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Synopsis
The superposition principle in quantum physics gives rise to classically counter-

intuitive traits like coherence and entanglement. Over the past several years, signifi-

cant progresses have been made to establish full fledged resource theory of entangle-

ment and quantum coherence. With the ever increasing technological advancements

towards processing of small scale quantum systems and proposals of nano-scale heat

engines, it is of paramount importance to investigate the thermodynamic perspec-

tives of quantum features like coherence and quantum correlations. In the proposed

thesis, we investigate the role of quantum coherence and quantum correlations in

thermodynamics. The result of the proposed thesis are significantly based on the

concepts of generalized entropies, namely the Rényi and the Tsallis entropies.

We highlight here the main results obtained in the proposed thesis.

• We study how much quantum coherence can be created by unitary transforma-

tions starting from a thermal state at a finite temperature with and without

constraint on the amount of available free energy. These results are published

in Ref. [1].

• We find that quantum correlations with sandwiched relative entropies are ad-

vantageous over other known order parameters, including entanglement and

information-theoretic measures of quantum correlations to study quantum phase

transitions of transverse Ising model at absolute zero temperature. These re-

sults are published in Ref. [2].

• Exploiting the generalized entropy, namely the Rényi entropy, we have estab-

lished the universality of the second law of thermodynamics in generalized

scenario, based on both the Carnot and the Clausius statements. These results

are published in Ref. [3].

The resource theory of quantum coherence has attracted much attention and has

been vibrant in recent times due to its potential applications in quantum informa-

tion theoretic protocols, quantum biology and quantum thermodynamics. Since a

quantum state having coherence allows transformations that are otherwise impos-

sible and energy conservation restricts the thermodynamic processing of coherence,

it can be viewed as a independent resource in thermodynamics. Considering the

thermodynamic aspects of quantum coherence we explore the intimate connection

between the resource theory of quantum coherence and thermodynamic limitations

iii



on the processing of quantum coherence. In particular, we study the creation of

quantum coherence by unitary transformations with limited energy. We go on even

further to present a comparative investigation of creation of quantum coherence and

total correlation (quantum mutual information) within the imposed thermodynamic

constraints. Considering a thermally isolated quantum system initially in a thermal

state, we perform an arbitrary unitary operation on the system to create coherence.

First we find the upper bound on the coherence that can be created using arbitrary

unitary operations starting from a fixed thermal state. Then, we show that for any

finite temperature of the initial thermal state the upper bound on coherence can al-

ways be saturated and give the explicit form of the unitary transformation to achieve

the same. Such a physical process will cost some amount of energy and hence it is

natural to ask that if we have a limited supply of energy to invest then what is

the maximal achievable coherence in such situations? We answer this question in

affirmative that there always exist a unitary operation that creates maximum coher-

ence with limited energy and give protocols for creating maximum coherence with

limited energy for qubit and qutrit systems. We find that when maximal coherence

is created with limited energy, the total correlation created in the process is upper

bounded by the maximal coherence and vice versa. For two qubit systems we show

that there does not exist any unitary transformation that creates maximal coherence

and maximal total correlation simultaneously with a limited energy cost. Our re-

sults are relevant for the quantum information processing in physical systems where

thermodynamic considerations cannot be ignored.

Though the study of the proposed thesis are mostly based on quantum systems at

finite temperature, we also study the role of quantum correlations in quantum phase

transition in transverse field Ising model at absolute zero temperature. Character-

ization and quantification of quantum correlation play a central role in quantum

information. Entanglement, in particular, has been successfully identified as a useful

resource for different quantum communication protocols and computational tasks.

Moreover, it has also been employed to study cooperative quantum phenomena like

quantum phase transitions in many-body systems. However, in the recent past,

several quantum phenomena of multipartite systems have been discovered in which

entanglement is either absent or does not play any significant role. Such phenomena

motivated the search for concepts and measures of quantum correlation independent

of the entanglement-separability paradigm. Introduction of quantum discord is one

of the most important advancements in this direction. It is conceptualized by us-

ing the von Neumann entropy as a measure of disorder. We introduce a class of
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quantum correlation measures as differences between total and classical correlations,

in a shared quantum state, in terms of the sandwiched relative Rényi and Tsal-

lis entropies. We compare our results with those obtained by using the traditional

relative entropies. We find that the measures satisfy all the plausible axioms for

quantum correlations. We evaluate the measures for shared pure as well as paradig-

matic classes of mixed states. We show that the measures can faithfully detect the

quantum critical point in the transverse quantum Ising model and find that they can

be used to remove an disquieting feature of nearest-neighbor quantum discord in this

respect. Furthermore, the measures provide better finite-size scaling exponents of

the quantum critical point than the ones for other known order parameters, including

entanglement and information-theoretic measures of quantum correlations.

Another direction of the proposed thesis is the study of quantum thermal machines

which has attracted a great deal of interest in recent times. In the domain of nano-

thermodynamics a major question is whether a quantum heat engine, more efficient

than the Carnot engine, can be realized by harnessing the quantum nature of the

systems. Exploiting the generalize entropy we show that the principle of maximum

entropy affirms that no engine can be more efficient than the Carnot engine even

harnessing quantum resources. To establish the universality of the Carnot statement

of the second law of thermodynamics, we formulate a complete theory of quantum

thermodynamics in the Rényi entropic formalism exploiting the Rényi relative en-

tropies, starting from the maximum entropy principle. In establishing the first and

second laws of quantum thermodynamics, we have correctly identified accessible

work and heat exchange both in equilibrium and non-equilibrium cases. The free

energy (internal energy minus temperature times entropy) remains unaltered, when

all the entities entering this relation are suitably defined. Exploiting Rényi relative

entropies we have shown that this “form invariance” holds even beyond equilibrium

and has profound operational significance in quantifying accessible work in isother-

mal process. These results reduce to the Gibbs-von Neumann results when the Rényi

entropic parameter α approaches 1. Moreover, it is shown that the universality of

the Carnot statement of the second law is the consequence of the form invariance

of the free energy, which is in turn the consequence of maximum entropy principle.

Further, the Clausius inequality, which is the precursor to the Carnot statement,

is also shown to hold based on the data processing inequalities for the traditional

and sandwiched Rényi relative entropies. Thus, we find that the thermodynamics

of nonequilibrium state and its deviation from equilibrium together determine the

thermodynamic laws. This is another important manifestation of the concepts of in-
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formation theory in thermodynamics when they are extended to the quantum realm.

Our work is a substantial step towards formulating a complete theory of quantum

thermodynamics and corresponding resource theory.
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5.6 Traditional Rényi quantum correlation, DTRα , with respect to λ, of

|ψAB〉 =
√
λ|00〉+

√
(1− λ)|11〉 for different α. Both axes are dimen-

sionless. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
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CHAPTER1
Introduction

1.1 Physics of information

In 1948, Claude Shanon came up with the answers of two fundamental and long

standing queries of communication theory in his seminal paper “A Mathematical

Theory of Communication [1].” First, how much can a message be compressed?

Second, at what rate can one communicate reliably over a noisy channel? Shanon

first used the tools of probability theory in communication theory. He used the

concept of entropy to quantify the uncertainty in a message, which eventually grew

into the field of “Information theory.” It was Shanon’s idea that one could think of

information independent of the physical system that encodes it. The nature of the

information in a letter, a phone call, a bit of string are the same. Due to this level of

mathematical abstraction and independence over the nature of the physical system

which stores the information, information theory was previously considered only as

a part of communication theory which has nothing to do with physics.

Though one can conceptualize information independent of the physical system

that encodes it, information processing tasks depend on the nature of the physical

system that stores the information and the laws that govern evolution of the state of

the physical system. Eventually, it turns out that not all information are the same

in nature. Let us elaborate it further. The fundamental unit of classical information

is the bit which can take one of two values: 0 and 1. For example, a sender sends

either a black or white ball to the receiver to convey occurrence of one of the two

possible outcomes of a dichotomous event. But the universe we live in is quantum

mechanical! What if the sender encodes the information in “up” or “down” states of

a spin half particle? The “up” and “down” states can be visualized as the black and

1



white ball: two distinguished states to encode the two outcomes. Interestingly, the

spin half particle can be in a superposition of “up” and “down” states which cannot

be distinguished with certainty from the “up” and “down” states. This superposition

principle gives rise to classically counter intuitive traits in quantum physics. The

concepts of information processing and communication significantly differs in the

quantum world. One cannot copy an unknown quantum state. Therefore, it is not

possible to copy the information stored in the quantum state without disturbing

the system. Whereas one can make a photocopy of a letter without knowing the

message written in it. Eventually, information processing tasks such as dense coding

[2], teleportation [3], remote state preparation [4, 5], secure quantum communication

[6, 7] have been realized which are not possible in the classical realm. With these

seminal works a novel potential discipline, “Quantum information”, began to emerge

in the 1980’s [8]. Given that quantum mechanics has many counter intuitive traits,

one can expect that it might have a huge impact on computing. A quantum system

is capable of computation was first pointed out independently by Paul Benioff and

Richard Feynman in 1982. It was Peter Shor who in 1994, came up with an algorithm

that offers exponential speed up in factoring a large number over the best known

classical algorithm [9, 10]. Then, Lov Grover came up with a quantum algorithm in

1996, that quadratically reduces the search time [11].

Despite its enormous potential, practical applications of quantum information

and computation (QIC) are still far behind than its classical counterpart. The tech-

nological advancements are still not enough to attain the full fledged quantum ad-

vantages. These technological challenges, along with the need to find out what makes

the quantum protocols powerful has led to the development of resource theories of

quantum entanglement. For example, in the resource theory of entanglement [12],

as distributing entanglement over parties that are far apart is difficult due to loss

of quantumness during the transport, all entangled states are considered as valuable

resources. Thus, the states that are not entangled (separable) and the operation

(local operation and classical communication) that cannot create entanglement are

considered as free states and free operations. Any operation that can create entangle-

ment between the shared quantum states is also considered as a resource. However,

as the detrimental effects of the environment decohere a quantum system gradually,

preserving the quantum coherence and correlations against noise for a long time is

the key challenge for QIC. Therefore, to realize quantum information processing,

sending information and quantum computation in its full potential, we need to have

further technological advancements to manipulate and control the dynamics of the
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physical systems which are small enough to possess quantum coherence and correla-

tions. This necessity has eventually created a field of research which can be genuinely

abbreviated as “Physics of information and computation.”

1.2 Information and thermodynamics

While quantum information and computation theory is well developed over last three

decades, thermodynamics has survived crucial revolutions over the centuries. It has

witnessed the advent of general theory of relativity, quantum mechanics, quantum

field theories. However, it is still as relevant as it was in early days. It has often been

employed to test and set benchmarks for other novel physical theories. The elegance

and power of thermodynamics lie at the fact that the laws of thermodynamics do not

depend on the microscopic details of the physical systems. Rather, it sets bounds

on how useful a resource is, how efficiently a task can be performed, independent

of the protocols and physical systems. Over the years tools of thermodynamics are

being extensively employed to understand the physics of massive black holes to tiny

colloids.

Despite being nascent among the physical theories, information theory has played

a crucial role to solve an years old puzzle of thermodynamics, namely the work ex-

traction by Maxwell’s demon [13, 14]. The demon uses his knowledge of the micro-

scopic details of the system under study in extracting work that leads to apparent

violation of the second law of thermodynamics. Leo Szilard studied the Maxwell’s

demon problem in an idealized single atom heat engine and pointed out the signif-

icance of information in thermodynamics. Later Landauer examined the energetic

cost of erasing information [15], introducing the concept of “logical irreversibility.”

He formally established that “Information is physical.” Later, Bennett showed that

the amount of work required in erasing demon’s memory at the end of the procedure

exactly makes up for the additional work gained by the demon [16]. Thus, Landauer

and Bennett put an end to the long standing debate and bridged the relationship

between information and thermodynamics. The link between information theory

and statistical mechanics, which underlies thermodynamics, was more formally es-

tablished by E.T. Jaynes in 1957. He derived the methods of statistical mechanics

using the tools of information theory [17, 18]. It was very much surprising and in-

teresting that information theory, which was earlier thought of by the majority of

researchers as an independent discipline from physical theories, played a vital role in

the foundations of one of the most sacred physical theories [19, 20].
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Inspired by the role of information theory in thermodynamics and noticing that

both thermodynamics and quantum information theory are formulated based on how

to utilize a resource most efficiently, researchers from quantum information theoretic

background started exploring quantum information theory from thermodynamic per-

spectives. In particular, concepts of work deficit to quantify non-classical resources is

an outcome of this approach. Work deficit quantifies the difference between amount

of work that can be extracted globally and when the parties operate locally after

suitable local transformation, from a bi-partite quantum states when it is coupled to

a heat bath [21]. This work further established the intriguing link between quantum

information theory and thermodynamics. Most importantly, this work has started

a new direction in quantifying quantum correlations independent of entanglement-

separability paradigm. The discovery of quantum discord is one of the fruitful out-

comes of the same [22]. Quantum discord is given by the difference between total and

classical correlation while classical correlation is given by the maximal total correla-

tion of a post measured bipartite state. Zurek has defined quantum thermal discord

taking the entropic cost of the measurement which is crucial when one considers

thermodynamic perspectives [165]. Later it has been shown by Aharon and Daniel

[24] that discord can determine the difference between efficiencies in Szilard’s engine

under different restrictions. These results have cemented the link between quantum

correlations and thermodynamics. Interestingly, it has been also pointed out that

the dissipated work in an irreversible process can witness entanglement [25]. With

these advents, it has become a popular and fruitful practice to look into the concepts

of quantum information from the thermodynamic point of view [19, 20].

1.3 Quantum thermodynamics: Role of quantum

information

Ever increasing technological advancements to probe and control the micro- and

nanoscale systems has led to a surge of activity in the domain of nano-technology.

Thermodynamics of these small scale systems become crucial from fundamental and

applied perspectives. Stochastic thermodynamics [26] is one of the important domain

in modern day research. It deals with the fluctuations of the thermodynamic quan-

tities in colloids or microscopic biological systems. The famous Jarzynski [27, 28]

and Crooks [29, 30] relations relate the free energy difference and the work done

or extracted in transformation between states of a physical system. These relations

4



have been verified recently in experiments in several systems. It is of great interest to

investigate what if one probes even much shorter scale where quantum effects such as

coherence and entaglement are present in the system under study? To what extent

the concepts of classical thermodynamics that has been instrumental in describing

the macroscopic world hold in this regime? What are the striking changes that

the quantum effects bring to the traditional thermodynamics? Over the last decade,

these have been some important and intriguing aspects of research that have puzzled

and excited the scientific community. Interestingly, it has been found that the unique

entropic formulation of irreversibility of macroscopic systems is only necessary, but

not sufficient to dictate the physics of small scale systems which possess quantum

coherence or correlations [31, 32, 33]. It has also been observed that generalized en-

tropies, namely the Rényi entropic formulation of the second law of thermodynamics

becomes necessary in the quantum domain. The generalized relative entropies, which

are key concepts in the single-shot information theory play a central role in formu-

lating the second laws of quantum thermodynamics. To summarize, the presence of

quantum coherence and correlations that are useful resources for information theo-

retic and technological tasks, have drastic effects on the traditional thermodynamics.

Therefore, the concepts and tools of quantum information theory becoming increas-

ingly inevitable to study quantum thermodynamics. In this newly emerged field

of quantum thermodynamics, several breakthroughs have been achieved in various

domains using the concepts of quantum information theory. In the following para-

graphs, we briefly discuss a few research areas of quantum thermodynamics where

quantum information theory has made and are still making significant contributions.

Resource theory of quantum thermodynamics: A resource theoretic approach to

quantum thermodynamics has been of prime interest recently [31, 32, 33]. This ap-

proach aims to identify the class of operations which can or cannot be performed on

quantum systems. In this resource theoretic framework, thermal operations define

the set of allowed operations on a quantum system that don not change the total

energy of the system and its thermal environment. Under these operations, no work

can be extracted from a single heat bath. By construction, these operations are

consistent with the zeroth, first and second law of thermodynamics. Interestingly,

physical processes under these thermal operations impose more constraints than the

ones in the classical thermodynamics. The transformation laws get more compli-

cated in the presence of coherence in the energy eigenbasis. These resource theoretic

framework provides a novel way to investigate the amount of work that can be ex-

tracted from a quantum state possessing coherence or correlation or the amount
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to create quantum coherence or correlations. Thus, the resource theory of quan-

tum thermodynamics can be far-reaching to analyze the performance of quantum

thermal machine or the efficiency of thermodynamic tasks. In this resource theory

of quantum thermodynamics, the concepts of quantum information theory and its

mathematical tools have been instrumental and ubiquitous so far and the resource

theories of quantum resources such as coherence or entanglement have significant

contribution in this regard due to the structural similarities among the quantum

resource theories.

Quantum phase transition: In 2002, it has been shown that quantum entangle-

ment can detect quantum phase transitions in spin chains [34, 35]. These works

have introduced an active domain of studying co-operative quantum phenomena in

many-body quantum systems using quantum correlations. We refer the readers for

comprehensive reviews and the details in Ref. [36, 37]. Understanding quantum

many-body systems is one of the most challenging problems in condensed matter

physics. For example, the mechanism of high-TC superconductivity is still elusive.

The quantum phase transitions that are beyond Landau’s paradigm are also intrigu-

ing. Tools that have been developed using the concepts of quantum information

theory, such as MPS, PEPS, DMRG, MERA etc., have been playing a great role

in dealing with many-particles systems providing both analytic as well as numerical

insights. Thus, the interface between quantum information theory and condensed

matter has become an active field study [38].

Quantum thermal machines: The idea of the quantum thermal machines have

been around for long time [39, 40, 41]. However, the quest to find out what are

truly quantum effects in quantum thermal machines is relatively recent [42]. Tools

and technique of quantum information theory are being used in pursuing this quest.

Whether the quantum effects can be suitably used to surpass the performance bounds

set by classical thermal machines has been of great practical interest. To address

this issue, one must have to identify properly the notion of heat and work in the

nonequilibrium scenario. Quantum information theory provides insightful tools to

define heat and work in nonequilibrium scenario based on operational and practical

motivations.

Equilibration and thermalisation: Deriving statistical mechanics from the evolu-

tion of an isolated quantum system is an years old issue. At first sight, it may seem

that thermodynamics and quantum theory are incompatible. Thermodynamics sug-

gests us that the entropy of the universe is always increasing. Whereas quantum

mechanics suggests us that the universe is evolving unitarily and hence preserves its
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purity. One can bypass this apparent paradox quantum mechanically by using the

idea of entanglement, “the spooky action at a distance” as abbreviated by Einstein in

early days. The entropy of the physical systems grows as they get entangled with the

rest of the universe. It has been also established in a rigorous way that equilibration

and thermalization are intrinsic to quantum mechanics. It has been shown that equal

a priori probability is a consequence of the typicality in the Hilbert spaces [19, 20].

Derving statiscal mechanis, which underlies thermodynamics, from quantum theory

still remains an active field of research where the tools of information theory have

been instrumental.

Fluctuation theorems: It is interesting to note that the famous Jarzynski and

Crooks relations hold unaltered in closed quantum systems [43, 44, 45] and with

minor modifications in the open quantum systems [46, 47, 48]. Reducing the work

fluctuations and dissipations is vital to perform a thermodynamic task efficiently.

One of the main challenges in studying quantum work fluctuation relations in the

laboratory is constructing the quantum work distribution, as it needs to perform pro-

jective measurement in the instantaneous energy eigenbasis of an evolving quantum

system. There has been an experimental proposal [49] and a recent experimental

realization [50] to measure it reliably in trapped-ion systems. Phase estimation tech-

nique which is ubiquitous in quantum optics and information, has been proposed

[51, 52] to bypass the challenges faced due to the projective measurement and re-

alized [53] in liquid state NMR setups of late, where the quantum system under

study is coupled to ancillary systems and then the tomography can be done on the

ancilla. This opens up a new direction to study the quantum fluctuation relations.

The benefits of the positive operator valued measures (POVM), a well known con-

cept in quantum information and quantum optics, over the projective measurements

in the study of quantum fluctuation relations has also been investigated. Recently,

this scheme got huge interest with promising realization in ultra cold atoms [54].

This study of quantum fluctuations can be far-reaching to measure the statistics of

dissipated heat which, in turn, is very fundamental in the study of conversion of in-

formation to energy in quantum logic gates. It is also useful to estimate the required

free energy in quantum computations.

Entropy production and quantum correlations: In nonequilibrium thermodynam-

ics irreversible entropy production plays a central role. It is related to the loss of

useful energy due to the irreversible nature of the operations. A major quest in this

domain lies in whether the entropy production by a quantum operation is related

to the correlations created or destroyed between the system and its thermal bath.
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A general answer in this regard is still lacking. However, in the context of an open

system, it has been demonstrated that the irreversible entropy production may be

linked to the total correlation between the system and its thermal environment [55].

The approach followed in this work is quite similar to the formulation of Landauer’s

principle proposed in Ref [56].

1.4 Outline of the thesis

We have already seen that quantum information plays a pivotal role in various do-

mains of quantum thermodynamics. In particular, the thermodynamic aspects of

quantum resources such as coherence and correlations is a hot cake of modern day

research. In the present thesis, we mainly focus on three such directions in quantum

thermodynamics where quantum coherence and correlations have significant contri-

butions. In what follows, we provide a outline of the thesis.

• In chapter 2, we give an introduction to resource theory of quantum coher-

ence and discuss its thermodynamic applications. Then, in chapter 3, we fo-

cus on the thermodynamic cost of creating quantum coherence. Besides how

much work can be extracted from quantum states manifesting coherence and

correlations, another important question is what is the thermodynamic cost

of creating quantum coherence and correlations as these are useful resources

for thermodynamic and quantum technological tasks. Energy cost of creating

quantum correlations has been addressed recently. We consider the physical

situations where the resource theories of coherence and thermodynamics play

competing roles. In particular, we study the creation of quantum coherence

using unitary operations with limited thermodynamic resources. We find the

maximal coherence that can be created under unitary operations starting from

a thermal state and find explicitly the unitary transformation that creates the

maximal coherence. Since coherence is created by unitary operations starting

from a thermal state, it requires some amount of energy. This motivates us

to explore the trade-off between the amount of coherence that can be created

and the energy cost of the unitary process. We also find the maximal achiev-

able coherence under the constraint on the available energy. Additionally, we

compare the maximal coherence and the maximal total correlation that can be

created under unitary transformations with the same available energy at our

disposal. We find that when maximal coherence is created with limited energy,

the total correlation created in the process is upper bounded by the maximal
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coherence and vice versa. For two qubit systems we show that there does not

exist any unitary transformation that creates maximal coherence and maximal

total correlation simultaneously with a limited energy cost.

• In chapter 4, we provide an introduction to quantum correlation measures such

as the entanglement and quantum correlations beyond entanglement. Quan-

tum discord and work deficit are two most important quantum correlation

measures that are independent of entanglement-separability paradigm. These

measures are conceptualized from information theoretic perspectives. Next in

chapter 5, we introduce a class of quantum correlation measures as differences

between total and classical correlations, in a shared quantum state, in terms

of the sandwiched relative Rényi and Tsallis entropies. We find that these

measures satisfy all the plausible axioms for quantum correlations. We eval-

uate these measures for shared pure as well as paradigmatic classes of mixed

states. We show that the measures can faithfully detect the quantum critical

point in the transverse quantum Ising model and find that they can be used to

remove an unquieting feature of nearest-neighbor quantum discord in this re-

spect. Furthermore, the measures provide better finite-size scaling exponents

of the quantum critical point than the ones for other known order parame-

ters, including entanglement and information-theoretic measures of quantum

correlations.

