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Synopsis

0.1 Introduction

This thesis is about a study of some Lambert series. This works was done

during my stay at Harish-Chandra Research Institute as a research scholar. The

thesis can be divided into two main chapters. The theme of the �rst chapter is

modular-type relation associated to Rankin-Selberg L-function. Mainly, we will

obtain an asymptotic expansion of one interesting Lambert series. The summary

of this part is given in Section 0.20.2. In the second chapter we discuss secant zeta

function and its generalization as a Lambert series. The summary of this chapter

is given in Section 0.30.3. Now we begin with some basic de�nitions.

De�nition 0.1.1 (Lambert series) A Lambert series is a series of the form

S(q) :=
∞∑
n=1

a(n)
qn

1− qn
,

where a(n) is any arithmetic function and q ∈ C with |q| < 1.

Then expanding naturally we have

S(q) =
∞∑
n=1

a(n)
∞∑
k=1

qnk =
∞∑
n=1

b(n)qn,

where b(n) =
∑

d|n a(d). If we choose q = exp(−z), where z is a positive real

iii
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number, then the Lambert series will be of the form

S(z) =
∞∑
n=1

b(n) exp(−nz).

Various Lambert series have been studied by many mathematicians. In the fol-

lowing section we will discuss the asymptotic expansion of an interesting Lam-

bert series.

0.2 Modular-type relation associated to Rankin-

Selberg L-function

Let H denote the upper half plane. The Ramanujan cusp form is de�ned as

∆(h) := q
∞∏
n=1

(1− qn)24 =
∞∑
n=1

τ(n)qn,

where q = exp(2πih) with h ∈ H. Ramanujan observed many interesting prop-

erties of Ramanujan tau function τ(n).

In 1981, Zagier [4040] conjectured that the Lambert series
∑∞

n=1 τ
2(n) exp(−nz)

should have an asymptotic expansion when z → 0+, and it can be expressed in

terms of the non-trivial zeros of ζ(s). Hafner and Stopple [1717] veri�ed this con-

jecture. More importantly, Zagier mentioned that the asymptotic expansion of

the above series can actually be used to evaluate the non-trivial zeros of ζ(s), us-

ing only the values of the Ramanujan tau function. Since τ(n) is the nth Fourier

coe�cient of the Ramanujan cusp form of weight 12, one would naturally like

to ask the following question:

Question 0.2.1 Does the Lambert series
∑∞

n=1 c
2(n) exp(−nz) also have an

asymptotic expansion in terms of the non-trivial zeros of ζ(s) when z → 0+,

where c(n) is the nth Fourier coe�cient of any cusp form f over Γ = SL(2,Z).

An a�rmative answer to the above question has been obtained.

Let Sk(Γ) denote the space of cusp forms of weight k for the full modular group

Γ. Let f ∈ Sk(Γ) be a normalized Hecke eigenform with Fourier series expansion
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f(h) =
∞∑
n=1

c(n)e2πinh, (1)

where h ∈ H. Then the associated L-function has an Euler product,

L(s, f) :=
∞∑
n=1

c(n)

ns
=
∏
p∈P

(
1− αp

ps

)−1(
1− βp

ps

)−1

for <(s) >
k + 1

2
,

where αp and βp are complex numbers satisfying αp+βp = c(p) and αpβp = pk−1.

De�nition 0.2.2 (Symmetric square L-function) Let f ∈ Sk(Γ) be a nor-

malized Hecke eigen form. Then the symmetric square L-function associated to

f is de�ned as follows:

D(s) := L(s, Sym2f, ψ)

=
∏
p∈P

(
1− ψ(p)α2

pp
−s)−1(

1− ψ(p)αpβpp
−s)−1(

1− ψ(p)β2
pp
−s)−1

,

where ψ is a Dirichlet character.

De�nition 0.2.3 (Rankin-Selberg L-function) The Rankin-Selberg L-function

associated to f ∈ Sk(Γ) is de�ned by the Dirichlet series

L(s, f ⊗ f) :=
∞∑
n=1

|c2(n)|
ns

,

where c(n) is the nth Fourier coe�cients of f .

Shimura [3535] has studied symmetric square L-function and proved the impor-

tant relationship between symmetric square L-function and Rankin-Selberg L-

function. These two L-functions can be analytically continued to the whole

complex plane except for some poles. Moreover, they satisfy nice functional

equations.

