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Synopsis

AdS/CFT duality is the conjectured duality between a theory of quantum gravity on

an Anti-de Sitter(AdS) space-time and a Conformal Field Theory(CFT) living on the

asymptotic boundary region of the AdS. By this it is meant that quantities in the grav-

ity side can be calculated by computing some quantities in the CFT and vice versa.

This duality has been subject to many tests in the context where it is stated as a dual-

ity between a particular superstring theory on AdS space-time and a supersymmetric

quantum field theory with a large amount of supersymmetry ( which turns out to be a

CFT) on the asymptotic boundary of the AdS space. There also most of the focus has

been on a particular sub-sector of this string theory called the supergravity limit which

is dual to a strongly coupled sector of the field theory. Using this duality quantities in

the strongly coupled sector of the field theory can be calculated with much more ease

in the supergravity limit of string theory.

So, there are two important aspects of this duality that has to be probed further.

One of them being able to move to a sector of string theory different from supergrav-

ity. The second being able to test this duality for non-supersymmetric systems. Higher

spin theories provide us with the tool to address both these issues simultaneously. In

the tensionless limit a particular sub-sector of the full string theory is believed to give

rise to the massless higher spin theories. Also, these theories have a spectrum which

can in principle be only bosonic and hence we have a good non-supersymmetric the-

ory to test the AdS/CFT duality. A consistent theory of massless higher spin gauge

theories in AdS space has been proposed by Vasiliev. In arbitrary dimensions these

theories are consistent only in an asymptotic AdS(or de-Sitter) background and their

spectrum must include fields with all spin from 2 to ∞ and some scalars.

In my thesis work I have focused on the higher spin theories in AdS3 . In 3 dimen-

sions there are many simplifications that make the theory much more tractable than
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in higher dimensions like the spectrum of fields can be consistently truncated at any

finite upper value of integral spin. Also, in 3 dimensions for a theory consisting of

purely higher spin fields there are no bulk propagating degrees of freedom. The the-

ory is completely defined by the boundary values of its fields. These issues make them

computationally muchmore tractable than other theories. Even after all these simplifi-

cations the theory is not void and retains enough complexity to provide us with some

intuition into AdS/CFT duality in this context and also in general.

In the first project in this thesis I calculated the first quantum correction to a system

consisting of all fields with spin from 2 to ∞ by calculating the leading order correc-

tion to the partition function around a classical saddle point which we take to be the

thermal AdS. We showed that it is the same as vacuum character of a CFT with an ex-

tended symmetry group with a lie algebra calledW∞ . The motivation for this was an

earlier established fact that the classical Poisson bracket algebra followed by the gen-

erators of the higher spin symmetries which can change the boundary configurations

is a W algebra. In this context our work took this matching to the next level where we

checked that the spectrum of fluctuations of fields on the AdS side matches with the

spectrum of operators corresponding to this sector in the CFT side.

In the second work in this thesis we wrote down the most general action of a

parity violating, gauge invariant and 3 derivative action for higher spin theories at

the quadratic level. We called this the Topologically Massive Higher Spin Gravity or

TMHSG. We found out that a good basis for solutions to the equations of motion at

arbitrary point in parameter space consists of three branches called 1) The left mov-

ing mode 2) The right moving mode and 3) The massive mode. We showed that the

energies of all three of these modes are never non-negative together except at a partic-

ular point in parameter space called the chiral point. But we showed that the basis of

solution also becomes degenerate at this point as the left moving branch merges with

the massive branch. We found out that at this special point there is a new branch of

solution called the “log branch” and hence we find a new complete basis of solution

2



at this point. Energy calculation though showed that even at this “chiral point” there

are negative energy modes with this new complete basis of solution. So, it looks like

that the theory has a genuine linear instability at all points in phase space.

In the third work we studied the phase structure of a higher spin system in AdS3

with a maximal spin 3 in the canonical approach. There are two types of classical solu-

tion in the euclidean system at a finite temperature which has the topology of a torus.

This depends on the identification of the contractible cycle of the torus. If the con-

tractible cycle is time like we have a “black hole” like solution and if the contractible

cycle is spatial we have a “thermal AdS” type solution. We found out all possible solu-

tion of either type and studied their phase structure. We found out 2 types of solutions

for contractible spatial cycle andwe called them “Thermal AdS” like solution and “Ex-

tremal thermal AdS” like solution. Similarly we found out 4 types of solutions for the

solution with contractible time cycle. Out of these we discard 2 solutions because they

have negative entropy and hence are unphysical. Of the remaining 2 solutions we get

a BTZ black hole like solution and an extremal black hole like solution. We found a

Hawking-Page like transition between the black hole like and thermal AdS like solu-

tions at a temperature dependent upon chemical potential for spin 3. We find that all

the black hole like and thermal AdS like solution do not exist beyond a certain value of

temperature for a particular chemical potential and the region of existence of thermal

AdS like solution is greater than that of black hole solution. So, we see the presence

of a new type of phase transition here where after a particular temperature only the

thermal AdS like solution is present. We also studied how by a similarity transforma-

tion the field content of this theory can be converted to that of a theory with spectrum

containing fields of spin 1, 2 and 3
2
with a chemical potential for spin 3

2
. Here the black

hole solutions exist for all temperatures. Here also, we have 4 branches of solution out

of which 2 have negative entropy and hence are discarded. We were able to show that

the solutions which were discarded in the earlier case map to the good solutions here

and vice versa. Also, we showed that solutions here have a good scaling behaviour at

3
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very high temperatures and hence this may well be the way the phase structure of the

system should be studied at very high temperature.
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Chapter 1

Introduction

One of the most prominent tasks of theoretical physics is to understand the properties

of the four basic forces (or interactions) of nature. It seems that Quantum Field The-

ory is the right framework to understand (at least perturbatively) three out of these

four interactions- 1) electromagnetic interaction, 2) the weak interaction and 3) the

strong interaction. Quantum field theory is able to predict to an extremely good pre-

cision level the observables of these three interactions. This relies on the fact that they

are renormalisable. By this what we mean is that short distance singularities of these

interactions can be taken care of by suitably redefining a finite set of parameters, at

any particular order in accuracy for the parameters of these theories. And the beauty

of this is that the number of such necessary redefinitions does not increase for cal-

culations at higher order in accuracy. These three interactions together form what is

known as the “Standard Model of Particle Physics”.

The fourth interaction -the gravitational interaction is very well known at the clas-

sical level and observables have been tested against predictions from this theory and

found to match to an amazing level of accuracy. The problem starts when we try to

quantise it in the conventional manner which has been successful for the other three

interactions. If we try to calculate some observable perturbatively , we see that we
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CHAPTER 1. INTRODUCTION

can get rid of the short distance infinities by redefining finite number of parameters at

each order in the interaction parameter which is the Newton’s gravitational constant.

However, it is impossible to find a finite set of parameters whose redefinitions are suf-

ficient to get rid of the infinities at all orders of accuracy in parameter of the theory.

This is where String Theory steps in. Here the basic interacting objects are not point

particles, but are one dimensional extended objects called strings. All particles in the

universe (observed as well as unobserved) are the modes of excitation of the string

and interactions between the strings gives rise to all (observed as well as unobserved)

interactions of the universe. Since, there is a well defined minimum length (the string

length) so all interactions are by construction safe from infinites due to very short dis-

tance interactions.

A particular limit of this theory is the supergravity limit when the string length→ 0 or

the string tension→ ∞. This limit of the theory has been studied in quite some detail

till now. Another limit which will be related to the primary interest of this thesis is

when the string tension→ 0. A particular subsector (called the first Regge trajectory)

of string theory in this limit gives rise to fields which behave like massless higher spin

fields (spin≥ 2) in Wigner’s classification.

It is believed due to many no go theorems [1] that a consistent interacting theory

of higher spin fields cannot be constructed on asymptotically flat spacetime back-

grounds. One of the remarkable features of AdS spacetimes is the existence of interact-

ing theories of massless particles with spin greater than or equal to two [2]. Typically,

the consistency of such theories in AdS spacetimes requires the introduction of an in-

finite tower of particles with arbitrarily high spin.

These higher spin theories (which include gravity) are thus in some sense interme-

2



diate between conventional field theories of gravity involving a finite number of fields

on the one hand, and string theories on the other (see [3] for an introduction to these

matters). This observation takes on added significance in the context of the AdS/CFT

correspondence. Higher spin theories provide an opportunity to understand the cor-

respondence beyond the (super)gravity limit without necessarily having the full string

theory under control. In fact, there is the tantalising possibility of a consistent trunca-

tion to this subsector within a string theory which might, in itself, be dual to a field

theory on the boundary of the AdS spacetime.

For a string theory on AdS spacetime there is actually a dimensionless constant in

the bulk given by L2

α′
where ’L’ is the AdS radius and α′ is the string constant which is

related to the square of the string length. For the tensionless limit this quantity needs

to be taken to zero. From the AdS/CFT point of view this ratio is related to a coupling

of a marginal deformation of the dual CFT side. When the coupling goes to zero we

have a free theory on the field theory side. Normally a free field theory has infinite

number of conserved currents which are absent when the coupling constant is turned

on. Following the AdS/CFT picture all these conserved currents are dual to higher

spin gauge fields in the AdS bulk.

Another interesting observation has been made in [11], where it was shown that if

in a CFT (in spacetime dimensions ≥ 3) we have a conserved charge with spin ≥ 3

then the CFT will contain conserved charge with all spins ≥ 2 upto∞. Also it was ob-

served there that the correlation function between the conserved charges correspond

to that of a free field theory. From all these observations it is reasonable to assume that

the CFT dual to higher spin theories in the bulk is most likely a free CFT. This is in

sharp contrast to the CFT dual to the supergravity limit of the string theory which is

believed to be dual to a field theory in the strong (t’Hooft) coupling regime.

3



CHAPTER 1. INTRODUCTION

The argument given above is not valid for CFT2 (2 dimensional field theories in

general) where it is consistent to have interactions and infinite number of conserved

charges together. The Minimal model CFTs with extended W-symmetry, which were

proposed to be dual to the Vasiliev higher spin system in AdS3 [64] are examples

of field theories in 2 dimensions which have infinite number of conserved charges

with correlation function which are non-trivial. These theories have a dimensionless

(t’Hooft) coupling constant which takes values between 0 and 1. Hence, even in 2 di-

mensions the CFTs dual to higher spin theories in the bulk are not strongly coupled.

Hence, the higher spin theories are in general dual to CFTs which are not strongly

coupled and hence are capable of shedding light on another window of the AdS/CFT

duality. So, understanding aspects of higher spin theories in the AdS3 is a useful exer-

cise to carry out.

So in this thesis keeping in mind the above motivation we explore some aspects of

the higher spin theories on the AdS3 side which may help us gain some insight into

the AdS/CFT duality in this context. We start by giving a brief introduction on how

higher spin theories are formulated in AdS (in particular the 3 dimensional case). In

the sections that follow we first give a brief description of massless higher spin theo-

ries in flat and AdS spacetime. Next we give a vierbein like formulation for the higher

spin theories. After that we move on to the particular case of AdS3. Then we discuss

higher spin theories in 3 dimensions in the context of AdS3/CFT2 correspondence. On

the way we give a lightening review of the AdS/CFT conjecture in general.

1.1 Free “Massless” Higher Spin Gravity

The free higher spin fields can be consistently defined on a flat(Minkowski) space. It is

only when we try to introduce interactions that we face problems. A higher spin field

4



1.1. FREE “MASSLESS” HIGHER SPIN GRAVITY

can be represented by a symmetric rank ’s’ tensor satisfying the equation [20]

Fµ1...µs = �φµ1...µs − ∂(µ1|∂
λφ|µ2...µs)λ + ∂(µ1∂µ2φ

λ
µ3...µs)λ

= 0 (1.1.1)

where the parentheses indicate symmetrisation without any normalisation factor. The

above equation is invariant under the gauge transformation

δφµ1...µs = ∂(µ1ξµ2..µs)

with ξλµ1...µs−3λ = 0 (1.1.2)

For spin 2 case the above 2 equations are the linearised Ricci tensor on flat background

and diffeomorphism invariance respectively. Over and above this if we put a double

traceless constraint given by

φαβµ1...µs−4αβ
= 0 (1.1.3)

to arrive at the correct number of degrees of freedom for the massless spin ’s’ field.

Apart from this the double-tracelessness condition is necessary to have a second order

action in ’D’ dimensions, which is invariant under the gauge transformation 1.1.2 upto

total derivatives given by [20]

S =
1

2

∫
dDxφµ1...µs

(
Fµ1...µs −

1

2
η(µ1µ2Fλ

µ3...µs)λ

)
. (1.1.4)

All the contractions above has been done with respect to the background metric. The

above procedure can be generalised to AdS space provided we demand a gauge in-

variance under a transformation of the form

δφµ1...µs = ∇(µ1ξµ2..µs)

with ξλµ1...µs−3λ = 0 (1.1.5)
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where,∇ is the covariant derivative w.r.t. AdS background. This ensures that the fields

have the same number of degrees of freedom as massless spin ’s’ field in flat space

[68]. Now, obviously the covariant derivatives don’t commute with the commutation

relations and other conventions being given in appendix 6.1. The equation of motion

invariant under this gauge transformation changes due to this and is given by

F̂µ1...µs ≡ Fµ1...µs−
1

l2
{[
s2 + (D − 6)s− 2(D − 3)

]
φµ1...µs + 2g(µ1µ2φ

λ
µ3...µs)λ

}
= 0 (1.1.6)

This equation of motion can be obtained from an action (invariant upto total deriva-

tives under 1.1.5, provided the fields are double traceless) given by

S =
1

2

∫
dDx

√−gφµ1...µs
(
F̂µ1...µs −

1

2
g(µ1µ2F̂λ

µ3...µs)λ

)
(1.1.7)

1.2 “Vierbein” like formalism

1.2.1 Vierbein formalism for gravity

For normal gravity there is a vierbein like formalism where we use the equivalence

principle to define a set of orthogonal coordinate system locally at each point and

name them eaµ. Here ’a’ are the local lorentz indices and µ are the global coordinate

indices. The relation between the metric and the vierbeins is given by

ηabe
a
µe
b
ν = gµν (1.2.8)

This comes from the demand that a very “small“ vector Vµ = eaµVa has the length

gµνV
µV ν in global coordinate system and length ηabV

aV b in local coordinate system

and both these lengths are the same and the fact that V µ = eµaV
a where eµa is the inverse

of eaµ such that eµae
b
µ = δba. Gravity is obtained by gauging the local lorentz symmetry.

The connection necessary to define the covariant derivatives of various fields in this

6



1.2. “VIERBEIN” LIKE FORMALISM

”gauge theory“ is called the spin connection. For vectors for example the covariant

derivative is defined so that DµV
a = eaνDµV

ν , which gives

Dµe
a
ν = 0

⇒ ∂µe
a
ν − Γλµνe

a
λ + waµbe

b
ν = 0 (1.2.9)

where waµb is the spin connection for the vector. From the above equation the spin

connection can be solved in terms of vierbeins to get

wabµ =
1

2
eνa
(
∂µe

b
ν − ∂νe

b
µ

)
− 1

2
eνb
(
∂µe

a
ν − ∂νe

a
µ

)
− 1

2
eρaeσb (∂ρeσc − ∂σe

ρc) ecµ (1.2.10)

From which it is clear that the spin connection is antisymmetric in its lorentz indices.

1.2.2 Vierbein formalism for higher spin theories

Similarly, the higher spin fields defined above have a ”vierbein“ like description

though it lacks the geometrical insight of the gravity case. The generalised vierbeins

and spin connections are ea1a2...as−1
µ and wb,a1a2...as−1

µ respectively, with the ai indices be-

ing symmetric and traceless and the b index being anti-symmetric with all ai indices.

There are similar conditions as above to determine the generalised spin connections

in terms of the generalised vierbeins. The spin ’s’ Fronsdal fields (in the linearised

equation of motion) are given by

φµ1...µs = ēa1(µ1 ...ē
as−1
µs−1

eµs)a1...as−1
(1.2.11)

where ēa1µ1 are the vierbiens for the AdS background. The above result can only be fixed

after we have made a choice about the local lorentz frames and corresponding things

for the higher spin vierbeins.

7
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1.3 Higher Spin fields in 3 dimensions

In 3 dimensions the little group of massless fields is Z2⊗R [21]. Removing the contin-

uous spin representations we are only left with 2 types of inequivalent representations

of Z2. So, the usual notion of spin reduces to the distinction between bosons and

fermions. Also, in 3 dimensions there are no propagating bulk degrees of freedom

for spins ≥ 2. But in presence of cosmological constant fields with different rank ’s’

have different boundary dynamics though they have no bulk propagating degrees of

freedom (for s > 1). So, we see it fit to call the rank as the spin of the fields.

1.3.1 Chern Simons formulation of 3dHS Gravity

3d gravity with negative cosmological constant can be written as a Chern Simons the-

ory with gauge group SL(2, R)×SL(2, R). This theory has equations of motion where

the field strength is zero and hence does not carry any propagating physical degrees

of freedom in the bulk. This property is same for Einstein gravity in 3 dimensions. We

define the SL(2, R) potentials by

jaµ = waµ +
1

l
eaµ, j̄aµ = waµ −

1

l
eaµ (1.3.12)

where waµ = 1
2
ǫabcwbcµ is the dualised spin connection in 3d and ’l’ is related to cosmo-

logical constant by Λ = − 1
l2
. Similarly, the spin ’s’ counterpart of this can be defined

as

ta1...as−1
µ = wa1...as−1

µ +
1

l
ea1...as−1
µ , t̄a1...as−1

µ = wa1...aa−1
µ − 1

l
ea1...as−1
µ (1.3.13)

where wa1...aa−1
µ are the dualised spin connections for the spin s case. The gauge fields

are then given by

A =
(
jaµJ

a + ta1...as−1
µ T a1...as−1

)
dxµ

Ā =
(
j̄aµJ

a + t̄a1...as−1
µ T a1...as−1

)
dxµ (1.3.14)

8
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The higher spin generators must transform under the sl(2, R) subalgebra as tensors.

So, that the algebra followed by them can be written as

[Ja, Jb] = ǫabcJ
c

[
Ja, Tb1...bs−1

]
= ǫma(b1Tb2...bs−1)m. (1.3.15)

To get the linearised Fronsdal equations from this frame like picture only this much

information about the algebra is necessary. We need not know about the commutators

between higher spin generators. If the generators form an algebra with a non degen-

erate bilinear form denoted by ’tr’ we can then consider the action for this system to

be given by the CS action

SHS = SCS[A]− SCS[Ā]

SCS[A] =
k

4π

∫
tr

(
A ∧ dA+

2

3
A ∧A ∧ A

)
. (1.3.16)

The above equation reduces to the Einstein Hilbert action with cosmological constant,

upto boundary terms when the gauge fields only contain the ’j’ potentials. Using the

normalisation tr (JaJb) =
1
2
ηab we get k = l

4G
where ’G’ is the Newton’s Gravitational

constant. To check if the Fronsdal equations can be obtained from this we split the

gravitational quantities as backgrounds and fluctuations over them and the higher

spin quantities as only fluctuations over the gravitational background i.e., eaµ = ēaµ +

haµ, w
a
µ = w̄aµ+ vaµ etc.. The equations that we get by using 1.3.12,1.3.13,1.3.14,1.3.15 and

the equation coming from 1.3.16 given by F = dA + A ∧ A = 0 is given by (at the

9
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linearised level)

Ra ≡ Dha + ǫabcēb ∧ vc = 0

T a ≡ Dva +
1

l2
ǫabcēb ∧ hc = 0

Ra1...as−1 ≡ Dha1...as−1 + ǫcd(a1|ēb ∧ v|a2...as−1)
d = 0

T a1...as−1 ≡ Dva1...as−1 +
1

l2
ǫcd(a1|ēc ∧ h|a2...as−1)

d = 0 (1.3.17)

where, the form indices have been omitted and the covariant derivative D is given by

Dfa1...as−1 = dfa1...as−1 + ǫcd(a1|w̄c ∧ f |a2...as−1

d . (1.3.18)

The equations 1.3.17 are left invariant under the following field transformations

δha1...as−1 = Dξa1...as−1 + ǫcd(a1|ēcΛ
|a2...as−1)
d

δva1...as−1 = DΛa1...as−1 +
1

l2
ǫcd(a1|ēcξ

|a2...as−1

d (1.3.19)

upto equations of motion of the background fields. The ξ part of the gauge freedom

corresponds to ”diffeomorphism“ like gauge freedom and the Λ part corresponds to a

local lorentz frame’s choice type freedom.

The ’R’ equations of 1.3.17 can be used to get the ’v’s’ as a function of the ’h’s’. Substi-

tuting this in the CS action we get a second order quadratic action for

hµ1,µ2...µs = ēa1µ2 ...ē
as−1
µs hµ1,a1...as−1 (1.3.20)

The skewed {s,1} symmetry of the above field can be taken care of to make it a fully

symmetric tensor in the µ indices by using up the local lorentz like symmetry due to

the Λ parameters mentioned in 1.3.19. Using this and eliminating the background spin

10
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connection w̄aµ using the vierbein constraint in 1.2.9 given by

∂µe
a
ν + ǫabcw

b
µe
c
ν − Γλµνe

a
λ = 0 (1.3.21)

we get the Fronsdal action 1.1.7 for spin ’s’ field given by 1.2.11. Similarly, the ξ part of

the gauge transformation in 1.3.19 will correspond to the gauge freedom of Fronsdal

like fields in 1.1.2.

Doing all this we have basically transformed the problem of finding consistent inter-

action between higher spin fields to that of suitably completing the algebra given in

1.3.15. Progress in this direction was made in [22]. They showed that the genera-

tors of higher spin algebra Ta1...as−1 can act as the generators of sl(N,R) algebra. A

small evidence in this direction is calculating the number of independent generators

in the higher spin theory with spins ≤ n. The number of independent generators of a

particular spin ’s’ is the total number of symmetric traceless tensors of rank s−1 in 3

dimensions. The number of independent components of a symmetric tensor of rank

’s−1’ in 3 dimensions is given by (s+1)s
2

and tracelessness imposes (s−1)(s−2)
2

constraints.

So, the number of generators of spin ’s’ is given by 2s− 1. So, the number of indepen-

dent generators with spin ≤ n is given by
∑n−1

s=1 (2s − 1) which is n2 − 1, which is the

same as the number of generators of the group SL(n,R). So, the interacting theory of

higher spin fields with spin from s = 2 to n is given by CS action with gauge group

SL(n,R)× SL(n,R) in AdS3.

11
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1.3.2 The spin 3 example

For spin 3 case the algebra 1.3.15 can be closed using the Jacobi identity and is given

by

[Ja, Jb] = ǫabcJc

[Ja, Tbc] = ǫma(bTc)m

[Tab, Tbc] = σ
(
ηa(cǫd)bm + ηb(cǫd)am

)
Jm (1.3.22)

where, σ is an undetermined constant. It can be shown that this algebra is isomor-

phic to the Sl(3, C)whose fundamental representation can be obtained by writing the

higher spin generators in terms of the 3 dimensional representation of the sl(2, C) gen-

erators as

Tab =
√
−σ
(
J(aJb) −

2

3
JcJc

)
. (1.3.23)

The choice of sign of sigma determines which real non-compact form of sl(3, C) is

chosen. for σ ≥ 0 we get the su(1, 2) algebra and for σ ≤ 0 we get the sl(3, R) algebra.

In fact for the two types of potentials in 1.3.12 and 1.3.13 we can choose a different real

form. But to get a good l → ∞ limit of the algebra , i.e. a good flat space limit of this

higher spin theory we need to choose the same real form for both the sectors.

To make the sl(3) nature of the algebra more clear and to get rid of the tracelessness

constraint of the Tab generators it is best to go to another basis given by

J0 =
1

2
(L1 + L−1) , J1 =

1

2
(L1 − L−1) , J2 = L0

T00 =
1

4
(W2 +W−2 + 2W0) , T01 =

1

4
(W2 −W−2)

T11 =
1

4
(W2 +W−2 − 2W0) . T02 =

1

4
(W1 +W−1)

T22 = W0, T12 =
1

2
(W1 −W−1) (1.3.24)

12
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where the new generators follow the algebra

[Li, Lj ] = (i− j)Li+j

[Li,Wm] = (2i−m)Wi+m

[Wm,Wn] =
σ

3
(m− n)(2m2 + 2n2 −mn− 8)Lm+n (1.3.25)

1.3.3 The hs[λ] algbera: the ”sl(∞)“ algebra

The Vasiliev’s higher spin theories which can have candidate CFT duals have in their

spectrum all fields with spin from 2 to ∞ (along with some scalars). So, using the

above arguments we need to work with sl(∞) algebra (more specifically the n→ ∞

limit of sl(n) algebra). This algebra contains infinite number of generators correspond-

ing to the infinite number of higher spin fields. Fortunately there exists an algebra

which has the requisite infinite number of generators and which has a much more

user-friendly definition than ’sl(∞)”. This is called the hs[λ] algebra. Its construc-

tion will be explained in this subsection. The universal enveloping algebra U(sl(2)) is

quotiented by ideal generated by Csl − 1
4
(λ2 − 1)1 to obtain an algebra given by

B[λ] =
U(sl(2))

〈Csl − 1
4
(λ2 − 1)1〉 . (1.3.26)

If the sl(2) generators are defined by J0, J± with the algebra

[J+, J−] = 2J0, [J±, J0] = ±J±, (1.3.27)

then the Casimir is defined by

Csl = J2
0 − 1

2
(J+J− + J−J+) (1.3.28)

The basis for the algebra consists of one 0 letter word namely the identity denoted by

V 1
0 , three 1 letter words V 2

1 = J+, V 2
0 = J0 and V

2
−1 = J−. and five 2 letter words and

13
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so on. Continuing we get 2s+ 1 different s− 1 letter words given by

V s
n = (−1)s−1−n (n+ s− 1)!