• Role of quantum coherence and correlations to enhance the performance of

quantum thermal machines has been a active field of research in modern times.

Identifying the what is truly quantum in quantum thermal machines set a

important but challenging problem. It has also been a long standing quest

whether quantum thermal machines can cross the limits set by classical ther-

modynamics. In particular, a major question is whether a quantum heat en-

gine, more efficient than the Carnot engine, can be realized by harnessing the

quantum nature of the systems. Exploiting the generalized entropy we show in

chapter 6 that the principle of maximum entropy affirms that no engine can be

more efficient than the Carnot engine even harnessing quantum resources. We

formulate a complete theory of quantum thermodynamics in the Rényi entropic

formalism exploiting the Rényi relative entropies, starting from the maximum

entropy principle. In establishing the first and second laws of quantum ther-

modynamics, we have correctly identified accessible work and heat exchange

both in equilibrium and non-equilibrium cases. The free energy (internal en-
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ergy minus temperature times entropy) remains unaltered, when all the entities

entering this relation are suitably defined. Exploiting Rényi relative entropies

we have shown that this “form invariance” holds even beyond equilibrium and

has profound operational significance in isothermal process. These results re-

duce to the Gibbs-von Neumann results when the Rényi entropic parameter

α approaches 1. It is shown that the universality of the Carnot statement of

the second law is the consequence of the form invariance of the free energy,

which is in turn the consequence of maximum entropy principle. Further, the

Clausius inequality, which is the precursor to the Carnot statement, is also

shown to hold based on the data processing inequalities for the traditional and

sandwiched Rényi relative entropies. Thus, we find that the thermodynamics

of nonequilibrium state and its deviation from equilibrium together determine

the thermodynamic laws. This is another important manifestation of the con-

cepts of information theory in thermodynamics when they are extended to the

quantum realm. Our work is a substantial step towards formulating a complete

theory of quantum thermodynamics and corresponding resource theory.

• Finally, we conclude in chapter 7 discussing a few future directions which are

interesting and important to explore.

The chapters 3, 5, 6 are based on original and published work by us. Maximum

entropy principle which established the formal link between information theory and

thermodynamics, has major contributions in deriving the results of chapter 3 and 6.

Results of chapter 5 and 6 are established exploiting the generalized entropies. These

results further strengthen the importance of the generalized entropies in quantum

thermodynamics.

1.5 Definitions and notations

Conventions and useful quantities that have extensively used unless mentioned oth-

erwise in this thesis are given below:

• A quantum state ρ is a Hermitian, positive semi-definite, trace one operator in

the Hilbert space.

• von Neumann entropy of a quantum state ρ is S(ρ) = −Tr(ρ log ρ).

• Quantum relative entropy between two quantum states:

S(ρ||σ) = −S(ρ)− Tr(ρ log σ).
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• TrAρAB = ρB, denotes the partial trace with respect to the party A.

• The traditional quantum relative Rényi entropy between two density operators

ρ and σ: SRα (ρ||σ) =
log[Tr (ρασ1−α)]

α− 1
.

• Sandwiched relative Rényi entropy between two density operators ρ and σ:

S̃Rα (ρ||σ) =
1

α− 1
log
[
Tr
(
σ

1−α
2α ρσ

1−α
2α

)α]
.

• Boltzmann constant is set to be unity, i.e., T = 1/β.
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CHAPTER2
Quantum coherence as a resource

2.1 Introduction

The superposition principle in quantum physics gives rise to the classically counter-

intuitive traits like coherence and entanglement [12, 57]. Over the past few years,

several works have been done starting from quantifying quantum superposition [58]

to establishing the full fledged resource theories of coherence [57, 59, 60, 61]. The

field of quantum resource theory (QRT) of coherence has been significantly advanced

over past few years [62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78,

79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89] and got huge interest due to its potential ap-

plications in various domains such as quantum thermodynamics, metrology, interfer-

ence phenomenon, quantum biological systems and transport phenomenon, quantum

algorithms, witnessing quantum correlations, detecting quantum phase transitions

and several others [57]. In this chapter, we will briefly review the resource theoretic

framework of quantum coherence introduced in Ref. [59] and discuss its potential

applications in quantum thermodynamics.

The restrictions underlying a QRT are manifestations of the physical restric-

tions that govern the physical processes. For example, in the QRT of entanglement,

the consideration of local operations and classical communication as the allowed

operations stems from the natural limitation to implement global operations on a

multipartite quantum system with parties separated apart. Any QRT is formed by

identifying the relevant physical restrictions on the set of quantum operations and

preparation of quantum states. In the QRT of thermodynamics the set of allowed

operations is identified as the thermal operations and the only free state is the ther-

mal state for a given fixed Hamiltonian [90, 91]. In the QRT of coherence the allowed
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operations are incoherent operations and the free states are incoherent states. In this

framework quantum states having non-zero coherence can be considered as useful

resources. Thus, in QRT of coherence any state having a finite amount of coherence

are called coherent states.

2.2 Incoherent states

QRT of coherence is inherently basis dependent. The reference basis with respect

to which coherence is characterized and quantified depends on the physical problem

under investigation. For example, the energy eigenbasis for transport phenomena

and biological processes [92], or it may be the eigenbasis of the generator of an

unknown phase shift in quantum metrology [93]. For an arbitrary fixed reference

basis {|i〉}, the incoherent states are defined as follows

σ =
∑
i

pi|i〉〈i|, (2.1)

where pi’s are the probability distributions with
∑

i pi = 1. In QRT of coherence,

the incoherent states are the free states. The set of incoherent states is denoted by

I in the present thesis.

2.3 Incoherent operation

Incoherent operations are those that map the set of incoherent states into itself. How-

ever, unlike incoherent states there is no unique definition of incoherent operations in

the literature. Several choices are considered, motivated by practical considerations.

Let us briefly review some important classes of incoherent operations.

• Maximally incoherent operations: Maximally incoherent operations (MIO) [58]

form the largest class of incoherent operations which are defined as any com-

plete positive trace preserving (CPTP) and non-selective map E such that

E [I] ⊆ I. (2.2)

Any quantum operation can be obtained by the Stine-spring dilation, which

provides a way to realize the quantum operation as a global unitary operation

U between the system and an ancilla in some state σA, followed by tracing out
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the ancilla system, i.e.,

E [ρ] = TrA[U(ρ⊗ σA)U †]. (2.3)

However, it is important to determine whether the free set of operations in a

given proposal can be understood as those that admit of a dilation in terms

of the free states and free unitary couplings with, the auxiliary system. Then,

such dilations can be referred as free dilations. In QRT, if an operation can be

represented as in Eq. 2.3 by an incoherent ancilla state σA and an incoherent

global unitary U , then the operation has a free dilation. Though MIO cannot

create coherence, it is shown that these operations do not have a free dilation

in general [87, 88].

• Incoherent operations: Incoherent operations (IO) [59] are characterized by the

set of CPTP maps E , having a Kraus decomposition {Kn} (E [ρ] =
∑

nKnρK
†
n,∑

nK
†
nKn = 1), such that for all n and ρ ∈ I,

KnρK
†
n

Tr[KnρK
†
n]
∈ I. (2.4)

Under IO no coherence can be generated from an incoherent state in any of

the possible outcomes of such an operation. This class of operations also lack

free dilation in general [87, 88].

• Strictly incoherent operations: The earlier two definitions of incoherent opera-

tions are based on the inability of the operation to generate coherence. Strictly

incoherent operations (SIO) are defined based on the criterion that the admis-

sible operations are not capable of utilizing the coherence present in a quantum

state. To define the SIO it is necessary to define the dephasing operation 4
such that

4[ρ] =
d∑
i=1

|i〉〈i|ρ|i〉〈i|, (2.5)

where {|i〉} is the reference basis and d is the dimension of the Hilbert space.

An operation E is a SIO if it can be decomposed in terms of incoherent Kraus

operators {Kn}, such that the outcomes of a measurement in the reference

basis of the output state are independent of the coherence of the input state
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[94], i.e., in mathematical terms,

〈i|KnρK
†
n |i〉 = 〈i|Kn4[ρ]K†n |i〉 . (2.6)

The SIO as well do not have a free dilation in general [87, 88].

• Translationally-invariant operations: Note that the previous three operations

allow permutations of the reference basis states for free. However, this might

not be feasible in practical situations. For example, permuting the energy

eigenbasis may cost energy. This suggests that permutations should not be

considered as free operations. In translationally-invariant operations (TIO)

permutations are not considered as free. In particular, given a Hamiltonian H,

an operation E is called TIO [95, 96, 97] if

e−iHtE [ρ]eiHt = E [e−iHtρeiHt]. (2.7)

TIO plays a central role in resource theory of asymmetry and quantum ther-

modynamics, as we will discuss later. Importantly, TIO have a free dilation if

one allows postselection with an incoherent measurement on the ancilla [88].

As MIO, IO, SIO do not have a free dilation in general, a set of incoherent operations,

called physical incoherent operations (PIO), is suggested which can be implemented

by an incoherent ancilla and an incoherent global unitary [87]. Additionally, these

PIO allow incoherent measurement on the ancilla and classical postprocessing of

the measurement outcomes. The inclusion relations between the sets of incoherent

operations are complicated and in Ref. [87], it is shown that

PIO ⊂ SIO ⊂ IO ⊂ MIO. (2.8)

Another interesting class is dephasing-covariant incoherent operations (DIO) [87,

88], which commute with the dephasing map given in Eq. 2.6. We would also

like to mention genuinely incoherent operations (GIO) [85], defined as E [|i〉〈i|] =

|i〉〈i|, which are incoherent regardless of the Kraus decomposition and consider the

additional constraints, such as energy preservation. In Ref. [98], a class of energy

preserving operations (EPO) are defined as all operations which have free dilation as

well as the global unitary commutes with the Hamiltonian of the system and ancilla

individually. Note that EPO is a strict subset of TIO.

Under this framework of incoherent states and incoherent operations coherent
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states are useful resources. One can create deterministically all other d−dimensional

states from d−dimensional maximally coherent states by means of IO [59]. The

canonical example of a maximally coherent state [59] is

|φ〉d =
1√
d

d∑
i=1

|i〉 . (2.9)

Moreover, maximally coherent states allow generation of any quantum operations

via IO [59, 87]. As coherent states are useful resources it is essential to quantify the

resource content of a coherent state. In next section, we quantify quantum coherence.

2.4 Quantifying coherence

A bona-fide coherence measure C(ρ) for a density operator ρ should satisfy the

following properties as discussed in Ref. [59].

• Property 1 Non-negativity:

C(ρ) ≥ 0. (2.10)

The equality holds only if ρ is incoherent.

• Property 2 Monotonicity: For any incoherent operation E one should have

C(ρ) ≥ C(E [ρ]). (2.11)

• Property 3 Strong monotonicity: C(ρ) is also non-increasing on average under

selective incoherent operations,

C(ρ) ≥
∑
i

qiC(σi), (2.12)

where qi = Tr[KiρK
†
i ] are the probabilities, σi =

KiρK
†
i

qi
are the post measure-

ment states and {Ki} are the incoherent Kraus operators.

• Property 4 Convexity: C(ρ) is convex over the mixing parameters of the state,

i.e., for ρ =
∑

i piρi one has∑
i

piC(ρi) ≥ C(
∑
i

piρi), (2.13)

where {pi} forms a probability distribution.
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Property 1 and 2 are minimal requirements to quantify a resource. Note that Prop-

erty 3 and 4 together imply Property 2. A quantity C(ρ) which satisfies Property

1 and either Property 2 or Property 3 or both, is a coherence monotone. Recently,

following the standard notions of resource theory of entanglement it has been pro-

posed that a quantity C(ρ) should satisfy the following two more properties along

with Property 1-4, before one calls it a coherence measure [57],

• Property 5 Uniqueness for pure states: It has been argued in [57], to be a good

measure of coherence C(ρ) should satisfy the following condition

C(|ψ〉) = S(4[|ψ〉〈ψ|]), (2.14)

for any pure state |ψ〉, i.e., for pure states the measure is unique. It is worth

noticing that the R.H.S of the above equation is relative entropy of coherence

which will be discussed in detail in section 2.4.1. This condition is demanded

considering the fact that the distillable coherence of a pure state is given by

relative entropy of coherence in the asymptotic limit. Though one can argue

that this is indeed a strong condition as the relative entropy of coherence is

the amount of distillable coherence only in the asymptotic limit.

• Property 6 Additivity: C(ρ) is additive under tensor product of quantum state,

C(ρ⊗ σ) = C(ρ) + C(σ). (2.15)

The two quantifiers which satisfies Property 1-6 are, namely, the distillable coher-

ence and the coherence cost [94]. The distillable coherence is the optimal rate of

extracting maximally coherent single-qubit states |φ2〉 from a given quantum state

via incoherent operations in the asymptotic limit. It can be shown that the distillable

coherence is equal to the relative entropy of coherence [94], which was introduced in

Ref. [59] and will be discussed in detail in this thesis shortly. The coherence cost

which is also the coherence of formation, following the same footing of entanglement

of formation, is the minimal rate of maximally coherent single-qubit states |φ2〉 re-

quired to produce a given quantum state via incoherent operations in the asymptotic

limit. There are several coherence monotones in the literature which satisfy Property

1-2 and some of them also satisfy Property 3-4 as well. See the excellent review for

details [57]. However, very recently a refinement over Ref. [59] on the properties

that a coherence measure should satisfy has been proposed in Ref. [89]. This refine-

ment imposes an extra condition on the measures of coherence such that the set of
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states having maximal coherence value with respect to the coherence measure and

the set of maximally coherent states, as defined in Ref. [59], should be identical. In

this thesis, we consider the relative entropy of coherence as a measure of quantum

coherence which enjoys various operational interpretations [75, 94]. Moreover, it also

satisfies the additional requirement as proposed in Ref. [89].

2.4.1 Relative entropy of coherence

A quantifier of quantum coherence based on the distance between quantum states is

defined as [59]

CD(ρ) = inf
σ∈I

D(ρ, σ), (2.16)

where D is a contractive distance measure such that D(ρ, σ) ≥ D(E [ρ], E [σ]). If the

the distance D is taken to be the quantum relative entropy then the Eq. 2.16 reduces

to

Cr(ρ) = inf
σ∈I

S(ρ‖σ). (2.17)

Now S(ρ‖σ) = S(ρD)− S(ρ) + S(ρD‖σ) [59], as σ ∈ I. Here 4[ρ] = ρD. From now

on we denote the dephased state 4[ρ] in the reference basis as ρD through out the

thesis. As always S(ρD‖σ) ≥ 0, and minimum value occurs when σ = ρD. Therefore,

the relative entropy of coherence of ρ is given as

Cr(ρ) = S(ρD)− S(ρ). (2.18)

We have mentioned earlier relative entropy of coherence satisfies all of the Properties

1-6. We provide an operational quantifier of the coherence of a quantum system in

terms of the amount of noise that has to be injected into the system in order to fully

decohere it in Ref. [75]. This quantifies the erasure cost of quantum coherence. We

employ the entropy exchange between the system and the environment during the

decohering operation (an ensemble of random (in)coherent unitaries {pi, Ui}) and

the space required to identify uniquely the indices “i” appearing in the decohering

operation as the quantifiers of noise. Both yield the same cost of erasing coherence

in the asymptotic limit. In particular, we find that in the asymptotic limit, the

minimum amount of noise that is required to fully decohere a quantum system,

is equal to the relative entropy of coherence. This holds even if we allow for the

nonzero small errors in the decohering process. As a consequence, it establishes that

the relative entropy of coherence is endowed with an operational interpretation which

may be thermodynamically meaningful too.
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Moreover, it has been shown that relative entropy of coherence is related to the

deviation of a quantum state from its thermal equilibrium [99]. Possible quantifiers

of coherence based on the generalized relative entropy distances have been recently

proposed [100]. Other remarkable distance based coherence quantifiers available in

the literature are coherence quantifiers based on matrix norms [59] (mainly l1-norm

of coherence). There have also been other proposals to quantify quantum coher-

ence which enjoys various properties to be a good coherence measure. Coherence

monotone from entanglement [62], robustness of coherence [101, 102], coherence of

assistance [82] are worth mentioning in this regard.

2.5 Application of quantum coherence

2.5.1 Quantum thermodynamics

Recently, various important aspects of coherence have been established in quantum

thermodynamics. In what follows, we discuss a few domains where quantum coher-

ence plays a pivotal role.

2.5.1.1 State conversion via thermal operations

Inter-convertibility of two quantum states under a certain class of operations, called

thermal operations, has attracted immense interest and led to a surge of activity

due to its foundational importance and mathematical elegance. Astonishingly, it has

been revealed that the state transformation laws under these thermal operations in

the quantum domain cannot be sufficiently described by a single entropic formalism

which can completely describe the allowed transformations for the macroscopic sys-

tems in thermal environment. It has been found that it is only necessary but not

sufficient to dictate the transformation laws of quantum particles where the quantum

coherence and correlations prevail. This demands a set of restrictions in terms of

generalized entropy, namely, the Rényi entropy. In the following, we review the role

of quantum coherence in the context of thermal operations.

Thermal operations: A thermal operation ET is defined as follows

ET (ρ) = Trb[U(ρ⊗ γbT )U †], (2.19)

where γbT = e−βHb/Tr[e−βHb ] is the thermal state of the environment, [U,H ⊗ I + I⊗
Hb] = 0, U is a joint unitary on the system and bath, H and Hb are the Hamiltonian
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of the system and the bath respectively. Note that we have not used any subscript to

denote the system parameters. More general formalism of thermodynamic process

involves time dependent Hamiltonian. However, as already pointed out in Ref. [31,

103] that this formalism can encompass such cases by inclusion of clock degrees of

freedom. The unitary operation preserves the total energy of the system and bath.

One of the main property of the thermal map is that it preserves the thermal state,

ET (ρT ) = ρT . These two aforesaid properties are consistent with the first and second

law of thermodynamics respectively.

It is worth mentioning that the thermal operations ET are TIO with respect to

the system Hamiltonian H as

e−iHtET [ρ]eiHt = ET [e−iHtρeiHt]. (2.20)

Second laws of quantum thermodynamics: There have been many explorations to

inquire the transformation law or laws under the aforesaid thermal operations. In

Ref. [91], the condition of interconversion between two incoherent quantum states

has been established. This condition is termed as thermo-majorization. However,

one may use a catalytic transformation. An auxiliary system χcat may allow the

transformation ρ⊗ χcat → σ ⊗ χcat, though the transformation ρ → σ is forbidden.

Transformation laws which consider more generalized scenarios such as catalytic

transformations have been established in Ref.[31]. These conditions are called second

laws of quantum thermodynamics. The second laws of quantum thermodynamics

tell us that a transformation from ρ to σ is only possible when the generalized free

energies decrease, i.e.,

∆Fα ≤ 0, ∀α ≥ 0. (2.21)

Here, the generalized free energy of a quantum state ρ is defined as follows

Fα(ρ,H) = TSRα (ρ||ρHT )− T logZH , when α ∈ [0, 1),

= T S̃Rα (ρ||ρHT )− T logZH , when α ≥ 1. (2.22)

Here, SRα (ρ||ρHT ) and S̃Rα (ρ||ρHT ) are the traditional and sandwiched relative Rényi

entropies as defined in Sec.1.5 and ρHT is the thermal state of the system with respect

to the Hamiltonian H and ZH is the partition function. However, it has been further

established that these restrictions are necessary but not sufficient in quantum ther-

modynamics as it deals with incoherent states only [33]. When the states possess

coherence in energy eigenbasis then the transformation laws are more stringent than
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this. In the presence of coherence, additionally the following constraint needs to be

satisfied [33]

∆Aα ≤ 0, ∀α ≥ 0. (2.23)

Here,

Aα(ρ) = SRα (ρ||4H(ρ)), when α ∈ [0, 1),

= S̃Rα (ρ||4H(ρ)), when α ≥ 1, (2.24)

where 4H is the dephasing operation in the basis of Hamiltonian. Similar results

have also been established following different approaches in Ref. [104]. Therefore, co-

herence put an additional restriction beyond free energy constraints in transforming

quantum states under thermal operations.

2.5.1.2 Extracting work from coherence

Extracting work from quantum states is an important aspect of quantum thermody-

namics as this constitutes the efficiency of thermal machines. Moreover, extracting

work from quantum states is interesting to study as this can be useful in efficiently

storing work in a quantum state. Extracting work by unitary operation is an ac-

tive area of research. It has direct applications in the adiabatic work extraction

in quantum thermal machines. A state from which no work can be extracted in a

Hamiltonian process, in which the system returns to its initial Hamiltonian, is called

passive state [105]. Such a process can be realized by unitary operation and the

maximal extracted work in this process, ergotropy namely [106], is given by

Wmax(ρ) = max
U

Tr[H(ρ− UρU †)]. (2.25)

In other words, a state is passive if its average energy cannot be lowered by unitray

operations. A passive state may not be completely passive [105], i.e., there exit

exaples where one cannot lower the average energy of n copies of a state, but can do

the same of n+ 1 copies of the state. A state is called completely passive if no work

can be extracted by unitary operations even when arbitrary large number of copies

are used. It can be shown that only thermal states are completely passive [105, 107].

As work extraction is a fundamental aspect in quantum thermodynamics it is al-

ways interesting to enquire how much work can be extracted from coherence. Though

coherence contributes to the free energy of a quantum state it cannot be converted

to work directly. This is referred as work locking [33, 103, 108]. Due to work lock-
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ing the analysis of Szilard that information is a source of work gets modified in the

quantum domain [33]. However, coherence activation of work is possible which im-

plies that work can be extracted from a coherent state in the presence of another

coherent state. Extraction of work has been addressed in great detail in Ref. [109].

Further results on extracting work from coherence have been reported in Ref. [110]

Though we cannot extract work from quantum coherence, creating coherence has

energy cost energy as we will see in chapter 3. This sheds light on the origin of

irreversibility in quantum thermodynamics. Moreover, it is interesting to point out

that work must be invested to maintain coherence of a quantum state in a thermal

environment [111].

2.5.1.3 Quantum phase transitions

Coherence has been successfully employed to detect quantum phase transitions in

anisotropic spin-1
2
XY chain in a transverse magnetic field [112, 113]. It has also

been shown that single spin based skew-information can detect quantum critical

point as well as SU(2) symmetry point in XXZ− Heisenberg chains [114]. Utility

of coherence quantifiers to detect quantum critical points in fermionic spin models

has been reported recently [115, 116].

2.5.1.4 Quantum thermal machine

In Ref. [117], it has been demonstrated that if the initial qubits of a three qubit

refrigerator possess even a little amount of coherence in energy eigenbasis then the

cooling can be significantly better. The operation of a heat engine based on a driven

three-level working fluid is shown to be better in the presence of coherence of the

working fluid [42]. However, in contrary, it has been pointed out that quantum

coherence may be detrimental to the speed of a minimal heat engine model based

on a periodically modulated qubit [118], hybrid (of continuous and reciprocating)

cycle heat engine [119]. This suggests that quantum coherence is at best optional for

thermal machines and it requires further study to unravel potential role of coherence

in the performance of thermal machines.

2.5.2 Other applications

It has been found that coherence plays important role and can be considered as a

resource in various quantum technologies [57] including metrology [88], interference
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phenomenon [63], quantum biological systems and transport phenomenon [92], quan-

tum algorithms [120, 121], witnessing quantum correlations [77, 122], discriminating

quantum channels [101, 102].

