η2(∂iA(n)
l,3 −A

(n)
l,i +A(n)

l+1,i)
2, (3.22)

where we defined for the intralayer components in a given layer Al,µ = (A(1)
l,µ ,A

(2)
l,µ)T and,
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K =

(
−2 −1

−1 −3

)
(3.23)

It is readily seen that for the purpose of deriving the effective theory in terms of Aµ fields,
the system formed from many layers of ν = 2/3 states has the exact same form of the effective
theory except with the resultant K-matrix for Aµ is simply the negative of the above equation,
which reveals that as far as universal properties are concerned, both the stacked systems approach
the same quasi-3D system.

From eq (3.14), we can readily find the dispersion of the gauge field. The Fourier trans-
formed Lagrangian (note that Fourier transformation does away with the layer indices), in the
basis A±,µ = 1√

2
(A(1)

µ ± A(2)
µ ) with temporal gauge A±,0 = 0, can be written as L(3d)(~p) =∑

r=±
Ar(−~p)†Lr(~p)Ar(~p), where

Lr =


−η2p

2
z

ikrpo
4π

η2p1p3

− ikrpo
4π

−η2p
2
z η2p2p3

η2p1p3 η2p2p3 η1p
2
0 − η2(p2

1 + p2
2)

 (3.24)

where kr = −1.382,−3.618 are eigenvalues of K. From Lr, we find a gapless mode with
dispersion,

ε2r =
η2

η1

(p2
1 + p2

2) +
16π2η2

2

k2
r

p4
3 (3.25)

Thus, for the realistic case of large but finite N number of layers, p3 ∼ π/N , and the lowest
mode has the dispersion,

εr =
η2

η1

(p2
1 + p2

2) +
16π6η2

2

k2
rN

4
. (3.26)

Figure 3.2: dispersion plot of the gauge mode at specific chosen values of the parameters in the
coefficients

Similar to the Laughlin case, the gauge mode disperses anisotropically with similar form
of the dispersion relation as in the Laughlin case of [8080]. The quasi-3D system has gapless
(or nearly gapless, in a realistic situation) gauge boson excitation, as well as gapped partons fi,
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3.5. Summary

which are minimally coupled to it and therefore have long-range interactions, and moreover, their
interactions are naturally anisotropic. In addition, the partons due to being minimally coupled
to the gauge field component in the z−direction are thus free to move around in the 3D bulk and
not confined to the 2D layers of their original FQH states. However, the parton excitations are
only fractionally charged by construction but can not have fractional statistics in this quasi-3D
system since point-particle-like excitations can not have fractional statistics in 3D.

Let us also comment on boundary transport of the quasi-3D system. The boundary transport
is now a sheet-like surface transport, with components in the xy−direction, as well as in the
z−direction, the former being quantized due to arising from the QH nature of the individual
layers in the bulk, while the latter is unquantized and non-topological. In the large but finite N
layers, there are order N × N chiral modes of quantized transport in the xy−planes due to the
bulk K-matrix (in the effective theory of the partons) being orderN×N . In the 3d limit, however,
due to the gapless gauge mode in the bulk, the quantized xy-transport may continue to be gapless
and chiral due to the underlying QH nature of the layers in the bulk, however, the gapless gauge
mode decoheres the z-transport, which is non-quantized to begin with and is basically an artifact
of the interlayer hopping events. The gapless mode in the bulk may also affect the a priori chiral
xy−transport due to the lack of energetic distinction between these gapless edge modes and the
bulk gapless mode. This eventual lack of distinction may serve as an experimental signature of
the existence of a bulk gapless mode in such quasi-3D multilayered systems, in particular, by
closely observing such vanishing energetic distinction between the gapless chiral edge modes
and gapless bulk gauge mode as a function of the number of layers.