(2s− 2)!

[
J−, ...

[
J−,
[
J−, J

s−1
+

]]]
(1.3.29)

where |n| ≤ s− 1. The algebra for the generators is given by ’lone star product’

[X, Y ] = X ⋆ Y − Y ⋆ X. (1.3.30)

We can then define an invariant bilinear trace by

tr(X ⋆ Y ) = X ⋆ Y |Ja=0 (1.3.31)

This trace is symmetric and hence the commutators of two B[λ] generators will not

contain the identity element 1. The B[λ] algebra then decomposes into

B[λ] = C⊕ hs[λ], (1.3.32)

where vector space C is the vector space generated by the identity element. The rest

of the generators V s
n with |n| ≤ s with s ≥ 2 generates the hs[λ] algebra. The V s

n

generators transform in a 2s − 1 dimensional representation with respect to the sl(2)

algebra generated by s = 2 generators given by

[V 2
m, V

s
n ] = (−n +m(s− 1))V s

m+n (1.3.33)

so that the fields associated with the V S
n generators have spacetime spin s and the full

spectrum thus consists of fieldswith spin from 2 to∞. Another interesting observation

is that the bilinear trace defined by 1.3.31 goes to zero for all s ≥ N when λ = N . Also,

the algebra shows that for λ = N there is an ideal consisting of all generators with s ≥

N and hence for integral values of λ the hs[λ] algebra truncates to a finite dimensional

algebra given by sl(N) when quotiented by this ideal. Hence hs[λ] algebra contains
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the sl(N) algebra.

1.4 Higher Spin theories in the context of AdS3/CFT2 cor-

respondence

First of all we will very briefly discuss some specific aspects of AdS/CFT correspon-

dence.

1.4.1 The AdS Geometry

The AdSn+1 space can be obtained as an embedding in a pseudo-Euclidean n + 2 di-

mensional space with length squared given by

y2 = (y0)2 + (yn+2)2 − yiy
i, i = 1 to n. (1.4.34)

The AdSn+1 space being defined as the locus of points with

y2 = b2 = constant (1.4.35)

So, it is clear from the above equation 1.4.35 that the isometry group AdSn+1 is

SO(n, 2). So, some quantum theory on AdSn+1 should be an SO(n, 2) invariant the-

ory with 1
2
(n + 1)(n + 2) generators. One particular coordinate system of use to us is

the global coordinate system.This is particular parametrisation of the equation 1.4.35

given by

y0 = b cosh ρ cos τ, yn+1 = b cosh ρ sin τ, −→y = b sinh ρ
−→
Ω (1.4.36)

where
−→
Ω represents coordinates on Sn−1 and and the range of coordinates being 0 ≤

τ < 2π and 0 ≤ ρ <∞. The metric in this coordinate system is given by

ds2 = b2
(
− cosh2 ρdτ 2 + dρ2 + sinh2 ρdΩ2

)
. (1.4.37)
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With this obviously we have closed time-like curves in the geometry (which are patho-

logical). To get rid of this we get rid of the compactness of the τ coordinates and define

its new range as −∞ < τ <∞.

1.4.2 The Conformal Boundary of AdS

AdS space is not a compact manifold but there is a good way to take the extremum

limits of the coordinates and still arrive at a sensible ”boundary“ metric. Lets us make

the following redefinitions

ya = Rȳa, u = Rū, v = Rv̄ (1.4.38)

and then take the R → ∞ limit so that y2 = b2 ⇒ ūv̄ − −̄→y 2
= b2

R2 → 0. But tR is as good

as R for any t ∈ R as the scaling parameter and hence the ”boundary“ of AdS is given

by

uv −−→y 2 = o, where, (u, v,−→y ) ∼ t(u, v,−→y ) (1.4.39)

We call this boundary conformal boundary as its coordinates are well defined upto a

scaling. The topology of this conformal boundary is that of S1 × Sn−1 as can be seen

from the equation 1.4.39 and hence it is an n dimensional ”boundary“ of the n + 1

dimensional manifold.

1.4.3 Arguments leading to the AdS/CFT conjecture

Here we present the arguments given in [52] that led to the famous AdS/CFT conjec-

ture. This has been reviewed at many places [25, 26, 23, 27]. But we will be following

closely the discussion given in [28].

Lets us consider a stack of N D3-branes in type IIB string theory. The regime of string

perturbation theory is valid when gN≪ 1 and breaks down when gN≫ 1, where

g = eΦ and Φ is the dilaton. Now there are black brane configurations which have the
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same RR fluxes as the above D-branes and the metric for the black 3−brane with N

units of flux is given in string frame by

ds2 =
1√
H(r)

ηµνdx
µdxν +

√
H(r)dxmdxm, µ, ν ∈ 0, ...3, m, n ∈ 4, ...9

H = 1 +
L4

r4
, L4 = 4πgNα′2, r2 = xmxm (1.4.40)

where α′ is the physical string tension. The horizon of this black-brane system is at

r = 0 and the near horizon metric is

ds2 =
r2

L2
ηµνdx

µdxν +
L2

r2
dr2 + L2dΩ2

S5 , (1.4.41)

so that the near horizon geometry looks like that of AdS5 × S5 where L is the radius

of curvature for both AdS5 and S5. When gN ≫ 1 then ’L’ is very large in string units

and low energy supergravity expansion is a good approximation. So, this looks like a

regime complementary to the perturbative D-brane description.

Let us look at the low energy regime of both the theories. In the low ’gN’ regime this

consists of massless open and closed strings. The open strings ending on D3-branes

are the usual U(N) adjoint gauge fields and collective coordinates and their fermionic

partners while the closed strings give rise to a supergravity multiplet. The open strings

remain interacting in the low energy limit as 3 + 1 dimensional gauge couplings are

dimensionless but massless closed strings have irrelevant interactions and decouple .

In the large ’gN’ description we again have closed strings away from the black-brane

but there exist states which have smaller energy just because they are present near the

horizon where the warp factor g00 is small. Therefore, in the large ’gN’ limit the low

energy regime consists of not only massless string states but also many massive string

states which have low energy due to their proximity to the horizon.

Lets also scale the coordinates such that r → ζ−1r, x → ζx and take the ζ → ∞ limit.

In the black brane picture this is like moving near the horizon where the geometry is
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like AdS5 × S5. For the D-brane picture this is thought to be a scaling symmetry of the

low energy gauge theory (because the closed string phase space collapses to zero and

massive open string effects are suppressed by α′

x2
∼ ζ−2).

Now in the final step we assume that the order of taking the low energy limit of the

theory and adiabatic continuation in g is irrelevant. Then we have a duality where we

have a U(N) gauge theory with scaling symmetry at weak coupling and the full string

theory in an AdS5 × S5 background in the strong coupling regime.

1.4.4 The statement of duality and matching of parameters

The precise statement of the duality is given by

D = 4, N = 4, SU(N) Yang-Mills = IIB string theory onAdS5 × S5 (1.4.42)

The parameters on the gauge theory side are g2YM andNwhere the action is normalised

to− 1
2g2

Y M

TrFµνF
µν . The parameters on the string theory side are string coupling g and

the units of five form flux through S5 i.e. N. The relation between the couplings being

g =
g2Y M

4π
. Also, the parameters on the gravity side are expressed best in terms of length

scales.

L

Lstring
≡ L√

α′
= (4πgN)

1
4 = (g2YMN)

1
4 = λ

1
4 (1.4.43)

where, Lstring is the string length and λ is the t’Hooft coupling. Another length scale

of the gravity theory is Planck length in 10 dimensions LP which is given by

L8
P =

1

2
(2π)7g2α′4

so that
L

LP
=

1

π
5
8

(
N

2

) 1
4

(1.4.44)

A Classical description would require both the ratios 1.4.43 and 1.4.44 to be large, i.e.,

we need the coupling λ and the number of fields N to be large.
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1.4.5 The AdS/CFT dictionary and the guiding principles

Symmetries

The SO(4, 2)× SO(6) isometry of the AdS5 × S5 is present as the conformal symmetry

group of the gauge theory and the R-symmetry group for the SUSY of the gauge the-

ory. This acts as one of the guiding principles while invoking other examples of the

AdS/CFT duality. The isometry group of the background AdS geometry acts as the

conformal group of the dual CFT.

In general a gauge symmetry in the bulk should correspond to some global symmetry

in the CFT side. Gravity can be thought of as the gauge theory obtained by gauging

the underlying isometry group of the background spacetime manifold. So, in this case

SO(4, 2) is the isometry group of the AdS and hence gravity on it is the gauge theory

with gauge group S)(4, 2 and hence the corresponding field theory dual has this as a

global symmetry (the conformal group). Thus, corresponding to every gauge field on

the bulk we have a conserved current in the dual field theory side.

Matching of spectrum

Due to operator state correspondence in the gauge theory side (which is a CFT) there

is an isomorphism between states and operators. The duality can then be expressed as

a one-to-one mapping between particle species in AdSD+1 and the single trace chiral

primary operators in the CFT.

The statement goes like this : Suppose there is a bulk field φ whose boundary be-

haviour is like z∆ (in Poincare patch coordinates) then the scaled boundary limit of

this bulk field is mapped to the CFT operator,

O(x) = CO lim
z→0

z−∆φ(x, z) (1.4.45)
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where CO is a convention dependent constant. Scale transformation in the bulk takes

φ(z, x) → φ(ζz, ζx) and

O → CO lim
z→0

(
z

ζ

)−∆

φ(ζx, z) = ζ∆O(ζx) (1.4.46)

which is the required scale transformation of an operator of dimension ∆.

Correlators

With the above mentioned dictionary between operators and fields in 1.4.45 the gen-

erating functional for correlators in the gauge theory side is given by the partition

function in the bulk theory.

〈0|e
∫
dDxj(x)O(x)|0〉 = Zj → e−Scl. (1.4.47)

where, Scl is the on shell action evaluated with that mode of the bulk field which has

the leading boundary behaviour. From this it becomes clear that the leading boundary

behaviour of the bulk field acts as the source for correlators of the corresponding op-

erators in the boundary and the subleading piece acts as the expectation value of the

corresponding operator.

Systems dual to finite temperature CFTs

Thermal systems in the CFT can be studied by euclideanising the spacetime of the CFT.

The dual gravity system can also be studied in its euclidean AdS background. The

temperature being identified with the inverse of periodicity of the time circle in both

cases. If the finite temperature CFT is in thermodynamic equilibrium the dual gravity

system should also consist of a thermodynamically stable gravity system which is a

black hole. The passing over of a CFT with strong coupling from a confined phase to

a deconfined phase as we increase the temperature corresponds in the gravity side to

the Hawking-Page transition where the difference in free energy between thermal AdS
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background to an AdS black hole background changes sign from negative to positive.

The confined phase corresponds to the thermal AdS in the bulk whose free energy is

smaller upto Hawking-Page transition and the deconfined phase corresponds to the

black hole whose free energy is smaller after the Hawking-Page transition.

With this we end our discussion of the general aspects of the AdS/CFT correspon-

dence. Further details can be found in the reviews that we mentioned.

1.4.6 Back to Higher Spin Theories

The general properties of known AdS/CFT dualities is given below.

• Supersymmetry is all pervading. This makes life simpler obviously but it looks

likely that the duality is valid even for non supersymmetric field theories and

their corresponding gravity duals. Higher spin theories as envisaged by Vasiliev

et al. in [78, 79, 80, 81, 2] are particular type of theories with gravity for which

the dual field theory has another set of a large number of symmetries other than

supersymmetry in the form of infinite number of conserved currents with higher

spin. This large number of symmetries play similar role in simplifying calcula-

tions as in the SUSY case.

• The above mentioned theories have CFTs where the number of degrees of free-

dom scale as O(N2) where N is some integer parameter of the theory whose

N → ∞ limit is studied as the theories are matrix like. It is believed that the

CFTs dual to higher spin theories have degrees of freedomwhich scale like O(N)

and hence are vector like. Vector like theories are much simpler to handle than

matrix like theories.

The first proposed dualities between a higher spin theory in AdS and a dual CFT was

given in [4, 5, 82]. Here it is stated as a duality between Vasiliev’s theory in AdS4 and

a O(N) vector model in 3 dimensions, where N → ∞ and correspondingly the spec-

trum of higher spin fields in the Vasiliev’s theory consists of all fields with spin from
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2 to ∞ taken once. Lets revisit the equation 1.4.40.There the radius of curvature of the

AdS space was given by L4 = 4πgNα′2. For SUGRA limit of the string theory we have

very high string tension and hence a very large radius of curvature , so that stringy

effects can be neglected. This is the limit where the AdS/CFT conjecture is very well

tested. This limit is dual to strongly coupled CFTs , i.e. theories with very high t’Hooft

coupling as can be seen from the equation 1.4.43. Massless higher spin theories allow

us to probe another window of the AdS/CFT duality as they are thought to be arising

from the first Regge trajectory of the ’tension-less’ limit of the string theory and hence

consists only of massless particles. This hence allows us to probe this conjecture in a

limit where the dual field theory is not very strongly coupled (λ→ O(1)).

Our main focus will be on theAdS3/CFT2 duality with higher spin fields in the gravity

side. This is particularly interesting because here the bulk theory has no propagating

degrees of freedom 1. This though does not mean that the theory becomes void as

the higher spin fields still have non-trivial boundary degrees of freedom due to the

presence of a conformal boundary of the AdS3 space. So, a duality in this case has

the computational simplicity to make it a good playing field to better understand the

AdS/CFT conjecture. Let us go step by step towards the duality. Since there is a non-

trivial conformal boundary of the AdS3 bulk we have non-trivial boundary degrees of

freedom in the bulk even though there are no bulk degrees of freedom. These corre-

spond to the large gauge transformations of the underlying gauged isometry group.

These large gauge symmetries of the bulk in this case correspond to the symmetry cur-

rents in the CFT2. The procedure to arrive at a concrete formulation of this statement is

to find out the asymptotic symmetry algebra. We will mention that procedure below.

1This is true only for the higher spin part of the bulk spectrum. Any additional matter added to
make the duality consistent will have bulk degrees of freedom in general.
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1.4.7 The Asymptotic symmetry algebra in the bulk side

Wefirst review the procedure for arriving at asymptotic symmetry algebra for the pure

gravity case based on [6] and then we review the procedure for finding the asymptotic

symmetry algebra for higher spin case following closely [12]. Let us introduce a basis

for the sl(2, R) algebra which is the gauge group for the barred (or unbarred) part

of the Chern-Simons gauge theory which is equivalent to Einstein-Hilbert Gravity in

3 dimensions with cosmological constant. It consists of the generators L0, L± with

[Lm, Ln] = (m − n)Lm+n. Also, the solid cylinder (the topology of AdS3 geometry)

on which the Chern-Simons Theory lives is defined by the coordinates (t, ρ, φ) where

(ρ, φ) define the 2d polar coordinate system for the disc part of the cylinder and the

time variable along the length of the cylinder is given by t. We can now define the

light cone coordinate system by x± = t
l
± φ so that the Chern Simons connection takes

the form

A = Aρdρ+ A+dx
+ + A−dx

− (1.4.48)

The variation of the action gives rise to a boundary term ( as the solid torus has a

boundary) which is given by

δS|bdy = − k

4π

∫

R×S1

dx+dx−tr (A+δA− − A−δA+) (1.4.49)

This needs to be put to zero so that the bulk equation of motion extremises the action.

One easy way to do it is to put A− = 0 at the boundary. To characterise the physically

inequivalent solution we need to get rid of the gauge redundancies (which vanish at

the boundary). This can be partially done by demanding that we have

Aρ = b−1(ρ)∂ρb(ρ) (1.4.50)
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The equation of motion and boundary condition given above then fixes the other com-

ponents as

A+ = b−1(ρ)a(x+)b(ρ), A− = 0 (1.4.51)

A similar analysis for the barred components give

Āρ = b(ρ)∂ρb
−1(ρ), Ā+ = 0, Ā− = b(ρ)ā(x−)b−1(ρ) (1.4.52)

For the above solution to be asymptotically AdS3 we need that the b(ρ) to be same for

both the barred and unbarred connections. As an illustration we give the connection

for the pure AdS3 case

AAdS = b−1

(
L1 +

1

4
L−1

)
bdx+ + b−1∂ρbdρ

ĀAdS = −b
(
L−1 +

1

4
L1

)
b−1dx− + b∂ρb

−1dρ (1.4.53)

with b = eρL0 .

An Asymptotically AdS3 space is defined by connections which satisfy the condition

(A− AAdS) |bdy =
(
Ā− ĀAdS

)
|bdy = O(1) (1.4.54)

This makes sure that the functions a(x+) and ā(x−) that appear in 1.4.51 and 1.4.52 are

of the form

a(φ) = L1 + l0(φ)L0 + l−1(φ)L−1

ā(φ) = L−1 + l̄0(φ)L0 + l̄1(φ)L1 (1.4.55)

where for simplicity we are assuming a time independent solution. Whatever gauge

freedom (gauge transformations which vanish on the boundary) that is left after the

partial gauge fixing of 1.4.50 can be fixed by setting l0(φ) = l̄0(φ) = 0 but the func-
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tions l−1(φ) and its barred counterpart cannot be changed. So, the space of solutions

is parametrised by the functions l−1(φ) and l̄1(φ) only. The exact process of calculation

of the asymptotic symmetry algebra will be demonstrated only for the case of spin 3

now.

The basis algebra for spin 3 case given by sl(3) generators is given in equation 1.3.25.

We again fix the gauge partially with the radial gauge choice given in 1.4.50 and fol-

lowing a similar procedure as above the equivalent of 1.4.55 is given by

a(φ) =

1∑

m=−1

lmLm +

2∑

n=−2

wnWn (1.4.56)

and a similar thing for the barred connection. The asymptotic AdS condition is still

given by 1.4.54 with the pure AdS connection still given by 1.4.53. Again fixing gauge

that correspond to gauge transformation which vanish at boundary gives l0(φ) =

w0(φ) = w−1(φ) = 0. So, the space of inequivalent solutions is now parametrised

by l−1(φ) and w−2(φ) (and their barred counterparts). The most general form of gauge

transformation which preserves the form of the connection given in 1.4.50 and 1.4.51

is given by

Γ(x+, ρ) = e−ρL0γ(x+)eρL0 (1.4.57)

The infinitesimal form of this gauge transformation is given by

δa = γ′ + [a, γ] (1.4.58)

Let us redefine our generators as V s
n where n ≤ |s| and we get the generators (L0, L±1)

for s = 2 and the generators (W0,W±1,W±2) for s = 3. The gauge transformation can

then be parametrised as

γ(φ) =
3∑

s=2

∑

n≤|s|
γs,n(φ)V

s
n (1.4.59)
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Demanding that after the above gauge transformation the connection still remains of

the form given in 1.4.56with the condition on the coefficients for asymptotic AdS given

above gives rise to the following recursion relations among the gauge transformation

parameters

γ2,0 = γ′2,1

γ2,−1 =
1

2
γ′′2,1 +

2π

k
γ2,1L+

4π

k
γ3,2W

γ3,1 = −γ′3,2

γ3,0 =
1

2
γ′′3,2 +

4π

k
γ3,2L

γ3,−1 =
1

6
γ′′′3,2 −

10π

3k
γ′3,2L − 4π

3k
γ3,2L′

γ3,−2 =
1

24
γ′′′′3,2 +

4π

3k
γ′′3,2L+

7π

6k
γ′3,2L′ +

π

3k
γ3,2L′′

+
4π2

k2
γ3,2L2 +

π

6k
γ2,1W. (1.4.60)

where L,W are respectively l−1, w−2. The change in the parameters of the connection

is given by (assuming that ǫ = γ2,1 and χ = γ3,2)

δǫL = ǫL′ + 2ǫ′L+
k

4π
ǫ′′′

δǫW = ǫW ′ + 3ǫ′W

δχL = 2χW ′ + 3ǫ′W

δχW = 2χL′′′ + 9χ′L′′ + 15χ′′L′ + 10χ′′′L+
k

4π
χ(5) +

64

k

(
χLL′ + χ′L2

)
(1.4.61)

We interpret these changes as due to the effect of charges for large gauge transfor-

mations and read of the Poisson bracket between the associated currents. The first

equation of 1.4.61 shows that L acts like a stress tensor and from the second equation

there we can see that W acts as a primary of weight 3. The corresponding Poisson
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brackets are given by

i{Lm,Ln} = (m− n)Lm+n +
c

12
m(m2 − 1)δm,−n

i{Lm,Wn} = (2m− n)Wm+n

i{Wm,Wn} = −(m− n)(2m2 + 2n2 −mn− 8)Lm+n +
96

c
(m− n)Λ

(4)
m+n

+
c

12
m(m2 − 1)(m2 − 4)δm,−n (1.4.62)

where Λ
(4)
m =

∑
n∈Z LnLm−n. The above algebra is the algebra for generators of Wcl

3

algebra. This is a well defined algebra in the sense that it satisfies the Jacobi identity.

A similar analysis can be done for the case of hs[λ] algebra. The asymptotic symme-

try algebra obtained is known as Wcl
∞[λ]. This also contains the non-linear terms as

described for the spin 3 case in 1.4.62. And hence this algebra is difficult to quantise

simply by changing the Poisson bracket to Commutators as we need to define normal

ordering of products for the non-linear terms. In the c→ ∞ limit all the non-linearities

vanish and the generators W(s)
n with |n| ≤ s − 1 (called the wedge algebra) matches

exactly with the hs[λ] algebra. From the above analysis it looks plausible that the CFT

dual to this higher spin gravity theory should have theW algebra as the symmetry al-

gebra. Thus the symmetry of the CFT2 is extended by generators other than the usual

Virasoro generators with the new generators behaving as primaries of the underlying

Virasoso algebra.

In the next chapter I will talk about my work with Rajesh Gopakumar and Mathias

Gaberdiel where we provided the first evidence beyond the classical regime towards

the above statement. We will calculate the one-loop partition function around a ther-

mal AdS3 background of the higher spin theory and find that they match with the

Vacuum character of the W algebra. In the next two chapters I discuss my work on

aspects of higher spin gravity theory in AdS3 not exactly related to their AdS/CFT

correspondence in particular.

In chapter 3, I will discuss my work done with Arjun Bagchi, Shailesh Lal and
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Bindusar Sahoo on A parity violating version of the higher spin theory in AdS3. In

this work we figure out the action for this theory and calculate the energies of the vari-

ous modes of the solutions to the Equations of motion and discuss the stability of these

modes at a generic point in the space of parameters as well as a particular interesting

point called the chiral point.

In chapter 4 will contain a discussion my work with Abhishek Chowdhury on phase

structure of asymptotically AdS3 black holes with higher spin theories. We discuss the

stability, physical relevance and thermodynamics of these black holes in the chapter.
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Chapter 2

Quantum W-Symmetry of AdS3

2.1 Introduction

This chapter will be based on the work done in [63]. In this chapter, we will study

the massless higher spin theories on AdS3 discussed in the previous chapter at the

quantum level. More specifically, we perform a one loop calculation of the quadratic

fluctuations of the fields about a thermal AdS3 background. This requires a careful

accounting of the gauge degrees of freedom of these fields. In particular, we show that

the partition function reduces to the ratio of two determinants. For a spin s field these

involve Laplacians for transverse traceless modes of helicity ±s as well as ±(s− 1)

Z(s) =

[
det

(
−∆+

s(s− 3)

ℓ2

)TT

(s)

]− 1
2
[
det

(
−∆+

s(s− 1)

ℓ2

)TT

(s−1)

] 1
2

. (2.1.1)

In [15] such determinants were explicitly evaluated, in a thermal background, for ar-

bitrary spin s, using the group theoretic techniques of [16, 17]. By applying the results

of [15] we find that the one loop answer factorises neatly into left and right moving

pieces

Z(s) =
∞∏

n=s

1

|1− qn|2 , (2.1.2)
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where q = eiτ is the modular parameter of the boundary T 2 of the thermal background.

This generalises the expression for the case of pure gravity (s = 2) [18], as explicitly

checked in [19]. The expression (2.1.2) is seen to be the contribution to the character

for a generator of conformal dimension s. Combining the different fields of spin s =

3, . . . , N , together with the corresponding expression for the spin two case, one obtains

indeed the vacuum character of the WN algebra.