2.6 Chapter summary

In this chapter, we have studied the resource theory of quantum coherence identifying

the free states and free operations, the incoherent states and incoherent operations

namely. Next, we have discussed the criterion for a bona-fide coherence quantifier and

established that relative entropy of coherence is a good measure of coherence which

enjoys several operational and thermodynamic interpretations. Moreover, it can be

computed easily for an arbitrary quantum state. We will use the relative entropy of

coherence as a coherence quantifier to establish the thermodynamic cost of creating

coherence in the next chapter. Further, we have also studied the applications of

quantum coherence as a resource in thermodynamics and quantum technologies. We

have seen that the description of quantum coherence in thermodynamic processes

requires constraints beyond free energies. We have also seen that coherence cannot

be used to extract work without activation which signifies the origin of irreversibility

in quantum thermodynamics as we will see in the next chapter that one must spend

energy to create coherence starting from a thermal environment.
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CHAPTER3
Thermodynamic cost of creating coherence

3.1 Introduction

In the previous two chapters, we have seen that considering the technological ad-

vancements towards processing of small scale quantum systems and proposals of

nano-scale heat engines, it is of great importance to investigate the thermodynamic

perspectives of quantum features like coherence and entanglement [19, 20, 57, 109,

110, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135]. Since energy

conservation restricts the thermodynamic processing of coherence, a quantum state

having coherence can be viewed as a resource in thermodynamics as it allows transfor-

mations that are otherwise impossible [32, 33]. In the last chapter, we have discussed

the work extraction from quantum states, specially extractable work on the average

by unitary operations or the ergotropy of the quantum states [105, 106]. We have

also discussed that though coherence cannot always be converted into work, it is

required to invest work to create coherence. Considering the huge number of appli-

cations of coherence in quantum thermodynamics and other quantum technological

domains, it is of practical importance to investigate how one can create coherence

with minimal thermodynamic resources.

With aforesaid motivation, we explore the intimate connections between the re-

source theory of quantum coherence and thermodynamic limitations on the process-

ing of quantum coherence. Besides the work extraction by unitary transformations or

ergotropy [106], it also interesting to explore how much work has to be done to create

quantum resources like coherence, entanglement by unitray operations starting from

a thermal state. In this chapter, we study creating coherence by unitary operations

with and without energy constraint. We go on even further to present a compara-
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tive investigation of creation of quantum coherence and mutual information within

the imposed thermodynamic constraints. Considering a thermally isolated quantum

system initially in a thermal state, we perform an arbitrary unitary operation on the

system to create coherence in energy eigenbasis. But before we discuss the results,

let us digress on the importance of creating coherence in energy eigenbasis starting

from a thermal state. Coherence in energy eigenbasis plays a crucial role in quantum

thermodynamic protocols and several quantum information processing tasks. For

example in Ref. [117], it has been demonstrated that if the initial qubits of a three

qubit refrigerator possess even a little amount of coherence in energy eigenbasis then

the cooling can be significantly better. In the small scale refrigerators, the three con-

stituent qubits initially remain in corresponding thermal states associated with the

three thermal baths. Therefore, one needs to create coherence by external means.

Hence, creation of coherence from thermal states may be fruitful and far-reaching

for better functioning of various nano scale thermal machines and various thermody-

namic protocols. These are the main motivations for studying creation of coherence

from thermodynamic perspective. We consider closed quantum systems and hence

allow only unitary operations for creating coherence. Of course, after creating the

coherence via the unitary transformation we have to isolate or take away the system

from the heat bath so that it does not get thermalized again.

In this chapter, first we find the upper bound on the coherence that can be

created using arbitrary unitary operations starting from a fixed thermal state and

then we show explicitly that irrespective of the temperature of the initial thermal

state the upper bound on coherence can always be saturated. Such a physical process

will cost us some amount of energy and hence it is natural to ask that if we have

a limited supply of energy to invest then what is the maximal achievable coherence

in such situations? Further, we investigate whether both coherence and mutual

information can be created maximally by applying a single unitary operation on

a two qubit quantum system. We find that it is not possible to achieve maximal

quantum coherence and mutual information simultaneously. Our results are relevant

for the quantum information processing in physical systems where thermodynamic

considerations cannot be ignored as we have discussed in the preceding paragraph.
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3.2 Maximum achievable coherence under arbi-

trary unitary operations

Let us now consider the creation of maximal coherence in energy eigenbasis, which

we define shortly, starting from a thermal state by unitary operations. The prime

motivation for starting with a thermal initial state is that the surrounding may be

considered as a thermal bath and as the system interacts with the surrounding, it

eventually gets thermalized. However, our protocol for creating maximal coherence

is applicable for any incoherent state. Let us now consider an arbitrary quantum

system in contact with a heat bath at temperature T = 1/β. The thermal state of

a system with Hamiltonian H =
∑d−1

j=0 Ej |j〉 〈j| is given by

ρT =
1

Z
e−βH , (3.1)

where d is the dimension of the Hilbert space and Z = Tr[e−βH ] is the partition

function. The maximum amount of coherence Cr,max(ρf ) that can be created starting

from ρT by unitary operations is given by

Cr,max(ρf ) = max
{ρf |S(ρf )=S(ρT )}

{S(ρDf )− S(ρT )}. (3.2)

As the maximum entropy of a quantum state in d-dimension is log d, the amount of

coherence that can be created starting from ρT , by a unitary transformation, always

follows the inequality

Cr(ρf ) ≤ log d− S(ρT ). (3.3)

Now the question is whether the bound is tight or not, i.e., is there any unitary

operation that can lead to the creation of log d−S(ρT ) amount of coherence starting

from ρT ? We show that the bound in Eq. (3.3) is achievable by finding the unitary

operation U such that ρf = UρiU
† has maximal amount of coherence. Since the

relative entropy of coherence of ρf is given by S(ρDf ) − S(ρf ), one has to maximize

the entropy of the diagonal density matrix ρDf . The quantum state that is the

diagonal of a quantum state ρ is denoted as ρD throughout the chapter.

First, we construct a unitary transformation that results in rotating the energy

eigenbasis to the maximally coherent basis as follows. The maximally coherent basis
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{|φj〉}j is defined as |φj〉 = Zj |φ〉, where

Z =
d−1∑
m=0

e
2πim
d |m〉 〈m| , (3.4)

and |φ〉 = 1√
d

∑d−1
i=0 |i〉. It can be verified easily that, 〈φj |φk〉 = δjk. Also, note that

all the states in {|φj〉}j and |φ〉 are the maximally coherent states [59] and have equal

amount of the relative entropy of coherence which is equal to log d. Now consider

the unitary operation

U =
∑
j

|φj〉 〈j| , (3.5)

which changes energy eigenstate |j〉 to the maximally coherent state |φj〉. Starting

from the thermal state ρT , the final state ρf after the application of U is given by

ρf =
∑
j

e−βEj

Z
|φj〉 〈φj| . (3.6)

Since ρf is a mixture of pure states that all have maximally mixed diagonals, the

bound in Eq. (3.3) is achieved. We note that U in Eq. (3.5) is only one possible

choice among the possible unitaries achieving the bound in Eq. (3.3). For example,

any permutation of the indices j of |φj〉 in Eq. (3.5) is also a valid choice to achieve

the bound. It is worth mentioning that even though we consider thermal density

matrix to start with to create maximal coherence in energy eigenbasis, following the

same protocol maximal coherence can be created from any arbitrary incoherent state

in any arbitrary reference basis.

To create coherence by unitary operations starting from a thermal state, some

amount of energy is required. Now, let us ask how much energy is needed on an

average to create the maximal amount of coherence. Let ρT → V ρTV
†, then the

energy cost of any arbitrary unitary operation V acting on the thermal state is given

by

W = Tr[H(V ρTV
† − ρT )]. (3.7)

Since we are dealing with energy eigenbasis, we have E(ρD) = E(ρ). Here E(ρ) =

Tr(Hρ) is the average energy of the system in the state ρ. The energy cost to create
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maximum coherence given in Eq. 3.3, starting from the thermal state ρT is given by

Wmax = Tr[H(UρTU
† − ρT )] =

1

d
Tr[H]− 1

Z
Tr[He−βH ]. (3.8)

Here U is given by Eq. (3.5). Note that maximal coherence can always be created by

unitary operations starting from a finite dimensional thermal state at an arbitrary

finite temperature, with finite energy cost. However, it is not possible to create

coherence by unitary operation starting from a thermal state at infinite temperature

i.e., the maximally mixed state.

3.3 Creating coherence with limited energy

Since energy is an independent resource, it is natural to consider a scenario where

creation of coherence is limited by a constraint on available energy. In this section

we consider creation of optimal amount of coherence at a limited energy cost ∆E

starting from ρT . To maximize the coherence, one needs to find a final state ρf

whose diagonal part ρDf has maximum entropy with fixed average energy ET + ∆E,

where ET is the average energy of the initial thermal state ρT . Note that E(ρDf ) =

E(ρf ). From maximum entropy principle [17, 18], we know that the thermal state

has maximum entropy among all states with fixed average energy. Therefore, the

maximum coherence C∆E
r,max, that can be created with ∆E amount of available energy

is upper bounded by

C∆E
r,max ≤ S(ρT ′)− S(ρT ). (3.9)

Here ρT ′ is a thermal state at a higher temperature T ′ such that ∆E = Tr[H(ρT ′ −
ρT )]. Thus, in order to create maximal coherence at a limited energy cost, one

should look for a protocol such that the diagonal part of ρf is a thermal state at a

higher temperature T ′ (depending on the energy spent ∆E), i.e., ρDf = ρT ′ . Now it

is obvious to inquire whether there always exists an optimal unitary U opt that serves

the purpose. Theorem 1 answers this question in affirmative.

Theorem 1 There always exists a real orthogonal transformation R that creates

maximum coherence S(ρT ′)−S(ρT ), starting from the thermal state ρT and spending

only ∆E = Tr[H(ρT ′ − ρT )] amount of energy.

Before going to the proof of the theorem let us define a few terms that will be used
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in proving the theorem.

• Doubly stochastic matrix: A d × d matrix M = (Mab) (a ∈ {1, . . . , d}, b ∈
{1, . . . , d} and Mab ≥ 0) is called a doubly stochastic matrix if

∑
aMab = 1 for

all b and
∑

bMab = 1 for all a [136].

• Unitarystochastic matrix: Consider a d × d unitary matrix U = (Uab) (a ∈
{1, . . . , d}, b ∈ {1, . . . , d} ) such that U †U = I. Here, superscript † denotes

the conjugate transpose and I is a d × d identity matrix. The matrix (|Uab|2)

forms a doubly stochastic matrix and such a matrix is called unitarystochastic

matrix [136].

• Orthostochastic matrix: Consider a d × d real orthogonal matrix O = (Oab)

(a ∈ {1, . . . , d}, b ∈ {1, . . . , d}) such that OTO = I. Here, superscript T

denotes the transpose and I is a d×d identity matrix. The matrix (O2
ab) forms

a doubly stochastic matrix and such a matrix is called orthostochastic matrix

[136].

• Majorization: Let ~x and ~y be two normalized probability vectors with equal

dimension say d, then we say ~x majorizes ~y, and denote by ~y ≺ ~x if

k∑
i=1

x↓i ≥
k∑
i=1

y↓i , 1 ≤ k ≤ d, (3.10)

where ↓ denotes that the entries are in decreasing order. Moreover, ~y ≺ ~x iff

~y = D~x for some doubly stochastic matrix D [136].

Proof 1 To prove the theorem, we first show that the unitary transformations on a

quantum state induce doubly stochastic maps on the diagonal part of the quantum

state. Note that, we start from the thermal state ρT =
∑d−1

j=0
e−βEj

Z
|j〉 〈j|. The

diagonal part of ρT transforms under the action of a unitary U as follows:

diag{UρTU †} =
d−1∑
i=0

qi |i〉 〈i| ,

where qi = 1
Z

∑d−1
j=0 Mije

−βEj and M , with entries Mij = 〈i|U |j〉 〈j|U † |i〉, is a

doubly stochastic matrix. Therefore, the diagonal part is transformed by the doubly-

stochastic matrix M such that

~Q = M ~PT ,
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where ~PT = 1
Z
{e−βE0 , e−βE1 , . . . , e−βEd−1}T is the diagonal vector corresponding to

the initial thermal state ρT and ~Q is the diagonal vector corresponding to the final

state.

For two thermal states ρT ′′ and ρT , corresponding to the same Hamiltonian, we

have ~PT ′′ ≺ ~PT if T ′′ > T [137], where ~PT ′′ and ~PT are the diaginal vectors of ρT ′′

and ρT respectively. From the results of the theory of majorization [136], it follows

that there always exists an orthostochastic matrix B′ such that ~PT ′′ = B′ ~PT .

Note that the diagonal vectors corresponding to the thermal states ρT ′ and ρT

in Eq.3.9 always satisfy ~PT ′ ≺ ~PT as ∆E ≥ 0. Therefore, there always exist an

orthostochastic matrix B such that

~PT ′ = B ~PT . (3.11)

Let R be a real orthogonal operator corresponding to the orthostochastic matrix

B in Eq.3.11. Then, R transform the initial thermal state ρT to a final state ρf such

that ρDf = ρT ′. Therefore, there always exists a real orthogonal transformation R that

creates S(ρT ′)− S(ρT ) amount of coherence, starting from the thermal state ρT and

spending only ∆E = Tr[H(ρT ′ − ρT )] amount of energy. This completes the proof.

3.3.1 Example: Qubit system

In the following, we find out explicitly the real unitary transformation that allows

creation of maximal coherence with limited energy at our disposal for the case of a

qubit system with the Hamiltonian H = E|1〉〈1|. The initial thermal state is given

by ρT = p |0〉 〈0|+ (1− p) |1〉 〈1| with p = 1
1+e−βE

. Now our goal is to create maximal

coherence by applying an optimal unitary U∗, investing only ∆E amount of energy.

The average energy of the initial thermal state ρT is given by (1 − p)E. As we

have discussed earlier that for maximal coherence creation with ∆E energy cost, the

diagonal part of the final state must have to be a thermal state, ρT ′ = q |0〉 〈0|+ (1−
q) |1〉 〈1|, at some higher temperature T ′, with average energy (1− p)E+ ∆E. Here,

q, and hence T ′, is determined from the energy constraint as q = p− ∆E
E

= 1
1+e−β′E

.

From theorem 1, it is evident that there always exists a rotation operator R which

creates the maximal coherence. Consider a rotation operator of the form

R(θ) =

(
cos θ − sin θ

sin θ cos θ

)
(3.12)
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that transforms ρT as follows

ρf = R(θ)ρTR
T (θ)

=

(
p cos2 θ + (1− p) sin2 θ (2p− 1) sin θ cos θ

(2p− 1) sin θ cos θ p sin2 θ + (1− p) cos2 θ

)
.

We need the diagonal part of the final state to be the thermal state ρT ′ at a higher

temperature T ′. Therefore,

q = p cos2 θ + (1− p) sin2 θ. (3.13)

As R.H.S of Eq. (3.13) is a convex combination of p and (1− p) and p ≥ q ≥ 1/2 ≥
(1 − p), by suitably choosing θ we can reach to the desired final state ρf such that

ρDf = ρT ′ . The angle of rotation θ is given by

θ = cos−1

(√
p+ q − 1

2p− 1

)
. (3.14)

Thus, the maximal coherence at constrained energy cost ∆E can be created from a

qubit thermal state by a two dimensional rotation operator as given by Eq. (3.12).

3.3.2 Example: Qutrit system

For qubit systems, a two dimensional rotation with the suitably chosen θ is required

to create maximum coherence starting from a thermal state at a finite temperature

with limited available energy. For higher dimensional systems, it follows from the-

orem 1, that there always exists a rotation which serves the purpose of maximal

coherence creation. However, finding the exact rotation operator for a given initial

thermal density matrix and energy constraint is not an easy task. Even for a qutrit

system finding the optimal rotation is nontrivial. In what follows, we demonstrate

the protocol for creating maximal coherence with energy constraint starting from a

thermal state for qutrit systems. Note that by applying a unitary operation on a

thermal qubit, one has to invest some energy and thus, the excited state population

corresponding to diagonal part of the final qubit is always increased. Therefore, for

the case of qubit systems, one only has to give a rotation by an angle θ, depending

on the available energy to create maximal coherence starting from a given thermal

state. For a thermal state in higher dimension, we know that with the increment

in temperature (energy), the occupation probability of the ground state will always
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decrease and the occupation probability will increase for the highest excited state.

But what will happen for the intermediate energy levels? Let us first answer this

particular question considering an initial thermal state of the form

ρT =
d−1∑
j=0

pj|j〉〈j|, (3.15)

where pj = e−Ej/T∑
j e
−Ej/T

is the occupation probability of the jth energy level. Differen-

tiating pj with respect to the temperature, we get

∂pj
∂T

= −(〈E〉T − Ej)
T 2

pj. (3.16)

Therefore, for energy levels lying below the average energy of the thermal state,

the occupation probabilities will decrease with the increase of temperature and the

occupation probabilities will increase for the energy levels lying above the average

energy. Making use of this change in occupation probabilities, we now provide a

protocol for maximum coherence creation in thermal qutrit systems with a constraint

on the available energy. We consider a qutrit system with the system Hamiltonian

H = E|1〉〈1| + 2E|2〉〈2|. The initial thermal qutrit state is given by ρT = p|0〉〈0| +
(1 − p − q)|1〉〈1| + q|2〉〈2| with average energy 〈E〉T = (1 − p − q)E + 2qE. Here

p = 1/Z and q = e−2βE/Z, where Z = 1+e−βE+e−2βE is the partition function. The

diagonal density matrix of the final state is a thermal qutrit state at temperature T ′

with average energy 〈E〉′T = (1 − p − q)E + 2qE + ∆E, when we create coherence

with ∆E energy constraint.

We show that just two successive rotations in two dimensions is sufficient for

maximum coherence creation. For equal energy spacing of {0, E, 2E}, the average

energy at infinite temperature is given by 〈E〉∞ = E. So, for an arbitrary finite

temperature, the condition E > 〈E〉T holds true. Thus for the aforementioned qutrit

thermal system, with the increase in temperature, the occupation probabilities of the

first and second excited states will always increase at the expense of the decrease in

occupation probability for the ground state. The diagonal elements of the final state

should be the occupation probabilities of the thermal state at a higher temperature

T ′, given by p′, 1 − p′ − q′ and q′ for the ground, first and second excited states,
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respectively. From the conservation of probabilities, it follows that

−∆p = p− p′ = (q′ − q) + (1− p′ − q′)− (1− p− q)

= ∆q + ∆(1− p− q), (3.17)

Note that, we always have −∆p > ∆q > 0.

Now, let us first apply a rotation about |1〉. Physically, this rotation creates

coherence between basis states |0〉 and |2〉. The rotation can be expressed by the

unitary R1(α) = e−iαJ1 , where

J1 =

 0 0 i

0 0 0

−i 0 0

 (3.18)

is the generator of the rotation. Then another rotation is applied about |2〉, which

is given by R2(δ) = e−iδJ2 , where

J2 =

 0 −i 0

i 0 0

0 0 0

 . (3.19)

After the action of two successive rotations, given by R2(δ)R1(α), we have

q′ = q cos2 α + p sin2 α (3.20)

and

p′ = (q sin2 α + p cos2 α) cos2 δ + (1− p− q) sin2 δ

= (p−∆q) cos2 δ + (1− p− q) sin2 δ. (3.21)

From Eq. (3.20), it is clear that q′ is a convex combination of p and q, and since

q < q′ < p, there always exists a angle of rotation α, depending on the available

energy so that the protocol can be realized. The angle of rotation is given by α =

cos−1
√

p−q′
p−q , where α ∈ [0, π/2]. Similarly, Eq. (3.21), suggests that p′ is a convex

combination of (p−∆q) and (1− p− q) and since 1− p− q < p′ < p−∆q (Eq.3.17),

one can always achieve any desired value of p′, by suitably choosing δ ∈ [0, π/2],

with δ = cos−1
√

p′−(1−p−q)
(p−∆q)−(1−p−q) . Thus, maximal coherence at finite energy cost can

34



be created by two successive two dimensional rotations starting from a thermal state

of a qutrit system. Note that we have considered equal energy spacing {0, E, 2E},
however, the above protocol will hold for any energy spacing for which the condition

E1 > 〈E〉T holds, where E1 is the energy of the energy eigenstate |1〉.

3.4 Energy cost of preparation: Coherence versus

correlation

In this section we carry out a comparative study between maximal coherence creation

and maximal total correlation creation (also see Ref. [133]) with limited available

energy. We consider an arbitrary N party system acting on a Hilbert space Hd1 ⊗
Hd2 ⊗ . . . ⊗HdN . The Hamiltonian of the composite system is non-interacting and

given by Htot = H1+H2+. . .+HN . For the sake of simplicity we consider H1 = H2 =

. . . = HN = H. However, our results hold in general. Suppose there exists an optimal

unitary operator U opt which creates maximal total correlation from initial thermal

state ρT with ∆E energy cost. It is shown in Ref. [133] that the maximal correlation

(multipartite mutual information) that can be created by a unitary transformation

with energy cost ∆E is given by

I∆E
max =

∑
i

[
S(ρiT ′)− S(ρiT )

]
, (3.22)

where ρiT denotes the thermal state of the ith marginal at temperature T . Note

that as the systems are non-interacting the global thermal state is the product of the

local thermal states. Clearly, T ′ is greater than T and T ′ can be determined from the

amount of available energy ∆E. The definition of the total correlation or the multi-

partite mutual information considered in [133] is similar to the one we use in chapter

4 in Eq 4.14, for bipartite states which can be defined for multipartite scenario also.

In the protocol to achieve the maximal correlation, the subsystems of the composite

system ρNT transform to the thermal states ρiT ′ of the corresponding individual sys-

tems at some higher temperature T ′ [133]. It is interesting to inquire that how much

coherence is created during this process as in several quantum information processing

tasks it may be needed to create both the coherence and correlation, simultaneously.

The amount of coherence created Cr|I∆E
max

, when the unitary transformation creates
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maximal correlation is given by

Cr|I∆E
max

= S(ρDf )−
∑
i

S(ρiT ). (3.23)

As the Hamiltonian is noninteracting, ρDf and the product of the marginals (
∏⊗i ρiT ′)

have the same average energy. Since the product of the marginals is the thermal

state of the composite system at temperature T ′, the maximum entropy principle

implies that
∑

i S(ρiT ′) ≥ S(ρDf ). Hence, Cr|I∆E
max
≤ I∆E

max. Therefore, when one aims

for maximal correlation creation the coherence created is always bounded by the

amount of correlation created. Now, we ask the converse, i.e., how much correlation

can be created when one creates maximal coherence by a unitary operation with the

same energy constraint ∆E? The maximal coherence that can be created in this

scenario by unitary transformation with energy constraint is given by

C∆E
r,max =

∑
i

[
S(ρiT ′)− S(ρiT )

]
. (3.24)

Note that the maximal achievable coherence is equal to the maximal achievable cor-

relation (cf. Eq. (3.22)), but the protocols to achieve them are completely different.

When the maximal coherence is created, the diagonal of the final density matrix is a

thermal state at some higher temperature while the maximal correlation is created

when the product of the marginals of the final state is a thermal state at some higher

temperature. Therefore, when the maximum amount of coherence C∆E
r,max is created,

the correlation I|C∆E
r,max

that is created simultaneously always satisfies

I|C∆E
r,max

≤ C∆E
r,max. (3.25)

The above equation again follows from the maximum entropy principle and the fact

that the diagonal part and the product of the marginals have same average energy.