De�nition 0.2.4 (Con�uent hypergeometric function) The following sec-
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ond order di�erential equation (Kummer's equation)

z
d2w

dz2
+ (b− z)

dw

dz
− aw = 0

has two linearly independent solutions M(a, b, z) and U(a, b, z). These solutions

are known as con�uent hypergeometric functions of �rst and second kind re-

spectively. Con�uent hypergeometric function of second kind has an integral

representation

U(a, b, z) =
1

Γ(a)

∫ ∞
0

e−ztta−1(1 + t)b−a−1dt,

where z is a positive real number, a and b are complex variables.

We now state the main result.

Theorem 0.2.5 Let f ∈ Sk(Γ) with f(h) =
∑∞

n=1 c(n)e2πinh. Assume that all

the non-trivial zeros of ζ(s) are simple. Then for positive real z,

∞∑
n=1

|c2(n)|e−4π2nz =
Γ(k)D(k)

(4π2z)kζ(2)
+ P(z)

+ z1−2k

∞∑
n=1

βne
−µn

z U

(
−1

2
, k,

µn
z

)
,

where

P(z) =
∑
ρ

Γ(ρ
2

+ k − 1)ζ(ρ
2
)D(ρ

2
+ k − 1)

ζ ′(ρ)(4π2z)
ρ
2

+k−1

with ρ = x + iy running over the non-trivial zeros of ζ(s). Moreover, the sum

over ρ involves bracketing the terms so that the terms for which

|y − y′| < exp

(
− Ay

log y

)
+ exp

(
− Ay′

log y′

)
holds are included in the same bracket, where A is a suitable positive constant

and µn = 4π2n, βn = 1√
π
c2(n).

To prove Theorem 0.2.50.2.5, we have used the following two important results.

1. The functional equation of Rankin-Selberg L-functional due to Rankin

[2929].
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2. The relation between Rankin-Selberg L-function and symmetric square

L-function given by Shimura [3535].

The proof of Theorem 0.2.50.2.5 was obtained in [88]. This is a joint work with S.

Kanemitsu and K. Chakrabory. The �rst Chapter of the thesis contains details

of the proof of this theorem.

0.3 Cotangent and secant zeta function

Lerch [2222] in 1904 introduced the cotangent zeta function for algebraic irrationals

z and odd positive integers s as follows:

ξ(z, s) :=
∞∑
n=1

cot(nπz)

ns
.

In 1973, Berndt [44] considered the cotangent zeta function for s ∈ C, where his
main motivation was to study the generalized Dedekind sums. He found many

interesting explicit formulas for ξ(z, s) for a quadratic irrational z and an odd

integer s ≥ 3. Berndt's work implies that√
jξ(
√
j, s)π−s ∈ Q,

where j is any positive integer and s ≥ 3 an odd integer.

Recently, Lalín et al. [2121] considered the secant zeta function

ψ(z, s) :=
∞∑
n=1

sec(nπz)

ns
(2)

and found its special values at some particular quadratic irrational arguments.

They conjectured that, when j is any positive integer and s is an even positive

integer,

ψ(
√
j, s)π−s ∈ Q.

The main result of Lalín et al. [2121] is

Theorem 0.3.1 (Lalín, Rodrigue, Rogers) [2121, Theorem 3] For any alge-

braic irrational α and l ∈ 2N, the di�erence between the following special values
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may be explicitly expressed:

(α + 1)l−1ψ

(
α

α + 1
, l

)
− (−α + 1)l−1ψ

(
α

−α + 1
, l

)
=

(πi)l

l!

l∑
m=0

(2m−1 − 1)BmEl−m

(
l

m

)[
(1 + α)m−1 − (1− α)m−1

]
,

(3)

where Bm and Em indicate the Bernoulli and Euler numbers respectively.

We will introduce a generalization of the secant zeta function as a Lambert

series. Using the theory of generalized Dedekind eta-funtion due to Lewittes

[2323], Berndt [33] and Arakawa [11], we shall give a generalization of the Theorem

0.3.10.3.1.