A straightforward generalisation of an argument of Maloney and Witten [18] can

now be made to show that this expression (together with the classical contribution

(qq̄)−
c
24 ) is one loop exact in perturbation theory. This is to be understood in a par-

ticular scheme where the Newton constant is suitably renormalised while keeping c

fixed.

It is interesting that if we consider the Vasiliev higher spin theory with left and right

copies of the hs(1, 1) higher spin algebras, then we find a vacuum character of theW∞

algebra, which can be written as

Zhs(1.1) =

∞∏

s=2

∞∏

n=s

1

|1− qn|2 =

∞∏

n=1

|1− qn|2 ×
∞∏

n=1

1

|(1− qn)n|2 . (2.1.3)

It is interesting that the answer can be naturally expressed in terms of the so-called

MacMahon function

M(q) =

∞∏

n=1

1

(1− qn)n
. (2.1.4)

The organisation of this chapter is as follows. In the next subsection we review

some basic features of the massless higher spin fields. We will find it useful to decom-

pose the fields in terms of transverse traceless modes of various helicities which will

enable us to count the physical and gauge degrees of freedom. In Sec.2.2, we lay out

the basics for the calculation of the quadratic fluctuations, correctly taking into account

the redundancy from the gauge modes. In Sec.2.3 we obtain the one loop answer for

the spin three case in a brute force manner. Sec.2.4 shows how the answer for a general
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spin can be carried out without having to do too much work. Sec.2.5 uses the results

of [15] to evaluate the determinants (2.1.1) explicitly in a thermal AdS3 background to

obtain (2.1.2). Sec.2.6 relates these expressions to the vacuum characters of WN . We

also comment on the case of W∞ and the relation to the MacMahon function. Sec. 7

contains closing remarks while the appendices describe our conventions and spell out

some of the details of the spin three calculation.

2.1.1 Counting Degrees of Freedom

Here we will count the number of independent components of the Higher spin fields

in metric like formulation. Recall that a completely symmetric tensor of rank s in

three dimensions has (s+1)(s+2)
2

independent components. In our case, because of the

double trace constraint, many of these components are not actually independent. The

constraints are as many in number as those of a symmetric tensor of rank (s − 4).

Therefore the net number of independent components is given by

(s+ 1)(s+ 2)

2
− (s− 3)(s− 2)

2
= 4s− 2 . (2.1.5)

We now argue that half of these are gauge degrees of freedom. Recall that the gauge

parameter is given by a traceless rank (s−1) symmetric tensor ξµ1µ2...µs−1 . The number

of independent components of ξ(s−1) is therefore

s(s+ 1)

2
− (s− 1)(s− 2)

2
= 2s− 1 . (2.1.6)

Therefore the non-gauge components are also (2s − 1) in number. Now the number

of gauge parameters is equal to the number of equations of motion which are actually

constraints and not dynamical in nature. Using up these constraints the number of

unconstrained degrees of freedom left are 4s− 2− (2s− 1) = 2s− 1. So, in a particular

gauge we can fix 2s − 1 components of the field with spin s and we are left with no
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bulk propagating degrees of freedom.

Let us now analyse the representation theoretic content of these different modes.

This will give us an important clue to the analysis of the one loop answer. We can

decompose the field ϕ(s) in the following way

ϕµ1µ2...µs = ϕTT
µ1µ2...µs

+ g(µ1µ2ϕ̃µ3...µs) +∇(µ1ξµ2...µs) . (2.1.7)

Here ϕTT
(µ1µ2...µs)

is the transverse, traceless piece of ϕ(s) and consists of two independent

components carrying helicity ±s. ϕ̃(µ3...µs) is the spin (s− 2) piece which carries all the

trace information of ϕ(s). Finally, ξ(s−1) are the gauge parameters. Note that the double

trace constraint on ϕ(s) of eq. (1.1.3) implies that ϕ̃(s−2) is traceless.

In what follows it will be important for us to make the further decomposition of

the gauge field ξ(s−1) into its traceless transverse component ξTT, as well as

ξµ1...µs−1 = ξTT
µ1...µs−1

+ ξ(σ)µ1...µs−1
, (2.1.8)

where ξ
(σ)
(s−1) is the longitudinal component, that can be written as

ξ(σ)µ1...µs−1
= ∇(µ1σµ2...µs−1) −

2

(2s− 3)
g(µ1µ2∇λσµ3...µs−1)λ , (2.1.9)

with σ(s−2) a traceless symmetric tensor. The transverse, traceless component ξTT
(s−1)

carries helicity ±(s− 1).

In order to exhibit the remaining helicitiy components we can now further decom-

pose ϕ̃(s−2) and σ(s−2) into their transverse traceless, as well as their longitudinal spin

(s− 3) components. The longitudinal pieces that appear in either of these decomposi-

tions can then again be decomposed into transverse traceless spin (s− 3) components,

together with longitudinal components of spin (s− 4), etc. In this way we can see that

both ϕ̃(s−2) and σ(s−2) have helicity components corresponding to all the helicities less

or equal to (s − 2); this gives rise to 2(s − 2) + 1 = 2s − 3 components for each of the
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two fields. In summary we therefore have

(i) a symmetric transverse traceless field ϕTT
(s) of spin s, with helicities ±s [2 compo-

nents]

(ii) a symmetric transverse traceless gauge mode ξTT
(s−1) of spin s − 1, with helicities

±(s− 1) [2 components]

(iii) a symmetric traceless (but not necessarily transverse) field ϕ̃(s−2) of spin s − 2,

with helicities 0,±1,±2, . . . ,±(s− 2) [2s− 3 components]

(iv) a symmetric traceless (but not necessarily transverse) gauge field σ(s−2) of spin

s− 2, with helicities 0,±1,±2, . . . ,±(s− 2) [2s− 3 components]

In particular, there are therefore 2s − 1 non-gauge and 2s − 1 gauge components, in

agreement with the above counting. Note that there are precisely as many gauge com-

ponents in σ(s−2), as there are components in ϕ̃(s−2). In fact, if we consider the trace

part of (2.1.7), the tracelessness of σ(s−2) implies that

ϕµ1µ2...µs−2λ
λ = (2s− 1) ϕ̃µ1...µs−2 +∇λξ

(σ)
µ1...µs−2λ

= (2s− 1) ϕ̃µ1...µs−2 + (Kσ)µ1...µs−2 , (2.1.10)

where K is a linear second order differential operator. Thus, at least classically, we

can gauge away ϕ̃(s−2) completely [31]. This therefore suggests that in the calculation

of the one loop determinant, the ϕ̃(s−2) and σ(s−2) fields will give cancelling contribu-

tions. The final answer should therefore only involve the helicity±s non-gauge modes

of ϕTT
(s) , as well as the helicity ±(s − 1) gauge modes of ξTT

(s−1). This is the intuitive ex-

planation of the answer (2.1.1). Below we will see explicitly how this happens from a

careful consideration of the quadratic functional integral for the ϕ-field.
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2.2 The general setup

The quadratic fluctuations we are interested in can be computed from the functional

integral

Z(s) =
1

Vol(gauge group)

∫
[Dϕ(s)] e

−S[ϕ(s)] . (2.2.11)

Here S[ϕ(s)] is the action defined in 1.1.7of a spin-s field in a D = 3 dimensional AdS

background [20]

In order to evaluate the path integral Z(s) in (2.2.11) it is useful to change variables

as

[Dϕ(s)] = Z
(s)
gh [DϕTT

(s) ] [Dϕ̃(s−2)] [Dξ(s−1)] , (2.2.12)

where we use the same decomposition as in (2.1.7). Here Z
(s)
gh denotes the ghost deter-

minant that arises from the change of variables.

The gauge invariance of the action, together with the orthogonality of the first terms

of (2.1.7), implies that

S[ϕ(s)] = S[ϕTT
(s) ] + S[ϕ̃(s−2)] , (2.2.13)

and the first term is simply

S[ϕTT
(s) ] =

∫
d3x

√
g ϕTT µ1...µs

(
−∆+

s(s− 3)

ℓ2

)
ϕTT
µ1...µs . (2.2.14)

Thus the functional integral over the TT modes is easily evaluated to be

Z(s) = Z
(s)
gh

[
det

(
−∆+

s(s− 3)

ℓ2

)TT

(s)

]− 1
2 ∫

[Dϕ̃(s−2)] e
−S[ϕ̃(s−2)] . (2.2.15)

The determination of the functional integral requires therefore that we compute Z
(s)
gh ,

as well as the quadratic integral over ϕ̃(s−2). Let us briefly discuss both terms.
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2.2.1 The quadratic action of ϕ̃(s−2)

For the component of ϕ(s) proportional to ϕ̃(s−2), see eq. (2.1.7), the above action sim-

plifies considerably. Indeed, it follows directly from (1.1.7) that

S[ϕ̃(s−2)] = −s(s− 1)(2s− 3)

4

∫
d3x

√
g ϕ̃µ1...µs−2 F̂µ1...µs−2λ

λ , (2.2.16)

where F̂ is evaluated on ϕ(s) = g ϕ̃(s−2). By an explicit computation one finds that

F̂µ1...µs(ϕ) = g(µ1µ2

[
∆ ϕ̃µ3...µs) −∇µ3∇λϕ̃µ4...µs)λ −

(s2 + s− 2)

ℓ2
ϕ̃µ3...µs)

]

+
(2s− 3)

2
∇(µ1∇µ2ϕ̃µ3...µs) . (2.2.17)

Therefore F̂µ3...µsλ
λ = gµ1µ2F̂µ1...µs is given by

F̂µ3...µsλ
λ = (2s− 1)

[
∆ϕ̃(µ3...µs) −∇(µ3∇λϕ̃µ4...µs)λ − (s2+s−2)

ℓ2
ϕ̃(µ3...µs)

]

−2g(µ3µ4∇λ∇νϕ̃µ5...µs)λν +
(2s−3)

2
gλν∇(λ∇νϕ̃µ3...µs) .

(2.2.18)

Note that the second but last term in (2.2.18) will not contribute when put into (2.2.16)

because of the tracelessness condition on ϕ̃. The last term in (2.2.18) can be evaluated

to be

gµ1µ2∇(µ1∇µ2ϕ̃µ3...µs) = 2∆ϕ̃(µ3...µs) + 2∇(µ3∇λϕ̃µ4...µs)λ + 2∇λ∇(µ3ϕ̃µ4...µs)λ

= 2∆ϕ̃(µ3...µs) + 4∇(µ3∇λϕ̃µ4...µs) − (s−1)(s−2)
ℓ2

ϕ̃µ3...µs) .

(2.2.19)

Plugging (2.2.19) and (2.2.18) into (2.2.17), the quadratic action for ϕ̃ finally becomes

S[ϕ̃(s−2)] = Cs

∫
d3x

√
g ϕ̃µ3...µs F̂µ3...µsλ

λ
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= Cs

∫
d3x

√
g ϕ̃µ3...µs

[
4(s− 1)

(
∆− s2 − s+ 1

ℓ2

)
ϕ̃µ3...µs (2.2.20)

+(2s− 5)∇(µ3∇λϕ̃µ4...µs)λ

]
,

where Cs is an (unimportant) constant. The path integral over ϕ̃(s−2) is now straight-

forward, and can be expressed in terms of the determinant of the differential operator

appearing in (2.2.20). Notice, however, that ϕ̃(s−2) is only traceless, and not transverse.

If we want to express this determinant in terms of differential operators acting on

transverse traceless operators, more work will be required. This will be sketched for

s = 3 below in section 2.3.2.

2.2.2 The ghost determinant

For the evaluation of the ghost determinant we shall follow the same strategy as in

[76]. This is to say, we write

1 =

∫
[Dϕ(s)] e

−〈ϕ(s),ϕ(s)〉

= Z
(s)
gh

∫
[DϕTT

(s) ] [Dϕ̃(s−2)] [Dξ(s−1)] e
−〈ϕ(s),ϕ(s)〉 , (2.2.21)

where ϕ(s) ≡ ϕ(s)(ϕ
TT
(s) , ϕ̃(s−2), ξ(s−1)) as in (2.1.7). Next we expand out

〈ϕ(s), ϕ(s)〉 = 〈ϕTT
(s) , ϕ

TT
(s) 〉+ 〈gϕ̃(s−2), gϕ̃(s−2)〉+ 〈∇ξ(s−1),∇ξ(s−1)〉

+〈gϕ̃(s−2),∇ξ(s−1)〉+ 〈∇ξ(s−1), gϕ̃(s−2)〉 . (2.2.22)

In order to remove the off-diagonal terms of the last line, we rewrite (2.1.7) as

ϕµ1µ2...µs = ϕTT
µ1µ2...µs

+ g(µ1µ2ϕ̃
′
µ3...µs)

+
(
∇(µ1ξµ2...µs) − 2

2s−1
g(µ1µ2 ∇λξµ3...µs)λ

)
, (2.2.23)
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where

ϕ̃′
µ1...µs−2

= ϕ̃µ1...µs−2 +
2

2s−1
∇λξµ1...µs−2λ . (2.2.24)

Then the quadratic term takes the form

〈ϕ(s), ϕ(s)〉 = 〈ϕTT
(s) , ϕ

TT
(s) 〉+ 〈gϕ̃′

(s−2), gϕ̃
′
(s−2)〉

+〈(∇ξ(s−1) − 2
2s−1

g∇ξ), (∇ξ(s−1) − 2
2s−1

g∇ξ)〉 . (2.2.25)

Both the ϕTT
(s) and the ϕ̃′

(s−2) path integral are now trivial, as is the Jacobian coming

from the change of measure in going from ϕ̃(s−2) to ϕ̃
′
(s−2). Thus the ghost determinant

simply becomes

1

Z
(s)
gh

=

∫
[Dξ(s−1)] e

−〈(∇ξ(s−1)−
2

2s−1
g∇ξ),(∇ξ(s−1)−

2
2s−1

g∇ξ)〉
. (2.2.26)

The exponent can be simplified further by integrating by parts to get

Sξ = 〈(∇ξ(s−1) − 2
2s−1

g∇ξ), (∇ξ(s−1) − 2
2s−1

g∇ξ)〉

= s

∫
d3z

√
g
[
ξµ1...µs−1

(
−∆+

s(s− 1)

ℓ2

)
ξµ1...µs−1

−(s− 1)(2s− 3)

(2s− 1)
ξµ1...µs−2λ∇λ∇νξ

µ1...µs−2ν
]
. (2.2.27)

This is the path integral we have to perform. Before doing the calculation in the general

case, it is instructive to analyse the simplest case, s = 3, first. The impatient reader is

welcome to skip the next section and proceed directly to Sec. 4 where we perform the

general analysis of the ghost determinant.

2.3 The Case of Spin Three

As explained in the previous section, see eq. (2.2.15), the calculation of the 1-loop de-

terminant is reduced to determining the ghost determinant (2.2.26) as well as the de-
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terminant arising from (2.2.20). We shall first deal with the ghost determinant.

2.3.1 Calculation of the Ghost Determinant

For s = 3 the ξ-dependent exponent of (2.2.27) is of the form

Sξ = 3

∫
d3x

√
g
[
ξνρ

(
−∆+

6

ℓ2

)
ξνρ − 6

5
ξν
ρ∇ρ∇µξ

µν
]
. (2.3.28)

We shall first do the calculation in a pedestrian manner, following the same methods

as in [32]. We shall then explain how our result can be more efficiently obtained. To

start with we decompose ξµν as

ξµν = ξTTµν+∇µσTν+∇νσTµ+

(
∇µ∇ν − 1

3
gµν∇2

)
ψ = ξTTµν+∇(µσTν)+ψµν , (2.3.29)

where ξTTµν is the transverse and traceless part of ξµν , while σTν is (traceless) and

transverse, i.e.

∇νσ
Tν = 0 . (2.3.30)

Plugging (2.3.29) into (2.3.28) we obtain after a lengthy calculation — some of the

details are explained in appendix 6.2 —

Sξ =

∫
d3x

√
g

[
3 ξTT

νρ

(
−∆+

6

ℓ2

)
ξTT νρ

+
48

5
σT
ν

(
−∆+

2

ℓ2

) (
−∆+

7

ℓ2

)
σTν

+
18

5
ψ (−∆)

(
−∆+

3

ℓ2

) (
−∆+

8

ℓ2

)
ψ

]
. (2.3.31)
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The ghost determinant (2.2.26) is then simply

Z
(s=3)
gh = J−1

1

{
det

(
−∆+

6

ℓ2

)TT

(2)

det

[(
−∆+

2

ℓ2

) (
−∆+

7

ℓ2

)]T

(1)

× det

[
(−∆)

(
−∆+

3

ℓ2

) (
−∆+

8

ℓ2

)]

(0)

} 1
2

, (2.3.32)

where J1 is the Jacobian from the change of measure in going from ξ to (ξTT, σT, ψ).

This can be calculated from the identity

1 =

∫
Dξe−〈ξ,ξ〉 =

∫
J1Dξ

TTDσTdψ e−〈ξ(ξTT,σT,ψ), ξ(ξTT,σT,ψ)〉 . (2.3.33)

Expanding out the exponential, the terms of interest are

∫
d3x

√
g ∇(µσ

T
ν) ∇(µσT(ν) = −2

∫
σT
ν

(
∆− 2

ℓ2

)
σTν . (2.3.34)

and

∫
d3x

√
g

[(
∇µ∇ν −

1

3
gµν∆

)
ψ

][(
∇µ∇ν − 1

3
gµν∆

)
ψ

]

=
2

3

∫
d3x

√
g ψ

[
(−∆)

(
−∆+

3

ℓ2

)]
ψ . (2.3.35)

Thus the (−∆ + 2
ℓ2
) term is cancelled from the first line of (2.3.32) and similarly the

(−∆)(−∆ + 3
ℓ2
) term from the second line. The complete ghost determinant for s = 3

therefore equals

Z
(s=3)
gh =

[
det

(
−∆+

6

ℓ2

)TT

(2)

det

(
−∆+

7

ℓ2

)T

(1)

(
−∆+

8

ℓ2

)

(0)

] 1
2

. (2.3.36)

For the following it will be important to observe that this result can be obtained

more directly. Indeed, as the above calculation has demonstrated, there are many
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cancellations between terms arising from Sξ and the change of measure J1. Actually, it

is not difficult to see how this comes about. Consider for example the vector part. The

factor by which the second line of (2.3.31) differs from (2.3.34) is the eigenvalue of the

differential operator

(
L(3)ξ

)νρ ≡
(
−∆+

6

ℓ2

)
ξνρ − 3

5
(∇ρ∇µξ

νµ +∇ν∇µξ
ρµ) (2.3.37)

evaluated on the tensors of the form ξνρ = ∇(νσTρ). This reproduces indeed (2.3.36)

since we find

(
−∆+

6

ℓ2

)
∇(νσTρ) − 3

5

(
∇ρ∇µ∇(µσTν) +∇ν∇µ∇(µσTρ)

)

=
8

5

[
∇ν

(
−∆+

7

ℓ2

)
σTρ +∇ρ

(
−∆+

7

ℓ2

)
σTν
]
. (2.3.38)

Similarly, the action of L(3) on ψµν leads to

(
−∆+

6

ℓ2

)
ψνρ −

6

10
(∇ρ∇µψµν +∇ν∇µψµρ)

=
9

5
∇ρ∇ν

(
−∆+

8

ℓ2

)
ψ − 1

3
gρν ∆

(
−∆+

12

ℓ2

)
ψ . (2.3.39)

While ψµν is not an eigenvector of (2.3.37), the second term proportional to gρν does

not actually matter for the 1-loop calculation since the result is contracted with the

traceless tensor ψρν , see eq. (6.2.6).

2.3.2 The Quadratic Contribution from ϕ̃

The other piece of the calculation is the quadratic contribution from ϕ̃, which for s = 3

takes the form

S[ϕ̃(1)] =
9

2

∫
d3
√
g

[
8 ϕ̃ρ

(
−∆+

7

ℓ2

)
ϕ̃ρ − ϕ̃ρ∇ρ∇λϕ̃λ

]
. (2.3.40)
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In order to express the determinant in terms of those acting on traceless transverse

components, we now decompose ϕ̃ρ into its transverse and longitudinal component

ϕ̃ρ = ϕ̃T
ρ +∇ρχ . (2.3.41)

By the usual argument the above quadratic action then becomes

S = −9

2

∫
d3
√
g

[
8 ϕ̃T ρ

(
∆− 7

ℓ2

)
ϕ̃T
ρ

−8χ∇ρ

(
∆− 7

ℓ2

)
∇ρχ− χ∇ρ∇ρ∇λ∇λχ

]

=
9

2

∫
d3
√
g

[
8 ϕ̃T ρ

(
−∆+

7

ℓ2

)
ϕ̃T
ρ + 9χ

(
−∆+

8

ℓ2

)
(−∆)χ

]
. (2.3.42)

The last (−∆) factor is removed by the Jacobian that arises because of the change of

variables ϕ̃ ≡ ϕ̃(ϕ̃T, χ); the relevant term there is simply

∫
d3x

√
g (∇ρχ)(∇ρχ) =

∫
d3x

√
g χ(−∆χ) . (2.3.43)

The correction term coming from this part of the calculation is therefore of the form

Z
(s=3)
ϕ̃(1)

=

[
det

(
−∆+

7

ℓ2

)T

(1)

det

(
−∆+

8

ℓ2

)

(0)

]− 1
2

. (2.3.44)

This cancels precisely against two of the factors in Z
(s=3)
gh of eq. (2.3.36), as expected

from our general considerations above. Combining the different pieces as in eq.

(2.2.15), the total 1-loop determinant for s = 3 then equals

Z(s=3) =

[
det (−∆)TT

(3)

]− 1
2
[
det

(
−∆+

6

ℓ2

)TT

(2)

] 1
2

. (2.3.45)

As expected, only the helicity s and helicity (s − 1) terms therefore contribute to this

determinant.
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2.4 Quadratic Fluctuations for General Spin

The above calculation is fairly technical, and we cannot hope to generalise it directly to

higher spin. However, as explained above, we expect that the contributions of ϕ̃(s−2)

and σ(s−2) should cancel each other, and it should therefore be possible to organise

the calculation in a way in which this becomes manifest. In the following we shall

explain how this can be achieved. In particular, we shall explain that most of the ghost

determinant will actually just cancel the quadratic contribution from ϕ̃(s−2).

2.4.1 The ghost determinant

Generalising the definition of L(3) in (2.3.37) let us define L(s) to be the differential

operator L(s) appearing in the integral (2.2.27)

(
L(s)ξ

)
µ1...µs−1

=

(
−∆+

s(s− 1)

ℓ2

)
ξµ1...µs−1 −

(2s− 3)

(2s− 1)
∇(µ1∇λξµ2...µs−1)λ . (2.4.46)

Let us separate ξ into its transverse traceless component as well as σ(s−2) as in (2.1.8),

i.e. ξ(s−1) = ξTT
(s−1) + ξ

(σ)
(s−1) with

ξ(σ)µ1...µs−1
= ∇(µ1σµ2...µs−1) −

2

(2s− 3)
g(µ1µ2∇λσµ3...µs−1)λ . (2.4.47)

On the transverse traceless components ξTT
(s−1) of ξ(s−1) the second term of L(s) vanishes,

and the operator has a simple form, namely

L(s)ξTT
(s−1) =

(
−∆+

s(s− 1)

ℓ2

)
ξTT
(s−1) . (2.4.48)

In order to determineL(s)ξ(s−1) it therfore remains to calculateL(s)ξ
(σ)
(s−1) as a differential

operator on σ(s−2). Since the resulting expression will be contracted with ξ
(σ)
(s−1), we

only have to evaluate the operator up to ‘trace terms’, (i.e. terms that are proportional

to gµiµj for some indices i, j ∈ {1, . . . , s − 1}). The calculation can be broken up into
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different terms. From the first term of L(s) we get

(
−∆+

s(s− 1)

ℓ2

)
∇(µ1σµ2...µs−1)

∼= ∇(µ1

(
−∆+

(s− 1)(s+ 2)

ℓ2

)
σµ2...µs−1) , (2.4.49)

where ∼= always denotes equality up to trace terms. The action of (−∆+ s(s−1)
ℓ2

) on the

second term in (2.1.9) only produces a trace term.

This leaves us with evaluating the second term of L(s). The relevant formulae are

− (2s− 3)

(2s− 1)
∇(µ1∇λ∇(µ2σµ3...µs−1λ)

∼= (2s− 3)

(2s− 1)
∇(µ1

(
−∆+

(s− 1)(s− 2)

ℓ2

)
σµ2...µs−1)

−(2s− 3)

(2s− 1)
∇(µ1∇µ2∇λσµ3...µs−1)λ , (2.4.50)

as well as

− (2s− 3)

(2s− 1)
∇(µ1∇λ

(
− 2

2s− 3

)
gµ2µ3∇νσµ4...µs−1λ)ν

∼= 2

(2s− 1)
∇(µ1∇µ2∇λσµ3...µs−1)λ .