Therefore, when one aims for maximal coherence creation, the amount of correlation

that can be created at the same time is always bounded by the maximal coherence

created and vice versa.
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3.4.1 Simultaneous creation of maximal coherence and cor-

relation

It is also interesting to inquire whether one can create maximal coherence and cor-

relation simultaneously. In the following, we partially answer this question. For two

qubit systems we show that there does not exist any unitary which maximizes both

the coherence and correlation, simultaneously. Let the Hamiltonian of the two qubit

system be given by HAB = HA + HB with HA 6= HB, in general. Later, we also

consider HA = HB. The initial state is the thermal state at temperature T and

given by

ρAB,T = diag{pq, p(1− q), (1− p)q, (1− p)(1− q)}, (3.26)

where p = 1/(1 + e−βEA), q = 1/(1 + e−βEB), HA = EA|1〉〈1| and HB = EB|1〉〈1|.
Consider the protocol of Ref. [133] to create the maximum correlation. In that

scenario, the marginals are the thermal states at a higher temperature T ′. Let the

final state of the two qubit system after the unitary transformation is given by

ρfAB =
∑
ijkl

aijkl|i〉〈j| ⊗ |k〉〈l|. (3.27)

As the marginals are thermal, aiikl = 0 if k 6= l and aijkk = 0 if i 6= j. Thus, the

maximally correlated state that is created by investing a limited amount of energy

is an X−state. The X−states are a special class of states that have been analyzed

in great detail in context of analytical calculations of quantum discord [138, 139]

among others. The term X−states has been coined in Ref. [140] for their visual

appearance. For bipartite qubit quantum systems, the states ρX of the form

ρX :=


ρ00 0 0 ρ03

0 ρ11 ρ12 0

0 ρ21 ρ22 0

ρ30 0 0 ρ33


are called X−states. In general, any density matrix that has nonzero elements only

at the diagonals and anti-diagonals is called an X− state. For a detailed exposition

of X−states see Ref. [141]. While for maximal coherence creation, the diagonal part

of the final state is a thermal state at higher temperature T ′. Therefore, the diagonal
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part of the final state must be of the form

ρfDAB,T ′ = diag{p′q′, p′(1− q′), (1− p′)q′, (1− p′)(1− q′)},

where p′ = 1/(1 + e−β
′EA), q′ = 1/(1 + e−β

′EB), p′ < p and q′ < q as β′ < β. We

show separately for (i)EA = EB and (ii)EA 6= EB, that there is no such unitary

transformation which serves the purpose. It will be interesting to explore what

happens for higher dimensional systems.

(i)EA = EB:

For the case where the initial state is ρ⊗2
T with ρT = ρAT = ρBT = diag{p, 1 − p}

and the final state is in the X−state form, given by

ρf =


q2 0 0 Y

0 q(1− q) X 0

0 X∗ q(1− q) 0

Y ∗ 0 0 (1− q)2

 . (3.28)

Note that p ≥ q ≥ 1/2 ≥ (1−q) ≥ (1−p). Here, |Y | ≤ q(1−q) and |X| ≤ q(1−q) so

that, ρf is positive semi-definite. Let p = 1
2

+ ε and q = 1
2

+ ε′, where 1
2
> ε > ε′ > 0.

The eigenvalues of this final density matrix are given by

λ1,4 =
1

2

(
q2 + (1− q)2 ±

√
(q2 − (1− q)2)2 + 4|Y |2

)
, (3.29)

λ2,3 = q(1− q)± |X|. (3.30)

As the unitary transformation preserves the eigenvalues, two of the eigenvalues of the

final density matrix must be equal to p(1− p) and and the other two must be equal

to p2 and (1 − p)2 respectively. In the following we show that this is not possible.

Case (1: Let us first assume λ2 = λ3 = p(1 − p). Then we find that |X| = 0 and

q = p or q = 1 − p. Since we know p ≥ 1/2, then q ≤ 1/2 for q = 1 − p. Hence,

q 6= 1− p. q = p can only happen under identity operation. Therefore, λ2 6= λ3.

Case 2: Assume λ1 = λ4 = p(1− p), then we have

p(1− p) =
q2 + (1− q)2

2
+
q2 − (1− q)2

2
M

=
q2 + (1− q)2

2
− q2 − (1− q)2

2
M, (3.31)

where M =
√

1 + 4|Y |2
(2q−1)2 . From Eq. (3.31), we have M = 0 which is a contradiction
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since M ≥ 1. Therefore, Eq. (3.31) cannot be satisfied.

Case 3: As p2 ≥ p(1− p) ≥ (1− p)2, other two possibilities are λ1 = λ3 = p(1− p)
or λ4 = λ2 = p(1 − p). Note that we always have λ1 > λ3. Therefore, the only

possibility we have to check is λ4 = λ2 = p(1− p). For that we have

λ2 = p(1− p) ⇒ |X| = p(1− p)− q(1− q)

⇒ |X| = −(ε2 − ε′2), (3.32)

which is a contradiction as the R.H.S. is negative since ε > ε′. Therefore, it is also

not possible.

(ii)EA 6= EB:

Let us relabel the diagonal entries of the initial density matrix as

ρABT = a1|00〉〈00|+ a2|01〉〈01|+ a3|10〉〈10|+ a4|11〉〈11|.

Here, {ai} is an arbitrary probability distribution that depends on the energy levels

EA, EB and the initial temperature T . We argue that the unitary transformations

that map the initial state into an X−state starting from a two qubit thermal state

at arbitrary finite temperature T , are only allowed to create correlation among the

subspaces spanned by {|00〉, |11〉} and {|01〉, |10〉}, separately, i.e., no correlation

can be created between these two subspaces. Thus, the unitary transformation

that maximizes the total correlation acts on the blocks spanned by {|00〉, |11〉} and

{|01〉, |10〉}, separately. Given this, again from comparing eigenvalues, it can be

argued that total correlation and coherence cannot be maximized simultaneously by

unitary transformations in two qubit systems when the Hamiltonian of the systems

are not the same.

3.5 Chapter summary

In this chapter, we have studied the creation of quantum coherence by unitary trans-

formations starting from a thermal state. This is important from practical view

point, as most of the systems interact with the environment and get thermalized

eventually. We find the maximal amount of coherence that can be created from a

thermal state at a given temperature and find a protocol to achieve this. Moreover,

we find the amount of coherence that can be created with limited available energy.

Thus, our study establishes a link between coherence and thermodynamic resource
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theories and reveals the limitations imposed by thermodynamics on the processing

of the coherence. Additionally, we have performed a comparative study between the

coherence creation and total correlation creation with the same amount of energy

at our disposal. We show that when one creates the maximum coherence with lim-

ited energy, the total correlation created in the process is always upper bounded by

the amount of coherence created and vice versa. As correlation and coherence both

are useful resources, processing them simultaneously is fruitful. However, our result

shows that, at least in two qubit systems, there is no way to create the maximal

coherence and correlation simultaneously via unitary transformations. Recently, the

importance of coherence in improving the performance of thermal machines has been

explicitly established and the implications of coherence on the thermodynamic be-

havior of quantum systems have been studied. Therefore, it is justified to believe

that the study of the thermodynamic cost and limitations of thermodynamic laws on

the processing of quantum coherence can be far reaching. The results in this chapter

are a step forward in this direction.

N.B. The results of this chapter are original. We study creation of quantum coher-

ence in energy eigenbasis starting from a thermal state with and without constraint

on the available energy. We give a protocol to create maximum coherence when

there is no limitation on energy. Futhermore, we show that there always exists a

real unitary operation that creats maximum coherence with limited energy starting

from a thermal state and construct protocols for two and three dimensions. We com-

pare simulataneous creation of coherence and total correlation with limited energy

and show that it is not possible to create maximum coherence and maximum total

correlation simulatneously in two dimension. Creation of total correlation has been

studied in Ref. [133] and we have used the result of this paper while comparing

simultaneous creation of coherence and total correlation.

The results of this chapter have been published in “Energy cost of creating quan-

tum coherence, A. Misra, U. Singh, S. Bhattacharya, A.K. Pati, Phys. Rev. A, 93,

052335 (2016).”
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CHAPTER4
Quantum correlations

4.1 Introduction

Characterization and quantification of quantum correlation [12, 22] play a central role

in quantum information. Entanglement, in particular, has been successfully identi-

fied as a useful resource for different quantum communication protocols and compu-

tational tasks [2, 3, 4, 5]. Moreover, it has also been employed to study cooperative

quantum phenomena like quantum phase transitions in many-body systems [36, 37].

However, in the recent past, several quantum phenomena of shared systems have been

discovered in which entanglement is either absent or does not play any significant

role. Locally indistinguishable orthogonal product states [142, 143, 144, 145, 146] is

a prominent example where entanglement does not play an important role. The role

of entanglement is also unclear in the model of deterministic quantum computation

with one quantum bit [147, 148]. Such phenomena motivated the search for concepts

and measures of quantum correlation independent of the entanglement-separability

paradigm. Introduction of quantum discord [138, 139] is one of the most important

advancements in this direction and has inspired a lot of research activity [22]. It

has thereby emerged that quantum correlations, independent of entanglement, can

also be a useful ingredient in several quantum information processing tasks [22].

Other measures in the same direction include quantum work deficit [21, 149, 150],

measurement-induced nonlocality [151], and quantum deficit [152, 153]. These mea-

sures can be generally considered to be quantum correlation measures within an

“information-theoretic paradigm”. In what follows, we briefly review quantum en-

tanglement and quantum correlations beyond entanglement.
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4.2 Quantum entanglement

Characterization and quantification of quantum entanglement [12] lies at the heart

of quantum information theory, since its early recognition as “spooky action at a

distance” in the Einstein-Podolsky-Rosen article [154]. It has been successfully iden-

tified as a key resource in several quantum communication protocols including super-

dense coding [2], teleportation [3], and quantum cryptography [6, 7]. In the resource

theory of entanglement [12], as distributing entanglement over the parties that are

far apart is difficult due to loss of quantumness during the transport, all entangled

states are considered as valuable resources. Thus, the states that are not entangled

and the operation that cannot create entanglement are considered as free states and

free operations. Any operation that can create entanglement between the shared

quantum states are also considered as a resource.

4.2.1 Local operations classical communication

In QRT of entanglement, the free operations are the Local operations classical com-

munication (LOCC). In a general LOCC protocol, the parties can act only locally

and are allowed to communicate classically. However, by these LOCC no entangle-

ment can be created among distant parties and therefore these are the class of free

operations in the QRT of entanglement [12].

4.2.2 Separable states

A general quantum state shared by A and B, that can be prepared by LOCC between

A and B, is of the form [155]

ρAB =
k∑
a=1

pρaA ⊗ ρaB, (4.1)

where ρaA and ρaB are quantum states defined on local Hilbert spaces, HA and HB

respectively, and where {pa} form a probability distribution. It can been shown

that k ≤ (dim(HAB))2 [156]. A quantum state of the form given in Eq. 4.1, is

called a separable state. The separable states form the class of free states in QRT

of entanglement as it is not possible to create entangled states by LOCC from the

separable states. A state is called entangled if it is not separable. Entangled states

have been a fruitful resource in various quantum information theoretic protocols.

The description of the separable states can be generalized over an arbitrary number
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of parties.

4.2.3 Quantifying entanglement

Quantification of entanglement is essential for characterization of successful prepa-

rations of quantum states, both in two party and multiparty domains. A bona-fide

entanglement measure (or monotone) E(ρ) for a density operator ρ should satisfy

the following two properties [12].

• Property 1 Monotonicity: For any LOCC, E one should have

E(ρ) ≥ E(E [ρ]). (4.2)

• Property 2 Non-negativity:

E(ρ) ≥ 0. (4.3)

The equality holds iff ρ is separable.

Moreover, there are further properties [12] that one may expect to be satisfied by

a good entanglement measure, such as convexity. One may also require, for any

bipartite pure state the measure of entanglement should be equal to the entropy of

entanglement. Entropy of entanglement of a pure bipartite state |ψ〉AB is given by

S(ρA).

4.2.3.1 Bipartite entanglement

The notion of entanglement is rather well-understood in the bipartite regime, espe-

cially for pure states. While several entanglement measures can be computed for

bipartite pure states, the situation for mixed states is difficult, and there are only

few entanglement measures which can be computed efficiently. The logarithmic neg-

ativity [157] can be obtained for arbitrary bipartite states, while the entanglement

of formation [158, 159] can be computed for all two-qubit states. We now briefly

mention the entanglement of formation and the logarithmic negativity.

• Entanglement of formation : The entanglement of formation [158] is an entan-

glement measure for bipartite quantum states which is defined as

Ef (ρAB) = min
{i}

∑
i

piS(ρiA), (4.4)
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where the minimization carried out over all the pure state decompositions of

ρAB, such that ρAB =
∑

i pi|ψiAB〉〈ψiAB| and ρiA is the reduced density matrix

of |ψiAB〉. It can be shown that entanglement formation is a monotonically

increasing function of concurrence which can be computed easily. Concurrence

of a two qubit system is given as C(ρAB) = max{0, λ1 − λ2 − λ3 − λ4}, where

λ1, . . . , λ4 are the square roots of the eigenvalues of ρABρ̃AB in decreasing order,

ρ̃AB = (σy ⊗ σy)ρ∗AB(σy ⊗ σy). Here the complex conjugation ρ∗AB is taken in

the computational basis, and σy is the Pauli spin matrix.

• Logarithmic negativity : The logarithmic negativity [157] of a bipartite quan-

tum state ρAB, is defined as

EN(ρAB) = log2[2N(ρAB) + 1]. (4.5)

Where, N(ρAB) = 1
2
(||ρTA||1 − 1) is the sum of the absolute values of the

negative eigenvalues of the partial transposed density matrix of the bipartite

state ρAB. Here, ρTA denotes the partial transposition of ρAB with respect to

A. The norm, ||A||1 = Tr
√
A†A, denotes the trace norm of a Hermitian matrix

A.

For two qubit states, logarithmic negativity is positive if and only if the state

is entangled [12]. Though, the measure is however defined and computable

for bipartite states, for pure or mixed, of arbitrary dimensions, but in higher

dimensions, for entangled states which have a positive partial transpose [12],

the measure is vanishing. Moreover, it does not reduce to the entropy of

entanglement for pure states either.

4.2.3.2 Multipartite entanglement

However, there have been significant advances in recent times to quantify multi-

partite entanglement of pure quantum states in arbitrary dimensions [12]. They

are broadly classified in two catagories − distance-based measures [160, 161, 162]

and monogamy-based ones [163]. On the other hand, quantifying entanglement for

arbitrary multiparty mixed states is still an arduous task [164].

• Generalized Geometric Measure: A multipartite pure quantum state |ψA1,A2,...,AN 〉
is genuinely multipartite entangled if it is not separable across any bipartition.

The Generalized Geometric Measure (GGM) [161] quantifies the genuine mul-

tipartite entanglement for these N -party states based on the distance from the
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set of all multiparty states that are not genuinely entangled. The GGM is

given as

G(ψA1,A2,...,AN ) = 1−max
|x〉
|〈x |ψA1,A2,...,AN 〉 |2. (4.6)

This maximization is done over all states |x〉 which are not genuinely entangled.

An equivalent mathematical expression of Eq.(4.6), is the following

G(|ψN〉) = 1−max{λ2
I:L|I ∪ L = {A1, . . . , AN}, I ∩ L = ∅}, (4.7)

where λI:L is the maximal Schmidt coefficient in the bipartite split I : L of

|ψN〉. The GGM of a general mixed quantum state can be defined in terms of

the convex roof construction. For an arbitrary N -party mixed state, ρN , the

GGM can be defined as

G(ρN) = min
{pi,|ψiN 〉}

∑
i

piG(|ψiN〉), (4.8)

where the minimization is over all pure state decompositions of ρN i.e., ρN =∑
i pi|ψiN〉〈ψiN |. It is difficult to find the optimal decomposition in general.

However, the situation is different if the mixed quantum state under consid-

eration possesses some symmetry. We compute the GGM, for paradigmatic

classes of mixed states which have different ranks and consist of an arbitrary

number of parties in Ref. [162].

4.3 Beyond entanglement

Apart from the measures that belong to the entanglement-separability paradigm,

there are several quantum correlation measures from information theoretic paradigm.

The idea of these measures were mainly conceived from thermodynamic perspectives.

In particular, quantum work deficit [21], which has been pioneer in this direction was

formulated based on the amount of work extracted from a quantum system coupled

to a heat bath. In the following section we discuss about these measures.

4.3.1 Quantum work deficit

If a system is classically correlated then the amount of work Wl that can be extracted

locally after suitable LOCC from the marginals are the same as the amount of work

Wt that can be extracted globally when it is coupled to a heat bath [21]. Interestingly,
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a quantum correlated state can allow extraction of more work globally than the

work that can be extracted locally. This difference of extracted work can be used

to quantify the quantum correlation present in a quantum state [21]. It is worth

noting that as we are interested in the system only it is required that the operations

are closed i.e., attaching ancillary system is not allowed. Therefore, it is defined

as the information concentrated in a bipartite quantum state shared between two

distant parties, in terms of the total work extractable under closed operation (CO)

and closed local operation along with classical communication (CLOCC) [149, 150].

For a bipartite quantum state ρAB, it can be shown that the work extraction or the

number of pure states that can be extracted from ρAB under CO is given by

WCO = log d− S(ρAB), (4.9)

and the same under CLOCC is given by

WCLOCC = log d−min
{Pi}

S(ρ′AB), (4.10)

where d is the dimension of the Hilbert space of ρAB and

ρ′AB =
∑
i

(IA ⊗ Pi)ρAB(IA ⊗ Pi). (4.11)

Here, IA is the identity operator on the Hilbert space of A and {Pi} are the set

of projectors over which the minimization is carried out. Hence, the work deficit is

given as

WD = WCO −WCLOCC . (4.12)

The discovery of work deficit has been conceptualized using the methods of work

extraction from a quantum system when the system is in contact with a thermal

bath. Thus, it has introduced a novel perspective to characterize and quantify quan-

tum correlations from thermodynamic point of view which has been far-reaching in

studying quantum correlations independent of entanglement-separability paradigm.

It also further strengthens the link between thermodynamics and quantum informa-

tion theory.

4.3.2 Quantum discord

Quantum discord is a measure of quantum correlations of bipartite quantum states

that is independent of the entanglement-separability paradigm [22, 138, 139]. It
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can be conceptualized from several perspectives. An approach that is intuitively

satisfying, is to define it as the difference between the total correlation and the

classical correlation for a bipartite quantum state ρAB. The total correlation is

defined as the quantum mutual information of ρAB, which is given by

I(ρAB) = S(ρA) + S(ρB)− S(ρAB), (4.13)

where ρA and ρB are the local density matrices of ρAB. The mutual information

I(ρAB) can also be expressed in terms of the usual quantum relative entropy as

I(ρAB) = min
{σA,σB}

S(ρAB||σA ⊗ σB). (4.14)

This follows from min{σA,σB} S(ρAB||σA⊗σB) = min{σA,σB}{−S(ρAB)−Tr(ρA log σA)−
Tr(ρB log σB)}, and the non-negativity of relative von Neumann entropy between two

density matrices. Therefore, the quantum mutual information is the minimum usual

relative entropy distance of the state ρAB from the set of all completely uncorrelated

states, σA ⊗ σB, whence we obtain a ground for interpreting the quantum mutual

information as the total correlation in the state. The classical correlation is given in

terms of the measured conditional entropy, and is defined as [138, 139]

J (ρAB) = S(ρA)− S(ρA|B), (4.15)

where

S(ρA|B) = min
{Pi}

∑
i

piS(ρA|i) (4.16)

is the conditional entropy of ρAB, conditioned on measurements at B with rank-one

projection-valued measurements {Pi}. Here, ρA|i = 1
pi

TrB[(IA ⊗ Pi)ρ(IA ⊗ Pi)] is

the conditional state which we get with probability pi = TrAB[(IA ⊗ Pi)ρ(IA ⊗ Pi)],
where IA is the identity operator on the Hilbert space of A. It is worth mentioning

that the minimization need not be done over projection-valued measurements in

genral, as it can be performed over more general measurements called POVMs [138].

However, since this is computationally difficult, often for convenience in the definition

of quantum discord, work deficit etc. the minimization is restricted to projective

measurements. In this thesis we will also be restricted to projective measurements

to maximize the classical correlations. J (ρAB) can also be defined in terms of the

mutual information as

J (ρAB) = max
{Pi}
I(ρ′AB), (4.17)
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where

ρ′AB =
∑
i

(IA ⊗ Pi)ρAB(IA ⊗ Pi). (4.18)

The classical correlation can therefore be seen as the minimum relative entropy

distance of the state ρ′AB from all uncorrelated states, maximized over all rank-one

projective measurements on B, and is given by

J (ρAB) = max
{Pi}

min
{σA,σB}

S(ρ′AB||σA ⊗ σB). (4.19)

The maximization in Eq. (4.19) or in Eq. (4.15) ensure that J (ρAB) quantifies the

maximal content of classical correlation present in the bipartite state ρAB. Hence, if

we subtract J (ρAB) from the total correlation, the remaining correlation is “purely”

quantum, and is defined as [138, 139]

D(ρAB) = I(ρAB)− J (ρAB). (4.20)

Quantum discord plays a significant role in quantum thermodynamics. Zurek

has defined quantum thermal discord taking the entropic cost of the measurement

which is crucial when one considers thermodynamic scenario [165]. In Ref. [165], a

thermodynamic interpretation of quantum discord has also been given by pointing

out that quantum discord can be thought of as the difference between the work

extracted by the quantum and classical demons respectively. Later it has been

shown by Aharon and Daniel [24] that discord can determine the difference between

efficiencies in Szilard’s engine under different restrictions. These results have further

cemented the link between quantum correlations and thermodynamics. Moreover,

quantum discord has been extensively used to study co-operative phenomena in

quantum many-body physics [22, 166, 167, 168, 169]. We refer the reader to the nice

review [22] for more details.

4.4 Chapter summary

In this chapter, we have studied bipartite and multipartite measures of quantum

correlations both entanglement and measure that are beyond entanglement. We

have also studied the QRT of entanglement in brief. In the next chapter, we will

see that quantum discords defined using generalized entropies are advantageous to

detect criticality in transverse field quantum Ising model.
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CHAPTER5
Generalized quantum correlation and

quantum phase transition

5.1 Introduction

In classical as well as quantum information theory, one of the most important pillars

is the framework of entropy [170], which quantifies the ignorance or lack of informa-

tion about a relevant physical system. Moreover, it helps to understand information

theory from a thermodynamic perspective. Almost all the quantum correlation mea-

sures incorporate entropic functions in various forms. And, most of the quantum

correlation measures are defined by using the von Neumann entropy. The opera-

tional significance of von Neumann entropy has been widely recognized in numerous

scenarios in quantum information theory. Nonetheless, there are classes of general-

ized entropies like the Rényi [171] and Tsallis [172] entropies, which are also opera-

tionally significant in important physical scenarios. Both the Rényi and Tsallis en-

tropies reduce to the von Neumann entropy when the entropic parameter α→ 1. For

α ∈ (0, 1), the relative Rényi entropy appears in the quantum Chernoff bound which

determines the minimal probability of error in discriminating two different quantum

states in the setting of asymptotically many copies [173]. In Ref. [174], it was shown

that the relative Rényi entropy is relevant in binary quantum state discrimination,

for the same range of α. The concept of Rényi entropy has also been found to be

useful in the context of holographic theory [175, 176, 177]. It has also been found

useful in dealing with several condensed matter systems [178, 179, 180, 181, 182, 183].

The significance of the Tsallis entropy in quantum information theory has been es-

tablished in the context of quantifying entanglement [184], local realism [185], and
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entropic uncertainty relations [186] (see also [187, 188]). Both the Rényi and Tsal-

lis entropies have important applications in classical as well as quantum statistical

mechanics and thermodynamics [189].