3.5 Summary

In this chapter, we have extended the multilayered Laughlin partonic theory of [8080] to the
case of bilayered and multilayered quasi-3D stacks of Jain series FQH states using their parton
descriptions, suggesting that these may be useful candidate states for the situation when the
interlayer coupling (via interlayer hopping) is comparable to the intralayer interactions. For
the bilayered cases, we presented a K-matrix theory from which we showed how the bilayers
represent experimentally different QH states from the cases when the layers are either decoupled
or have bonded together to form an additive QH liquid. For the quasi-3D stacks, we constructed
its effective theory in terms of the gauge fields which have a gapless anisotropically dispersing
mode in the low-energy, and discussed its plausible consequences on the observable edge/surface
transport. The most important future direction would be to construct ways to analyse the surface
sheet transport, which, as we mentioned earlier, has not been successful even for the simpler case
of ν = 1/3 FQH states in each layer.
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3.6 Appendix - Toric ground state degeneracy

In this appendix, we will present a brief derivation of the ground state degeneracy on a torus of
a quantum Hall fluid in the K-matrix description, following [2626, 8383].

Let us first show that the toric degeneracy of a Chern-Simons theory at level k is |k|. This
corresponds to a 1 × 1 K-matrix, i.e., K = k, and would describe the effective theory of a
fractional quantum Hall liquid at filling ν = 1/k. That is, we have

L =
k

4π
εµνλαµ∂ναλ. (3.27)

Consider a torus of dimensions (L1, L2). We may define gauge field configurations (essen-
tially a gauge choice) on the torus as

α0(x, y, t) = 0, α1(x, y, t) =
2πX

L1

, α2(x, y, t) =
2πY

L2

,

where X and Y are periodic coordinates on the two big circles of the torus.
Substituting this configuration into the Chern-Simons Lagrangian above gives us,

L = πk(Y Ẋ −XẎ ). (3.28)

On the torus, there exist two large gauge transformations, g1 = exp(2πix/L1) and g2 =

exp(2πiy/L2), under which αµ → αµ− ig−1
1,2∂µg1,2. This is readily seen to transform (X, Y )→

(X + 1, Y ) and (X, Y ) → (X, Y + 1) for g1, g2 respectively. Thus (X, Y ) ∼ (X, Y + 1) ∼
(X + 1, Y ) is an equivalence relation.

From the substituted Lagrangian above, we have the "momentum" conjugate to Y ,

p =
δL
δẎ

= −2πkX, (3.29)

so that we have the noncommutativity relation,

[X, Y ] =
−i
2πk

, (3.30)

and the Hamiltonian vanishes, a defining feature of a "pure" topological field theory,

H = pẎ − L = 0. (3.31)

Thus it appears a priori that any arbitrary function qualifies as the ground-state wavefunc-
tion of such a vanishing Hamiltonian. However, legitimate wavefunctions need to satisfy the
aforementioned equivalence relation. This condition filters out a set of finite number of ground
state wavefunctions, and the number of elements of this set is the ground state degeneracy of the
level-k Chern-Simons theory on the torus.

The condition ψ(Y ) = ψ(Y + 1) implies we can write, for integer n,
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3.6. Appendix - Toric ground state degeneracy

ψ(Y ) =
∞∑

n=−∞

cn exp(2iπnY ). (3.32)

Since X is essentially a conjugate momentum variable to Y , we have to Fourier transform the
above wavefunction to impose the condition ψ(X) = ψ(X + 1), with p = i∂/∂Y ,

ψ̃(p) =
∑

cnδ(p− 2πn). (3.33)

Since, as noted above, p = −2πkX , we may equivalently write,

φ(X) =
∑

cnδ(kX + n). (3.34)

X ∼ X + 1 thus implies that cn = cn+k, and thereby that there are k independent cn’s. This
implies that the number of degenerate ground state wavefunctions on the torus is k.

Same conclusion is reached if we had instead chosen X as our canonical position variable
and Y as its corresponding conjugate momentum.

We recall that the above derivation was done for a 1×1K-matrix. Now consider am×mK-
matrix which we assume to be invertible so that there is no eigenvalue = 0, and which in general
may have non-zero off-diagonal entries. There always exists a diagonalizing transformation
to a new basis (new gauge fields α′) which brings the K-matrix to its diagonal form with its
eigenvalues being the diagonal entries, and thus the determinant (ground state degeneracy on
torus) is simply the product of the eigenvalues. Since eigenvalues, and thus determinant, of a
matrix are independent of basis or similarity transformations, it follows that the ground state
degeneracy on torus of a general invertible m × m K-matrix Chern-Simons theory is simply
|det(K)|.
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