(2.4.51)

Combining (6.3.23), (6.3.24) and (6.3.25) then leads to

(
L(s)ξ(σ)

)
µ1...µs−1

∼= 1

(2s− 1)
∇(µ1

[
4(s− 1)

(
−∆+

s2 − s+ 1

ℓ2

)
σµ2...µs−1)

+(5− 2s)∇µ2∇λσµ3...µs−1)λ

]
. (2.4.52)

For the simplest case, s = 3, we have also worked out the trace piece; this is described

in appendix 6.2.1.

Now the important observation is that the differential operator in the square brack-

ets of (2.4.52) acts on σ(s−2) in precisely the same way as the differential operator in

(2.2.20) acts on ϕ̃(s−2). Both σ(s−2) and ϕ̃(s−2) are symmetric traceless, but not necessar-

ily transverse tensors of rank (s − 2), and thus the eigenvalues of the two operators

agree exactly, including multiplicities. As a consequence the contribution to the path

integral coming from σ(s−2) cancels precisely against that arising from integrating out
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ϕ̃(s−2).

In particular, the only contributions that actually survive are those coming from

ϕTT
(s) , see eq. (2.2.14), as well as the contribution of ξTT

(s−1) to the ghost determinant, see

(2.4.48). Putting these two contributions together gives the full one-loop amplitude for

general s in the simple form

Z(s) =

[
det

(
−∆+

s(s− 3)

ℓ2

)TT

(s)

]− 1
2
[
det

(
−∆+

s(s− 1)

ℓ2

)TT

(s−1)

] 1
2

, (2.4.53)

thus proving (2.1.1).

2.5 One loop Determinants and Holomorphic Factorisa-

tion

Given the explicit formula for Z(s), it is now straightforward to calculate the one loop

determinant on thermal AdS3. As was explained in detail in [15], the relevant deter-

minant is of the form

− log det

(
−∆+

m2
s

ℓ2

)TT

(s)

=

∫ ∞

0

dt

t
K(s)(τ, τ̄ ; t) e−m

2
st , (2.5.54)

where K(s) is the spin s heat kernel

K(s)(τ, τ̄ ; t) =
∞∑

m=1

τ2√
4πt| sin mτ

2
|2
cos(smτ1)e

−m2τ22
4t e−(s+1)t . (2.5.55)

Here q = eiτ , with τ = τ1 + iτ2 the complex structure modulus of the T 2 boundary of

thermal AdS3. Note that for the case at hand we have for the helicitiy s component

m2
s = s(s− 3), and hence the total t-exponent is s(s− 3) + (s+ 1) = (s− 1)2, while for

the helicity (s−1) componentm2
s−1 = s(s−1) and we get s(s−1)+s = s2. Performing
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the t-integral with the help of the identity

1√
4π

∫ ∞

0

dt

t3/2
e−

α2

4t
−β2t =

1

α
e−αβ , (2.5.56)

we therefore obtain

− log det

(
−∆+

s(s− 3)

ℓ2

)TT

(s)

=
∞∑

m=1

1

m

cos(smτ1)

| sin mτ
2
|2 e−mτ2(s−1)

=
∞∑

m=1

2

m

1

|1− qm|2 (q
ms + q̄ms) , (2.5.57)

as well as

− log det

(
−∆+

s(s− 1)

ℓ2

)TT

(s−1)

=
∞∑

m=1

1

m

cos((s− 1)mτ1)

| sin mτ
2
|2 e−mτ2s

=
∞∑

m=1

2

m

qmq̄m

|1− qm|2
(
qm(s−1) + q̄m(s−1)

)
.(2.5.58)

Hence we find for

− logZ(s) =
∞∑

m=1

1

m

1

|1− qm|2
[
(qms + q̄ms)− qmq̄m

(
qm(s−1) + q̄m(s−1)

)]

=
∞∑

m=1

1

m

1

|1− qm|2
[
qms(1− q̄m) + q̄ms(1− qm)

]

=
∞∑

m=1

1

m

[ qms

1− qm
+

q̄ms

1− q̄m

]
. (2.5.59)

Thus the result is the sum of a purely holomorphic, and a purely anti-holomorphic

expression. Expanding the denominator by means of a geometric series and noting

that the sum over m just gives the series expansion of the logarithm we hence obtain

Z(s) =

∞∏

n=s

1

|1− qn|2 , (2.5.60)

thus proving (2.1.2).
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2.6 WN , W∞ and the MacMahon Function

As is explained in [12] it is consistent to consider higher spin gauge theories with only

finitelymany spin fields. More specficially, the construction of [12] in terms of a Chern-

Simons action based on SL(N) × SL(N) leads to a theory that has, in addition to the

graviton of spin s = 2, a family of fields of spin s = 3, . . . , N . The quadratic part of its

action is just the sum of the actions S[ϕ(s)] with s = 2, . . . , N . The above calculation

therefore implies that the corresponding one-loop determinant equals

ZSL(N) =
N∏

s=2

∞∏

n=s

1

|1− qn|2 = χ0(WN )× χ̄0(WN) , (2.6.61)

where χ0(WN ) is the vacuum character of the WN algebra

χ0(WN ) =

N∏

s=2

∞∏

n=s

1

(1− qn)
, (2.6.62)

see e.g. Sec. 6.3.2 of [33]. Indeed, by the usual Poincare-Birkhoff-Witt theorem (see for

example [?]), a basis for the vacuum representation ofWN is given by

W
(N)

−n(N)
1

· · ·W (N)

−n(N)
lN

W
(N−1)

−n(N−1)
1

· · ·W (N−1)

−n(N−1)
lN−1

· · ·W (2)

−n(2)
1

· · ·W (2)

−n(2)
l2

Ω , (2.6.63)

whereW
(K)
n are the modes of the field of conformal dimension K, and

n
(K)
1 ≥ n

(K)
2 ≥ · · · ≥ n

(K)
lK

≥ K . (2.6.64)

Here we have used that W
(K)
n Ω = 0 for n ≥ −K + 1 — this is the reason for the

lower bound in (2.6.64) — but we have assumed that there are no other null vectors

in the vacuum representation; this will be the case for generic central charge c. We

have furthermore denoted the Virasoro modes byW
(2)
n ≡ Ln. It is then easy to see that

(2.6.62) is just the counting formula for the basis (2.6.63). Thus our one loop calculation
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produces the partition function of theWN algebra, as suggested by the analysis of [12].

Maloney and Witten [18] have argued that the corresponding answer in the case

of pure (super-)gravity should be one loop exact. Essentially, the argument is that

for the representation of the (super-)Virasoro symmetry algebra of the theory corre-

sponding to the vacuum character, the energy levels cannot be corrected. One may,

in principle, have other states contributing to the partition function. However, we

know semi-classically (c→ ∞) that there are no propagating gravity states in the bulk.

Therefore any additional states that might contribute to the partition function must

have energies going to infinity in the semi-classical limit, such as black hole states or

other geometries. But these would correspond to non-perturbative corrections from

the point of view of the bulk path integral computation.

All the ingredients of this argument are also present in our case of massless higher

spin theories. We do not have any propagating states in the bulk, and the only semi-

classical physical states are the generalised Brown-Henneaux excitations of the vac-

uum. These are boundary states and their energies are governed by the WN algebra

as argued above. Thus any additional contributions would be non-perturbative, and

it follows that the above one loop answer is perturbatively exact.

In [10] a classical Brown-Henneaux analysis was also performed for the Blencowe

theory based on (two copies of) the infinite dimensional Vasiliev higher spin algebra

hs(1, 1) [35, 22]. This theory possesses one spin field for each spin s = 2, 3, . . ., and

thus the one-loop partition function becomes the N → ∞ limit of ZSL(N), i.e.

Zhs(1,1) =
∞∏

s=2

∞∏

n=s

1

|1− qn|2 = |M(q)|2 ×
∞∏

n=1

|1− qn|2 , (2.6.65)

whereM(q) is the MacMahon function (2.1.4). Note, in particular, that the MacMahon

function is essentially the W∞ vacuum character. This connection appears not to be

widely known.1

1This form of the character for W∞ (or rather W1+∞) appears, for instance, in [36, 37], and the
connection also features in the appendix of [38]. We thank B. Szendroi for bringing these references to
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2.7 Concluding Remarks for this chapter

We have seen that a computation of the leading quantum effects for higher spin theo-

ries on AdS3 can be carried out explicitly. Our result suggests strongly that the quan-

tum Hilbert space can be organised in terms of the vacuum representation of the WN

algebra. This also leads to the conclusion that this answer is perturbatively exact. Thus

we have control over the quantum theory, at least to all orders in the power series ex-

pansion in Newton’s constant. It would be very interesting to understand whether

the full non-perturbative quantum theory is well defined. In the case of pure gravity

it was argued in [18] that, under some reasonable looking assumptions, pure gravity

on AdS3 does not exist non-perturbatively. It would be very interesting to revisit this

question for the higher spin theories considered here. In particular, one may hope that

the situation could be different for the hs(1, 1) theory with W∞ symmetry. A positive

answer would probably give some impetus to investigations of these symmetries in

higher dimensional AdS spacetimes.2

In this context we find the appearance of the MacMahon function as the W∞ vac-

uum character very significant. The MacMahon function first appeared in string the-

ory in the non-perturbative investigation of topological strings [41, 42]. It was further

interpreted in terms of a quantum stringy Calabi-Yau geometry in [43, 44]. Perhaps,

we should now interpret the ubiquitous appearance of the MacMahon function in the

context of topological strings in terms of a hiddenW∞ symmetry. It is also rather sug-

gestive that the MacMahon function (together with the η-function prefactor of (2.6.65))

precisely accounts for the contribution of the supergravity modes to the elliptic genus

of M-theory on AdS3 × S2 × X6 [45, 46]. This might provide a concrete link between

their appearance in topological strings and in AdS3.

our attention.
2WN and W∞ algebras have also appeared as spacetime symmetries of non-critical string theories,

see e.g. [39, 40]. It would be interesting to explore the connection, if any, to the above realisations.
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2.7.1 Further works in this direction

This work led to the Gopakumar-Gaberdiel conjecture about gravity systems dual to

minimal model CFTs[64]. They conjectured that coset CFTs of the form

SU(N)k ⊗ SU(N)1
SU(N)k+1

(2.7.66)

called the WN are dual to Vasiliev’s system of higher spin theories with gauge algebra

hs[λ]⊕hs[λ] in the t’Hooft limit where λ = N
N+k

. In order to match with the spectrum

in the bulk to that of the dual CFT the higher spin theories is coupled to two complex

scalar fields. Further checks of this duality in the form of calculation of full partiion

function was done in [85]. Checks in the form of matching correlation fucntions was

done in [70, 71, 72].

At a technical level, it might be interesting to redo the analysis of the quadratic fluc-

tuations within the Chern-Simons formulation of the higher spin theories [35]. It will

have a two fold advantage. First of all this will be useful to compute the one loop

partition function for more complicated backgrounds like conical surplus discussed in

[86, 91]. The second thing is that this will shed more light into the dictionary between

the Chern-Simons formulation of higher spin theories and the metric like formulation.

It should also be mentioned that the considerations of this chapter have been straight-

forwardly extended to the supersymmetric case in [47] .
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Chapter 3

Topologically Massive Higher Spin

Gravity

3.1 Introduction

This chapter will be based on the work done in [89]. After the computation of the

one-loop partition function in the previous chapter we move to the study of some

classical aspects of Fronsdal like formulation of higher spin theories. In this chapter

we will study a parity violating generalisation of higher spin theories studied in the

last 2 chapters which are a generalisation of the Topologically Massive Gravity (TMG)

in 3 spacetime dimensions.

It is well known that the main difference of three dimensional gravity with higher

dimensional gravity arises from the fact that there are no local degrees of freedom

for gravity in 3d. There are no gravitational waves and curvature is concentrated at

the locations of matter. For topologically trivial spacetimes, there are no gravitational

degrees of freedom at all.

To make the dynamics of three dimensional gravity more like gravity in higher

dimensions, one needs to restore local degrees of freedom. In 3d, there is the unique

opportunity of adding a gravitational Chern-Simons term to the action which now
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becomes

S3 = SEH + SCS (3.1.1)

where SEH =

∫
d3x

√−g(R− 2Λ) (3.1.2)

and SCS =
1

2µ

∫
d3xǫµνρ

(
Γσµλ∂νΓ

λ
ρσ +

2

3
ΓσµλΓ

λ
νθΓ

θ
ρσ

)
(3.1.3)

The linearlised equations of motion of this theory are those of a massive scalar field.

The existence of this massive excitation can also be traced to the effective interaction of

static external sources where one finds a Yukawa attraction with interaction energies

as expected for a massive scalar graviton. The theory is called topologically massive

gravity [50, 51]

Topologically massive gravity theories in three dimensions with a negative cosmo-

logical constant (Λ = −1/ℓ2) have been recently extensively studied in the context of

AdS/CFT [52]. Without the Chern-Simons term, 3d gravity in AdS space has the addi-

tional feature of having black hole solutions [53]. Now with the topological term, we

have both black holes and propagating gravitons. For a generic value of the coefficient

of the gravitational Chern-Simons term, the theory has been shown to be inconsistent:

either the black hole or the gravitational waves have negative energy. It was conjec-

tured in [54] that the theory becomes sensible at a special point where µℓ = 1. The

authors claimed that the dual boundary CFT became a chiral CFT with one of the cen-

tral charges vanishing (cL = 0). This claim, however, was soon hotly contested [55] and

in following works [56], topologically massive gravity at the chiral point was shown

to be more generally dual to a logarithmic CFT. The energies of these logarithmic solu-

tions were calculated and it was shown that these carried negative energy at the chiral

point indicating an instability and the breakdown of the Chiral gravity conjecture. A

more complete analysis based on techniques of holographic renormalisation showed

that this claim was indeed justified [58]. It was discussed that the original chiral grav-

ity conjecture might also hold in a limited sense when one can truncate the LCFT to
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a chiral CFT provided certain three-point functions vanish 1. Similar claims were also

made in [61].

Motivated by these features of topologically massive gravity, a natural question to

ask is what happens when these higher-spin theories are similarly deformed by the

addition of a Chern-Simons term. In this chapter we study these issues by considering

the effect of parity violating, three-derivative terms added to the quadratic action of

spin-3 Fronsdal fields inAdS3. These are the spin-3 analogues of the linearisation of the

gravitational Chern-Simons term described in (3.1.3), and we shall continue to refer to

them as “Chern-Simons" terms.

The outline of the chapter is as follows: we start out in Sec.3.2 by giving details

about the construction of the curved space analogue of the action for massive gravity

coupled to higher spin modes in [66]. The equations of motion are derived from there.

After relating the coefficient of the spin-three “Chern-Simons" term to the spin-two

term in Sec.3.3 by looking at the frame-like formulation, we enter a detailed analysis

of the equations of motion in Sec.3.4.

Here in Sec.3.4, following a strategy similar to the spin-two case, the equations are

rewritten in terms of three commuting differential operators. At the chiral point, two

of these operators become identical indicating an inadequacy of the basis of solutions

and thereby necessitating the existence of a logarithmic solution. The solutions of the

equations of motion are given explicitly. Unlike the spin-2 counterpart, the trace of

the spin-3 cannot be generically set to zero and will be responsible for giving rise to

non-trivial solutions in the bulk which carry a trace, in addition to the traceless mode.

Construction of the logarithmic solutions corresponding to both the trace and trace-

less mode are given. Energies for all the solutions are computed. Away from the chiral

point, the massive traceless mode carries negative energy, making this a generalisation

of the spin-two example. The novelty of the analysis here is the existence of the trace

mode. The massive trace mode carries positive energy away from the chiral point

1The existence of such a truncation only shows that a set of operators of the LCFT form a closed
sub-sector, not that this sub-sector has a dual of its own [58].
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and is not a gauge artefact. At the chiral point, both the traceless and the trace mode

have zero energy. The logarithmic partner of the trace mode at the chiral point carries

positive energy whereas the logarithmic partner of the traceless mode has negative

energy indicating an instability similar to the case of the spin-two example. The mass-

less branch solutions, and hence massive branch solutions at the chiral point, can be

gauged away by appropriate choice of residual gauge transformation. This along with

the fact that left branch and massive branch solutions carry zero energy at the chiral

point suggests that these can be regarded as being gauge equivalent to vacuum. But

the logarithmic branch solutions are not pure gauge and the negative energy for the

logarithmic partner of the traceless mode is a genuine instability in the bulk, similar to

the spin-2 example. Apart from all this we will see a peculiar “resonant" behaviour for

the trace modes at µℓ = 1
2
, which needs some understanding from the CFT perspective.

In Sec.3.5, we make several comments on the nature of the asymptotic symmetry

with the gravitational Chern-Simons term. At the chiral limit, we argue that the nat-

ural symmetry algebra to look at is a contraction of the W3 algebra which essentially

reduces to the Virasoro algebra. We comment on other possible realisations at this

limit. We end in Sec.3.6 with discussions and comments

3.2 Spin-3 fields in AdS3 with a Chern Simons term

We define the tensor GMNP by

GMNP = FMNP − 1

2
η(MNFP )A

A. (3.2.4)

It was shown in [66] that the most general action with up to three derivatives and

parity violating terms could be written as

S [φ] =
1

2

∫
d3xφMNPGMNP +

1

2µ′

∫
d3xφMNP ǫQR(M∂

QGR
NP ) (3.2.5)
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The two terms appearing in this action are each invariant under the gauge transfor-

mation

φMNP 7→ φMNP + ∂(MξNP ), (3.2.6)

where ξ is a traceless symmetric rank two tensor. The first term is just the usual Frons-

dal action for massless spin-3 fields given in 1.1.7, while the second term is the lin-

earised Chern-Simons term.

In this chapter, we will study the covariantisation of this action to AdS3. To do so,

we minimally couple the background gravity to the spin-3 fluctuation by promoting

all partial derivatives to covariant derivatives, and demanding invariance under the

gauge transformations

φMNP 7→ φMNP +∇(MξNP ), (3.2.7)

where ∇ is the covariant derivative defined using the background AdS3 connection.

To construct the AdS generalisation of (3.2.5), it is helpful to recollect what happens

in the case where there is no topological term, i.e. the covariantisation of the Fronsdal

action. As reviewed in chapter 1, the Fronsdal operator 1.1.6 (defined now with co-

variant derivatives instead of partial derivates) is no longer invariant under the gauge

transformation (3.2.7), what is invariant (for the spin-3 field in AdS3) is the combina-

tion [68]

F̃MNP = FMNP − 2

ℓ2
g(MNφP )A

A, (3.2.8)

and if we now define

GMNP = F̃MNP − 1

2
g(MN F̃P )A

A, (3.2.9)

the gauge invariant Fronsdal action is given by [68]

S [φ] =
1

2

∫
d3x

√−gφMNPGMNP . (3.2.10)

It turns out that the case with the Chern-Simons terms is essentially similar. The gauge
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invariant action is given by

S [φ] =
1

2

∫
d3x

√−gφMNPGMNP +
1

2µ′

∫
d3x

√−gφMNP εQR(M∇QGR
NP ), (3.2.11)

where GMNP is now defined through (3.2.9), and

εMNP ≡ 1√−g ǫ
MNP . (3.2.12)

We remind the reader that εMNP is a tensor and all indices are raised and lowered by

the background metric. We can write the above action more compactly by defining

F̂MNP = F̃MNP +
1

µ′ εQR(M∇QF̃R
NP ), (3.2.13)

in terms of which the action becomes

S [φ] =
1

2

∫
d3x

√−gφMNP

(
F̂MNP − 1

2
g(MN F̂P )

)
. (3.2.14)

One may further show that this action gives rise to the equations of motion

D(M)F̃MNP ≡ F̂MNP = F̃MNP +
1

µ′ εQR(M∇QF̃R
NP ) = 0. (3.2.15)

Alternatively, one could have started with constructing the most general parity violat-

ing, three derivative equations of motion for φMNP in flat space in three dimensions

consistent with the gauge invariance (3.2.6), and attempted a covariantisation to AdS.

We had initially followed this procedure and obtained identical results. In the above

equations, however, the coefficient µ′ is arbitrary and is not fixed by the gauge in-

variant structure. In the next section, we will look at the relation of our action with

the SL(3, R)×SL(3, R) Chern-Simons formulation of spin-3 gravity [12] with unequal

levels and obtain the relation of µ′ with the coefficient of gravitational Chern-Simons
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term µ, given in terms of the left and right levels aL and aR as,

aL − aR
2

=
1

µ
. (3.2.16)

3.3 Relation with Chern-Simons formulation of high

spin gravity and fixing the normalisation

It has been observed in [10, 12] that higher spin gravity in three dimensions can have

a Chern-Simons formulation. The levels of the Chern-Simons action in [10, 12], were

taken to be equal and hence it produced only the higher-spin extension of Einstein

gravity. Since it is known that if we take unequal levels of the Chern-Simons action in

pure gravity and impose the torsion constraints, we get parity violating Chern-Simons

term and the action becomes that of a topologically massive gravity. We should also be

able to do the same for spin-3 massive gravity by taking unequal levels of the Chern-

Simons terms. After taking unequal levels for the SL(3, R) × SL(3, R) Chern-Simons

action in [12], and imposing the torsion constraints, we arrive at the following action

S =
1

8πG

∫
ea ∧

(
dωa +

1

2
ǫabcω

b ∧ ωc − 2σǫabcω
bd ∧ ω c

d

)

− 2σeab ∧
(
dωab + 2ǫcdaω

c ∧ ω d
b

)
+

1

6l2
ǫabc

(
ea ∧ eb ∧ ec − 12σea ∧ ebd ∧ e cd

)

+
1

µ

∫
ωa ∧ dωa +

1

3
ǫabcω

a ∧ ωb ∧ ωc − 2σωab ∧ dωab − 4σǫabcω
a ∧ ωbd ∧ ωdc.(3.3.17)

Subject to the torsion constraint

dea + ǫabcωb ∧ ec − 4σǫabcebd ∧ ωdc = 0,

deab + ǫcd(aωc ∧ e b)d + ǫcd(aec ∧ ω b)
d = 0. (3.3.18)
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This is the full non-linear action for spin-3 massive gravity. But since we are interested

in linearised equations of motion, we can expand this action aroundAdS3 background

ēa = eaAdS, ēab = 0. (3.3.19)

And then take linearised fluctuations h a
M and h ab

M around this background. And finally

we should be able to write everything in terms of the physical Fronsdal fields h̃MN and

φMNP , defined as

h̃MN =
1

2
ē a(MhN)a,

φMNP =
1

3
ēa(M ē

b
NhP )ab. (3.3.20)

The above action (3.3.17) is, however, given in terms of the frame fields

hMN = ē aMhNa,

hMNP = ēaM ē
b
NhPab. (3.3.21)

The frame fields has an additional Λ gauge symmetry [12] which can be gauge fixed

to write down the entire action in terms of the physical Fronsdal fields (3.3.20).

If one is able to successfully implement the programme, one should arrive at the

action (3.2.14), since the structure is completely determined by gauge invariance. Since

we already have the action, we will bypass the complete programme and just use the

Chern-Simons formulation to fix the normalisation of the coefficient µ′. For that it is

sufficient to find the coefficient of some simple terms. Hence, we use the action (3.3.17),

to find the coefficients of φMNP∇2φMNP and φMNP ǫQRM∇Q∇2φ R
NP . These coefficients

can be found after a simple exercise and the quadratic action is

S =
1

2

∫ √−g
(
φMNP∇2φMNP +

1

2µ
φMNP ǫQRM∇Q∇2φ R

NP + · · ·
)
. (3.3.22)
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Here we have used 1
16πG

= 1 and 2σ = −1. Comparing the coefficients of the above

terms to the coefficient of similar terms in (3.2.14), we see that, µ and µ′ are related by

µ′ = 6µ. (3.3.23)

3.4 Analysis of the linearised equations of motion

3.4.1 Solving the linearised equations of motion

In this section, we will analyse the linearised equations of motion (3.2.15). We wish to

cast this equation in a form D(M)D(L)D(R)φMNP = 0 for three commuting differential

operators D(M), D(L) and D(R). D(M) is defined in (3.2.15). So we have to put F̃MNP

(3.2.8) into the formD(L)D(R)φMNP . Note that generically this cannot be done. One has

to do a suitable field redefinition and use a suitable gauge condition to be able to do

it. After a careful analysis, one finds that there is a unique field redefinition and gauge

condition which solves the above purpose. They are

φMNP = φ̃MNP − 1

9
g(MN φ̃P ),

∇Qφ̃QMN =
1

2
∇(M φ̃N). (3.4.24)

Using this field redefinition and gauge condition, we get

F̃MNP = ∇2φ̃MNP − 1

6
∇(M∇N φ̃P ) −

8

9l2
g(MN φ̃P ) −

1

9
∇2φ̃(MgNP ) +

1

9
g(MN∇P )∇Qφ̃Q.