While there are important interpretational and operational breakthroughs that

have been obtained by using the concept of quantum discord, there are also several

intriguing unanswered questions and thriving controversies [22, 190]. It is therefore

interesting and important to look back upon the conceptual foundations of quantum

discord and inquire whether certain changes, subtle or substantial, in those concepts

lead us to a better understanding of the controversies and the unanswered questions.

Towards this aim, in this chapter, we introduce measures of the total, classical, and

quantum correlations of a bipartite quantum state in terms of the entire class of

relative Rényi and Tsallis entropy distances. We first show that the measures satisfy

all the required properties of bipartite correlations. We then evaluate the quantum

correlation measure for several paradigmatic classes of states. As an application,

we find that the quantum correlation measures, via relative Rényi and Tsallis en-

tropies, can indicate quantum phase transitions and give better finite-size scaling

exponents than the other known order parameters. Importantly, we show that the

conceptualization of the measures in terms of Rényi and Tsallis entropies solves an

incommodious feature regarding the behavior of nearest-neighbor quantum discord

in a second order phase transition.

There are two distinct ways in which the relative Rényi and Tsallis entropies

are defined, and are usually referred to as the “traditional” [191, 192] and “sand-

wiched” [193, 194] varieties. The sandwiched varieties incorporate the noncommu-

tative nature of density matrices in an elegant way, and it is therefore natural to

expect that it will play an important role in fundamentals and applications. Indeed,

the sandwiched relative Rényi entropy has been used to show that the strong con-

verse theorem for the classical capacity of a quantum channel holds for some specific

channels [193]. Moreover, an operational interpretation of the sandwiched relative

Rényi entropy in the strong converse problem of quantum hypothesis testing is noted

for α > 1 [195]. On the other hand, the sandwiched relative Tsallis entropy has re-

cently been shown to be a better witness of entanglement [196] than the traditional

one [184]. The relative min- and max-entropies [197, 198], which can be obtained

from the sandwiched relative Rényi entropy for specific choices of α, play signifi-

cant roles in providing bounds on errors of one-shot entanglement cost [199], on the

one-shot classical capacity of certain quantum channels [200], and in several scenar-

ios in non-asymptotic quantum information theory [201]. In Ref. [202], connection
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of max- relative entopy with frustration in quantum many body systems has been

established.

5.2 Relative Rényi and Tsallis entropies

To define quantum discord in terms generalized entropies, we first introduce the

generalized entropies and their relative versions in this section. We will also discuss

the useful properties of these quantities which will be used to define the quantum

correlations. The Rényi [171, 203, 204] and Tsallis [172, 205] entropies of a density

operator ρ are given respectively by

SRα (ρ) =
1

1− α
log Tr[ρα], (5.1)

STα (ρ) =
Tr[ρα]− 1

1− α
. (5.2)

Here, the parameter α ∈ (0, 1) ∪ (1,∞), unless mentioned otherwise. All logarithms

in this chapter are with base 2. Both the entropies reduce to the von Neumann

entropy [206], S(ρ) = −Tr(ρ log ρ), when α → 1. The Tsallis entropy for α = 2 is

called the linear entropy, SL(ρ), given by

SL(ρ) = 1− Tr[ρ2]. (5.3)

The traditional quantum relative Rényi entropy between two density operators ρ and

σ is defined as

SRα (ρ||σ) =
log Tr[(ρασ1−α)]

α− 1
. (5.4)

Note that all the quantum relative entropies, traditional or sandwiched, discussed

in this chapter, are defined to be +∞ if the kernel of σ has non-trivial intersection

with the support of ρ, and is finite otherwise. SRα (ρ||σ) reduces to the usual quantum

relative entropy [207, 208], S(ρ||σ), when α→ 1, where

S(ρ||σ) = −S(ρ)− Tr(ρ log σ). (5.5)

Recently, a generalized version of the quantum relative Rényi entropy (called “sand-

wiched” relative Rényi entropy) has been introduced, by considering the non com-

mutative nature of density operators [193, 194]. It is defined as

S̃Rα (ρ||σ) =
1

α− 1
log Tr

[(
σ

1−α
2α ρσ

1−α
2α

)α]
. (5.6)
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Note that S̃Rα (ρ||σ) also reduces to S(ρ||σ) when α → 1. In Ref. [100, 193, 194,

209, 210] several interesting properties of the sandwiched Rényi entropy have been

established. Here, we mention some of them (for two density operators ρ and σ)

which we will use later in this chapter.

1. S̃Rα (ρ||σ) ≥ 0.

2. S̃Rα (ρ||σ) = 0 if and only if ρ = σ.

3. For α ∈ [1
2
, 1) ∪ (1,∞) and for any completely positive trace-preserving map

(CPTPM) E , we have the data processing inequality, S̃Rα (ρ||σ) ≥ S̃Rα (E(ρ)||E(σ))

[210]. The data processing inequality holds as exp [(α− 1)S̃Rα (ρ||σ)] is jointly

convex for α ∈ (1,∞) and jointly concave for α ∈ [1
2
, 1). There are numerical

evidences that data processing inequality does not hold for α < 1
2
.

4. S̃Rα (ρ||σ) is invariant under all unitaries U , i.e., S̃Rα (UρU †||UσU †) = S̃Rα (ρ||σ).

The traditional quantum relative Tsallis entropy between two density operators

ρ and σ is defined as

STα (ρ||σ) =
Tr (ρασ1−α)− 1

α− 1
. (5.7)

The sandwiched relative Tsallis entropy between two density operators ρ and σ is

given by [196]

S̃Tα (ρ||σ) =
Tr
[(
σ

1−α
2α ρσ

1−α
2α

)α]
− 1

α− 1
. (5.8)

Both STα (ρ||σ) and S̃Tα (ρ||σ) also reduce to S(ρ||σ) when α → 1. It can be easily

verified that the properties (1-4), satisfied by S̃Rα (ρ||σ) are also satisfied by S̃Tα (ρ||σ).

In this chapter, we will predominantly use the sandwiched version of both the relative

entropies. Hereafter, by relative entropy, we will mean the sandwiched form of the

relative entropies, unless mentioned otherwise. Some of the important special cases

of the Rényi and Tsallis relative entropies are given below.

a. Relative linear entropy : At α = 2, S̃Tα (ρ||σ) gives the relative linear entropy,

SL(ρ||σ) = S̃T2 (ρ||σ). (5.9)

The relative linear entropy has also been defined in the literature by using the tra-

ditional version of the relative entropy at α = 2. However, in this chapter, we will

use the relative linear entropy defined only through the sandwiched relative entropy

(at α = 2).
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b. Relative collision entropy : At α = 2, S̃Rα (ρ||σ) has been called the relative

collision entropy [197],

SC(ρ||σ) = S̃R2 (ρ||σ). (5.10)

c. Relative min- and max-entropies : In Ref. [198], it is pointed out that at α = 1
2
,

S̃Rα (ρ||σ) gives relative min-entropy [211],

Smin(ρ||σ) = S̃R1
2
(ρ||σ). (5.11)

Note that

Smin(ρ‖σ) = −2 logF (ρ, σ), (5.12)

where F (ρ, σ) = ‖√ρ
√
σ‖1 = Tr|√ρ

√
σ| is the fidelity between the states ρ and σ.

It is shown in Ref. [194], that the relative max-entropy [198] is nothing but relative

Rényi entropy, when α→∞ i.e.

Smax(ρ‖σ) = S̃Rα→∞(ρ‖σ), (5.13)

where

Smax(ρ‖σ) = inf(λ : ρ ≤ 2λσ). (5.14)

5.3 Total, classical, and quantum correlations as

relative entropies

In this section, we define the total, classical, and quantum correlation in terms of

the sandwiched relative Rényi and Tsallis entropies. We discuss the properties of

these measures and evaluate them for several important families of bipartite quantum

states. In the final subsection, we also compare the results with those obtained with

traditional relative entropies.

5.3.1 Generalized mutual information as total correlation

We define the generalized mutual information of ρAB as

IΓα (ρAB) = min
{σA,σB}

S̃Γα (ρAB||σA ⊗ σB). (5.15)
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Here, the minimum is taken over all density matrices, σA and σB. The relative

entropy, although not a metric on the operator space, is a measure of the distance

between two quantum states. S̃Γα (ρAB||σA ⊗ σB) is a distance between the quantum

state ρAB and a completely uncorrelated state σA ⊗ σB. Here, and hereafter, the

superscript Γ is either R or T , depending on whether it is the Rényi or Tsallis variety

that is considered. The corresponding minimum distance can be interpreted as the

total correlation present in the system. The generalized mutual information IΓα (ρAB)

becomes equal to the usual quantum mutual information I(ρAB) when α→ 1:

lim
α→1
IΓα (ρAB) = lim

α→1
min
{σA,σB}

S̃Γα (ρAB||σA ⊗ σB).

= min
{σA,σB}

S(ρAB||σA ⊗ σB)

≡ I (ρAB). (5.16)

5.3.2 Classical and quantum correlation

The Rényi or Tsallis version of the classical correlation, denoted by J Γ
α (ρAB), is

defined as

J Γ
α (ρAB) = max

{Pi}
min
{σA,σB}

S̃Γα (ρ′AB||σA ⊗ σB), (5.17)

where ρ′AB is obtained by performing rank-1 projective measurements as in the def-

inition of original classical correlation (in Eq. (4.18)).

Therefore, quantum correlation using generalized entropies is defined as

DΓα (ρAB) = IΓα (ρAB)− J Γ
α (ρAB), (5.18)

with α ∈ [1
2
, 1) ∪ (1,∞). By using the data processing inequality, which holds in

this range of α, one can prove the non-negativity of the quantum correlation [210].

We now look into the properties of DΓα (ρAB), which provide independent support for

identifying the quantities as correlation measures.

Property 1 IΓα ,J Γ
α ≥ 0 since S̃Γα (ρ||σ) ≥ 0.

Property 2 IΓα ,J Γ
α are vanishing, and therefore, DΓα = 0, for any product state,

ρAB = ρA ⊗ ρB, as S̃Rα (ρ||ρ) = 0. The proof for the vanishing of total correlations

follows by noting that the product state in the argument itself is the state which

gives the optimal relative entropy distance. A similar argument, but for the mea-

sured state, holds for the classical correlation.

Moreover, DΓα = 0 for any quantum-classical state, i.e. any state of the form
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∑
i piρ

A
i ⊗ (|i〉〈i|)B, where {pi} forms a probability distribution, {|i〉} forms an or-

thonormal basis, and ρi are density matrices, when the measurement is performed

on the B part.

Property 3 IΓα ,J Γ
α remain invariant under local unitaries, which follow from the

fact that S̃Rα (ρ||σ) is invariant under all unitaries U . Hence, DΓα is also invariant

under local unitaries.

Property 4 IΓα ,J Γ
α are non increasing under local operations, which follow from

the data processing inequality, S̃Rα (ρ||σ) ≥ S̃Rα (E(ρ)||E(σ)), for any CPTPM E .

Property 5 DΓα is non-negative, as J Γ
α is upper bounded by IΓα . The latter state-

ment is due to the fact that J Γ
α is obtained by performing a local measurement on

ρAB, and we know from the data processing inequality that S̃Γα is monotone under

CPTPM.

As the property 4 and 5 which hold due to the data processing inequality, are

crucial for quantum and classical correaltion, we define the same in the range α ∈
[1
2
, 1)∪ (1,∞). The classical correlation measure that we have defined here, satisfies

all the plausible properties for classical correlation proposed in Ref. [138], except

the one which states that for pure states, the classical correlation reduces to the

von Neumann entropy of the subsystems. We wish to mention that this property

is natural for the measure which involves the von Neumann entropy, and is not

expected to be followed by the measures with generalized entropies. This is because

the definition of classical correlation in terms of the relative entropy reduces naturally

to the one in terms of the conditional entropy in the case of the von Neumann entropy.

We use the convention that each of the definitions of IΓα , J Γ
α and DΓα also incor-

porates a division by log 2 bits, whence all the definitions can be considered to be

dimensionless.

We note here that there has been previous attempts to define quantum discord

by using Tsallis entropies [212, 213, 214]. These definitions however do not always

guarantee positivity of the quantum discord, so defined. Also, the corresponding

total and classical correlations are not necessarily monotonic under local operations.

Ref. [215] defines a quantum correlation by considering the difference between the

Tsallis entropies of the post-measured and pre-measured states. In Ref. [216], a

Gaussian quantum correlation is defined by using the Rényi entropy for α = 2.

Generalized quantum discord based on the Rényi entropy has been defined of late in

Ref. [217] following different approach.
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5.3.3 Special cases

5.3.3.1 Linear quantum discord

The relative linear entropy can be used to define the “linear quantum discord”, given

by

DL(ρAB) = IT2 (ρAB)− J T
2 (ρAB), (5.19)

where IT2 (ρAB) and J T
2 (ρAB) are defined by using the relative linear entropy, given

in Eq. (5.9).

5.3.3.2 Min- and max-quantum discords

We also define the “min- and max-quantum discords” by considering relative min-

and max-entropies as

Dmin(ρAB) = IR1
2

(ρAB)− J R
1
2

(ρAB), (5.20)

and

Dmax(ρAB) = IRα→∞(ρAB)− J R
α→∞(ρAB). (5.21)

5.3.4 Generalized discord of pure states

Any bipartite pure state of two qubits can be written, using Schmidt decomposition,

as

|ψAB〉 =
1∑
i=0

√
λi|iAiB〉, (5.22)

where λi are non-negative real numbers satisfying
∑

i λi = 1. Since a bipartite pure

state is symmetric, it is expected that the state σA ⊗ σB, which minimizes the rela-

tive entropy of |ψAB〉 with uncorrelated states, is also symmetric. Numerical studies

support this view. This fact is not only true for pure bipartite states, but it holds

for all symmetric bipartitite states that are considered in this chapter. Moreover,

numerical results indicate that for arbitrary |ψAB〉, the state σA⊗σB which gives the

minimum, is diagonal in the Schmidt basis of |ψAB〉. To numerically evaluate the

minimum relative entropy distance of a bipartite quantum state ρAB from product

states, we begin by randomly generating bipartite product states σA⊗ σB. Then we

calculate the relative entropies between ρAB and all such σA⊗ σB. The minimum of

these relative entropies is considered to be the minimum relative entropy distance.

We repeat the procedure for a larger set of randomly chosen product states. We
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terminate the process when the minimum does not change within the required preci-

sion 1. Note that the numerical study is performed without the assumptions that the

product state at which the minimum is attained is symmetric and that it is diagonal

in the Schmidt basis. We have followed the same procedure throughout the chapter

to numerically evaluate the different correlations. Therefore, the minimum σA or σB

is given by

σA = σB = σ ≡
1∑
i=0

ai|i〉〈i|, (5.23)

where ai are non-negative real numbers satisfying
∑

i ai = 1. With these assump-

tions, the total correlation of |ψAB〉 is given by

IRα (|ψAB〉) = min
{a}

1

α− 1
log
[
λa

2(1−α)
α + (1− λ)(1− a)

2(1−α)
α

]α
, (5.24)

where a0 = a, a1 = 1 − a, λ0 = λ, λ1 = 1 − λ. The value of a is obtained from the

condition
1

a
=

(
λ

1− λ

) α
2−3α

+ 1, (5.25)

for α ∈ (2/3, 1) ∪ (1,∞). For 1
2
≤ α ≤ 2

3
, the minimization in Eq. (5.24) yields

IRα (|ψAB〉) =
α

α− 1
log
[

max{λ, 1− λ}
]
. (5.26)

For pure states, numerical searches indicate that the classical correlation is indepen-

dent of the measurement basis. We consider measurement performed in the Schmidt

basis for calculating the classical correlation of the original state. Just like the total

correlation in the original state, the σA⊗σB, which minimizes the relative entropy of

the post-measurement state with uncorrelated states, is symmetric, since we perform

the projective measurement in the Schmidt basis. Moreover, from numerical results,

we find that σA ⊗ σB is again diagonal in the Schmidt basis of |ψAB〉. The Rényi

classical correlation of |ψAB〉 is therefore given by

J R
α (|ψAB〉) = min

{a}

1

α− 1
log
[
λαa2(1−α) + (1− λ)α(1− a)2(1−α)

]
. (5.27)

1We would like to mention that we have generated 106 − 107 product states in the two qubit
Hilbert space to check all the numerical results presented in this chapter. However, we have found
that the measure converges satisfactorily enough even within 105 number of states.
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The value of a is obtained from the condition

1

a
=

(
λ

1− λ

) α
1−2α

+ 1, (5.28)

for α ∈ (1/2, 1) ∪ (1,∞).

The linear quantum discord for |ψAB〉 is given by

DL(|ψAB〉) =
(√

λ+
√

1− λ
)4 −

(√
λ+
√

1− λ
)2
. (5.29)

We find that the min-quantum discord is vanishing for every two-qubit pure state.

We believe that this is a peculiarity of some elements of the class of information-

theoretic quantum correlation measures that are defined according to the premise

that subtracting classical correlations from total correlations will produce quantum

correlations. This may perhaps be paralleled with the fact that although it was per-

haps considered desirable that all entanglement measures should possess the prop-

erty that they should vanish for separable states and only for separable states, the

discovery of bound entangled states [218, 219] led us to the fact that distillable entan-

glement [220, 221, 222] can vanish for certain entangled states as well. It should be

noted that in contradistinction to distillable entanglement, the min-quantum discord

can be non-zero for certain separable states, indicating that at least in this sense,

the space of information-theoretic quantum correlations is richer than the space of

entanglement measures.

The max-quantum discord for |ψAB〉 is given by

Dmax(|ψAB〉) = log

[
( 3
√
λ+ 3
√

1− λ)3

(
√
λ+
√

1− λ)2

]
. (5.30)

In Fig. 5.1, we plot the Rényi quantum correlation of |ψAB〉 for various values

of α. We have also performed the entire calculations for the Tsallis discord and

find that its behavior is qualitatively similar to the Rényi discord. In Fig. 5.2, we

have exhibited the Tsallis discord for bipartite pure states, which clearly indicate

the similarity between the two discords. In the rest of the chapter, we will only plot

the Rényi discord.
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Figure 5.1: Rényi quantum correlation, DRα , with respect to λ, of |ψAB〉 =
√
λ|00〉+√

(1− λ)|11〉, for different α. Both axes are dimensionless.

5.3.5 Generalized discord of mixed states: Some examples

(i) Werner states: Consider the Werner state, given by

ρW = p|ψ−〉〈ψ−|+ (1− p)I
4
,

where |ψ−〉 = 1√
2
(|01〉 − |10〉), I denotes the identity operator on the two-qubit

Hilbert space, and 0 ≤ p ≤ 1. Suppose the σminA and σminB are the optimal σA and σB

which minimizes the relative Rényi entropy of ρW with uncorrelated states. Using

the fact that the Werner state is symmetric and local unitarily invariant, we choose

σminA = σminB = σ ≡ a0|0〉〈0|+ a1|1〉〈1|, (5.31)

where ai are non-negative real numbers satisfying
∑

i ai = 1. Here we have assumed

that σA ⊗ σB, which minimizes the relative entropy of ρW with uncorrelated states,

is symmetric. Detail numerical study support our assumption, as mentioned in Sec.

5.3.4. It is now possible to perform the minimization for α ∈ [2
3
, 1) ∪ (1,∞). In this

range, the relative Rényi entropy distance corresponding to the total correlations is

minimum for a0 = a1 = 1
2
. Therefore, the Rényi total correlation of the Werner state
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Figure 5.2: Tsallis quantum correlation, DTα , with respect to λ, of |ψAB〉 =√
λ|00〉 +

√
(1− λ)|11〉, for different α. Both axes are dimensionless. The values

of the Tsallis quantum correlation are normalized, whenever possible, so that the
maximal quantum correlations are of unit value.

for α ≥ 2
3

(α 6= 1) is given by

IRα (ρW ) = 2 +
1

α− 1
log

1

4α
[
(1 + 3p)α + 3(1− p)α

]
. (5.32)

Just like for the case of pure bipartite states, the Rényi classical correlation is again

independent of measurement basis, as is expected from the property of rotational

invariance of the Werner state.

Numerical observations also suggest that for α ≥ 1
2

(α 6= 1) and for any p, the

relative Rényi entropy is minimum at σA ⊗ σB = I
4

for the post-measurement state

corresponding to the Werner state. So the Rényi classical correlation, in this range

of α, is given by

J R
α (ρW ) = 2 +

1

α− 1
log

1

4α
[
2(1 + p)α + 2(1− p)α

]
. (5.33)

Hence, the Rényi quantum correlation of the Werner state for α ≥ 2
3

(α 6= 1) is given

by

DRα (ρW ) =
1

α− 1
log

[
(1 + 3p)α + 3(1− p)α

2(1 + p)α + 2(1− p)α

]
. (5.34)

For 1
2
≤ α < 2

3
, we find the Rényi quantum correlation for the Werner states by
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numerical evaluation. In Fig. 5.3, we exhibit the Rényi quantum correlation for the

Werner states for different values of α.
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Figure 5.3: Rényi quantum correlation, DRα , with respect to p, of the Werner state,
ρW = p|ψ−〉〈ψ−|+ (1− p)1

4
I, for different α. Both axes are dimensionless.

The Rényi quantum correlation is maximum for the Werner state at p = 1 for

α ≥ 2
3
. The singlet state, and states that are local unitarily connected with it,

is therefore maximally Rényi quantum correlated in that range of α, among the

Werner states. However, for 1
2
≤ α < 2

3
, the Bell states are not the maximally Rényi

quantum correlated states. In this range of α, we get maximal quantum correlation

among the Werner states, for a value of p that is different from unity. For example,

for α = 0.6, we find that the state, ρW , with mixing parameter p ≈ 0.96 has the

maximal quantum correlation among all Werner states. For α = 1/2, the same is at

p ≈ 0.88. For α = 1
2
, i.e., for min-entropy, the singlet has zero quantum correlation.

Indeed, all pure states have vanishing min-quantum discord. We will visit this issue

again in Sec. 5.3.6.

The linear quantum discord for the Werner state is

DL(ρW ) =
1

4

[
(1 + 3p)2 + (1− p)2 − 2(1 + p)2

]
. (5.35)

The max-quantum discord can also be calculated similarly for the Werner state and

is given by

Dmax(ρW ) = log

[
(1 + 3p)

(1 + p)

]
. (5.36)
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We have numerically evaluated the min-quantum discord for the Werner state (see

Fig. 5.3).

(ii) Bell mixture: We consider a mixture of two Bell states, given by

ρBM = p|φ+〉〈φ+|+ (1− p)|φ−〉〈φ−|,

where |φ+〉 = 1√
2
(|00〉 + |11〉), |φ−〉 = 1√

2
(|00〉 − |11〉) and 0 ≤ p ≤ 1. Numerical

observations suggests that

IΓα (ρBM) = S̃Γα

(
ρBM ||

I

4

)
,

for α ≥ 2
3

(α 6= 1). Hence, in this range of α,

IRα (ρBM) = 2 +
1

α− 1
log
[
pα + (1− p)α

]
. (5.37)

We have found numerically that if one performs measurement in the {|0〉, |1〉} basis,

the relative entropy of the post-measurement state with I
4

gives the Rényi classical

correlation for the entire range of α, i.e., for α ∈ (1
2
, 1) ∪ (1,∞), and it is equal to

unity for any p and α. Hence for α ≥ 2
3

(α 6= 1),

DRα (ρBM) = 1 +
1

α− 1
log [pα + (1− p)α] . (5.38)

The linear quantum discord for this state is given by

DL(ρBM) = 8(p2 − p) + 2. (5.39)

Similarly,

Dmax(ρBM) = 1 + log [max{p, 1− p}] . (5.40)

In Fig. 5.4, the Rényi quantum correlations for ρBM is depicted for different values

of α.