(3.4.25)

One can further see that this F̃MNP can be cast into the desired form as

F̃MNP = − 4

ℓ2
D(R)D(L)φ̃MNP , (3.4.26)
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where D(R) and D(L) are defined as

D(L)φ̃MNP = φ̃MNP +
ℓ

6
εQR(M |∇Qφ̃R|NP ),

D(R)φMNP = φ̃MNP − ℓ

6
εQR(M |∇Qφ̃R|NP ). (3.4.27)

Now, putting this together with (3.2.15), our equations of motion become

D(M)D(L)D(R)φ̃MNP = 0. (3.4.28)

One can also check that D(M), D(L) and D(R) are three sets of mutually commuting

operators. The superscripts (M), (L) and (R) stand for massive, left moving and right

moving branches, respectively. Taking trace of the equation (3.4.28) and contracting it

with ∇M , one finds that

∇M φ̃M = 0 (3.4.29)

However, we see that we do not get any tracelessness constraint from the equation of

motion and we will soon see that the trace will be responsible for giving rise to some

non-trivial solutions to the equation of motion.

Let us now try to solve for the massive branch. We can obtain the left moving and

right moving solution from this by putting µℓ = 1 and µℓ = −1 respectively. The

massive branch equation is

D(M)φ̃MNP = 0, (3.4.30)

where D(M) is defined in (3.2.15). Let D̃(M) be the same as D(M) with µ → −µ. By

acting on (3.4.30) with D̃(M), we get

∇2φ̃MNP −
(
4µ2 − 4

ℓ2

)
φ̃MNP

=
1

6
∇(M∇N φ̃P ) +

8

9ℓ2
g(MN φ̃P ) +

1

9
∇2φ̃(MgNP ). (3.4.31)

The equations for the massless branch is the same as above with µ → 1
ℓ
. Taking the
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trace of the above equation, we get

(
∇2 − 36µ2 +

2

ℓ2

)
φ̃M = 0. (3.4.32)

We will solve the equations in AdS3 background with the metric

ds2 = ℓ2
(
− cosh2 ρdτ 2 + sinh2 ρdφ2 + dρ2

)
. (3.4.33)

The metric has the isometry group SL(2, R)L × SL(2, R)R. The SL(2, R)L isometry

generators are [54]

L0 = i∂u,

L−1 = ie−iu
[
cosh 2ρ

sinh 2ρ
∂u −

1

sinh 2ρ
∂v +

i

2
∂ρ

]
,

L1 = ieiu
[
cosh 2ρ

sinh 2ρ
∂u −

1

sinh 2ρ
∂v −

i

2
∂ρ

]
, (3.4.34)

where u ≡ τ + φ and v ≡ τ − φ. The SL(2, R)R generators (L̄0, L̄±1) are given by the

above expressions with u→ v. The quadratic Casimirs are

L2 =
1

2
(L1L−1 + L−1L1)− L2

0,

L̄2 =
1

2

(
L̄1L̄−1 + L̄−1L̄1

)
− L̄2

0. (3.4.35)

The Laplacian acting on tensors of various ranks can be written in terms of SL(2, R)

Casmirs as

∇2h = − 2

ℓ2
(
L2 + L̄2

)
h,

∇2hM = − 2

ℓ2
(
L2 + L̄2

)
hM − 2

ℓ2
hM ,

∇2hMN = − 2

ℓ2
(
L2 + L̄2

)
hMN − 6

ℓ2
hMN +

2

ℓ2
hgMN ,

∇2hMNP = − 2

ℓ2
(
L2 + L̄2

)
hMNP − 12

ℓ2
hMNP +

2

ℓ2
h(MgNP ). (3.4.36)
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Now we are in a position to solve the equations of motion. We will first solve for the

trace (3.4.32), put it back into the full equation (3.4.31) and obtain the solution to the

full equation which carries this trace. Using (3.4.36), we can solve for the trace and

classify it in terms of SL(2, R) primaries and descendants. Using (3.4.36), we can write

(3.4.32) as
[
−2
(
L2 + L̄2

)
− 36µ2ℓ2

]
φ̃M = 0. (3.4.37)

Let us specialise to “primary" states with weights (h, h̄), i.e

L0φ̃M = hφ̃M , L̄0φ̃M = h̄φ̃M ,

L1φ̃M = 0, L̄1φ̃M = 0. (3.4.38)

From the explicit form of the generators (3.4.45), one can see that (u, v) dependence of

φ̃M is

φ̃M = e−ihu−ih̄vψM (ρ), (3.4.39)

The primary conditions ( second line of (3.4.38)) are satisfied for h− h̄ = 0,±1, but the

only solutions compatible with the condition ∇M φ̃M = 0 are

h− h̄ = 1, ψv = 0, ψρ =
2i

sinh(2ρ)
f(ρ), ψu = f(ρ),

or h− h̄ = −1, ψu = 0, ψρ =
2i

sinh(2ρ)
f(ρ), ψv = f(ρ),

(3.4.40)

where f(ρ) satisfies 2

∂ρf(ρ) +

[
(h+ h̄) sinh2(ρ)− cosh2(ρ)

sinh ρ cosh ρ

]
f(ρ) = 0

=⇒ f(ρ) =
1

ℓ2
(cosh ρ)−(h+h̄) sinh(ρ). (3.4.41)

2We have put an overall factor of 1

ℓ2
in the solution to f(ρ). This is because (for dimensional consis-

tency) we want to obtain the solution to φ̃MNP which are dimensionless so that at the end of the day
we can multiply appropriate powers of ℓ to the solution to match it with its canonical dimension. And
since we want the full solution to be dimensionless, the trace has to be multiplied by the factor of 1

ℓ2

62



3.4. ANALYSIS OF THE LINEARISED EQUATIONS OF MOTION

The first line of (3.4.40) is the solution to our original equation of motion (3.4.30),

whereas the second line is the solution to the original equation of motion with µ→ −µ.

The second line will therefore not belong to the massive branch, but by putting µℓ = 1

in the second line we will get the right branch solution and by putting µℓ = 1 in the

first line, we will get the left branch solution. Putting (3.4.40) in (3.4.32), we get

h = 1± 3µℓ, h̄ = ±3µℓ,

or h = ±3µℓ h̄ = 1± 3µℓ. (3.4.42)

It is easy to see that f(ρ) in (3.4.41) will blow up at ρ → ∞ if h + h̄ < 1. Since µℓ ≥ 1,

this rules out the lower sign in (3.4.42). To summarise, the different branch solution

will carry the following weights.

Massive: h = 1 + 3µℓ h̄ = 3µℓ,

Left: h = 4 h̄ = 3,

Right: h = 3 h̄ = 4. (3.4.43)

We can successively apply L−1 and L̄−1 on the primary solutions obtained above and

obtain the descendant solutions. After obtaining the solution for the trace, let us try to

obtain the solution to the full equation (3.4.31). Using (3.4.36), we can write (3.4.31) as

1

ℓ2
[
−2
(
L2 + L̄2

)
− 8− 4µ2ℓ2

]
φ̃MNP =

1

6
∇(M∇N φ̃P ) −

4

3ℓ2
(
1− 3µ2ℓ2

)
φ̃(MgNP ).

(3.4.44)

We have to put the solution obtained for the trace in the RHS of the above equation and

obtain the solution to the full equation. If we take the primary (or descendant) trace

solutions (3.4.39,3.4.40,3.4.41) in the RHS of (3.4.44), then one can show that φ̃MNP ,

should also be a primary (or descendant) solution. This is because of the following
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identity (which we prove in appendix 6.3)

Lξ∇(M∇N φ̃P ) = ∇(M∇NLξφ̃P ), (3.4.45)

where Lξ is an isometry generator.

Since the trace carries weights (h, h̄) given by (3.4.42), we can break the full φ̃MNP

as

φ̃MNP = χMNP + ΣMNP , (3.4.46)

where all the parts of φ̃MNP which carry the weights (h, h̄) are put into χMNP and the

rest in ΣMNP . They satisfy the equations

1

ℓ2
[
−2
(
L2 + L̄2

)
− 8− 4µ2ℓ2

]
χMNP =

1

6
∇(M∇N φ̃P ) −

4

3ℓ2
(
1− 3µ2ℓ2

)
φ̃(MgNP ),

1

ℓ2
[
−2
(
L2 + L̄2

)
− 8− 4µ2ℓ2

]
ΣMNP = 0. (3.4.47)

Since the RHS of (3.4.44) carries the weights (3.4.42), hence it should be equated with

a part of LHS which carries the same weights and hence the equation is decomposed

in the above way. The first of the equation in (3.4.47) becomes (by using the weights

(3.4.42))

8

ℓ2
(
4µ2ℓ2 − 1

)
χMNP =

1

6
∇(M∇N φ̃P ) −

4

3ℓ2
(
1− 3µ2ℓ2

)
φ̃(MgNP ). (3.4.48)

The solution to χMNP is therefore

χMNP =
ℓ2

8 (4µ2ℓ2 − 1)

[
1

6
∇(M∇N φ̃P ) −

4

3ℓ2
(
1− 3µ2ℓ2

)
φ̃(MgNP )

]
. (3.4.49)

We see that the solution has a divergence at µℓ = 1
2
. This is not something unusual

since we are solving the equation with a source (RHS of (3.4.44)) of specific weights

(h, h̄). This divergent behaviour is analogous to the resonance in forced oscillations.
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From (3.4.49), we notice that

gNPχMNP = φ̃M ∇MχMNP =
1

2
∇(N φ̃P ). (3.4.50)

Using (3.4.50) in the decomposition (3.4.46) and in the gauge condition (3.4.24), we get

gNPΣMNP = 0, ∇MΣMNP = 0. (3.4.51)

Let us now solve the equation of motion for ΣMNP (the second line of (3.4.47)) subject

to the tracelessness and gauge condition (3.4.51) 3. We specialise to “primary" states

with weights (h, h̄), i.e

L0ΣMNP = hΣMNP , L̄0ΣMNP = h̄ΣMNP

L1ΣMNP = 0, L̄1ΣMNP = 0. (3.4.52)

From the explicit form of the generators, one can see that the (u, v) dependence of

ΣMNP is

ΣMNP = e−ihu−ih̄vσMNP (ρ), (3.4.53)

The primary conditions are solved for h − h̄ = 0,±1,±2,±3. But the only solutions

compatible with the gauge conditions and tracelessness condition (3.4.51) are

h− h̄ = 3,

σMNv = 0

σρuu =
if(ρ)

cosh ρ sinh ρ
σuuu = f(ρ) σρρρ =

−if(ρ)
cosh3(ρ) sinh3(ρ)

σuρρ =
−f(ρ)

cosh2(ρ) sinh2(ρ)
,

(3.4.54)

3This solution is similar to the one obtained in [65].
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and

h− h̄ = −3,

σMNu = 0

σρvv =
if(ρ)

cosh ρ sinh ρ
σvvv = f(ρ) σρρρ =

−if(ρ)
cosh3(ρ) sinh3(ρ)

σvρρ =
−f(ρ)

cosh2(ρ) sinh2(ρ)
,

(3.4.55)

where f(ρ) satisfies

∂ρf(ρ) +

[
(h+ h̄) sinh2(ρ)− 3 cosh2(ρ)

sinh ρ cosh ρ

]
f(ρ) = 0

=⇒ f(ρ) = (cosh ρ)−(h+h̄) sinh3(ρ). (3.4.56)

Now putting the above into the second line of (3.4.47), we get

h = 2± µℓ h̄ = −1± µℓ

or h = −1 ± µℓ h̄ = 2± µℓ (3.4.57)

The solution with h− h̄ = 3 belongs to the original massive branch whereas h− h̄ = −3

belongs to the massive branch with µ → −µ. The left branch is obtained by putting

µℓ = 1 in the h− h̄ = 3 solution and right branch is obtained by putting µℓ = 1 in the

h − h̄ = −3 solution. It is also easy to check that f(ρ) in (3.4.56) diverges at ρ → ∞

unless h+ h̄ ≥ 3. This rules out the lower sign in (3.4.57). To summarise we obtain the

following solution

Massive: h = 2 + µℓ h̄ = −1 + µℓ

Left: h = 3 h̄ = 0

Right: h = 0 h̄ = 3 (3.4.58)
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We can successively apply L−1 and L̄−1 on the primary solutions obtained above to ob-

tain the descendant solutions. At the chiral point µℓ = 1, the massive and left branch

solutions coincide and and hence the basis of solutions become insufficient to describe

the dynamics. However following the construction of [56], one sees that a new loga-

rithmic mode emerges (which is annihilated by D(L)2 and not by D(L)). We now turn

to this point.

3.4.2 Logarithmic modes at the chiral point

Let us denote the massive branch, left branch and right branch solutions with super-

scripts M, L and R respectively. At the chiral point µℓ = 1, the massive branch and left

branch coincides and hence the basis of solutions become insufficient to describe the

dynamics. However following the construction of [56], one sees that a new logarith-

mic mode emerges (which is annihilated by D(L)2 and not by D(L)). The logarithmic

mode is obtained as

Φ(new) = lim
µℓ→1

Φ(M)(µℓ)− Φ(L)

µℓ− 1
=
dΦ(M)(ǫ)

dǫ
|ǫ=0, (3.4.59)

where ǫ ≡ µℓ − 1. We have schematically used Φ to denote any mode which has a

decomposition into massless and massive branches and have suppressed any possible

spacetime indices. It can be easily seen that since Φ(M) and Φ(L) are annihilated by

D(M) andD(L) respectively, the term inside the limit is annihilated byD(M)D(L) but not

by D(M) or D(L) separately. After taking the limit, therefore the mode is annihilated by

D(L)2 but not by D(L). Now let us find out the logarithmic partner of the mode χMNP

in (3.4.49). Expressing µℓ in terms of ǫ and then taking the derivative wrt ǫ, we get

χ̂MNP ≡ dχMNP (ǫ)

dǫ
|ǫ=0

= −ℓ
2

9

[
1

6
∇(M∇N φ̃

(L)
P ) − 1

3ℓ2
φ̃
(L)
(MgNP )

]
+
ℓ2

24

[
1

6
∇(M∇N φ̂P ) +

8

3ℓ2
φ̂(MgNP )

]
,

(3.4.60)
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where φ̃
(L)
M is the trace of the left branch solution and φ̂M ≡ dφ̃

(M)
M

(ǫ)

dǫ
|ǫ=0. It can be easily

seen from the definition of φ̂M that

φ̂M = [−3i(u+ v)− 6 log cosh ρ] φ̃
(L)
M , (3.4.61)

and hence

L0φ̂M = 3φ̃
(L)
M + 4φ̂M L̄0φ̂M = 3φ̃

(L)
M + 3φ̂M L1φ̂M = L̄1φ̂M = 0

=⇒ L2φ̂M = −21φ̃
(L)
M − 12φ̂M L̄2φ̂M = −15φ̃

(L)
M − 6φ̂M

=⇒
(
∇2 − 34

ℓ2

)
φ̂M =

[
− 2

ℓ2
(
L2 + L̄2

)
− 36

ℓ2

]
φ̂M =

72

ℓ2
φ̃
(L)
M . (3.4.62)

Using the above set of equations and taking the trace of (3.4.60), we get, as expected,

that φ̂M is the trace of χ̂MNP . We also see that χ̂MNP satisfies

L0χ̂MNP = 3χ
(L)
MNP +4χ̂MNP , L̄0χ̂MNP = 3χ

(L)
MNP +3χ̂MNP , L1χ̂MNP = L̄1χ̂MNP = 0.

(3.4.63)

We have thus obtained the logarithmic partner of the mode χ
(L)
MNP at the chiral point.

Using the same trick we can also obtain the logarithmic partner of the mode Σ
(L)
MNP

and we get4

Σ̂MNP ≡ dΣ
(M)
MNP (ǫ)

dǫ
|ǫ=0 = [−i(u+ v)− 2 log cosh ρ] Σ

(L)
MNP , (3.4.64)

and hence Σ̂MNP satisfies

L0Σ̂MNP = Σ
(L)
MNP + 3Σ̂MNP L̄0Σ̂MNP = Σ

(L)
MNP L1Σ̂MNP = L̄1Σ̂MNP = 0. (3.4.65)

We have so far obtained traceless as well as traceful solutions to the equation of mo-

tion (3.2.15). We also obtained their logarithmic partners at the chiral point. We label

4This is the same as the logarithmic mode obtained in [65].
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the massive, left and right branch χmodes (3.4.49) as (Mχ), (Lχ) and (Rχ) respectively.

We also label the logarithmic solution to the χmode (3.4.60) as (logχ). Similarly we la-

bel the massive, left, right and logarithmic Σmodes (3.4.54, 3.4.55, 3.4.56, 3.4.58, 3.4.64)

as (MΣ), (LΣ), (RΣ) and (logΣ) respectively. We will now obtain the energies of all the

above modes.

3.4.3 Energy of the fluctuations

After imposing the field redefinition and gauge condition (3.4.24), we obtain the action

(3.2.14) (up to total derivatives) as,

S =
1

2

∫ √−g
[
−∇Qφ̃

MNP∇Qφ̃MNP − 1

2µ
εQRM∇Qφ̃MNP∇2φ̃RNP

+
19

9l2

(
φ̃M φ̃M +

1

6µ
εQRM φ̃

M∇Qφ̃R
)

+
17

18

(
∇Qφ̃M∇Qφ̃M +

1

6µ
εQRM∇Qφ̃M∇2φ̃R

)]
(3.4.66)

The momentum conjugate to φ̃MNP is

Π(1)MNP ≡ δS

δ ˙̃φMNP

=

√−g
2

[
−∇0

(
2φ̃MNP +

1

6µ
εQR(M∇Qφ̃

NP )
R

)

+
17

18× 3
∇0

(
2φ̃(MgNP ) +

1

6µ
εQR(M∇Qφ̃Rg

NP )

)

− 1

6µ
ε0R(M∇2φ̃

NP )
R − 19

9× 18

1

µℓ2
ε0R(M φ̃Rg

NP ) +
17

18× 18µ
ε0R(M∇2φ̃Rg

NP )

]
.

(3.4.67)

Since we have three time derivatives, we should also implement the Ostrogradsky

method (following [54]), and introduce KMNP ≡ ∇0φ̃MNP as a canonical variable and
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find the momentum conjugate to that which is,

Π(2)MNP ≡ δS

δK̇MNP

=

√−g
2

[
1

6µ
g00εQR(M∇Qφ̃

NP )
R − 17

18× 18µ
g00εQR(M∇Qφ̃Rg

NP )

]
(3.4.68)

The above expressions are the most generic expressions for the conjugate momenta

and can be applied on any modes. The conjugate momenta for the different modes are

listed in appendix 6.4. In oder to obtain the energy we must put the expressions for

the conjugate momenta in the Hamiltonian

H =

∫
d2x

(
˙̃φMNPΠ

(1)MNP + K̇MNPΠ
(2)MNP −L

)

=

∫
d2x

(
˙̃φMNPΠ

(1)MNP −KMNP Π̇
(2)MNP − L

)
+

d

dτ

∫
d2x KMNPΠ

(2)MNP

≡ E0 + E1, (3.4.69)

where the integral is over φ and ρ and L is the Lagrangian density. We have defined

the first integral in the second line of (3.4.69) as E0 and second integral as E1. Also

note that L = 0 on the solutions. Now we can put the conjugate momenta obtained in

appendix (6.4) and the real part of the solutions obtained in the previous sections to

get the energy expressions for different modes. One can see by explicitly putting the

solutions in the above integrals that E1 for all the non-logarithmic modes vanishes but

logarithmic modes get non-trivial contribution from E1. Putting the real part of the

logarithmic solutions and expressions for the conjugate momenta for the logarithmic
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modes in Mathematica, we get 5

E1
(logχ)

=
d

dτ

∫
d2x

√−g
2

[
−∇0χ̂MNP

(
χ̂MNP + χ(L)MNP

)
+

17

18
∇0χ̂M

(
χM + χM

)]
,

=
79π

280ℓ5

E1
(logΣ)

=
d

dτ

∫
d2x

−√−g
2

[
∇0Σ̂MNP

(
Σ̂MNP + Σ(L)MNP

)]

= − 4π

15ℓ5
. (3.4.70)

We can now put the expressions for the real part of the solutions obtained in the pre-

vious sections and conjugate momenta in appendix (6.4), to get the expressions for E0

for different modes. For the non logarithmic χmodes we get,

E0
(Mχ) = −3

µ

(
3µ2 − 1

ℓ2

)∫
d2x

√−g ε0RM χ̇
(M)
MNPχ

(M) NP
R

+
1

6µ

(
17µ2 − 5

ℓ2

)∫
d2x

√−g ε0RM χ̇
(M)
M χ

(M)
R

E0
(Lχ) =

(
−1 +

1

µℓ

)∫
d2x

√−g
[
χ̇
(L)
MNP∇0χ(L)MNP − 17

18
χ̇
(L)
M ∇0χ(L)M

]

− 6

µℓ2

∫
d2x

√−g ε0RM χ̇
(L)
MNPχ

(L) NP
R +

2

µℓ2

∫
d2x

√−g ε0RM χ̇
(L)
M χ

(L)
R

E0
(Rχ) =

(
−1− 1

µℓ

)∫
d2x

√−g
[
χ̇
(R)
MNP∇0χ(R)MNP − 17

18
χ̇
(R)
M ∇0χ(R)M

]

− 6

µℓ2

∫
d2x

√−g ε0RM χ̇(R)
MNPχ

(R) NP
R +

2

µℓ2

∫ √−gε0RM χ̇(R)
M χ

(R)
R

(3.4.71)

5All the expressions of energy that we will obtain will have the dimension of 1

ℓ5
. This is due to our

choice of units 1

16πG
= 1 and using dimensionless solutions of φ̃MNP . If we re-instate the factor of

1

16πG
= 1 and multiply the solutions of φ̃MNP with appropriate powers of ℓ matching their canonical

dimensions, we will get the correct dimensions of energy. However this will not change any of the
qualitative features of the discussion
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For the non logarithmic Σmodes, we get

E0
(MΣ) =

1

µ

(
µ2 − 1

ℓ2

)∫
d2x

√−g εR0M Σ̇
(M)
MNPΣ

(M)NP
R

E0
(LΣ) =

(
−1 +

1

µℓ

)∫
d2x

√−g Σ̇(L)
MNP∇0Σ(L)MNP

E0
(RΣ) =

(
−1− 1

µℓ

)∫
d2x

√−g Σ̇(R)
MNP∇0Σ(R)MNP

(3.4.72)

For the logarithmic modes (trace as well as traceless), we get

E0
(logχ)

=

∫
d2x

√−g
2

[
˙̂χMNP∇0χ(L)MNP + χ̇

(L)
MNP∇0χ̂MNP − 17

18

(
˙̂χM∇0χ(L)M + χ̂

(L)
M ∇0χ̂M

)]

−6

ℓ

∫
d2x

√−g ε0RM ˙̂χMNP χ̂
NP
R +

2

ℓ

∫
d2x

√−g ε0RM ˙̂χM χ̂R

−18

ℓ

∫
d2x

√−g ε0RM ˙̂χMNPχ
(L) NP
R +

17

3l

∫
d2x

√−g ε0RM ˙̂χMχ
(L)
R

E0
(logΣ)

=

∫
d2x

√−g
2

(
˙̂
ΣMNP∇0Σ(L)MNP + Σ̇

(L)
MNP∇0Σ̂MNP

)

−2

ℓ

∫
d2x

√−g ε0RM ˙̂
ΣMNPΣ

(L)NP
R (3.4.73)

All the integrands above are t and φ independent. From the above expressions, one

can easily see that for MΣ, LΣ and RΣ, the expression is quite simple, being given by

single integrals, and by putting the solutions in the integrals, one find that they are

negative. Hence one finds that E0
RΣ

is always positive, E0
LΣ

is positive for µℓ > 1 and

E0
MΣ

is positive for µℓ < 1. And since E1 vanishes for non-logarithmic modes, we find,

in agreement with [65], that the qualitative feature for the non-logarithmic Σmodes is

the same as that of the spin-2 case [54]. The energy expressions for the left and right χ

modes are obtained after putting the solutions in Mathematica as

E(Lχ) = E0
(Lχ) =

π

3µℓ6
(1− µℓ) ,

E(Rχ) = E0
(Rχ) =

π

3µℓ6
(1 + µℓ) . (3.4.74)
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Thus we see that even for the χmodes the energy of the right branch is always positive

and the energy of the left branch is positive for µℓ < 1 and is zero for µℓ = 1. Although

a direct analytic expression for EMχ
is not possible, but using Mathematica it can be

seen that it is zero for µℓ = 1, positive for µℓ > 1 and negative for µℓ < 1. We mention

some of the numerical results for EMχ
obtained using Mathematica.

µℓ =
1

3
: E(Mχ) = E0

(Mχ) = − 16π

45ℓ5
.