(iii) Mixture of Bell state and a product state: Consider the state given by

ρBN = p|φ+〉〈φ+|+ (1− p)|00〉〈00|.

The Rényi quantum correlation is calculated numerically, and in Fig. 5.5, we plot it

for ρBN , for different values of α.
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Figure 5.4: Rényi quantum correlation, DRα , with respect to p, of the Bell mixture,
ρBM = p|φ+〉〈φ+|+ (1− p)|φ−〉〈φ−|, for different values of α. Both axes are dimen-
sionless.

5.3.6 Sandwiched vs traditional relative entropies

Until now, in this section, we have used the sandwiched relative entropy distances

to define the Rényi and Tsallis quantum correlations. We now briefly consider the

traditional variety for defining quantum correlation, and discuss some of its impli-

cations. In the preceding subsections, we have observed anomalous behavior of the

Rényi quantum correlation in the range 1
2
≤ α < 2

3
for pure states, as well as in cer-

tain families of mixed states in the neighborhood of pure states. In these cases, we

have, e.g., seen that the Bell states are not the maximally Rényi quantum correlated

state for α < 2
3

and at α = 1
2
, i.e, for the min- entropy, all pure states have vanishing

quantum correlations.

We can also define quantum correlations with the traditional relative Rényi and

Tsallis entropies. The properties (1-4) discussed in Sec. 5.2, are also followed by

both the traditional relative entropies [223], but the data processing inequality holds

for α ∈ [0, 1) ∪ (1, 2] [224, 225, 226]. We can therefore define quantum correlation

with traditional relative entropy distances for this range of α. If we consider the tra-

ditional relative entropies, then we do not see any anomalous behavior of the Rényi

quantum correlation. But from the traditional version of the relative Rényi entropy,

we do not get the min- entropy. Moreover, in [195], the authors have argued that the

sandwiched relative Rényi entropy is operationally relevant in the strong converse
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Figure 5.5: Rényi quantum correlation, DRα , with respect to p, of ρBN = p|φ+〉〈φ+|+
(1− p)|00〉〈00|, for different α. Both axes are dimensionless.

problem of quantum hypothesis testing for α > 1, but for α < 1, the traditional

version is more relevant from an operational point of view. The anomalous behavior

of the quantum correlation with the sandwiched relative entropy distances seems to

indicate that to define quantum correlation for α < 1, the more appropriate candi-

dates are the traditional relative entropies. Here we discuss about the traditional

Rényi quantum correlation for two-qubit pure states and the Werner state.

(i) Pure states: Numerical observations similar to the case with the sandwiched va-

riety, give us that the total correlation of a two-qubit pure state, |ψAB〉 =
1∑
i=0

√
λi|iAiB〉,

for traditional relative Rényi entropy, with α ∈ (1
2
, 1), is given by

ITRα (|ψAB〉) = min
{a}

1

α− 1
log
[
λa2(1−α) + (1− λ)(1− a)2(1−α)

]
, (5.41)

where 0 ≤ a ≤ 1, and the value of a is obtained from the condition

1

a
=

(
λ

1− λ

) 1
1−2α

+ 1. (5.42)

The classical correlation in the traditional case in computed numerically. The

numerical computation is performed by the same numerical recipe as mentioned in

Sec. 5.3.4.
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Figure 5.6: Traditional Rényi quantum correlation, DTRα , with respect to λ, of
|ψAB〉 =

√
λ|00〉+

√
(1− λ)|11〉 for different α. Both axes are dimensionless.

In Fig. 5.6, we have plotted the DTRα (|ψAB〉), for different values of α. No anoma-

lous behavior can be seen, and the maximally entangled states have maximal quan-

tum correlations.

(ii) Werner states: Like in the sandwiched version, exploiting the rotational in-

variance and symmetry of the Werner state, it can be shown analytically that the

total correlation of the Werner state for the traditional relative Rényi entropy, for

α ∈ [1
2
, 1), is given by

ITRα (ρW ) = 2 +
1

α− 1
log

1

4α
[
(1 + 3p)α + 3(1− p)α

]
. (5.43)

The classical correlation of the Werner state is also measurement basis indepen-

dent for the traditional version, like the sandwiched one. We get that the classical

correlation, in this range, is given by

J TR
α (ρW ) = 2 +

1

α− 1
log

1

4α
[
2(1 + p)α + 2(1− p)α

]
. (5.44)

The forms of the total and classical correlations, in this case, are equivalent to those

in the sandwiched version. But here, the range of α is different. Hence, for α ∈ [1
2
, 1),
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Figure 5.7: Traditional Rényi quantum correlation, DTRα , with respect to p of
the Werner state, ρW = p|ψ−〉〈ψ−| + (1 − p)1

4
I, for different α. Both axes are

dimensionless.

the traditional Rényi quantum correlation for the Werner state is given by

DTRα (ρW ) =
1

α− 1
log

[
(1 + 3p)α + 3(1− p)α

2(1 + p)α + 2(1− p)α

]
. (5.45)

In Fig. 5.7, we have plotted the DTRα (ρW ), for different values of α.

5.4 Application: Detecting criticality in quantum

Ising model

In this section, we show that the Rényi and Tsallis quantum correlations can be

applied to detect cooperative phenomena in quantum many-body systems. Let us

consider a system of N quantum spin-1/2 particles, described by the one-dimensional

quantum Ising model [227, 228, 229]. Such models can be simulated by using ultra-

cold gases in a controlled way in the laboratories [36, 230, 231, 232, 233, 234, 235],

and is also known to describe Hamiltonians of materials [236, 237, 238, 239]. The

Hamiltonian for this system is given by

H = J
N∑
i=1

σxi σ
x
i+1 + h

N∑
i=1

σzi , (5.46)
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where J is the coupling constant for the nearest neighbor interaction, σ’s are the

Pauli spin matrices, and h represents the external transverse magnetic field applied

across the system. Periodic boundary condition is assumed. The Hamiltonian can

be diagonalized by applying Jordan-Wigner, Fourier, and Bogoliubov transforma-

tions [227]. At zero temperature, it undergoes a quantum phase transition (QPT)

driven by the transverse magnetic field at λ ≡ h

J
= λc ≡ 1 [227]. Such a transi-

tion has been detected by using different order parameters [227, 228, 229, 240, 241],

including quantum correlation measures like concurrence [34, 35], geometric mea-

sures [161, 242, 243, 244, 245], and quantum discord [166, 167, 168, 169].

We now investigate the behavior of the Rényi and Tsallis quantum correlations

of the nearest neighbor density matrix (reduced density matrix of two neighboring

spins) at zero temperature, near the quantum critical point. Note that we have re-

verted back to the sandwiched version of the relative entropies in this section. The

nearest neighbor bipartite density matrix, ρAB, of the ground state of the Hamil-

tonian given by Eq. (5.46), represented by ρAB, can be written [227] in terms of

the diagonal two-site correlators and the average magnetization in z-direction. The

density matrix, ρAB, in the thermodynamic limit of N →∞, is given by

ρAB =


α+ +

Mz

2
0 0 β−

0 α− β+ 0

0 β+ α− 0

β− 0 0 α+ −
Mz

2

,

where α± =
1

4
(1±Tzz), β± =

Txx ± Tyy
4

with Tij = Tr(σi⊗σjρAB) and Mz = Tr(IA⊗
σzρAB). The correlations and transverse magnetization, for the zero-temperature

state, are given by [227]

T xx(λ) = G(−1, λ),

T yy(λ) = G(1, λ), (5.47)

T zz(λ) = [M z(λ)]2 −G(1, λ)G(−1, λ),

where

G(R, λ) =
1

π

∫ π

0

dφ
(sin(φR) sinφ− cosφ(cosφ− λ))

Λ(λ)

(5.48)
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and

M z(λ) = − 1

π

∫ π

0

dφ
(cosφ− λ)

Λ(λ)
.

(5.49)

Here

Λ(x) =
{

sin2 φ + [x− cosφ]2
} 1

2 , (5.50)

and

λ =
h

J
. (5.51)

Note that λ is a dimensionless variable. The Rényi and Tsallis quantum correlations

are calculated for the state, ρAB, for different values of α. In Fig. 5.8, we plot

the Rényi quantum correlation as a function of λ for different values of α. QPT

corresponds to a point of inflexion in the DΓα versus λ curve and dDΓα
dλ

diverges there.

We claim that the derivatives of the Rényi (and the Tsallis) discords do diverge at

the critical point. The seeming finiteness of the derivative at the critical point has

to do with the finite spacing of the variable λ. To see this, we perform a finite-size

scaling analysis of the full width at half maxima, of the peak that is obtained around

the critical point for finite size (see Fig. 5.9).

This feature is distinctly different from the variation of the derivative of the

quantum discord with respect to λ around the QPT point, which exhibits a point

of inflexion at λ = 1 [166, 167, 168, 169] (cf. [246]). It is only the second derivative

of quantum discord with respect to λ, which diverges at the QPT point. This is an

uncomfortable and intriguing feature of quantum discord, and is not shared by e.g.

the concurrence at the same quantum critical point [34, 35]. Therefore it is advanta-

geous to use the Rényi and Tsallis quantum correlations to detect phase transitions

and other collective phenomena in quantum many body systems, in comparison to

quantum discord.

Finite-size scaling : The Rényi and Tsallis quantum correlations are shown in

Fig. 5.8 to detect phase transitions in infinite systems. Ultracold gas realization of

such phenomena, however, can simulate the corresponding Hamiltonian for a finite

number of spins [235]. The quantum Ising model, which has been briefly described

earlier in this section, can also be solved for finite-size systems [227]. We calculate

the quantum correlations of nearest neighbor spins for finite spin chains using both

the Tsallis and Rényi entropies. We find that the quantum correlations detect the

transition in finite-size systems too. Again, the transition point corresponds to points
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Figure 5.8: Detecting quantum phase transitions with Rényi quantum correlations.
Rényi quantum correlation, DRα , with respect to λ, of the nearest neighbor bipartite
density matrix at zero temperature, for different values of α. The legends indicate
the values of α. Both axes are dimensionless. Near λ = 1, DRα exhibits a point of
inflection and therefore, the derivative of DRα w.r.t. λ diverges at this point. This
indicates the critical point in this transverse field Ising model.

of inflexion in theDΓα versus λ curves, and narrow bell-shaped peaks in the dDΓα
dλ

versus

λ curves, for different values of N . The bell-shaped curves become more narrow and

peaked with the increase of number of spins. We perform a finite-size scaling analysis

of full-width at half maxima, δN , of the dDΓα
dλ

versus λ curves, and the scaling exponent

is e.g. -0.36 for DR2 (see Fig. 5.9). The exponent is a measure of the rapidity with

which the narrow bell-shaped peak tends to show a divergence with the increment in

system size N . The log− log scaling between the size, N , and the width, δN , clearly

indicates divergence of the derivative at infinite N .

We also perform finite-size scaling analyses of the λNc , the value of λ for which

the derivatives of the Rényi (or Tsallis) quantum correlations with respect to λ has

a maximum for a system of N spins, for several different values of α, and obtain the

corresponding scaling exponents. The exponent is a measure of the rapidity with

which the QPT point, λNc , in a finite size system of size N , approaches the QPT

point, λc, of the infinite system, as a function of N .

Table 5.1 exhibits the scaling exponents for both DRα and DTα for some values of

α. It is found that for α = 2, the scaling exponents are much higher for both DRα
and DTα than any other known measures. In particular, the scaling exponents for

transverse magnetization, fidelity, concurrence, quantum discord, and shared purity

are respectively -1.69, -0.99, -1.87, -1.28, and -1.65 [34, 35, 247, 248, 249].
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Figure 5.9: Scaling analysis of full-width at half maxima, δN , for DR2 . Both axes
are dimensionless.

Table 5.1: The scaling exponents for both DRα and DTα for some values of α.

α DRα DTα
2.0 -3.45 -3.74
10.0 -1.28 -0.87
50.0 -1.25 -2.74

5.5 Chapter summary

Quantum discord is a quantum correlation measure, belonging to the information-

theoretic paradigm, and it has the potential to explain several quantum phenomena

that cannot be explained by invoking the concept of quantum entanglement. In this

chapter, we have defined quantum correlations with generalized classes of entropies,

viz. the Rényi and the Tsallis ones. The usual quantum discord incorporates the

von Neumann entropy in its definition. We have first defined the generalized mutual

information in terms of sandwiched relative entropy distances. Using this definition

of generalized mutual information, we have introduced the generalized quantum cor-

relations, and have shown that they fulfill the intuitively satisfactory properties of

quantum correlation measures. We have evaluated the generalized quantum correla-

tions for pure states and some paradigmatic classes of mixed states.

As an application, we have found that the generalized quantum correlations can
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Figure 5.10: Scaling analysis of Rényi quantum correlation, DRα , for different values
of α, in the one-dimensional quantum Ising model. The legends indicate the values
of α. Both axes are dimensionless.

detect quantum phase transitions in the transverse quantum Ising model. Interest-

ingly, a finite-size scaling analysis reveals that the scaling exponents obtained for the

generalized quantum correlations can be significantly higher than the usual quan-

tum discord as well as other order parameters, like transverse magnetization and

concurrence, at the same critical point. This aspect can lead to the usefulness of

these measures in quantum simulators in ultracold gas experiments, potentially re-

alizing finite versions of quantum spin models. Moreover, while the derivative of the

quantum discord provides only a point of inflexion at the quantum critical point,

the derivative of the generalized quantum correlations defined here signals the same

critical point via a divergence.

N.B. The results presented in this chapter are original. Using the definition

and properties of generalized relative entropies derived in previous papers by other

authors we define generalized mutual information or total correlation. Furthermore,

we define classical correlation by maximizing the total correlation of the post mea-

surement state. Thus, generalized quantum correlation can be defined by taking

the difference between generalized total and classical correlation. After that, we

have calculated generalized quantum correlation of bi-partite pure and paradigmatic

classes of mixed states. We also show that generalized quantum correlation can de-

tect quantum phase transition in tranverse field quantum Ising model with better

finite size scaling.

71



-14

-12

-10

-8

-6

-4

-2

 4  4.5  5  5.5  6  6.5  7

lo
g
 (

λ
c-

λ
cN

)

log N

2
10
50

Figure 5.11: Scaling analysis of Tsallis quantum correlation, DTα , for different values
of α, in the one-dimensional quantum Ising model. The legends indicate the values
of α. Both axes are dimensionless.

The results of this chapter have been published in “Quantum Correlation with

Sandwiched Relative Entropies: Advantageous as Order Parameter in Quantum Phase

Transitions, A. Misra, A. Biswas, A.K. Pati, A. Sen De, U. Sen, Phys. Rev. E 91,

052125 (2015).”

,
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CHAPTER6
Quantum thermal machines and second law

of thermodynamics

6.1 Introduction: Why quantum thermal machines?

The idea of quantum thermal machines (QTMs) have been around for years. What

limits does quantum theory imposes to the performance of QTMs is an important

yet difficult question. This fundamental issue has been of great interest in quantum

thermodynamics for years. Most of models of QTMs are in agreement with the

classic thermodynamic bounds. In contrast, there has been a increasing number

of claims day-by-day that those bounds are not universal and can be surpassed

using quantum resources [126, 127, 250, 251, 252, 253, 254, 255, 256, 257]. These

claims necessitate cautious scrutiny of the working principle of the QTMs in a model

independent approach and development of methods and techniques that can shed

light on the laws of thermodynamics in the quantum regime. These are the main

motivations that underlie the present study of QTMs. Majority of the theoretical

models of QTMs proposed so far need experimental verification. This would not only

advance the state-of-the-art quantum thermodynamics but can also bring revolution

in the device miniaturization technology. As the size of the QTMs approaches much

shorter scale we are inevitably bothered with quantum thermodynamic effects. That

is why it is of utmost importance to study QTMs and formulate their thermodynamic

performance limits. Designing principles that are needed for any application where

efficiency, cooling rate, power and size constraints are crucial is becoming more

relevant day by day. For example, with the increased number of micro-chips and

transistors that produce heat while operating, the need of quantum refrigerators is
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growing more than ever before. Some important but intriguing questions in the filed

of QTMs are as follows:

• How the QTMs differ from their classical counterparts in their working princi-

ple?

• What are the performance bounds of these QTMs?

• Does the Carnot bound on efficiency hold in QTMs?

• What is truly quantum in QTMs? What are the advantages that the quan-

tumness of the QTMs brings?

These queries set the motivations for studying the QTMs in great detail.

6.2 Types of quantum thermal machines

QTMs can be classified mainly in two categories: (i) Reciprocating-cycle (ii) Continuous-

cycle. Recently, a model of (iii) Hybrid-cycle heat machines has been introduced in

Ref. [119].

• (i) Reciprocating-cycle QTMs: A reciprocating cycle consists of strokes in which

the working system is alternately coupled to the hot and cold heat baths.

Generally, it consists of four strokes, as in the case of the Carnot and Otto

cycles, both of which consist two adiabatic strokes where the working medium

is kept isolated from the thermal environments and a working piston drives

the systems. There are also two heat transferring strokes in which the working

medium is alternately coupled to either of the heat baths. In case of the Carnot

cycle the strokes are isothermal, whereas isochores in the Otto cycle. They are

also two-strokes engines [42] which consist of two parts. In one part the working

medium may couple only to the hot bath, whereas the other may couple only

to the cold bath. In the first stroke, both parts interact with their baths but

may not necessarily equilibrate. In the second stroke, the two engine parts are

separated from the baths and are connected to each other. A mutual unitary

operation is applied on them in which work is extracted from.

• (ii) Continuous-cycle QTMs: In microscopic or nanoscale devices that operate

obeying the laws of quantum mechanics, reciprocating cycles imposes crucial

problems. On-off switching of the interation between system and bath and non-

adiabatic operation in quantum domain may affect the energy and heat transfer
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during the cycles. These problems have motivated the study of shortcut to

adibaticity. However, in microscopic regime complete decoupling of system and

bath may not be possible always. For these aforesaid reasons, it is important to

consider continuous-cycle heat machines where the working medium remains

continuously coupled with two heat baths in general, namely the hot and cold

heat baths.

• (iii)Hybrid-cycle QTMs: Recently, a hybrid cycle model of heat machines has

been introduced which is neither continuously coupled with heat bath nor

completely decoupled from the baths also. The speed limits and performance

bounds of this model have also been studied [119].

6.3 Quantum thermodynamic signatures

When we study QTMs, one important aspect is to identify the quantum advan-

tages compared to their classical counterparts. One must differentiate between one

machine which is exploiting the quantum effects and another one which is only op-

erating quantum mechanically without exploiting quantum effects. For example, a

machine is dealing with discrete energy levels but the working principle is exactly

similar to the classical counterpart. This motivates the need of a witness of quan-

tum thermodynamic signatures in QTMs. The idea is very similar to the witness of

entanglement or Bell inequality, where one detects that some states are entangled or

Bell nonlocal as they can pass certain test. Following the same manner, the possibil-

ity of a witness of quantum thermodynamic signatures has recently been addressed

[42]. The main idea of Ref. [42] is to find a upper limit on the power of a machine

which is operating classically. Therefore, violation of this bound can be witnessed as

quantum thermodynamic signatures. In this article [42], minimal set of requirements

have been made for a machine to be considered as classical.

The authors of Ref. [42] following their aforementioned approach has studied

the four-stroke quantum Otto engine in detail. It has been established that a state

independent bound can be posed on the power of the classical machine which is

proportional to the duration of a complete single cycle as long as the product of the

cycle time and energy scale is lower than some fixed limit. They demonstrate that

there lies a regime where a quantum engine can outperform its classical counterpart.

The similar results also holds for two-stroke and continuous cycle engines as they

have shown that in the regime of weak coupling with the bath these cycle forms are
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equivalent. The techniques and concepts used in quantum information theory have

been useful for their study to find quantum thermodynamic signatures.

6.4 Quantum absorption refrigerators

In this section, we study one of the most remarkable QTM, self-contained quantum

absorption refrigerator (QAR). QAR has been proposed in Ref. [258] of late inspired

by the algorithmic cooling. This QAR provides cooling (or polarization) of one of

the constituent qubits without any external control. As the QAR consists of only

three qubits coupled with three baths locally, its working principle is very much sim-

ple. Considering the low dimensions of this machine, it is also argued to be smallest

possible quantum refrigerator [258]. Despite its simplicity it promises significant ap-

plications in quantum technology, medical science, biology, chemical industry. This

QAR could lead to breakthroughs in high-sensitivity NMR (Nuclear Magnetic Res-

onance) spectroscopy, development of scalable NMR quantum computers, quantum

error correction protocols, etc. Apart from its promising applied importance, due to

its simple working principle it can also be interesting to unravel quantum signatures

in heat machines and a good testing bed for quantum thermodynamic phenomena.

Efficiency of this model, general performance bounds, role of quantum resources like

entanglement, coherence for better performance have been extensively demonstrated

[117, 125, 127]. Recently, the importance of quantum entanglement to enhance the

performance of the QAR has been pointed out [125]. Moreover, it has been shown

that a little amount of coherence of the initial state of the QAR can enhance the

performance significantly in the one-shot (transient) regime [117]. This QAR can

also be utilized to generate steady entanglement in thermal environment. How to

implement this model in the laboratory has also been proposed of late [259, 260].

Thus, the small quantum refrigerator has become a active field of study in recent

times. Let us briefly discuss the model introduced in Ref. [258].

The model: The three qubits consisting the refrigerator are coupled to three

different baths at different temperatures. The first qubit which is the object to be

cooled, is coupled to the coldest bath at temperature TC . The second qubit which

takes energy from the first qubit and disposes into the environvent, is coupled to a

hotter bath at temperature TR. The third and final qubit which provides the free

energy for refrigeration is coulped to the hottest bath at temperature TH . Here

TC ≤ TR ≤ TH . Without loss of generality, the ground state energy of all the

qubits are considered to be zero and the excited state energy of the ith qubit is
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Ei, where i ∈ {1, 2, 3}. The free Hamiltonian of the combined system is H0 =∑3
i=1Ei|1〉i〈1|. In thermal equilibrium the qubits are in the corresponding thermal

states τi = ri |0〉 〈0| + (1 − ri) |1〉 〈1|, where ri = (1 + e−βiEi)−1 is the probability of

the ith qubit to be in the ground state. Here βi is the inverse temperature 1/Ti.

The qubits interact via the following interacting HamiltonianHint = g(|101〉 〈010|+
|010〉 〈101|). The interaction strength g is taken weak enough compared to the the

energy levels {Ei} , i.e., g << Ei, so that the energy levels and the energy eigenstates

of the combined system are almost unaltered and the temperature of the each qubit

can be defined neglecting the interaction energy [258]. The total Hamiltonian of the

combined system is given by

H =
3∑
i=1

Ei|1〉i〈1|+ g(|101〉 〈010|+ |010〉 〈101|). (6.1)

As the qubits are coupled with heat baths at each time step there is finite prob-

ability that it will thermalize. Suppose, pi is the probability density per unit time

that the ith qubit will thermalize back. Then the evolution of the combined system

is given by the following master eqaution

∂ρ

∂t
= −i[H0 +Hint, ρ] +

3∑
i=1

pi(τi ⊗ Triρ− ρ). (6.2)

It is necessary to mention that this master equation is valid only in the perturbative

regime where pi, g << Ei and pi << 1. The thermalization of more than one

qubit simultaneously is of second order in pi’s an hence can be neglected. At any

time instant the reduced density matrix of a single qubit is incoherent in energy

eigenbasis and hence the temperature of the qubits can be defined locally. Here, the

temperature defines the purity of the qubit being in the ground states.

Transient cooling: The study of transient quantum thermodynamics is cer-

tainly a topic of interest, both because in practical applications the transient regime

might be the only accessible one, and quantum-driven enhancement of thermody-

namic performance can, in certain cases, be better achieved at earlier stages of the

dynamics, before the detrimental effects of Markovian baths kicks in. However, pre-

cise time control may be needed in transient cooling in QAR. We show that one

can construct a QAR that provides refrigeration only in the transient regime [261].

The machine either does not provide cooling in the steady state, or the steady state

is achieved after a long time. We propose a canonical form of qubit-bath interac-
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tion parameters that facilitates the analysis of transient cooling without steady-state

cooling. It has been observed that transient cooling without steady-state cooling is

significantly better in terms of cooling power and efficiency. We also discuss how

the performance of the transient refrigerator can be tuned by the temperature of the

hot bath, and comment on the robustness of the phenomena against a small per-

turbation to the canonical form of the qubit-bath interaction parameters. We also

show that with certain modification in the canonical form of qubit-bath interaction

parameters which provides transient cooling without steady state cooling, it is pos-

sible to have fast and steady cooling towards the minimum steady state temperature

where no precise time control is required to avail the transient cooling. We demon-

strate our results for two separate models of thermalization. We perform a study

of the dynamics of the bipartite and multipartite quantum correlations for both the

models of thermalization. In the strong coupling regime, we find that the minimum

achievable temperature of the refrigerated qubit and the minimal time to get optimal

cooling can remain unchanged, for a significant region of the parameter space of the

bath coupling strength as the initial dynamics is dictated by the coherent interaction

among the qubits.

6.5 Quantum heat engines and Carnot bound

The Carnot bound can be achieved only by the ideal, reversible, infinitely-slow

Carnot cycle and the efficiency of the same iis given by

ηC = 1− Tc
Th
, (6.3)

where Tc(h) is the temperature of the cold (hot) heat bath. There is no common

consensus regarding Carnot bound in quantum thermodynamics yet. Though it is

considered universal in several models of quantum heat machines [41, 262, 263] it

has also been contradicted many times[127, 251, 254, 255, 257]. These claims have

been mainly based on the premise that there may be quantum thermodynamic re-

sources, such as quantum coherence [255], squeez bath [126, 127, 253], or negative

temperature of the bath [264] which may enhance work extraction or cooling ability

of the quantum thermal machines. However, common consensus regarding Carnot

bound in quantum thermodynamics is still lacking. In some models of quantum ther-

mal machines, a cautious thermodynamic analysis has shown that the performance

bounds do not surpass the Carnot limit [263]. As the thermodynamic consequences
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of quantum effects, such as coherence, entanglement as well as the work extraction

or cooling power of quantum states, are still not completely understood yet, such

potential quantum resources must be examined further, considering all the energy

sources and work cost. Recently, in Ref. [265] it has been argued that a engine op-

erating in a Carnot cycle cannot surpass the classical Carnot bound even exploiting

the quantum resources of the working fluid provided it is operating in contact with

thermal baths. It has been also pointed out that energy is needed to maintain a

nonequilibrium state which is in contact with thermal bath, following the concepts

of stochastic thermodynamics.

In this chapter, with a motivation to probe the Carnot bound further we study

the Carnot engine in the context of generalized entropy, namely the Rényi entropy.

Our aim is to understand the physical reason that underlie the Carnot statement of

the second law of thermodynamics. Towards this aim, we first establish the quan-

tum thermodynamics based on the Rényi entropy. Then, we investigate the Carnot

statement of second law of thermodynamics in this generalized thermodynamics. We

also study the Clausius inequality which is the precursor to the Carnot statement.

6.6 Generalized thermodynamics

The foundation of modern quantum thermodynamics research [108, 265, 266, 267,

268] is based on the von Neumann entropy. The maximum entropy principle [17, 18]

with mean energy constraint gives rise to the Gibbs state which plays an important

role in recent works on thermal operations and thermodynamical laws [31, 32, 33,

269]. In this way the theory of quantum thermodynamics is developed based on von

Neumann entropy. It is worth noting that the Gibbs states obtained consist of the

exponential probability distributions. However, there are numerous physical systems

which cannot be described by the Gibbsian exponential probability distribution and

thereby inevitably needs the power law distributions [270]. Precisely, the physics

and thermodynamics of fractal and multifractal systems found in grain boundaries

in metals, fluid dynamics, percolation, diffusion limited aggregation systems, DNA

sequences are described suitably by using the Rényi entropy [189, 270, 271]. More-

over, it is shown that Rényi entropy and its relative versions [272] are indispensable in

defining the second laws of quantum thermodynamics in microscopic regime [31, 33].

It has been known for about half a century, Rényi entropy [171, 273] is endowed

with all the necessary requirements for describing thermodynamics. Only recently

[274] the maximum entropy state with fixed energy was formulated and derived, giv-
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ing rise to the Rényi thermal state indexed by the Rényi parameter, α. When α→ 1,

one obtains all the von Neumann results. We construct here a complete theory of

thermodynamics on par with the von Neumann theory. This generalization enlarges

the scope of another facet of thermodynamics with several second laws [31] and also

the Gibbs preserving maps giving rise to Rényi thermal state preserving maps [269].

Another important outcome of this formalism is in establishing the universality of

second laws of thermodynamics stated as based on the Carnot statement. Further-

more, exploiting the data processing inequalities [272] obeyed by the two versions of

Rényi relative entropies, the Clausius inequality is shown to hold. We thus find that

the Rényi entropy and its relative versions are the ingredients for establishing the

second laws of thermodynamics in this chapter.

6.6.1 Generalized first law of thermodynamics

The Gibbs state, which is the equilibrium state, is obtained by maximizing the von

Neumann entropy with a fixed internal energy. The maximum entropy (MaxEnt)

principle [17, 18] is the underlying principle for such kind of equilibrium condition.

It suggests that changing the definition of entropy functional, as well as the form

of internal energy, gives rise to a new equilibrium state and hence a new theory of

thermodynamics.

The Rényi entropy [273, 275], which is a generalization of the von Neumann

entropy, is given by Sα(ρ) = 1
1−α ln(Trρα), for a density matrix ρ and α ∈ (0, 1) ∪

(1,∞). Note that we do not use the superscript “R” to denote the Rényi entropy,

as unlike chapter 5, here we only deal with the Rényi version of the generalized

entropies. Moreover, we take natural “logarithm” with standard base throughout

the chapter. The Rényi internal energy [274] of ρ is defined as Uα = Tr[ραH]/Trρα,

where H is the Hamiltonian of the system. Note that Sα(ρ) and Uα reduce to von

Neumann entropy, S(ρ) = −Tr (ρ ln ρ) and internal or average energy U = Tr(ρH)

respectively, for α→ 1. The thermal equilibrium state for the Rényi entropy can be

derived using MaxEnt principle, i.e., maximizing Sα(ρ) subject to a fixed internal

energy Uα, and is given by [274]

ρTα =
1

Zα
[1− (1− α)β(H − UTα)]1/(1−α) . (6.4)

Here, Zα = Tr
[
{1− (1− α)β(H − UTα)}1/(1−α)

]
and UTα = Tr[ραTαH]/TrραTα. The

inverse temperature β = 1/T (with the Boltzmann constant is set to unity) is defined
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as β = ∂Sα(ρTα)
∂UTα

which is a function of α. Additionally the constraint [1−(1−α)β(H−
UTα)] ≥ 0 is imposed to ensure the positive semi-definiteness of the thermal density

matrix. Note that the Rényi thermal state reduces to the Gibbs state when α→ 1.

It should be noted that, similar to the Gibbs thermal state, one can also prepare

Rényi thermal states, Eq. (6.4), via environmental interaction and relaxation. A

natural testbed for this would be multifractal systems among others [189]. Further,

the equilibrium free energy can be identified as FTα = UTα − TSα(ρTα) [274]. This

general feature of the MaxEnt is independent of the choice of the form of the the

density matrix [276].

Now, we derive the generalized first law of thermodynamics considering the

change in equilibrium Rényi internal energy as

dUTα =
Tr[dραTα(H − UTα)]

TrραTα
+

Tr(ραTαdH)

TrραTα
. (6.5)

Under quasistatic isothermal process, the change in the entropy of the equilibrium

state is βTr[dραTα(H − UTα)]/TrραTα. Thus, the term Tr[dραTα(H − UTα)]/TrραTα can

be identified as the heat exchanged. Moreover, Tr(ραTαdH)/TrραTα can be identified

as the work done on the system, d̄WTα, where it is considered to be the change in

internal energy due to the change in an extensive parameter. Hence, the Eq. (6.5)

can be recast as

dUTα = d̄QTα +d̄WTα. (6.6)

This is the quantitative statement of the first law of thermodynamics following gen-

eralized theory of statistical mechanics based on the Rényi entropy. For a quasistatic

isothermal process d̄WTα = dFTα, i.e., the infinitesimal change in the equilibrium

free energy is the accessible work in the process. Therefore, for quasistatic isothermal

processes we have

dUTα = dSα(ρTα)/β + dFTα. (6.7)

Note that the generalized first law of thermodynamics reduces to the well known

first law of quantum thermodynamics (based on the von Neumann entropy) when

α→ 1.
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6.6.2 Free energy for nonequilibrium states

Till this point we deal only with equilibrium thermodynamics. What if the sys-

tem is away from equilibrium? In what follows, we study the thermodynamics of

nonequilibrium states using the Rényi relative entropy with a motive to answer this

question.

For a nonequilibrium quantum state ρN , which may be a solution of a dynamical

master equation (such as in Ref. [277]), the Rényi entropy can be written as

Sα(ρN) = Sα(ρTα)− Sα(ρN ‖ ρTα) + ∆α, (6.8)

where Sα(ρ || σ) = 1
α−1

ln Tr[ρασ1−α] is the “traditional Rényi relative entropy”

between two quantum states ρ and σ, and ∆α = 1
α−1

ln [1− β(1− α)(UNα − UTα)]

with UNα = Tr[ραNH]/Tr[ραN ] being the Rényi internal energy of ρN . Now we have

Sα(ρN) = β
[
UNα − (FTα + β−1Sα(ρN ‖ ρTα))

]
+ ∆′α, (6.9)

where ∆′α = [β(UTα − UNα) + ∆α]. One can easily check that ∆′α → 0 when α → 1

and the above equation reduces to the usual von Neumann case. Thus, for nonequi-

librium states we have Sα(ρN) = β(UNα − F̃Nα), where

F̃Nα = FTα + β−1 (Sα(ρN ‖ ρTα)−∆′α) , (6.10)

is the modified free energy of the nonequilibrium state.

Considering again a quasistatic isothermal process, the change in entropy of the

stationary nonequilibrium state is given by

dSα(ρN) = β(dUNα − dF̃Nα) = β [ d̄Qα − d̄Qhkα] , (6.11)

where d̄Qα = Tr[dραN(H − UNα)]/TrραN , and d̄Qhkα = dF̃Nα − d̄Wα, with d̄Wα =

Tr(ραNdH)/TrραN . d̄Qα is the total heat exchanged during the isothermal process

and d̄Qhkα can be identified as the house-keeping heat, in the same spirit as in

stochastic thermodynamics [26, 265, 278, 279, 280], which is used to maintain the

nonequilibrium state away from thermal equilibrium. Now, for isothermal quasistatic

processes in a generic quantum system, the Eq. (6.6) can be recast as

dUNα = d̄Qexα + d̄Wexα = β−1dSα(ρN) + dF̃Nα, (6.12)

82



where we denote excess heat as d̄Qexα = d̄Qα − d̄Qhkα and extractable work as

d̄Wexα = d̄Qhkα+d̄Wα = dF̃Nα. It is worth noticing that the notions of accessible work

and the heat that results in entropy change, drastically differ from the equilibrium

case (cf. Eq. (6.6)). Later, we will see that the notions of heat exchanged and

accessible work in Eq. (6.6) are not compatible in nonequilibrium scenario if the

thermodynamical laws have to be valid in that case too.

The above analysis can also be carried by using the “sandwiched Rényi rela-

tive entropy” [193, 194], which is defined as S̃α(ρ ‖ σ) = 1
α−1

ln Tr[{σ 1−α
2α ρσ

1−α
2α }α],

between two quantum states ρ and σ. As the sandwiched Rényi relative entropy

incorporates the noncommutivity of the quantum states, unlike the traditional ver-

sion, it is intuitively satisfactory to expect that the former can outperform the latter

to unravel quantum features. Indeed, the profound advantages of the sandwiched

relative entropy in studying classical capacity of a quantum channel [193], witnessing

entanglement [196, 281], quantum phase transitions [282], nonasymptotic quantum

information theory [197, 198, 201], etc, have been noticed very recently. Therefore, it

is quite legitimate to extend the study of nonequilibrium quantum thermodynamics

exploiting the sandwiched Rényi relative entropy.

The entropy of a nonequilibrium state ρN can also be written as

Sα(ρN) = Sα(ρTα)− S̃α(ρN ‖ ρTα) + ∆̃α, (6.13)

where ∆̃α = 1
α−1

ln
[
Tr(A1/2αρA1/2α)α/Tr(ρα)

]
and A = [1− (1− α)β(H − UTα)].

Thus, we have Sα(ρN) = β(UNα −FNα), where

FNα = FTα + T
(
S̃α(ρN ‖ ρTα)− ∆̃′α

)
, (6.14)

is the modified free energy and ∆̃′α =
[
β(UTα − UNα) + ∆̃α

]
. Again ∆̃′α,→ 0 when

α → 1 and it recovers the von Neumann case. The nonequilibrium entropy change

and the internal energy change for a quasistatic isothermal process can be derived

following the same way as in the context of Eqs. (6.11) and (6.12). Moreover,

here also the change in the modified free energy dFNα can be distinguished as the

accessible work in a quasistatic isothermal process.
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6.6.2.1 Free energy is minimum for thermal states

The free energy of an arbitrary quantum state is larger than that of a thermal

equilibrium state, i.e., F̃Nα > FTα, for any α. This follows from the Eq.

F̃Nα = FTα + T (Sα(ρN ‖ ρT )−∆′α) , (6.15)

Sα(ρN ‖ ρT ) > 0 and ∆′α 6 0. The first inequality, Sα(ρN ‖ ρT ) > 0, is due to the

positivity of the Rényi relative entropy. The negativity of the latter quantity, can

be shown by demanding the condition β(α− 1)(UNα − UTα) > −1, which is the cut

off condition of consistent probabilistic interpretation of Rényi thermal state, and

the inequality ln(1 + x) ≤ x for all x > −1. Thus, confirming the known result that

MaxEnt state implies minimum free energy.

6.6.3 Second laws of thermodynamics based on Carnot state-

ment

Now let us address the validity of second laws of thermodynamics based on the

Carnot statement [283] of the second law. Consider a four stroke Carnot engine

operating between two reservoirs (heat baths), the hot and the cold with the tem-

peratures Th and Tc respectively (see Fig. 6.1). The baths consist of the Rényi

thermal states with temperatures being α dependent. We find the efficiency of this

engine using the notions of accessible work and heat exchange which is responsi-

ble for entropy production developed earlier. In the first step, the system absorbs

Qex,1 = Th[Sα(γ2, Th) − Sα(γ1, Th)], amount of excess heat in a isothermal process

at temperature Th, from the the hot reservoir and the excess work Wex,1, done by

the system during the process is given by F̃Nα(γ1, Th)− F̃Nα(γ2, Th), where γ is the

external parameter which is varied during the processes throughout the cycle. The

system performs Wex,2 work adiabatically in the second step and as it is an isen-

tropic process the work done is at the cost of internal energy. As a consequence

of performing work adiabatically, the temperature of the system falls down to Tc.

Therefore in this step, Wex,2 = F̃Nα(γ2, Th)− F̃Nα(γ3, Tc) + (Th−Tc)Sα(γ2, Th). Dur-

ing the third step the work is actually done on the system in a isothermal process at

temperature Tc and the system releases some excess heat. The heat absorbed, Qex,3

and the work done, Wex,3 by the system are given by Tc[Sα(γ4, Tc)− Sα(γ3, Tc)] and

F̃Nα(γ3, Tc)− F̃Nα(γ4, Tc), respectively. Note that we are always expressing the work

done and heat absorbed by the system and we follow the same convention for all
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Figure 6.1: Schematic of Carnot cycle. 1 → 2 and 3 → 4 are the two isothermal
steps at constant temperature Th and Tc respectively. 2 → 3 and 4 → 1 are the
adiabatic, isentropic steps. The different steps are performed by varying an external
parameter γ.

the four steps. In the fourth step, work is again performed on the system adiabat-

ically. As a result, the temperature of the system increases from Tc to Th and the

system is returned back to its initial state. The work done by the system is given by

Wex,4 = F̃Nα(γ4, Tc)− F̃Nα(γ1, Th)− (Th − Tc)Sα(γ1, Th). Now, the Carnot efficiency

which is the ratio of total work done by the system and the heat absorbed by the

system in the first step, is given by

ηC =
Wex,1 +Wex,2 +Wex,3 +Wex,4

Qex,1

= 1− Tc
Th
, (6.16)

for arbitrary stationary quantum states. Thus, the Carnot efficiency matches with

the one in classical thermodynamics. Importantly, the Carnot efficiency remains the

same for both the traditional and sandwiched Rényi relative entropies. Since we

consider arbitrary quantum states, it can be stated that the quantum correlation or

coherence cannot be exploited to enhance the efficiency beyond the classical Carnot

limit. Therefore, if we account the accessible work and excess heat properly then

efficiency of any quantum engine undergoing a Carnot cycle is bounded above by ηC .

Thus, the Carnot statement of the second law of thermodynamics has been followed

universally in the Rényi formulation, in parallel with the Gibbsian formulation of

the same [265].

Note that the identification of heat exchange and accessible work in nonequi-

librium scenario which results in accounting the accessible work by change in free

energy (internal energy minus temperature times entropy) in isothermal processes,

is consistent with the Carnot statement of the second law of thermodynamics. Thus,
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the form of free energy

Fα = Uα − TSα (6.17)

is valid (from operational viewpoint, like work extraction) in nonequilibrium scenario

too , where T is the temperature of the corresponding heat bath (the relevant one,

depending on the protocol). One may note that both the free energies in Eqs. (6.10)

and (6.14) are the same, i.e., FNα = F̃Nα, and given by the aforementioned form. It

reflects that the form of the free energy of an nonequilibrium state is independent

of the relative entropy “distances”, though the definition of free energy of the same

is based on its “distance” from the equilibrium one. A priori there is no reason

why this form of free energy should be valid beyond equilibrium where the notion

of temperature is not defined even. But this definition is consistent with second

law of thermodynamics. Moreover, as free energy of the generalized thermal state

is minimum among all the quantum states for all α and the change in free energy is

the accessible work in an isothermal process, it is not possible to extract work from

a single heat bath, which is another aspect of the second laws of thermodynamics.

Thus, the apparent universality of second law of thermodynamics is a consequence

of the form invariance of the free energy. Note this form of the free energy emerges

naturally from the MaxEnt principle.

Interestingly, the apparently different forms of free energies discussed in Ref. [265]

and Ref. [108] are indeed equivalent and is a special case (α→ 1) of the generalized

free energy given in Eq. (6.17). In Ref. [108], it is shown that if there exists any

protocol by which one can extract more work than the free energy difference, then

there would surely be a violation of the second law of thermodynamics. Similarly, in

Ref. [265], it is shown that the maximum extractable work, in any step in a Carnot

cycle, has to be restricted by the free energy difference, if it has to be consistent

with the second law of thermodynamics. Therefore, it is evident that the validity of

the second laws of thermodynamics is a consequence of the form invariance of the

free energy when it is derived from the MaxEnt principle which sets the condition

for equilibrium.

6.6.4 Second laws based on Clausius inequality

The second laws of the thermodynamics can further be substantiated in terms of the

Clausius inequality in the Rényi formalism. Consider nonequilibrium states which

are close to the thermal equilibrium state, such that UNα ≈ UTα, i.e., the difference of
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the internal energies is small. Moreover, consider infinitesimal change of the nonequi-

librium state ρN by Rényi thermal state preserving map Υ, i.e., ρN
Υ−→ ρN +δρ, where

Υ is a completely positive trace preserving (CPTP) map that keeps the Rényi ther-

mal state ρTα intact. As ρN is close to ρTα and Υ introduces infinitesimal change

in ρN , therefore, ρN + δρ is also close to ρTα. Now, from Eq. (6.8), the variation in

the traditional Rényi relative entropy becomes δSα(ρN ‖ ρTα) = −δSα(ρN) + δ∆α,

where δSα(ρN ‖ ρTα) = Sα(Υ[ρN ] ‖ Υ[ρTα])−Sα(ρN ‖ ρTα). Using the data process-

ing inequality [284, 285] for the traditional relative Rényi entropy which says that

δSα(ρN ‖ ρTα) ≤ 0, for α ∈ [0, 2], we show that

β δQtotal ≤ δSα(ρN). (6.18)

This is nothing but the well known Clausius inequality. Also exploiting the data

processing inequality for the sandwiched relative Rényi entropy for α ∈ [1
2
,∞) [194,

209, 210], we show that the Clausius inequality holds for α ∈ [0,∞), where ρTα, ρN

and δρ are mutually commuting

6.6.4.1 Clausius inequality in α ∈ [0, 2]

Consider an infinitesimal change in the density matrix of the system, ρN → Υ[ρN ] =

ρN + δρ via a CPTP map that keeps the Rényi thermal state intact. We dub such

maps as Rényi thermal state preserving maps. The change in the traditional Rényi

relative entropy under such maps, is given by

δSα(ρN ‖ ρT ) = Sα(Υ[ρN ] ‖ ρT )− Sα(ρN ‖ ρT )

= −δSα(ρN) + δ∆α, (6.19)

where

δ∆α =
−β(1− α)

(α− 1) [1− β(1− α)(UNα − UTα)]
δ(UNα − UTα)

=
−β(1− α)

(α− 1) [1− β(1− α)(UNα − UTα)]
δUNα

=
β

[1− β(1− α)(UNα − UTα)]

(
Tr[δραN(H − UNα)]

Tr(ραN)

)
= β δQtotal(1 + β(1− α)(UNα − UTα)). (6.20)

≈ β δQtotal, (6.21)

87



We have used the fact that δQtotal = δUN , as Hamiltonian H remains unchanged

and (UNα − UTα) is very small. Thus, we have

δSα(ρN ‖ ρT ) = −δSα(ρN) + β δQtotal. (6.22)

Now, using the data processing inequality for traditional Rényi relative entropy [284,

285], Sα(Υ[ρN ] ‖ Υ[ρT ]) ≤ Sα(ρN ‖ ρT ), for α ∈ [0, 2], we have

−δSα(ρN) + β δQtotal ≤ 0. (6.23)

Therefore, we have δSα(ρN) ≥ β δQtotal for α ∈ [0, 2], which is a statement of

the second law of thermodynamics in terms of Clausius inequality. The Clausius

inequality for transformations under unital maps near the equilibrium was shown in

Ref. [285] for α ∈ (0, 2], by a different approach. However, the Clausius inequality

derived above applies to the Rényi thermal state preserving operations. Clausius

inequality has also been shown in Ref. [266, 267, 268] for von Neumann case.

Notice that if ρT , ρN and δρ are mutually commuting then the traditional relative

entropies can be replaced by the sandwiched ones in Eq. (6.22) and following the

data processing inequality for sandwiched relative entropies [193, 194] which holds for

α ∈ [1
2
,∞), the Clausius inequality can be established for α ∈ [0,∞) for commuting

case. Remarkably the Clausius inequality implies that the free energy is a monotone

under Rényi thermal state preserving maps, when the Hamiltonian is kept fixed.