µℓ = 1 : E(Mχ) = E0
(Mχ) = 0,

µℓ = 2 : E(Mχ) = E0
(Mχ) =

π

40ℓ5
,

µℓ = 3 : E(Mχ) = E0
(Mχ) =

16π

315ℓ5
. (3.4.75)

The energies E0 for the logarithmic branch solutions are obtained (after putting the

solutions in Mathematica) as:

E0
(logχ)

=
859π

504ℓ5
,

E0
(logΣ) = −132π

25ℓ5
. (3.4.76)

This, along with (3.4.70), shows that the logχ modes has positive energy and the logΣ

modes has negative energy.

3.4.4 Residual gauge transformation

In this section, wewill show that themassless branch solutions andmassive branch so-

lution at the chiral point (both the trace as well as traceless modes) can be removed by

an appropriate choice of residual gauge transformation. But since the residual gauge

parameters does not vanish at the boundary, the modes can be regarded as gauge

equivalent to the vacuum only if they have vanishing energy. Hence, as per the calcu-

lations of the energies above, we will see that massive and left moving solution at the

chiral point (both the trace as well as traceless mode) can be regarded as gauge equiv-
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alent to vacuum. The gauge transformation in terms of the variable φ̃MNP (3.4.24) is

δφ̃MNP = ∇(MξNP ) +
1

2
∇Qξ

Q
(MgNP ),

δφ̃M =
9

2
∇Nξ

N
M . (3.4.77)

We need to find the residual gauge transformation obeying the gauge condition

(3.4.24) and the auxiliary condition (3.4.29) implied by the equation of motion. We

find that the residual gauge transformation satisfying these properties is

∇2ξMN − 6

ℓ2
ξMN =

3

4
∇(M∇Qξ

Q
N),

∇M∇Nξ
MN = 0. (3.4.78)

One can use the above equation to deduce the following equation for ∇Mξ
M
N

∇2
(
∇Mξ

M
N

)
− 34

ℓ2
∇Mξ

M
N = 0. (3.4.79)

We thus see that ∇Mξ
M
N satisfies the same equation as φ̃M (3.4.32) at the chiral point

µℓ = 1, obeying the same condition (3.4.29). Thus one can choose the residual gauge

transformation to remove the trace of the massless branch solution and of the massive

branch solution at the chiral point which subsequently gauge away the appropriate χ

modes.

For the traceless Σmodes, the residual gauge transformation should obey the equa-

tions

∇2ξMN − 6

ℓ2
ξMN = 0,

∇Mξ
M
N = 0. (3.4.80)

We can once again see from (3.4.80) that for the residual gauge transformation param-
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eter for the Σmode satisfying the above equation (3.4.80), ∇(MξNP ) satisfies

∇2∇(MξNP ) = 0,

∇M∇(MξNP ) = 0. (3.4.81)

These equations are the same as themasslessΣ equations of motion andmassive equa-

tions of motion at the chiral point (3.4.47) andΣ gauge condition (3.4.51) and hence one

can appropriately choose the parameters to gauge away the massless branch solution

for ΣMNP and massive branch solution for ΣMNP at the chiral point.

To summarise, we find that both the massless χ and Σ modes and their respective

massive modes at the chiral point can be gauged away by an appropriate choice of

residual gauge transformation parameters. Since the gauge transformation parame-

ters do not vanish at the boundary, the modes can however be treated as gauge equiv-

alent to vacuum only if they have vanishing energy. Hence, as per the energy calcula-

tions in the previous section, the left branch solution and massive branch solution at

the chiral point can be regarded as gauge equivalent to vacuum. Since the logarithmic

modes do not satisfy the same equations as their left moving partners, they cannot

be regarded as pure gauge and are therefore physical propagating modes in the bulk.

Thus the logarithmic traceless modes indicate a genuine instability in the bulk since

they carry negative energy.

3.5 Asymptotic Symmetries and the Chiral Point

In our analysis of three dimensional gravity with spin three fields, we have seen that

while solving the equations of motion for the linearised spin three, we find that there

is a point where the basis for the solution becomes insufficient to describe it. This is the

indication of the development of a logarithmic branch to the solution. This happens at

a point where µℓ = 1. This is the same point where the spin-two excitations develop a
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logarithmic branch and the central charge of the left moving Virasoro algebra vanishes.

Topological Massive Gravity at the chiral point was conjectured to be dual to a

logarithmic conformal field theory with c = 0. In our bulk analysis above, we have

provided indications that a similar picture emerges when one includes the spin-three

fields. To further our understanding of the symmetries of the boundary theory, let us

look at the asymptotic symmetry structures.

3.5.1 The c = 0 confusion

The asymptotic symmetry analysis for the theory with spin three fields in AdS (with-

out the parity violating gravitational C-S term) was performed recently in [10, 12]. The

asymptotic symmetry algebra that was obtained was the classicalW3 algebra.

[
Lm, Ln

]
= (m− n)Lm+n +

c

12
m(m2 − 1)δm+n,0 (3.5.82)

[
Lm, Vn

]
= (2m− n)Wm+n

[
Wm,Wn

]
=

c

360
m(m2 − 1)(m2 − 4)δm+n,0 +

16

5c
(m− n)Λm+n

+ (m− n)
( 1

15
(m+ n+ 2)(m+ n+ 3)− 1

6
(m+ 2)(n+ 2)

)
Lm+n,

where

Λm =
+∞∑

n=−∞
Lm−n Ln . (3.5.83)

sums quadratic nonlinear terms. Here the central charge for both the Virasoro and the

pureW3 is given by the Brown-Henneaux central term c = 3ℓ
2G

for AdS.

When one adds the parity violating gravitational C-S term, in the case of the usual

AdS3 without any higher spin terms, one ends up with corrected central terms where

the left-right symmetry is broken, viz. c± = 3ℓ
2G

(1∓ 1
µℓ
). The “chiral-point" corresponds

to µℓ = 1where c+ = 0.
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The shift of the central terms, which is the effect of gravitational anomalies on the

boundary stress tensor [69, 73], does not change with the addition of the spin three

fields. Thus the asymptotic symmetry algebra for the bulk theory with the Chern-

Simons terms added is two copies ofW3 algebra, now with differing central charges.

Now, when we look at the chiral point of the W3 algebra, we see a potential prob-

lem. The non-linear term (3.5.83) in (3.5.82) has a coefficient which is inversely pro-

portional to the central term and hence in the chiral limit would blow up.

3.5.2 The solution

We propose a simple solution to the above problem. The blowing up of an algebra

in a particular limit is indicative of the fact that one should look at an Inönü-Wigner

contraction of the algebra at that point. To achieve this, let us rescale the generators as

follows:

Ln = Ln, Yn =
√
cWn. (3.5.84)

The rescaled W3 algebra now looks like

[
Lm, Ln

]
= (m− n)Lm+n +

c

12
m(m2 − 1)δm+n,0, (3.5.85)

[
Lm, Yn

]
= (2m− n)Ym+n,

[
Ym, Yn

]
=

c2

360
m(m2 − 1)(m2 − 4)δm+n,0 +

16

5
(m− n)Λm+n

+ c(m− n)
( 1

15
(m+ n+ 2)(m+ n + 3)− 1

6
(m+ 2)(n+ 2)

)
Lm+n.

Now, at the chiral point, the algebra would be the contracted version of the W3

algebra.

[
Lm, Ln

]
= (m− n)Lm+n,

[
Lm, Yn

]
= (2m− n)Ym+n, (3.5.86)

[
Ym, Yn

]
=

16

5
(m− n)Λm+n.
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The Y and Λ actually generate an ideal and so one must set them to zero in any

irreducible representation of the W3 algebra. So the classical W3 in the chiral limit

essentially reduces to the Virasoro algebra.

What we are advocating here is the classical analogue of what happens for the

quantum W3 for c = −22/5 [34]. Let us remind the reader of the quantum version of

the W3 algebra is. The quantum effects enter into the regularisation of the quadratic

non-linear term (3.5.83). This shifts the overall quadratic coefficient of the quadratic

term from 16
5c

→ 16
5c+22

in (3.5.82). As is obvious, c = −22/5 represents a blowing up

of the quantum W3 algebra and [?] prescribes a similar procedure to what we have

outlined above.

The logarithmic degeneracy at the chiral point that we would go on to construct,

in this light would be related to a left moving LCFT with c = 0, very similar to the

original construction of the spin-two example.

3.5.3 Comments on other possible solutions

The above procedure is certainly a correct one, but one might think that this is not the

most general procedure that can be followed at the chiral point. Let us comment on a

couple of other possible solutions.

One way to argue that c = 0 is not a problem in this context is to say that in this

limit one should actually be looking at the quantum version of the W3, instead of the

classical algebra. Then the shifting of the non-linear term described above wouldmean

that the algebra is perfectly fine in the chiral limit. When c is small, and the curvature

of space-time is large, it may be more sensible to look at the quantum algebra. The

question obviously would be how an asymptotic symmetry analysis would see the

change from classical to quantum and this is far from obvious. That this feature does

not have any analogue in the well-studied spin-two example makes this an attractive

avenue of further exploration.

Another possible solution is to say that nothing is wrong at c = 0. Λ is actually
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a null field and the c=0 singularity is cancelled by Λ become null. Let us take the

quantum counterpart c = −22/5. Let us suppose that Λ is a null field. We can work

the commutation relations and see for example,

[
Lm,Λn

]
= (3m− n)Λm+n +

22 + 5c

16
[m(m2 − 1)Lm+n]. (3.5.87)

So we see that indeed at c = −22/5, this commutator closes to Λ. This is consistent

with the fact that Λ is a null field. We can similarly work out the consequences for

Wn. The obstacle in this path is trying to figure out how to carry out an essentially

quantum mechanical analysis in a classical algebra. We leave these issues for future

work.

3.6 Concluding remarks of this chapter

In this chapter, we reviewed the the linearised action for spin-3 Fronsdal fields with a

Chern- Simons term in flat space [66] and generalised it to AdS space. The structure of

the action is uniquely fixed by gauge invariance. Its relation to the SL(3, R)×SL(3, R)

Chern-Simons action [12, 10] with unequal levels was explored and the normalisation

of the gauge invariant action found earlier is fixed. We then looked at the equations of

motion which was decomposed it into left, right and massive branch.

The trace cannot be set to zero unlike the spin-2 case [54]. The trace gives rise to

non-trivial solutions to the equations of motion which has no counterpart in the spin-

2 case. The trace solution has a “resonant" behaviour at µℓ = 1
2
. The massive branch

trace mode carries positive energy for µℓ > 1 and negative energy for µℓ < 1 and

zero energy for µℓ = 1. The left branch solution carries positive energy for µℓ < 1

and negative energy for µℓ > 1 and zero energy for µℓ = 1. Apart from the “trace"

solutions we also have the usual traceless mode. However the traceless mode has

energy behaviour which is opposite to that of the trace mode (and similar to the spin-

2 counterpart [54]) i.e massive traceless mode carries positive energy for µℓ < 1 and
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negative energy for µℓ > 1 and zero energy for µℓ = 1 and the left branch traceless

solution carries positive energy for µℓ > 1 and negative energy for µℓ < 1 and zero

energy for µℓ = 1. The right branch solution carries positive energy for both the trace

and traceless mode.

At the chiral point the massive and left branch solution coincide and develop a new

logarithmic branch both for the trace and traceless modes. The logarithmic solution

for the trace mode carries positive energy whereas the logarithmic solution for the

traceless mode carries negative energy. The left branch and massive branch solution

at the chiral point are pure gauge and have vanishing energy and hence can be treated

as gauge equivalent to the vacuum. But the logarithmic modes are not pure gauge

and are therefore physical propagating modes in the bulk. And since the logarithmic

solution for the traceless mode carries negative energy, it indicates an instability in the

bulk at the chiral point. It is therefore tempting to conjecture that higher spin massive

gravity constructed here at the chiral point is dual to a higher spin extension ofLCFT2.

But there are some conceptual issues which should be dealt with before making this

conjecture which are:

1. Variational principle is well defined for the new logarithmic solutions:

The logarithmic solutions are the non trivial solutions to spin-3 massive gravity

at the chiral point that grows linearly in time and linearly in ρ asymptotically. It

is found to have finite time-independent negative energy. But before it can be ac-

cepted as a valid classical solution one must check that the variational principle

is well defined, i.e. the boundary terms vanish on-shell for the logarithmic solu-

tions. Similar questions for the spin-2 counterpart was asked with an affirmative

answer in [56]. A similar check needs to be done for both of our logarithmic so-

lutions and as a by product obtain the boundary currents dual to the logarithmic

modes.

2. Consistent boundary conditions for the logarithmic modes:

80



3.6. CONCLUDING REMARKS OF THIS CHAPTER

We should be able to find consistent set of boundary conditions which encom-

passes the new logarithmic solutions i.e. there are consistent set of boundary

conditions for which the generator of the asymptotic symmetry group is finite.

Similar questions for the spin-2 case was asked with an affirmative answer in

[57]. A similar analysis needs to be performed for our logarithmic branch solu-

tions.

3. Correlation function calculation:

We should be able to compute correlation function in the gravity side. This

should put us in a position to compare them with boundary correlators ex-

pected from a higher spin extension of LCFT. Similar questions were addressed

in [58, 59] for the spin-2 case. The comparison in that case was however with

correlators in LCFT which is well known in the literature. To our knowledge

there is no higher spin extension of LCFT in the literature so far6. The correlation

function calculations should open up interesting questions to be answered about

the higher spin extension of LCFT. Some progress in this direction has already

been made in [60] where using methods of holographic renormalisation the 2-

point functions were calculated from the bulk side and also consistency condi-

tions were put on certain 3-point functions so that they match with the desired

asymptotic symmetry algebra.

Another check for the TMHSG/LCFT duality is the calculation of one loop partition

function in the thermal AdS background which was done in [90], generalising the

results of [63, 76]. It was shown there that the partition function does not factorise

holomorphically (even at the chiral point) which is what it should be for a theory with

dual LCFT description.

Apart from all the above issues, the boundary CFT needs to be understood better.

For example, there is the peculiar “resonant" behaviour found for the trace modes at

µℓ = 1
2
which should show up even in the CFT. Apart from that we find a positive

6See however some very recent work [75].
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energy propagating mode in the bulk at the chiral point, which is the logarithmic so-

lution corresponding to the trace mode. This has no counterpart in the spin-2 example

and one would like to understand what this means from the CFT perspective.
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Chapter 4

Phase Structure of Higher Spin Black

Holes

4.1 Introduction

This chapter is based on the work done in [93]. After studying some aspects of Frons-

dal like formulation of higher spin fields in AdS3 in the previous chapters we move on

to study a particular aspect of the Chern-Simons formulation of higher spin theories.

In this chapter we study some thermodynamical aspects of “Black-Holes” in the con-

text of HS theories in AdS3. We start by giving a brief introduction to the black holes in

AdS3 with higher spin charges. This is by no means meant to be complete. For further

details the reader can look up the references mentioned as we go along.

4.1.1 Higher Spin Black Holes in 3 dimensions

In 3 dimensions, the topology of Euclidean space-time with asymptotic AdS geometry

is that of a solid torus. The contractible cycle is either spatial or temporal depend-

ing on whether we are in a thermal AdS background or a black hole background. In

black holes the non-contractible cycle being spatial points towards the existence of a

“horizon”. For Euclidean black holes the temperature is defined by assuming that the
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time cycle is periodic. The periodicity is such that at the horizon there are no conical

singularities i.e. the horizon is smooth. This periodicity in time cycle is related to the

inverse of the temperature of the black hole.

In higher spin theories the concept of a metric is blurred by the fact that there are

higher spin gauge transformations under which the metric is not invariant. Hence,

the normal procedure of identifying black hole geometries to metrics with horizons

doesn’t work. In [94], a procedure to identify the higher spin black hole geometry in

AdS3, in the Chern-Simons formulation was given. There the black hole geometry was

identified with those configurations where the connection is smooth in the interior of

the torus geometry with a temporal contractible cycle. This is equivalent to demand-

ing a trivial holonomy for the connection along the temporal cycle (i.e. falls in the

centre of the gauge group). This ensures that when the contractible cycle is shrunk

to zero, the connection comes back to itself after moving around the cycle once. But

this does not ensure that the corresponding metric will look like that of an ordinary

black hole. In [95] a gauge transformation was found in which the metric obtained

resembled that of a conventional black hole. It was also shown that the RG flow by

an irrelevant deformation triggered by a chemical potential corresponding to a spin

3 operator takes us from the principle embedding of SL(2, R) to the diagonal embed-

ding of SL(2, R) in SL(3, R). Also to get a a higher spin black black hole a chemical

potential corresponding to the independent charges had to be added so that the sys-

tem is stable thermodynamically. So, a black hole solution with higher spin charges

necessarily causes the system to flow from one fixed point to another. In [96] the par-

tition function for the black hole solution was obtained as a series expansion in spin 3

chemical potential with hs[λ] × hs[λ] algebra (this gives the higher spin symmetry al-

gebra when the spin is not truncated to any finite value) and matched with the known

CFT results for free bosonic (λ = 1) and free fermionic case (λ = 0). This answer also

matches the one for general λ obtained from CFT calculations in [104]. A review of

these aspects of black holes in higher spin theories can be found in [99].The λ → ∞
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limit for partition function was studied in [97], where an exact expression for partition

function and spin 4 charge was obtained for any temperature and spin 3 chemical po-

tential. Analysis of a HS black holes in presence of spin 4 chemical potential was done

in [98].

A different approach to study the thermodynamics of these black holes was carried

out in [100, 101, 103, 102]. A good variational principle was obtained by adding proper

boundary terms to Chern Simons theories on manifolds with boundaries. The free

energy was obtained from the on-shell action and an expression for entropy was ob-

tained from that. This expression for entropy was different from that obtained in [94].

It was also shown that the stress energy tensor obtained from the variational princi-

ple mixes the holomorphic and antiholomorphic components of the connection. This

formalism for obtaining the thermodynamics variables is referred to as the “canonical

formalism” in the literature. The CFT calculations done in [104] seem to match with

the “holomorphic formalism” given in [94], but the canonical approach seems to be

much more physically plausible. In [105] a possible solution to this discrepancy was

suggested,where they changed the bulk to boundary dictionary in a way suited to the

addition of chemical potential which deforms the theory.

In [107], the process of adding chemical potential was unified for the full family of

solutions obtained by modular transformation from the conical defect solution. The

black holes that we talked about is only one member of the family. It was shown that

the same boundary terms need to be added to the action to get a good variational prin-

ciple for all members of the family. The definitions for all thermodynamic quantities

for any arbitrary member of the family were obtained there.

4.1.2 Phase structure of higher spin black holes in AdS3

The phase structure of spin 3 black holes in AdS3 was studied in [109] using the holo-

morphic variables. In the principle embedding of SL(2, R) in SL(3, R) (with spectrum

consisting of fields with spin 2 and 3) , they found 4 solutions to the equations corre-
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sponding to a trivial holonomy along the time circle. They relaxed the condition that

the spin 3 charge has to approach 0 as the corresponding chemical potential is taken

to 0. It was shown there that of the 4 branches one is unphysical as its entropy is neg-

ative. Of the remaining three branches one is the BTZ branch (here spin 3 charge goes

to zero as chemical potential goes to 0), one is the extremal branch (having a non-zero

charge configuration at zero temperature) and a third branch. The negative specific

heat of the extremal branch makes it an unstable branch. A more analytical treatment

of phase structure was done in [108] for spin 3 and 4̃ black holes.

The phase diagram given there shows that the BTZ and extremal branch exist only

in the low temperature regime, after which the thermodynamic quantities for this two

branches do not remain real. The third branch that is present has real thermodynamic

variables at all temperatures. It is shown there that in the low temperature regime only

the BTZ branch has the expected scaling behavior while the third branch does not have

the correct scaling behaviour at high temperature. By scaling behaviour they meant

that charges and other thermodynamic quantities have the right power law behaviour

with temperature, e.g. spin 3 charge ∝ T 3 etc. From the free energy perspective the

BTZ branch dominates over all other branches (i.e. the BTZ branch has the lowest

free energy). In the region of existence of the BTZ and extremal branch, the extremal

branch dominates over the third branch and at high enough temperature only the third

branch survives. The free energy of the unphysical 4th branch is greatest among all

the branches.

They then argued that the correct thermodynamics at high temperature is given by

the diagonal embedding. The diagonal embedding is obtained as the end point of the

RG flow initiated by the addition of chemical potential corresponding to the spin 3

charge in the principle embedding. The spectrum in the diagonal embedding has a

pair of fields with spin 3
2
, a pair with spin 1 and a spin 2 field [62] . It also has a chemi-

cal potential corresponding to the spin 3
2
. The scaling behavior of the thermodynamic

quantities was found to be correct at high temperature for this embedding. Near the
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zero chemical potential (for spin 3
2
) limit, i.e. near the end point of the RG flow, the

holonomy equations have 2 real solutions. Of them the one with the lower free energy

was conjectured to be the “third branch”(from the principal embedding) at the end of

the RG flow. Since this branch has the correct scaling behaviour( w.r.t. the diagonal

embedding) it was argued that beyond the point where BTZ and extremal branches

of the principle embedding cease to exist the third branch takes over and it is actually

the black hole solution in the diagonal embedding.

In summary they showed that the principle embedding is the correct IR picture

valid at low temperature regime and diagonal embedding is the correct UV picture

valid in the high temperature regime.

4.1.3 Our Work

In this chapter we study the phase structure of SL(3, R)×SL(3, R) higher spin system

in the canonical formalism. We will first study the principle embedding. We will use

the definition of thermodynamic quantities for conical surplus solution (which go to

the thermal AdS branch when chemical potential and spin 3 charges are taken to zero)

given in [107]. The conical surplus has a contractible spatial cycle. So, we demand that

the holonomy of connection along this cycle be trivial. Using this condition we are

able to get the undeformed spin 2 and 3 charges in terms of temperature and chemical

potential for spin 3 charge. We will use this to study the phase structure of the conical

surplus. From the phase diagram we will see that there are 2 branches of solutions

with real values for undeformed spin 2 and spin 3 charges for a given temperature

and chemical potential. One of the branch reduces to the thermal AdS branch (with

zero spin 3 charge) when the chemical potential (µ) is taken to zero. The other one is a

new branch which like the extremal black holes has a non-trivial charge configuration

even when µ → 0. This we call the “extremal thermal AdS” branch. This extremal

branch has a lower free energy for all values of µ and T. But this is unphysical as its

energy is unbunded from below.
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We then move to studying the phase structure of black hole in this embedding. We

again solve for the chages in terms of chemical potential (µ) and temperature (T), but

now with the time cycle contractible. Here we will get 4 branches of solutions. We

will find that two of these branches have negative entropy and hence are unphysical.

Among the other two branches, one is the BTZ branch (which reduces to BTZ black

hole when chemical potential µ → 0) and the other is the extremal branch (having a

non-trivial charge configuration at T = 0). The extremal branch has negative specific

heat and hence is unstable. The BTZ branch is stable, has lower free energy and hence

is the dominant of the two good solutions. Given a chemical potential both the black

hole and the thermal AdS solutions exist till a certain temperature, which is different

for the black hole and thermal AdS. Crossing the temperature leads to complex values

of the thermodynamic quantities and hence the solutions are no longer trust-able.

We then undertake a study of the phase structure for the conical surplus and black

hole together. Between the 3 solutions- the BTZ black hole, the extremal black hole

and the thermal AdS branch we will try to see which branch has the minimum free

energy for a given chemical potential and temperature. We will find that for a partic-

ular chemical potential, at very low temperature the thermal AdS has the lowest free

energy and then as we gradually increase the temperature the BTZ branch starts dom-

inating over the thermal AdS. This is the analogue of Hawking-page transition. After

a particular temperature the extremal black hole also dominates over the thermal AdS

though it is sub-dominant to the BTZ branch. Still increasing the temperature further

the black holes cease to exist and the thermal AdS is the only solution which survives.

Next part of our study will involve studying black holes in the diagonal embedding

of SL(2, R) in SL(3, R). There is a consistent truncation where the spin 3
2
fields are put

to zero [112]. But here we don’t want to do this. The reason being that we want to use

the fact that this diagonal embedding is actually the UV limit of the flow initiated in

principal embedding by the spin 3 chemical potential. We want to study the full the-

ory obtained from this procedure and there all the mentioned fields are present. First
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of all we will be able to give a map between the parameters of the theory at UV and

IR fixed points. Also, here we obtain 4 solutions to the holonomy equations and by

similar arguments as above two of them are unphysical. Of the other two branches the

one with the lower free energy is throughout stable. We will also show that the good

solution near IR fixed point actually maps to the bad solution near the UV fixed point

and vice versa. We give a plausible reasoning for this mapping between the good and

bad branches.

4.1.4 Organization of the rest of the chapter

In section 4.2 we give a brief review of the geometry of higher spin theories and their

thermodynamics. In the section 4.3 we give the analysis for the thermodynamics of

conical surplus, black hole and Hawking-Page transition for principle embedding. In

section 4.4 we give a similar description for black hole in the diagonal embedding.

Lastly we give a summary of our results in section 4.5.