This can also be seen from Eq. (6.10), when UNα ≈ UTα.

6.6.4.2 Clausius inequality for noncommuting states for α > 2

If ρN + δρ, ρN and ρT are mutually commuting, then both S̃α(ρN + δρ||ρT ) and

S̃α(ρN ||ρT ) vanish independently to the first order for our case of interest, i.e., for

close by ρN and ρT and for α ∈ [1
2
,∞), we have

δS̃α(ρN ‖ ρT ) = −δSα + β δUNα + δ∆̃′α ≈ 0, (6.24)

where δ∆̃′α is the variation of ∆̃′α = 1
α−1

ln
[
Tr(A1/2αρNA

1/2α)α/Tr(ραN)
]
− β(UNα −

UTα). In this case it can be shown that δ∆̃′α ≈ 0. From Eq. (6.24), to the first order,

we have

−δSα + β δUNα ≈ 0. (6.25)

88



Similarly, even if the states ρN + δρ, ρN and ρT are not mutually commuting, it

can easily be shown that for the integer α, the Sandwiched and traditional Rényi

relative entropies vanish independently to first order. In this case, if the Clausius

inequality is to be satisfied, it amounts to requiring that δ∆̃′α ≥ 0 to first order in

variation. Further, we consider an example of noncommuting states to supplement

our observations.

Now, we explore the Clausius inequality for noncommuting ρTα, ρN and δρ in

α > 2. From Eq. (6.13), we get

δS̃α(ρN ‖ ρTα) = −δSα(ρN) + βδUNα + δ∆̃′α, (6.26)

where ∆̃′α = 1
α−1

ln
[
Tr(A1/2αρA1/2α)α/Tr(ρα)

]
− β(UNα − UTα). Using the data

processing inequality for α ∈ [1
2
,∞), we have

−δSα(ρN) + βδUNα + δ∆̃′α ≤ 0. (6.27)

Therefore, if δ∆̃′α is either positive or vanishing to the first order then Clausius

inequality holds for α ∈ [1
2
,∞). For integer α, Eq. (6.27) becomes an equality, to

the first order and hence, if the Clausius inequality is satisfied then δ∆̃′α ≥ 0 to the

first order. We show that δ∆̃′α = 0 to the first order, with an explicit example. All

these results indicate that for the Clausius inequality to hold in general, for any α

and for any state, δ∆̃′α has to be either positive or zero to the first order in the

variation. We perform a numerical study to investigate the Clausius inequality for

α ≥ 0. We also consider an analytical example for further investigations.

Numerical study:

To explore Clausius inequality numerically, we consider, without loss of generality,

the Hamiltonian of a qubit system to be H = E1 |1〉 〈1|. The thermal state of

the system is given by ρTα = p0 |0〉 〈0| + (1 − p0) |1〉 〈1| which fixes the inverse

temperature as β = (pα0 + pα1 )(p1−α
0 − p1−α

1 )/E1(1 − α). The nonequilibrium state

is taken as ρN = (p0 + δq) |0〉 〈0| + ((1 − p0) − δq) |1〉 〈1| + δq |0〉 〈1| + δq |1〉 〈0|.
The variation of ρN is done by the Rényi thermal state preserving map Υ such

that ρN
Υ−→ ρN + δρ = (p0 + δq)τ + (p1 − δq)η, where η is an arbitrary state and

τ = (ρTα − p1η)/p0 [269]. Fig. 6.2, indeed indicates that the Clausius inequality is

respected, in general, for all ranges of α.

Analytical example:

Without loss of generality, the Hamiltonian of the system can be considered as
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Figure 6.2: Clausius inequality for noncommuting quantum states for various values
of α: Along y-axis three different expressions for the Clausius inequality, which are
the same to the first order, are plotted. The x axis is dimensionless and y axis
has the dimension of energy (Joule). Here, δQ1 = Tr[dραN(H − UNα)]/TrραN and
δQ2 = Tr[dραN(H − UTα)]/TrραN . We take E1 = 1J, p0 = 0.7 and η = 0.4 |0〉 〈0| +
0.6 |1〉 〈1| + 0.2 |0〉 〈1| + 0.2 |1〉 〈0|. The different plots are for two different values of
δq.

H = E1 |1〉 〈1| [286]. Let the thermal state be given by

ρT =

(
p0 0

0 p1

)
, (6.28)

with p0 + p1 = 1. This fixes the inverse temperature as

β =
pα0 + pα1
E1(1− α)

(p1−α
0 − p1−α

1 ). (6.29)

Consider a nonequilibrium state, which is close to the thermal state, as

ρN = (p0 + 2δq) |e0〉 〈e0|+ (p1 − 2δq) |e1〉 〈e1| , (6.30)

where |e0〉 = 1√
1+2δq

(1 + δq, δq)T and |e1〉 = 1√
1+2δq

(−δq, 1 + δq)T . Also, consider a

small variation of ρN , given by

ρN + δρ = (p0 + δq) |e0〉 〈e0|+ (p1 − δq) |e1〉 〈e1| , (6.31)

where δρ = −δq |e0〉 〈e0|+ δq |e1〉 〈e1|. Note that ρT does not commute with ρN and

ρN + δρ. For this example, we have shown that the Clausius inequality is satisfied as

an equality to the first order in δq and furthermore, it is shown that δ∆̃′α is indeed

zero.

As a consequence of the variation ρN → ρN + δρ, the change in the entropy of
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the system is given by

−δSα = −[Sα(ρN + δρ)− Sα(ρN)]

= − 1

1− α
[ln{Tr[(ρN + δρ)α]} − ln{Tr[ραN ]}]

= − 1

1− α
[ln{(p0 + δq)α + (p1 − δq)α}

− ln{(p0 + 2δq)α + (p1 − 2δq)α}]

=
α δq

1− α

[
pα−1

0 − pα−1
1

pα0 + pα1

]
. (6.32)

Since the nonequilibrium state is close to the thermal state, the change in the internal

energy is same as change in heat to the first order in variation, i.e. δQα ≈ UNα(ρN +

δρ)− UNα(ρN), therefore, we have

δQα ≈
Tr[(ρN + δρ)αH]

Tr[(ρN + δρ)α]
− Tr[ραNH]

Tr[ραN ]

= E1
(p0 + δq)α| 〈e0| 1〉|2 + (p1 − δq)α| 〈e1| 1〉|2

(p0 + δq)α + (p1 − δq)α

− E1
(p0 + 2δq)α| 〈e0| 1〉|2 + (p1 − 2δq)α| 〈e1| 1〉|2

(p0 + 2δq)α + (p1 − 2δq)α

= α δq E1
pα1 (pα−1

0 − pα−1
1 ) + pα−1

1 (pα0 + pα1 )

(pα0 + pα1 )2

= α δq E1
(p0p1)α−1

(pα0 + pα1 )2
. (6.33)

Now, using Eq. (6.29), we have

β δQα =
α δq

1− α
(p1−α

0 − p1−α
1 )

(p0p1)α−1

(pα0 + pα1 )

= − α δq

1− α

[
pα−1

0 − pα−1
1

pα0 + pα1

]
. (6.34)

Combining Eq. (6.32) and Eq. (6.33), we get −δSα + β δQα = 0. Therefore, the

Clausius inequality is satisfied for all values of α, for the qubit case considered above.

Moreover, for this case, the variation in the sandwiched Rényi relative entropy can

be shown to be zero to first order. The change in sandwiched Rényi relative entropy

is given by

(1− α) δS̃α(ρN ||ρT ) = ln Tr [(A+B)α]− ln Tr [Aα] , (6.35)
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where

A = ρ
1−α
2α
T (ρN + δρ) ρ

1−α
2α
T =

∑
i,j

aij |i〉 〈j| ; (6.36)

B = ρ
1−α
2α
T (−δρ) ρ

1−α
2α
T = δq

∑
i,j

bij |i〉 〈j| , (6.37)

with aij = (pipj)
1−α
2α

∑
k qk〈i |ek〉 〈ek| j〉, q0 = p0 + δq and q1 = p1 − δq and bij =

(pipj)
1−α
2α 〈i| (|e0〉〈e0| − |e1〉〈e1|) |j〉. To the first order, we have a00 = p

1−α
α

0 (p0 + δq),

a11 = p
1−α
α

1 (p1− δq), a01 = (p0p1)
1−α
2α δq(p0−p1 +2δq) = a10, b00 = p

1−α
α

0 , b11 = −p
1−α
α

1 ,

b01 = 0 = b10. The eigenvalues of A are given by

µ(s) =
a00 + a11 + s

√
(a00 − a11)2 + 4|a01|2

2

≈ a00 + a11 + s |a00 − a11|
2

, (6.38)

where s = {1,−1}. Similarly, the eigenvalues of (A+B) are given by

ν(s) =
c00 + c11 + s

√
(c00 − c11)2 + 4|c01|2

2
; {s = 1,−1}, (6.39)

where cij = aij + δq bij. To the first order, we have√
(c00 − c11)2 + 4|c01|2

≈ |a00 − a11|+ δq
(a00 − a11)(b00 − b11)

|a00 − a11|
. (6.40)

Therefore, ν(s) = µ(s) + δq m(s), where µ(s) is given by Eq. (6.38) and

m(s) =
b00 + b11 + s (a00−a11)(b00−b11)

|a00−a11|

2
. (6.41)

For a00 ≥ a11, we have µ(1) = a00, µ(−1) = a11, m(1) = b00, m(−1) = b11. For

a00 ≤ a11, we have µ(1) = a11, µ(−1) = a00, m(1) = b11, m(−1) = b00. Now,

ln Tr[(A+B)α] = ln
∑

s={−1,1}

µ(s)α + αδq0 µ(s)α−1m(s)

= ln[µ(1)α + µ(−1)α] + α δq
µ(1)α−1m(1) + µ(−1)α−1m(−1)

[µ(1)α + µ(−1)α]
.

92



Also, we have ln Tr[Aα] = ln[µ(1)α + µ(−1)α]. Therefore,

(1− α)δS̃α(ρN ||ρT ) = α δq

(
µ(1)α−1m(1) + µ(−1)α−1m(−1)

µ(1)α + µ(−1)α

)
≈ α δq0

(
aα−1

00 b00 + aα−1
11 b11

aα00 + aα11

)
≈ α δq0

(
p
α−1
α

0 p
1−α
α

0 − p
α−1
α

1 p
1−α
α

1

p0 + p1

)
≈ 0, (6.42)

where in the second line we have used values of µ(s) and m(s) for the case a00 ≥ a11.

It can be seen easily that the second line is the same for the case a00 ≥ a11, too.

Therefore, δS̃α(ρN ||ρT ) ≈ 0. Hence, for this case, we have δ∆̃′α vanishing to first

order, thereby supporting our observation.

Thus, we have the following results: the Clausius inequality holds (i) for α ∈ [0, 2]

which follows from the data processing inequality for the traditional Rényi case, and

(ii) for α ∈ [1
2
,∞) provided δ∆̃′α is either positive or vanishing to the first order,

which follows from the data processing inequality for the Sandwiched Rényi case

. Moreover, the difference in the data processing inequalities [194, 209, 210, 284]

for the two relative entropies is yet another manifestation of the different quantum

features of the two, which is captured nicely in the context of Clausius inequality.

6.7 Chapter summary

To formulate a complete theory of quantum thermodynamics based on the Rényi

formalism, we explicitly derive the generalized first law of thermodynamics, starting

from the Rényi thermal state. The Rényi thermal state basically defines equilib-

rium temperature and hence the zeroth law of thermodynamics. The main thrust of

this chapter is to point out that the second laws of thermodynamics can be consis-

tently derived based on the Rényi entropy and its relative versions. The overarching

principle here is the well-known MaxEnt principle, given internal energy constraint.

Beyond equilibrium, the notion of heat and work is not so well defined and

whether the second law of thermodynamics is valid in this regime is an intriguing

question. We have successfully demonstrated that the proper identification of heat

and work beyond equilibrium, in fact, plays the pivotal role to establish a valid

second law which is respected universally. To correctly identify heat and work be-
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yond equilibrium that is consistent with the second law of thermodynamics, we have

exploited the equilibrium entropy associated with thermal density matrix and the

relative entropy between an arbitrary density matrix and the thermal density matrix.

Further, we have established that the universality of the second law of thermody-

namics based on the Carnot statement is the manifestation of this form invariance

of free energy which holds even beyond equilibrium.

Using the data processing inequalities for the traditional and the sandwiched rel-

ative Rényi entropies we establish the validity of the Clausius inequality and hence

strengthen the second laws of thermodynamics developed here. Our results, specifi-

cally, the monotonicity of free energy pave the way to an operational resource theory

of quantum thermodynamics with the Rényi thermal state being the free state and

the allowed operations being the Rényi thermal state preserving maps. In this way,

we have exhibited another important connection between the concepts of information

theory and thermodynamics in modern quantum framework. It may not be out of

place here to point out the changes that the Renyi thermal state entails two known

frameworks based on the Gibbs thermal state: (a) the Green function theory of

many-particle systems [287, 288, 289] and hence also (b) the Kubo-Martin-Schwinger

(KMS) condition [289].

N.B. This chapter is mainly based on original work. We have started from the

Rènyi thermal state derived using MaxEnt principle in [274] and establish the first

law of quantum thermodynamics in the Rènyi entropic formulation. In establishing

the first and second laws of quantum thermodynamics, we have correctly identified

accessible work and heat exchange both in equilibrium and non-equilibrium cases.

The free energy (internal energy minus temperature times entropy) remains unal-

tered, when all the entities entering this relation are suitably defined. Using Rènyi

relative entropies we have shown that this form invariance holds even beyond equilib-

rium and has profound operational significance in isothermal process. These results

reduce to the Gibbs-von Neumann results when the Rènyi entropic parameter ap-

proaches 1. We show that the universality of the Carnot statement of the second

law is a consequence of the form invariance of the free energy, which is in turn the

consequence of maximum entropy principle. Further, the Clausius inequality, which

is the precursor to the Carnot statement, is also shown to hold based on the data

processing inequalities for the traditional and sandwiched R enyi relative entropies.

Thus, we find that the thermodynamics of nonequilibrium state and its deviation

from equilibrium together determine the thermodynamic laws.
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The result of this chapter has been published in “Quantum Rényi relative en-

tropies affirm universality of thermodynamics, A. Misra, U. Singh, M. N. Bera,

A.K. Rajagopal, Phys. Rev. E, 92, 042161 (2015).”
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CHAPTER7
Summary and future directions

Thermodynamics has always been experimentally motivated. Its purpose is to de-

velop principles that tell us what types of machines we can build, and what are the

limits of their performance. Our ability to manipulate a physical system depends on

the information about the system. Therefore, recent study to understand the thermo-

dynamics of quantum systems have been inspired by quantum information theory to

a great extent. In this thesis, we have investigated some important thermodynamic

aspects of quantum coherence and correlations. The present thesis encompasses the

interplay between the resource theory of quantum coherence and thermodynamics,

role of generalized quantum correlations in detecting quantum phase transitions in

the laboratory, importance of maximum entropy principle to establish the universal-

ity of the Carnot limit in quantum thermodynamics. The main points of the thesis

and possible future directions inspired by the analysis of the work carried out in this

thesis are highlighted as follows:

• How much work can be extracted from quantum states harnessing its quan-

tumness has been of prime interest recently. The extraction of work from

quantum states has been the subject of many fruitful investigations. This has

lead to useful insights into the role of coherence, correlations, and entangle-

ment for work extraction. In turn it is also impotatnt to look into the work

cost for establishing correlations and coherence. We have explored the intimate

connections between the resource theory of quantum coherence and thermo-

dynamic limitations on the processing of quantum coherence. In particular,

we have studied the creation of quantum coherence by unitary transformations

with limited energy. We go on even further to present a comparative inves-

tigation of creation of quantum coherence and mutual information within the
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imposed thermodynamic constraints. We have found the maximal coherence

that can be created under unitary operations starting from a thermal state and

the unitary transformation that creates the maximal coherence. We have also

found the maximal achievable coherence under the constraint on the available

energy. We have established that when maximal coherence is created with lim-

ited energy, the total correlation created in the process is upper bounded by

the maximal coherence and vice versa. For two qubit systems we have shown

that there does not exist any unitary transformation that creates maximal co-

herence and maximal total correlation simultaneously with a limited energy

cost. It would be interesting to explore what happens for quantum states with

arbitrary number of parties and arbitrary dimensions. Our results are relevant

for the quantum information processing in physical systems where thermody-

namic considerations cannot be ignored. Thermodynamic protocols based on

unitary operations will be an interesting aspects of future investigations. The

recent developments in the resource theory of quantum thermodynamics are

yet to meet the experimental tests. For example, the global entangling uni-

taries that can extract work from passive but not completely passive states

are not realizable in the laboratory. This indicates the discrepancy between

theoretically extractable work and the practical one. Optomechanical systems

provide suitable testbeds for quantum thermodynamic concepts. Investigating

these quantum thermodynamic issues in optomechanical setups and establish-

ing the possibilities and impossibilities will be challenging. Investigating the

energy cost of creating coherence and correlations in optomechanical systems is

a potential domain for future exploration. Some pertinent questions to ask are:

(i) How much work can be extracted maximally from a quantum states using

unitary or any other restricted class of operations? (ii) What is the best initial

state to extract work from? (iii) What will be the optimal strategies to store

work in quantum states? (iv) What are the possibilities and impossibilities

in the domain of Gaussian operations? These are some important questions

which can be studied based on the optomechanical setups.

• We have introduced a class of quantum correlation measures as differences be-

tween total and classical correlations, in a shared quantum state, in terms of

the sandwiched relative Rényi and Tsallis entropies. We have shown that the

measures satisfy all the plausible axioms for quantum correlations. We have

also demonstrated that the measures can faithfully detect the quantum critical

point in the transverse quantum Ising model and find that they can be used
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to remove an unquieting feature of nearest-neighbor quantum discord in this

respect. Moreover, the measures provide better finite-size scaling exponents of

the quantum critical point than the ones for other known order parameters,

including entanglement and information-theoretic measures of quantum cor-

relations. An obvious domain for future investigations is to examine the role

of generalized quantum correlations to detect phase transitions in finite tem-

perature scenarios. Another fruitful direction to explore is to study quantum

phase transitions in other spin models such as symmetric XXZ model, Lipkin-

Meshkov-Glick (LMG) model, anisotropic XY chain, etc. It has been shown

in Ref. [290] that transverse field XY spin model, entanglement measures are

always ergodic, while discord and work deficit are not for specific values of the

transverse field. Whether generalized quantum correlations are ergodic or not

in these aforesaid spin models are important questions to inquire. It would

also be interesting to investigate whether the generalized quantum correlations

are useful to detect topological phases of matter.

• Exploiting the generalized entropy we have established that the principle of

maximum entropy affirms that no engine can be more efficient than the Carnot

engine even harnessing quantum resources. To establish the universality of the

Carnot statement of the second law of thermodynamics, we have formulated a

complete theory of quantum thermodynamics in the Rényi entropic formalism

exploiting the Rényi relative entropies, starting from the maximum entropy

principle. In establishing the first and second laws of quantum thermody-

namics, we have correctly identified accessible work and heat exchange both

in equilibrium and non-equilibrium cases. The free energy (internal energy

minus temperature times entropy) remains unaltered, when all the entities en-

tering this relation are suitably defined. Exploiting Rényi relative entropies we

have shown that this “form invariance” holds even beyond equilibrium and has

profound operational significance in quantifying accessible work in isothermal

process. These results reduce to the Gibbs-von Neumann results when the

Rényi entropic parameter α approaches 1. Moreover, it is shown that the uni-

versality of the Carnot statement of the second law is the consequence of the

form invariance of the free energy, which is in turn the consequence of maxi-

mum entropy principle. Further, the Clausius inequality, which is the precursor

to the Carnot statement, is also shown to hold based on the data processing

inequalities for the traditional and sandwiched Rényi relative entropies. Thus,

we have shown that the thermodynamics of nonequilibrium state and its de-
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viation from equilibrium together determine the thermodynamic laws. This is

another important manifestation of the concepts of information theory in ther-

modynamics when they are extended to the quantum realm. Our work is a

substantial step towards formulating a complete theory of quantum thermody-

namics and corresponding resource theory based on the generalized entropies.

The Rényi entropy is essential to describe the physics and thermodynamics of

fractals and multi-fractals systems. A full fledged resource theory based on the

Rényi entropy would be fruitful to study the thermodynamics of fractals and

multi-fractals systems.

Considering the ever increasing interest of quantum thermal machines, apart

from surpassing the classical performance bounds, the ultimate performance

limits, efficiency at maximum power, possibility of breaking Nernst’s third

law of these thermal machines will be interesting fields of investigation. How

the presence of quantum coherence or correlations can enhance the perfor-

mance of quantum thermal machines is an important query which still lacks

reasonable understanding. The operation of a heat engine based on a driven

three-level working fluid is shown to be better in the presence of coherence of

the working fluid [42]. However, on the contrary it has been pointed out that

quantum coherence may be detrimental to the speed of a minimal heat engine

model based on a periodically modulated qubit [118], hybrid (of continuous

and reciprocating) cycle heat engine [119]. This clearly tells us that quantum

coherence is at best optional. Therefore, further study is needed to resolve

these issues. Identifying the quantum thermodynamics signatures in thermal

machines still remains elusive. Quantum absorption refrigerator (QAR) can

be a ideal testbed to examine quantum thermodynamic signatures. Recently,

we have shown QAR in the transient regime provides better cooling in terms

of the speed and efficiency. Moreover, the transient regime can be exploited to

examine the quantum thermodynamic signatures before the detrimental effects

of the Markovian baths kick in. Studying the quantum thermal machines in

presence of non-Markovian baths would be interesting. How the partial re-

versibility of work and entropy achieved in these non-Markovian domain can

be exploited to enhance the performances of quantum thermal machines is an

interesting problem. The spin bath models provide a platform to study the

quantum thermal machines in the non-Markovian and strong coupling regime

which can have far reaching impact. Proper identification of heat and accessible

work is crucial in analyzing performance of quantum thermal machines. When
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we venture on the less explored nonadiabatic, strongly coupled, non-Markovian

domains we must ensure that proper identification of heat and work has been

done which is operationally well motivated and consistent with the physical

principles. Only then one can test whether quantum thermal machines can

outperform their classical counterparts. We aim to revisit these fundamental

issues in a systematic manner for quantum thermal machines in future.
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[58] J. Åberg, quant-ph/0612146 .

[59] T. Baumgratz, M. Cramer, and M. B. Plenio, Phys. Rev. Lett. 113, 140401

(2014).

[60] I. Marvian and R. W. Spekkens, Phys. Rev. A 90, 062110 (2014).

[61] G. Gour and R. W. Spekkens, New J. Phys. 10, 033023 (2008).

[62] A. Streltsov, U. Singh, H. S. Dhar, M. N. Bera, and G. Adesso, Phys. Rev.

Lett. 115, 020403 (2015).

[63] M. N. Bera, T. Qureshi, M. A. Siddiqui, and A. K. Pati, Phys. Rev. A 92,

012118 (2015).

[64] R. Angelo and A. Ribeiro, Found. Phys. 45, 1407–1420 (2015).

[65] U. Singh, M. N. Bera, H. S. Dhar, and A. K. Pati, Phys. Rev. A 91, 052115

(2015).

[66] L.-H. Shao, Z. Xi, H. Fan, and Y. Li, Phys. Rev. A 91, 042120 (2015).
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