4.2 Review of higher spin geometry in AdS3 and thermo-

dynamics

Let us briefly elaborate on the ’Canonical formalism’ for BTZ Black Holes in higher

spin scenarios. We will mostly follow the conventions given in [101, 107]. In 2 + 1 di-

mensions higher spin theories coupled to gravity with negative cosmological constant

can be written as a Chern-Simons theory with gauge group G ≃ SL(N,R)× SL(N,R)

[35]. For N = 2 it reduces to ordinary gravity but for N ≥ 3 depending on possible

embeddings of the SL(2, R) subgroup into SL(N,R) it generates a spectrum of fields

with different spins. We are mostly interested in an Euclidean Chern-Simons theory

on a three-dimensional manifold M with the topology S1 × D where the S1 factor is

associated with the compactifed time direction and ∂D ≃ S1. It is customary to in-
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troduce coordinates (ρ, z, z̄) on M , where ρ is the radial coordinate and ρ → ∞ is the

boundary with the topology of a torus where the z, z̄ coordinates are identified as

z(z̄) ≃ z(z̄) + 2π ≃ z(z̄) + 2πτ(τ̄ ). For Chern-Simons theory the field strength is zero,

so the connection is pure gauge. We will be working in a gauge where the connections

have a radial dependence given by

A = b−1db+ b−1ab Ā = bdb−1 + bāb−1

with b = b(ρ) = eρL0 and a, ā being functions of boundary z, z̄ coordinates only.

The holonomies associated with the identification along the temporal direction are

Holτ,τ̄(A) = b−1ehb Holτ,τ̄(Ā) = beh̄b−1 (4.2.1)

where the matrices h and h̄ are

h = 2π(τaz + τ̄ az̄) h̄ = 2π(τ āz + τ̄ āz̄) (4.2.2)

Triviality of the holonomy forces it to be an element of the center of the gauge group

and a particularly interesting choice which corresponds to the choice for uncharged

BTZ black hole gives

Tr[h · h] = −8π2 Tr[h · h · h] = 0 (4.2.3)

A different choice of the center element is synonymous to a scaling of τ and hence

is not very important for us as we focus on a particluar member of the centre of the

group and are not interested in a comparative study between various members.

With this setup in mind the Euclidean action is

I(E) = I
(E)
CS + I

(E)
Bdy
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where

I
(E)
CS = CS[A]− CS[Ā], CS[A] =

ikcs
4π

∫

M

Tr[A ∧ dA+
2

3
A ∧ A ∧A]

For a good variational principal on the manifold we need to add some boundary terms

to the above action. To get a variation of action of the form δI ∼ Qiδµi (for grand

canonical ensemble) we need to add a boundary term of the form

I
(E)
Bdy = −kcs

2π

∫

∂M

d2z Tr [(az − 2L1)az̄]−
kcs
2π

∫

∂M

d2z Tr [(āz̄ − 2L−1)az]

We will be interested in an asymptotically AdS boundary which will give rise to

the WN algebra as the asymptotic symmetry algebra in the absence of any chemical

potential. This is satisfied by the connections written in the Drinfeld-Sokolov form

a = (L1 +Q) dz − (M + . . .) dz̄ (4.2.4)

ā =
(
L−1 − Q̄

)
dz̄ +

(
M̄ + . . .

)
dz (4.2.5)

with [L−1, Q] = [L1,M ] = 0 (and similarly for Q̄, M̄ ). We adopt a convention that the

highest (lowest) weights in az (āz̄) are linear in the charges, and the highest (lowest)

weights in āz (az̄) are linear in the chemical potentials corresponding to charges other

than spin 2. The convention for definition of chemical potential that we use is given

by

Tr [(az − L1)(τ̄ − τ)az̄ ] =

N∑

i=3

µiQi (4.2.6)

Tr [(−āz̄ + L−1)(τ̄ − τ)āz ] =
N∑

i=3

µ̄iQ̄i (4.2.7)
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Varying I(E) on-shell we arrive at

δI(E)
os = − lnZ =− 2πikcs

∫

∂M

d2z

4π2Im(τ)
Tr

[
(az − L1)δ ((τ̄ − τ)az̄) +

(
a2z
2

+ azaz̄ −
ā2z
2

)
δτ

− (−āz̄ + L−1)δ ((τ̄ − τ)āz)−
(
ā2z̄
2

+ āz̄āz −
a2z̄
2

)
δτ̄

]

=− 2πikcs

∫

∂M

d2z

4π2Im(τ)

(
Tδτ − T̄ δτ̄ +

N∑

i=3

(
Qiδµi − Q̄iδµ̄i

)
)

(4.2.8)

So, the added boundary terms are the correct one as we get the desired variation of

the action on-shell.

The black hole geometry that we discussed can be obtained by a SL(2, Z)modular

transformation acting on a conical surplus geometry and vice versa. This property

was used to show in [107] that the variational principle for either geometry (or for that

matter any geometry obtained by a SL(2, Z) transformation on the conical surplus

geometry) goes through correctly if we use the boundary terms given above. This in

principle means that we have the same definition of stress tensor for all the members

of the ’SL(2, Z)’ family and is given by

T = Tr[
a2z
2

+ azaz̄ −
ā2z
2
], T̄ = Tr[

ā2

2
+ āz̄āz −

a2z̄
2
] (4.2.9)

The on-shell action evaluated for a member gives the free energy for that particular

member. Please note that in arriving at equation (4.2.8) we have to go through an

intermediate coordinate transformation pushing the τ dependence of the periodicity

z ≃ z + 2πτ to the integrand. This is necessary to make sure that the variation does

not affect the limits of integration. However, this procedure of making periodicities

of the coordinates constant is dependent upon the member of the ’SL(2, Z)’ family of

interest. The free energy for any arbitrary member was evaluated in [107] and is given
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by

− βF = −Ion−shell

= πikcsTr

[ (
hAhB − h̄Ah̄B

)
− 2i(az − 2L1)az̄ − 2i(āz̄ − 2L−1)āz

]
(4.2.10)

where hA and hB are respectively the holonomy along the contractible and non-

contractible cycles.

Performing a Legendre transform of the free energy (i.e. from a function of chemical

potentials/sources to function of charges) we arrive at an expression for the entropy.

The expression for entropy of the black hole solution turns out to be

S = −2πikcsTr

[
(az + az̄)(τaz + τ̄az̄)− (āz + āz̄)(τ āz + τ̄ āz̄)

]
(4.2.11)

The entropy for a conical surplus turns out to be zero as expected of a geometry with-

out any “horizons”.

All of the above statements can very easily be generalized to non-principal embed-

ding. The things that will be different are the value of the label ’k’ associated with

different SL(2, R) embedding in SL(3, R) and their definition of charges and chemical

potentials. The value of k is related to kcs by

kcs =
k

2Tr [Λ0Λ0]
, (4.2.12)

where kcs is the label associated with the SL(3, R) CS theory. The central charge of the

theory for a particular embedding is given by c = 6k. Λ−1,Λ0,Λ1 are the generators

giving rise to the sl(2, R) sub-algebra in the particular embedding.
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4.3 The principal embedding for SL(3,R)

We give the conventions for connections and the thermodynamic quantities that we

use in this chapter. The connection that we use here is based on [94, 107, 101]. We will

confine our connections in the radial gauge and use the conventions for generators of

SL(3, R) given in1 [99]

a = (L1 − 2πLL−1 −
π

2
WW−2)dz +

mT

2
(W2 + 4πWL−1 − 4πLW0 + 4π2L2W−2)dz̄,

ā = (L−1 − 2πL̄L1 −
π

2
W̄W2)dz̄ +

m̄T

2
(W−2 + 4πW̄L−1 − 4πL̄W0 + 4π2L̄2W2)dz.(4.3.13)

We are interested in studying only non-rotating solutions, hence we require gzz = gz̄z̄

for the metric which when converted to the language of connections in radial gauge

becomes

Tr[az̄az̄ − 2az̄āz̄ + āz̄āz̄] = Tr[azaz − 2azāz + āzāz]. (4.3.14)

With our convention this is satisfied if m̄ = −m, W̄ = −W , L̄ = L

These connections automatically satisfy the equations of motion [az, az̄] = 0. With

our conventions the equation (4.2.6) becomes

Tr[(az − L1)az̄(τ̄ − τ)] = 4imπW. (4.3.15)

So, demanding thatW ,which is the measure of spin 3 charge in our conventions be

real, the chemical potential µ3 is imaginary, whose measure is given by ‘im’.

4.3.1 The Conical Surplus Solution

Here as stated above the contractible cycle is spatial and hence we demand that the

holonomy of connection defined as eih where h = 2π(az + az̄) to be trivial along the

1Here we redefine our variables to absorb the k appearing in the connections given in [101]
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contractible cycle. It follows the same holonomy equation as that given in (4.2.3). This

choice of center is the same as that for thermal AdS.

The boundary terms that we use (given by the equation above the Drienfeld-

Sokolov connection in (4.2.4)) is suited for a study in grand canonical ensemble where,

the chemical potentials are the parameters of the theory.

The first among the two holonomy equations in (4.2.3) can be used to get W in

terms of L

WCS =
1

12mπT
+

2L
3mT

+
16

9
mπL2T (4.3.16)

and using the second equation we get an equation for L in terms of m and T given by

− 1

mT
−8πL
mT

+
mT

3
−8

3
mπLT+64mπ2L2T+

128

9
m3π2L2T 3−512

3
m3π3L3T 3+

4096

27
m5π4L4T 5 = 0.

(4.3.17)

From equation (4.2.9) the stress energy tensor is given by

TCS = 8πL − 12mπWT − 64

3
m2π2L2T 2, (4.3.18)

and the spin 3 charge which wasW in absence of chemical potential is left unchanged

in presence of chemical potential. The free energy given in equation (4.2.10) in this

case becomes

FCS = 16πL − 8mπWT − 128

3
m2π2L2T 2. (4.3.19)

Now there are 4 solutions to (4.3.17) out of which only 2 turn out to be real solu-

tions. Using this we can get the solutions for TCS and FCS in terms of m and T. From

equation (4.3.17) we see that all relevant quantities are functions of µc = mT and hence

we plot them in terms µc in figure (4.1).

From the figure (4.1) we see that the blue branch is the branch that goes to ther-
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Figure 4.1: Here the phase diagram of conical surplus solution is given. The horizontal axes
in all the figures is the parameter µc. The vertical axes are respectively the spin 3 chargeWCS ,
stress tensor TCS and free energy FCS .

mal AdS (without charges) when µc → 0. The other branch in red is a special branch

where as µc → 0 we have W
2
3

L = − 1

6(2π)
2
3
. This special branch starts from an “ex-

tremal point” analogous to black holes discussed in [94] and [109]. Let us call it,

the “extremal branch”. This is a bit of a misnomer as for thermal AdS in any gauge

there is no concept of horizon. The two branches merge at the value of the parameter

µc =
3
4

√
3 + 2

√
3, and after that the conical surplus solution ceases to exist. The “ex-

tremal branch” has the lowest value for free energy at all points in the parameter space

where it exists among all solutions. But from the energy plots we see that its energy is

unbounded from below for mT → 0. So, this is not a physically acceptable solution.

So, this branch will not destroy the overall phase structure as this is an unphysical

branch.

4.3.2 The black hole solution

The black hole solution is obtained by demanding that the time circle is contractible

and holonomy defined in equation (4.2.1) satisfy the equations in (4.2.3). The holon-
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omy equations in this case are

2− 32m2L2

3
− 4L
πT 2

− 6mW
πT

= 0,

−128

9
m3L3 +

6m3W2

π
+

3W
2π2T 3

+
16mL2

πT 2
+

12m2LW
πT

= 0. (4.3.20)

Using the same procedure as after (4.3.16) we get the final holonomy equation for

the black hole as

4mL
3

− 64

3
m3L3− L

mπ2T 4
+

1

2mπT 2
+
8mL2

πT 2
+
2

3
mπT 2− 64

9
m3πL2T 2+

512

27
m5πL4T 2 = 0.

(4.3.21)

The free energy of equation (4.2.10) in this case is given by

FBH = −16πL− 8mπWT +
128

3
m2π2L2T 2. (4.3.22)

The entropy defined in equation (4.2.11) in our case becomes

S =
32πL
T

− 256

3
m2π2L2T. (4.3.23)

We see that equation (4.3.21) is an equation for l = L
T 2 in terms of µb = mT 2. So, µb

is a good variable to study the phase structure for the black hole2 The phase diagram

for spin 3 black hole is given in figure (4.2). We denote the 4 branches of solutions with

the following color code- branch-1-Blue,branch-2-Red,branch-3-Orange and branch-4-

green.

2The variables which will be used to study the phase structure in terms of µb are

t =
T
T 2

, w =
W
T 3

, f =
F

T 2
, s =

S

T
. (4.3.24)
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Figure 4.2: This figure gives the phase structure for spin 3 black hole. The horizontal axis is
µb and the vertical axis on the upper panel are respectively the spin 3 charge WBH and stress
tensor TBH and in the lower panel are free energy FBH and entropy S respectively

From the plots we see that branches 3 and 4 are unphysical with negative entropy.

Branches 1 and 2 merge at the point µb =
3
√

−3+2
√
3

8π
. Beyond this point the black hole

solutions cease to exist. For branch 2 the stress tensor decreases with µd = mT 2, i.e. it

decreases with T 2 if we keep chemical potential m fixed, so this branch has negative

specific heat and hence is unstable. So, the branches 1 and 2 correspond respectively

to the large (stable) and small (unstable) black hole solutions in AdS space [110, 109].

For branch 2, in the limit µ → 0 we get w
2
3

t
= 1

6
(−1
2π
)
2
3 , so the branch 2 evolves from

the extremal point having a non trivial configuration at T = 0. The branches 3 and 4

also evolve from the extremal point, but they evolve to unphysical branches. From the

free energy plot we see that the BTZ black hole branch is the dominant solution in the

temperature regime where it exists.
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Figure 4.3: Comparison between free energy of black hole and conical surplus at m=1. The
blue branch is the BTZ branch of black hole and red branch is extremal branch. The brown
branch is the conical surplus branch which goes to pure AdS in absence of chemical potential
and the green branch is the new “extremal branch” of conical surplus

4.3.3 The “Hawking-Page” Transition

We will now study a phase transition first studied for Einstein-Hilbert gravity with

negative cosmological constant on AdS4 in [110]. There it was shown that in asymp-

totically AdS space, out of the two phases 1) a gas of gravitons and 2) a black hole,

the former dominates at low temperature and after a particular temperature the black

hole solution becomes more dominant. The dominant phase was obtained by identify-

ing which solution had the lowest free energy for a particular temperature. Both pure

AdS (gas of gravitons) and black hole were put at the same temperature by keeping

the identification of the time circle at the same value. The free energy was calculated

by calculating the on shell action in Euclidean signature with proper boundary terms

added. For the AdS3 case, the thermal AdS and BTZ black hole configurations are

related by a modular transformation τBTZ = − 1
τAdS

. At the point of Hawking-Page

transition i.e. τBTZ = τAdS , T = 1
2π

(putting the AdS radius to unity). We are studying

the phase structure in a grand canonical ensemble and we will try to find out the re-

gions in parameter space where this phase transition takes place.

At m = 0 the temperature at which transition takes place is T = 1
2π
. Let us in-
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troduce a chemical potential for spin 3 and see how the temperature deviates from

this point. For the moment we will study the branches which go to BTZ black holes

and thermal AdS in the limit m → 0 i.e. the branch 1 in both cases. We will assume

the following form for the transition temperature after the introduction of a non zero

chemical potential m.

T =
1

2π
+#1m+#2m

2 +#3m
3 +#4m

4 + ... . (4.3.25)

We will find the difference between the free energy of black hole given in equation

(4.3.22) and that of thermal AdS like solution given in equation (4.3.19), both at the

same temperature and chemical potential. We then find the temperature where this

difference is zero which will give the various coefficients in (4.3.25) order by order.

Upon doing this we arrive at the following temperature where the transition takes

place to O(m6)

THP =
1

2π
− 1

12π3
m2 +

7

144π5
m4 − 71

1728π7
m6 + ... . (4.3.26)

For a chemical potential given by m = 1 3 we plot the free energies of both the

black hole and the conical surplus in figure (4.3). The color coding is explained in the

caption there. We see that the "thermal AdS branch" dominates over the black hole for

low temperature and the BTZ branch black hole solutions take over at higher temper-

atures. The unstable (extremal) black hole always is the sub-dominant contribution to

the free energy compared to BTZ branch. The extremal black hole branch also starts

dominating over the thermal AdS as we increase the temperature further. Beyond the

3This is for the purpose of illustration only as this helps in bringing out all the features nicely in a
single diagram. Since introduction of chemical potential violates the boundary falloff conditions we
wantm << 1 if we want the theory to be studied for high enough temperature as the deformation is by
a term of the formmTW2e

2ρ
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temperature of existence of the black hole the thermal AdS like solutions are the only

solutions available. This “phase transition” can be explained by a physical argument

based on the fact that all even spin fields are self-attractive and all odd spin fields are

self-repulsive 4. So, at very low temperature when there are very few excitations the

thermal AdS is the dominating solution. As we increase the temperature the num-

ber of excitation of both the spin 2 and 3 fields increase but the attractive nature of

spin 2 field dominates and formation of a black hole is more favourable. Further in-

creasing the temperature causes the number of excitations to increase further and the

repulsive nature of spin 3 dominating over the attractive nature of spin 2 and makes

it unfavourable to form a black hole. The only issue of concern is that the “extremal”

conical surplus solution seems to dominate over all solutions in the low temperature

regime. We will try to shed some more light on this issue later.

We numerically give the region of dominance of the black hole and thermal AdS

like solutions as well as the region of existence of the solutions in figure (4.4). We

see that the temperature where the "Hawking-Page" transition takes place is lower for

higher values of chemical potential.

From the figure (4.4) we see that at any temperature, for high enough chemical

potential the black hole solution ceases to exist and only thermal AdS like solutions

are present. The lower plot in figure (4.4) puts this in perspective where we plot the

region of existence of the black hole and thermal AdS like solutions . The region of ex-

istence of the thermal AdS like solutions is much larger (the full coloured region)than

the black hole (region bounded by the axes and the blue line boundary).

In all this we have to be careful of the fact that introducing a chemical potential cor-

responds to breaking the asymptotic AdS boundary conditions. The asymptotic AdS

falloff conditions which gives rise to the Virasoro symmetry algebra isA−AAdS = O(1),

but by introducing a chemical potential this gets broken down to A−AAdS = mTe2ρ 5.

4This was brought to our notice by Arnab Rudra and the physical argument rose from a discussion
with him.

5We have reintroduced the radial dependence by A = b−1db + b−1ab
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Figure 4.4: In these figures the x axis represents temperature(T) and y axis the chemical po-
tential(m). For the upper figure pink region is where the conical surplus dominates and the
blue region indicates where black hole dominates. The boundary between this two regions
represents the temperature where the “Hawking-Page” transition takes place for a particular
chemical potential. The lower figure represents the region of existence of conical surplus and
black holes solutions. The black hole solutions exist in the region bound by the axes and the
blue line boundary and the conical surplus solution exists in the full coloured region
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So,the definition of charges that we are using are not valid if we move too far away

from the fixed point. Since, we want to study the property of the system for high

enough temperatures we have to confine ourselves to very small values of chemical

potential. Also introduction of this deformation induces a RG flow which takes us to

another non trivial fixed point in the UV with a completely different spectrum, to be

studied next. Hence for large values of m the the parameters of the UV fixed point

may be the correct parameters to use.

Across the point of transition we see that not only does the stress energy tensor

changes sign which was expected, but the spin 3 charge also changes sign. This can be

inferred from the fact that in the allowed regime for conical surplus the spin 3 charge is

always positive which can be seen from figure (4.1), and that for black hole it is always

negative as can be seen in figure (4.2).

4.4 The diagonal embedding for SL(3)

The definition of SL(2, R) sub-algebra generators in diagonal embedding in terms of

generators of principle embedding is given in [109] and [95] by 1
2
L0, ±1

4
W±2. The

spectrum here consists of fields of spin 2, spin 3
2
and spin 1. The generators for spin

3
2
multiplet in the bulk are given by (W1, L−1) and (W−1, L1) and that for spin 1 isW0.

The on-shell connection for this theory is given by

a =

(
1

4
W2 + GL−1 + JW0 + J 2W−2

)
dz +

λTd
2

(
L1 + 2JL−1 −

G
2
W−2

)
dz̄

ā = − λ̄Td
2

(
L−1 + 2J̄L1 −

1

2
ḠW2

)
dz −

(
1

4
W−2 + ḠL1 + J̄W0 + J̄ 2W2

)
dz̄(4.4.27)

The non rotating condition (4.3.14) applied here gives

Ḡ = −G, J̄ = J , λ̄ = −λ (4.4.28)

103



CHAPTER 4. PHASE STRUCTURE OF HIGHER SPIN BLACK HOLES

Though this embedding looks like an independent theory by itself. But in [95] it

was shown that after adding a deformation with chemical potential corresponding to

spin 3
2
(λ above), this theory becomes the correct UV behaviour of a theory whose

behaviour near IR fixed point is given by the principle embedding studied earlier. If

we reintroduce the radial dependence in (4.4.27) the leading term comes from 1
4
W2.

So, the way to go to the UV theory from the IR side is to change the coefficient of

W2 in z̄ component of connection in equation (4.3.13) from mT
2

to 1
4
by a similarity

transformation (also found out in [109])

aUVz = exL0aIRz̄ e−xL0 , aUVz̄ = exL0aIRz e−xL0 ,

āUVz = e−xL0āIRz̄ exL0 , āUVz̄ = e−xL0āIRz exL0 where x = ln(
√
2mT ), (4.4.29)

where aUV is the connection given in equation (4.4.27) and aIR is the one given in

equation (4.3.13). We see from the map given in (4.4.29) that the holomorphic and anti

holomorphic components change into each other in going from the IR to UV picture.

Demanding that equation (4.4.29) holds we get a relation between parameters of the

theories near the UV and IR fixed points like in [109] given by

G = 2
√
2πW(mT )

3
2 , J = −2πLmT, λTd =

√
2√
mT

(4.4.30)

The holonomy equation calculated here as in the case of principle embedding is given

by

− 8J 3

3π3T 3
d

+
2J
3πTd

− 64J 4

27π3T 5
d
2
+

32J 2

9πT 3
d
2
− 4π

3Td2
− J 22

π3Td
− Td

2

4π
− J Td4

8π3
= 0 (4.4.31)
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The value of spin 3
2
charge is obtained in terms of the spin 1 field using the holonomy

condition and is given by

Gdiag = −16J 2

9Td
+

4π2Td
3

+
2J Td
3

. (4.4.32)

The holonomy equation should also evolve along the RG flow from IR to UV, i.e.

the holonomy equation (4.4.31) should reduce to (4.3.21), under the transformation of

variables given in (4.4.30) . This happens if over and above the above transformation

we assume that the definition of temperature on both limits is the same i.e, Td = T and

the chemical potentials are related by =
√
2

T
√
mT

.

The definition of the thermodynamic quantities in terms of connection are the same

as they were for principal embedding given in [101, 107]. Here their definition in terms

of the parameters of diagonal embedding are given by

Tdiag =
16J 2

3
− 3GTd + 2J T 2

d
2

Fdiag = −32J 2

3
+ 4GTd − 4J T 2

d
2

Sdiag =
64J 2

3Td
+ 8J Td2 (4.4.33)

The equation (4.4.31) is an equation for J
Td

in l =
√
Td. So, The correct parameter for

drawing phase diagram is l and the quantities which are a function of l only, are

g =
G
T

3
2
d

, j =
J
Td
, t =

T
T 2
d

, s =
SCS
Td

, f =
FCS
T 2
d

(4.4.34)

In the phase diagram for black holes given in figure (4.5) the 4 branches of solution

are color coded as branch 1-Blue, branch 2-Red, branch 3-Orange and branch 4-Green.
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Figure 4.5: Phase structure for spin 3 black hole in diagonal embedding. The horizontal axis
is l parameter that we used.
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From the phase diagram we see that branches 3 and 4 are unphysical because they

have negative entropy. If we assume that the chemical potential is fixed at some value

then these are plots with respect to square root of temperature. So, if somewhere the

gradient of stress tensor is negative then in those region it decreases with temperature

and hence the system has negative specific heat. The 2nd branch has a region of neg-

ative specific heat for lower temperature but at higher temperatures it is stable for a

given chemical potential. The branch 1 is the dominant solution when we look at the

free energy plot. Another interesting thing that we notice is that for branch 1 and 2 as

λ→ 0 we have

G → −2
√
2π

3
2T

3
2
d

3
3
4

, J → −1

2

√
3πTd. (4.4.35)

So, both the spin 3
2
and spin 1 charges are non-zero even when the chemical potential

corresponding to that charge is zero, i.e. even when the theory is undeformed. This

was also obtained in [109]. This is different than the principle embedding case where

spin 3 charge goes to zero when the chemical potential goes to zero for the dominant

branch. This stems from the fact that λ → 0 limit corresponds to m → ∞ limit and

hence it is not exactly an undeformed theory that we are studying but a theory which

has been deformed in IR.

We see that this embedding has a valid high temperature behaviour i.e. as Td → ∞

we have

G → −−λ3T 3
d

2
→ l3T

3
2
d

2
, J → −2λ2T 2

d

8
→ −2l2Td

8
. (4.4.36)

We see that in the high temperature limit the charges have the correct scaling be-

haviour in terms of the only dimensionful parameter (T) 6 and they are real. So, to

study the high temperature behaviour the diagonal embedding is the correct theory to

use.

In equation (4.4.30) we have the mapping between the parameters of the UV and

IR theory. Now if we substitute solutions of branch 1, 2, 3, 4 of the IR theory in this

6l is dimensionless as in terms of l all thermodynamic parameters have correct scaling behaviour
with temperature as seen from equation (4.4.34)
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map, it respectively matches with branches 4, 3, 2, 1 of the UV theory. So, this suggests

that along the flow the good solutions in one end go to the bad solutions in the other

and vice versa. This is easy to see if we plot branches of−2πLmT and the correspond-

ing branches of J with its parameters and Td replaced by m and T using equation

(4.4.30), the two plots merge with the mentioned identifications of the branches at the

two ends. This is expected since from the expression of entropy given in (4.2.11) we see

that the sign of the expressions changes if we replace the z-component of connection

by z̄ component. Also, since we expect the RG flow from IR to UV to happen when

m goes from 0 to ∞, we see that initially the z̄ component of the connection acts like

a perturbation near IR fixed point as can be seen from equation (4.3.13), but near UV

fixed point due to m → ∞ z̄ component is dominant part. So, the sign of entropy of

the branches changes between the UV and IR fixed points and hence the good and the

bad solutions get swapped. This is the reason for the bad branches in IR being able to

explain the high temperature behaviour of the theory in the UV.

4.5 Concluding Remarks of this chapter

At first glance our analysis may look very similar to [109]. But we differ on many

aspects of formulation, convention and results. We differ from [109] in the following

respect

• We added a particular set of boundary terms in our bulk action so that the vari-

ation of the full action is like δI ∼ T δτ + Qiδm
i which ensures that our on shell

partition function is of the form Z = eτT +miQi . But the in [109] they added a

boundary term which made sure that the variation of the on shell action is of the

form δI ∼ Lδτ + Qiδ(Tm
i), so that in that case the on shell partition function

is like Z = eτL+τm
iQi , with the convention for connection being that of (4.3.13).

Due to this difference in convention our physical quantities are not finite in the

m → 0 or T → 0, whereas they are finite for the conventions used in [109]. For a
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batter comparison of our results with that of [109] one needs to add a boundary

term to our action so that its variation becomes δI ∼ T δτ + Qiδ(m
iT ).

• In the study of black hole phase structure in principle embedding in [109] they

get one unphysical branch and 3 physical branch. Of the remaining 3 branches

they have one unstable branch with negative specific heat. Of the remaining 2

stable branches they have one branch with the expected scaling behavior and

one with wrong scaling behaviour with temperature for quantities having a CFT

description. In our case we get 2 unphysical and 2 physical branch. Our BTZ

branch has the correct scaling behavior (e.g.Stress Tensor ∝ T 2) whereas our

extremal branch apparently does not have one (∝ 1
m2T 2 ). But using the correct

dimensionless thermodynamical variable that we use to plot our phase plots,

the scaling of the extremal branch goes like ∝ T 2

µ2
and hence, it too has the correct

scaling behaviour. So, both our branches can have a consistent CFT description.

• In [109] they argued that the third real and physical branch which had the wrong

scaling behaviour with temperature at high temperatures infact had the correct

scaling behavior when looked at from the diagonal embedding. They argued

this by stating that in the diagonal embedding, of the two real branches near

the fixed point, the one with the lower free energy must map to the lower free

energy branch among the two surviving branches from the principal embedding

7. Whereas in our case we explicitly show that the good branches in the principal

embedding map to the bad branches in diagonal embedding and vice-versa by

giving an explicit one-to-one mapping between the branches at the two ends.

We also show that in terms of the temperature and the dimensionless parameter

used the thermodynamic quantities have the correct scaling behaviour at high

temperature in the diagonal embedding.

• In addition to this we studied the thermodynamics of the thermal AdS like so-

7There this was the branch with positive entropy for principal embedding
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lutions also in the principal embedding and in the process we were able to

show that a “ Hawking-Page” like transition takes place in the low tempera-

ture regime. Also, after a certain temperature when the black hole solutions in

the principal embedding cease to exist the thermal AdS like solution again takes

over as for a particular chemical potential its regime of existence extends to a

higher temperature than that of the black hole. As we have stated earlier this

was due to the self repulsive nature of spin 3 fields due to which at high enough

temperatures black hole formation is prevented.

Another point to notice is that we did our calculations in the canonical formalism

which is different from the holomorphic formalism used in [109]. But the canonical

formalism is in apparent disagreement with the CFT calculations of [104]. But in the

canonical formalism the thermodynamic quantities are obtained much more naturally

so we think that there has to be a way to see if it matches with the CFT calculation

in the highest spin going to ∞ limit, where the CFT calculations have been done. A

possible solution for this was suggested in [105].

In the the recent work [106] where it has been proposed that for higher spin theo-

ries the correct way to add chemical potential preserving the Brown-Henneaux fall off

conditions necessary for definition of charges that we are using is to add them along

the time component of the connection rather than the antiholomorphic component. In

the light of this our analysis should be redone to see if some extra features emerge

other than that we already have here. The ideal situation would be to derive the the

asymptotic charges in the presence of a chemical potential exactly.

Another recent development in the study of higher spin black holes is the concept of

generalised black holes in 3 dimensions [117]. There it claimed that the HS black holes

of [94] are not the black holes of principal embedding spectrum but rather that of a spe-

cial case of diagonal embedding spectrum and they point this out as the reason for the

discrepancy between holomorphic and canonical formulation of HS black holes. They

constructed themost general black holes with principal as well as diagonal embedding
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black holes and they claim that the entropy computation matches for the holomorphic

and canonical formulation for these black holes. It will be interesting to pursue this

line of thought further and come up with possible CFT duals to these systems which

can reproduce the entropy computed from the bulk. Also, a phase structure analy-

sis of these generalised black holes can be performed following the procedure of this

chapter.
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Chapter 5

Concluding Remarks and Future

Directions

In this thesis I have presented the work done for my PhD on some aspects of mass-

less higher spin theories in AdS3. These general motivation for this works stems from

need to examine the massless higher spin theories as a consistent sub-sector to study

the AdS/CFT conjecture.

In the first work I have described how we matched the one-loop partition function

of the massless higher spin theories in an AdS3 background with the vacuum charac-

ter of the W-symmetry algebra. This acts as the first “quantum-mechanical” check of

the duality between the higher spin theories and the CFT with W-symmetry.

The second work involved the formulation of Topologically Massive Higher Spin

Gravity a.k.a. TMHSG. Here we constructed the action (quadratic in fields) and gave

basic evidence towards the statement that the CFT dual to this theory is a logarithmic

CFT. Also, we showed that the theory suffers from having a genuine instability at the

linear equation of motion level at all points in the parameter space.
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In the third and final work we studied the phase structure of the higher spin black

holes in canonical formulation i.e. a formulation based on finding the thermodynamic

quantities based on the variation of the action. We found out how the “Hawking-

Page” transition changes with the introduction of the spin 3 chemical potential. We

also, gave connection between the variables that explain the low and high tempera-

ture regimes of the phase structure correctly.

There are many further aspects of work done in this thesis that can be pursued further.

Some of them being

• Being able to compute the one loop amplitude of the higher spin theories in

the Chern-Simons formulation. This will give help us in finding the one-loop

partition function with background values for higher spin fields. A case in point

is the conical surplus background which has non-trivial background values for

higher spin fields.

• Formulation of TMHSG in the Chern-Simons like formulation is another inter-

esting aspect that needs to be pursued further. Initial work in this direction has

been done in [92] where it was proposed that Chern Simons action with differ-

ent levels for the barred and unbarred connection gives rise to TMHSG provided

we impose the additional constraint that the field strength for both types of con-

nections are same (off-shell). It has been shown that the linearised equations of

motion obtained in terms of the Fronsdal like fields matches with what we have

found out. This needs to be checked further that this indeed gives the TMHSG

as this will help in identifying the CFT dual.

• Classical solutions of TMHSG were found out in [118]. But these solutions were

generalisations of solutions of parity conserving case when the levels are as-

sumed to be different. Finding solutions which are present only for the parity

violating case will be really interesting. For this also a robust Chern-Simons like

formulation will be useful as in that case we will be able to use holonomy to
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• Studying how the Hawking-Page transition temperature deviates from the pure

gravity case by introduction of chemical potential corresponding to various

charges will be an interesting task to accomplish. Going further being able to

do our analysis will help us to understand the possible conflict between our re-

sult and the result obtained in [119, 120] where it was shown that due to the

growth of number of light states the Hawking-Page transition is smoothened

out for hs[λ] case, though there no chemical potential was introduced.

These and several other issues need to studied better in future works. With this I

conclude this thesis.
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Chapter 6

Appendix

6.1 Conventions

In our conventions the commutator of two covariant derivatives, evaluated on a totally

symmetric rank s contravariant tensor, is equal to

[∇µ,∇ν ] ξ
ρ1...ρs =

s∑

j=1

Rρj
δµν ξ

ρ1...ρ̂j ...ρsδ , (6.1.1)

where the notation ρ̂j means that ρj is excluded. The Riemann curvature tensor for

AdS3 is of the form

Rµνρσ = − 1

ℓ2
(gµρgνσ − gµσgνρ) . (6.1.2)

The Ricci tensor is then

Rµ
νµσ = − 2

ℓ2
gνσ . (6.1.3)

We shall also use the conventions of [12] that by an index (µ1 . . . µs) we mean the

symmetrised expression without any combinatorial factor, but with the understanding

that terms that are obviously symmetric will not be repeated. So for example, the
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tensor ∇(µ1ξµ2...µs) equals

∇(µ1ξµ2...µs) =

s∑

j=1

∇µjξµ1...µ̂j ...µs , (6.1.4)

if ξ(s−1) is a symmetric tensor, etc. By ∆we always mean the Laplace operator

∆ = ∇λ∇λ . (6.1.5)

Because of (6.1.1), the explicit action depends on the spin s of the field on which ∆

acts.

6.2 The calculation for s = 3

In this appendix we give some of the details of the calculation of section ??. First

we explain how to obtain our explicit formula (2.3.31) for the ξ-dependent exponent

(2.3.28) of (2.2.27). To start with we plug (2.3.29) into (2.3.28) to obtain

Sξ = 3

∫
d3x

√
g

[
ξTT
νρ

(
−∆+

6

ℓ2

)
ξTT νρ

+∇(νσ
T
ρ)

(
−∆+

6

ℓ2

)
∇(νσTρ) − 6

5
∇(νσ

T
ρ) ∇ρ∇µ∇(µσTν)

+ψνρ

(
−∆+

6

ℓ2

)
ψνρ − 6

5
ψνρ∇ρ∇µ ψ

µν

]
. (6.2.6)

Note that there are no cross-terms between ξTT, σT and ψµν , simply because any po-

tential index contractions lead to vanishing results on account of the tracelessness and

transversality of ξTT and σTν . We want to simplify the expressions in the second and

third line.

First we consider the σTν terms. To this end we observe that

(
−∆+

6

ℓ2

)
∇(µσ

T
ν) = ∇(µ

(
−∆+

10

ℓ2

)
σT
ν) , (6.2.7)
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as one checks explicitly. It then follows that the first term of the second line of (6.2.6)

leads to

S
[σ,1]
ξ = 3

∫
d3x

√
g

[
∇(νσ

T
ρ)

][(
−∆+

6

ℓ2

)
∇(νσTρ)

]

= 6

∫
d3x

√
g σT

ν

(
−∆+

2

ℓ2

) (
−∆+

10

ℓ2

)
σTν . (6.2.8)

In order to evaluate the second term of the second line we now calculate

∇µ∇(µσ
T
ν) = ∆σT

ν − 2

ℓ2
σT
ν , (6.2.9)

where we have used the transversality of σTµ, (2.3.30). Using integration by parts we

therefore get

S
[σ,2]
ξ =

18

5

∫
d3x

√
g σT

ν

(
−∆+

2

ℓ2

) (
−∆+

2

ℓ2

)
σTν . (6.2.10)

Putting the two calculations together we thus arrive at the result

S
[σ,1]
ξ + S

[σ,2]
ξ =

48

5

∫
d3x

√
g σT

ν

(
−∆+

2

ℓ2

) (
−∆+

7

ℓ2

)
σTν , (6.2.11)

which is the second line of (2.3.31).

Next we deal with the ψµν terms. The analogue of (6.2.7) is now

(
−∆+

6

ℓ2

)
ψµν =

(
∇µ∇ν −

1

3
gµν∆

) (
−∆+

12

ℓ2

)
ψ . (6.2.12)

The first term of the third line then leads to

S
[ψ,1]
ξ = 3

∫
d3x

√
g

[(
∇ν∇ρ −

1

3
gµρ∆

)
ψ

]
·
[(

−∆+
6

ℓ2

)(
∇ν∇ρ − 1

3
gµρ∆

)
ψ

]

= 2

∫
d3x

√
g ψ (−∆)

(
−∆+

3

ℓ2

) (
−∆+

12

ℓ2

)
ψ . (6.2.13)
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For the second term we calculate

∇ρ∇µψµν =
2

3
∇ρ∇ν

(
∆− 3

ℓ2

)
ψ , (6.2.14)

thus leading to

S
[χ,2]
ξ = −18

5

∫
d3x

√
g

[(
∇ν∇ρ − 1

3
gνρ∆

)
ψ

]
·
[
(∇ρ∇µ)

(
∇µ∇ν −

1

3
gµν∆

)
ψ

]

=
8

5

∫
d3x

√
g ψ (−∆)

(
−∆+

3

ℓ2

) (
−∆+

3

ℓ2

)
ψ . (6.2.15)

Putting the two calculations together we therefore get

S
[χ,1]
ξ + S

[χ,2]
ξ =

18

5

∫
d3x

√
g ψ (−∆)

(
−∆+

3

ℓ2

) (
−∆+

8

ℓ2

)
ψ , (6.2.16)

which is the third line of (2.3.31).

6.2.1 The full action of L(3)

In this appendix we work out the full action of L(3), including the trace piece. Actually,

in order to do this calculation efficiently, it is convenient to modify L(3) by a trace piece

so that it maps traceless tensors to traceless tensors. The resulting operator is

(
L̂(3)ξ

)νρ
=

(
−∆+

6

ℓ2

)
ξνρ − 3

5
(∇ν∇µξ

µρ +∇ρ∇µξ
µν) +

2

5
gνρ∇α∇β ξ

αβ . (6.2.17)

Next we consider the action of L̂(3) on the traceless tensor

ξ(σ)µν ≡ ∇µσν +∇νσµ − 2

3
gµν ∇ασ

α . (6.2.18)
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After a lengthy calculation one finds

(
L̂(3)ξ(σ)

)νρ
=

1

5

[
8∇(ν

(
−∆+

7

ℓ2

)
σρ) −∇(ν∇ρ)

(
∇λσ

λ
)
− 6 gνρ∇λ

(
−∆+

6

ℓ2

)
σλ

]
.

(6.2.19)

The first two terms obviously agree with (2.4.52) for s = 3. To understand how to

obain (6.2.19) let us look at the various terms of L̂(3) separately: from the first term of

L̂(3) one gets

(
−∆+

6

ℓ2

)
ξ(σ) νρ = ∇(ν

(
−∆+

10

ℓ2

)
σρ) +

2

3
gνρ∇λ∆σ

λ − 20

3 ℓ2
gνρ (∇λσ

λ) . (6.2.20)

One easily checks that the right-hand side is indeed traceless, as must be. We group

the remaining terms into two traceless parts, namely

−3

5

(
∇ν∇µ∇(µσρ) +∇ρ∇µ∇(µσρ)

)
+

2

5
gνρ∇λ∇ν∇(λσν)

=
3

5
∇(ν

(
−∆+

2

ℓ2

)
σρ) − 3

5
∇(ν∇ρ)(∇λσ

λ) +
4

5
gνρ∇λ∆ σλ , (6.2.21)

and

−3

5

(
∇ν∇µ(−2

3
)gµρ(∇λσ

λ) +∇ρ∇µ(−2
3
)gµν(∇λσ

λ)
)
+

2

5
gνρ∇λ∇τ (−2

3
)gλτ (∇ασ

α)

=
2

5
∇(ν∇ρ)

(
∇λσ

λ
)
− 4

15
gνρ∇λ

(
∆+

2

ℓ2

)
σλ . (6.2.22)

One then easily checks that the sum of (6.2.20), (6.2.21) and (6.2.22) gives indeed the

right hand-side of (6.2.19).
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6.3 Taking the isometry generator across symmetrised

covariant derivatives

In this appendix we give the proof of the statement that the isometry generator can be

taken across symmetrised covariant derivatives. Let the isometry generator be

Lξ = ξM∂M , (6.3.23)

where ξM satisfies

∇(MξN) = 0. (6.3.24)

This generator acts on tensors of rank (r, s) as

LξT
M1M2......Mr

N1N2...Ns
= ξM∂MT

M1M2......Mr

N1N2...Ns
− ∂Qξ

M1TQM2......Mr

N1N2...Ns
− ∂Qξ

M2TM1Q......Mr

N1N2...Ns
· · ·

− ∂Qξ
MrTM1M2......Q

N1N2...Ns
+ ∂N1ξ

QTM1M2......Mr

QN2...Ns
· · ·+ ∂Ns

ξQTM1M2......Mr

N1N2...Q

= ξM∇MT
M1M2......Mr

N1N2...Ns
−∇Qξ

M1TQM2......Mr

N1N2...Ns
−∇Qξ

M2TM1Q......Mr

N1N2...Ns
· · ·

− ∇Qξ
MrTM1M2......Q

N1N2...Ns
+∇N1ξ

QTM1M2......Mr

QN2...Ns
· · ·+∇Ns

ξQTM1M2......Mr

N1N2...Q
. (6.3.25)

In the last equality we have added and subtracted Christoffel connections to write the

partial derivatives as covariant derivatives. Now let us apply (6.3.25) to a tensor of

rank 1 and its covariant derivative

LξφN = ξM∇MφN +
(
∇Nξ

M
)
φM

Lξ (∇PφN) = ξM∇M∇PφN +
(
∇Nξ

M
)
∇PφM +

(
∇P ξ

M
)
∇MφN . (6.3.26)

Taking a covariant derivative of the first expression in (6.3.26) and subtracting it from

the second, we obtain after some algebra

∇PLξφN − Lξ (∇PφN) =
1

ℓ2
ξ[NφP ] − φM∇M∇P ξN . (6.3.27)

122



6.3. TAKING THE ISOMETRY GENERATOR ACROSS SYMMETRISED COVARIANT
DERIVATIVES

Therefore symmetrising the indices we get

∇(PLξφN) − Lξ
(
∇(PφN)

)
= 0. (6.3.28)

Now let us define TPN ≡ ∇(PφN). Performing the same analysis as before we obtain

∇M (LξTPN)− Lξ (∇MTPN) =
1

ℓ2
[
ξ[PTM ]N + ξ[NTM ]P

]
− TPQ∇Q∇MξN − TNQ∇Q∇MξP .

(6.3.29)

And hence once again symmetrising the indices we get

∇(M

(
LξTPN)

)
− Lξ

(
∇(MTPN)

)
= 0. (6.3.30)

Combining this with (6.3.28), we get

∇(M∇NLξφP ) − Lξ
(
∇(M∇NφP )

)
= 0. (6.3.31)

This is what we wanted to prove.
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6.4 Conjugate momenta of different modes

In this appendix, we list all the conjugate momenta of the different modes that we

obtained from the equation of motion. The conjugate momenta of the first kind are

Π
(1)MNP
(Mχ)

=

√−g
2

[
−∇0χ(M)MNP +

17

18× 3
∇0χ(M)(MgNP )

− 2

µ

(
3µ2 − 1

ℓ2

)
ε0R(Mχ

(M) NP )
R +

1

9µ

(
17µ2 − 5

ℓ2

)
ε0R(Mχ

(M)
R gNP )

]
,

Π
(1)MNP
(Lχ)

=

√−g
2

[
−
(
2− 1

µℓ

)
∇0χ(L)MNP +

17

18× 3

(
2− 1

µℓ

)
∇0χ(L)(MgNP )

− 4

µℓ2
ε0R(Mχ

(L) NP )
R +

4

3µℓ2
ε0R(Mχ

(L)
R gNP )

]
,

Π
(1)MNP
(Rχ)

=

√−g
2

[
−
(
2 +

1

µℓ

)
∇0χ(R)MNP +

17

18× 3

(
2 +

1

µℓ

)
∇0χ(R)(MgNP )

− 4

µℓ2
ε0R(Mχ

(R) NP )
R +

4

3µℓ2
ε0R(Mχ

(R)
R gNP )

]
,

Π
(1)MNP
(logχ)

=

√−g
2

[
−∇0

[
χ̂MNP − χ(L)MNP

]
+

17

18× 3
∇0
[
χ̂(MgNP ) − χ(L)(MgNP )

]
(6.4.32)

− 4

ℓ
ε0R(M χ̂

NP )
R +

4

3l
ε0R(M χ̂Rg

NP ) − 12

ℓ
ε0R(Mχ

(L) NP )
R +

34

9l
ε0R(Mχ

(L)
R gNP )

]
.

And

Π
(1)MNP
(MΣ) =

√−g
2

[
−∇0Σ(M)MNP − 2

3µ

(
µ2 − 1

ℓ2

)
ε0R(MΣ

(M)NP )
R

]
,

Π
(1)MNP
(LΣ) = −

√−g
2

(
2− 1

µℓ

)
∇0Σ(L)MNP ,

Π
(1)MNP
(RΣ) = −

√−g
2

(
2 +

1

µℓ

)
∇0Σ(R)MNP ,

Π
(1)MNP
(logΣ)

=

√−g
2

[
−∇0

(
Σ̂MNP − Σ(L)MNP

)
− 4

3l
ε0R(MΣ

(L)NP )
R

]
. (6.4.33)
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And the conjugate momenta of the second kind are

Π
(2)MNP
(Mχ)

=

√−g
2

[
−g00χ(M)MNP +

17

18× 3
g00χ(M)(MgNP )

]
,

Π
(2)MNP
(Lχ)

=

√−g
2

[
− 1

µℓ
g00χ(L)MNP +

17

18× 3µℓ
g00χ(L)(MgNP )

]
,

Π
(2)MNP
(Rχ)

=

√−g
2

[
1

µℓ
g00χ(R)MNP − 17

18× 3µℓ
g00χ(R)(MgNP )

]
,

Π
(2)MNP
(logχ)

=

√−g
2

[
−g00

[
χ̂MNP + χ(L)MNP

]
+

17

18× 3
g00
[
χ̂(MgNP ) + χ(L)(MgNP )

]]
.

(6.4.34)

And

Π
(2)MNP
(MΣ) = −

√−g
2

g00Σ(M)MNP ,

Π
(2)MNP
(LΣ) = −

√−g
2µℓ

g00Σ(L)MNP ,

Π
(2)MNP
(RΣ) =

√−g
2µℓ

g00Σ(R)MNP ,

Π
(2)MNP
(logΣ)

= −
√−g
2

g00
[
Σ̂MNP + Σ(L)MNP

]
. (6.4.35)

The labels L, M , R and log labels labelling the left, massive, right and logarithmic

modes respectively are kept inside “( )" braces and hence should not be confused with

the spacetime indicesMNP . The following relations have been used

D(L)(χ̂, Σ̂)MNP ≡ (χ̂, Σ̂)MNP +
ℓ

6
εQR(M∇Q(χ̂, Σ̂)RNP ) = −(χ,Σ)

(L)
MNP ,

D(M)(χ,Σ)
(M)
MNP = D(L)(χ,Σ)

(L)
MNP = D(R)(χ,Σ)

(R)
MNP = 0,

∇2χ̂MNP =
72

ℓ2
χ
(L)
MNP +

24

ℓ2
χ̂MNP +

2

ℓ2
χ̂(MgNP ),

∇2χ
(L,R)
MNP =

24

ℓ2
χ
(L,R)
MNP +

2

ℓ2
χ
(L,R)
(M gNP ), ∇2χ

(M)
MNP = 12

(
3µ2 − 1

ℓ2

)
χ
(M)
MNP +

2

ℓ2
χ
(M)
(M gNP ),

∇2Σ
(L,R)
MNP = 0, ∇2Σ

(M)
MNP =

(
4µ2 − 4

ℓ2

)
Σ

(M)
MNP ,

∇2Σ̂MNP =
8

ℓ2
Σ

(L)
MNP . (6.4.36)
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