0.3.1 Work of Lewittes, Berndt and Arakawa

Lewittes [2323] de�ned a generalization of the Dedekind eta-function as a Lambert

series

A(z, s, r1, r2) :=
∑

m>−r1

∞∑
k=1

ks−1e[kr2 + k(m+ r1)z], (4)

where (r1, r2) ∈ R2, z ∈ H and s ∈ C. He introduced its associate as

H(z, s, r1, r2) := A(z, s, r1, r2) + e
[s

2

]
A(z, s,−r1,−r2). (5)

Berndt [33] has studied the modular transformation formula of H-function, which

will be discussed in the thesis. Arakawa [11] introduced a generalized eta-function

as follows

η(α, s, p, q) :=
∞∑
n=1

ns−1 e[n(pα + q)]

1− e[nα]
with <(s) < 0, (6)

where (p, q) ∈ R2 and α is an algebraic irrational number.

Using the celebrated Thue-Siegel-Roth theorem, Arakawa proved that the

series in (66) is absolutely convergent for <(s) < 0.
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0.3.2 Generalization of secant zeta function

We introduce two Lambert series corresponding to (66) and (44). Let α be any

algebraic irrational number and (p, q) a pair of real numbers. Then we de�ne

the series η∗ by

η∗(α, s, p, q) :=
∞∑
n=1

ns−1 e[n(pα + q)]

1 + e[nα]
for <(s) < 0, (7)

and another in�nite series A∗ by

A∗(z, s, r1, r2) :=
∑

m>−r1

(−1)m
∞∑
k=1

ks−1e[kr2 + k(m+ r1)z], (8)

for a pair (r1, r2) ∈ R2, z ∈ H and s ∈ C.
Applying the Thue-Siegel-Roth theorem one can show that the series in (77)

is absolutely convergent, when <(s) < 0 and α is an algebraic irrational number.

In particular, if we consider (r1, r2) = (1/2, 0) we will get the secant zeta function

A∗
(
z, s,

1

2
, 0

)
=

1

2

∞∑
k=1

sec πkz

k1−s =
1

2
ψ(z, 1− s).

De�nition 0.3.2 (Hurwitz zeta function) For a positive number a, the Hur-

witz zeta function is de�ned as follows

ζ(s, a) :=
∞∑
n=0

(n+ a)−s, <(s) > 1. (9)

Let us �x the following matrices:

V0 =

(
0 −1

1 0

)
, V1 =

(
1 0

1 1

)
, and V2 = V 2

0 V
−1

1 =

(
−1 0

1 −1

)
(10)

and consider the di�erence

D∗(Vi) := D∗
(
Vi, z, s,

1

2
, 0

)
:= β−sA∗

(
Viz, s,

1

2
, 0

)
− A∗

(
z, s,

1

2
, 0

)
(11)

for each Vi from (1010), where β = cz + d and (c, d) is the second row of Vi.

We prove the following result.
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Theorem 0.3.3 For a real algebraic irrational α and a complex variable s with

<(s) < 0, we have

D∗(V0) = α−sA∗
(
−1

α
, s,

1

2
, 0

)
− A∗

(
α, s,

1

2
, 0

)
(12)

=−
(2π)−se

[
− s

4

]
1− e

[
s
2

] ∫
I(λ,∞)

ts−1 exp(−(1
2

+ α)t)

(1 + exp(−t))(1− exp(−αt))
dt

+ 2−2sπ−se
[
−s

4

]
Γ(s)

(
ζ

(
s,

1

4

)
− ζ

(
s,

3

4

))
− 21−s

∞∑
n=1

ns−1 e
[
n
(

1
2
α + 1

4

)] (
e
[

1
2
nα
]

+ 1
)

1− e[nα]

+ 22−s
∞∑
n=1

(2n)s−1 e
[

3
2
· nα

]
1− e[2nα]

.

D∗(V1) = (α + 1)−sA∗
(

α

α + 1
, s,

1

2
, 0

)
− A∗

(
α, s,

1

2
, 0

)
(13)

=−
(2π)−se

[
− s

4

]
1− e

[
s
2

] ∫
I(λ,∞)

ts−1 exp(−1
2
t)

(1 + exp(−t))
exp(−1

2
(α + 1)t)

(1− exp(−(α + 1)t))
dt

+ 2−s
∞∑
n=1

ns−1 (−1)n−1

cos πn
2
α
.

D∗(V2) = (α− 1)−sA∗
(
−α
α− 1

, s,
1

2
, 0

)
− A∗

(
α, s,

1

2
, 0

)
(14)

=−
(2π)−se

[
− s

4

]
1− e

[
s
2

] ∫
I(λ,∞)

ts−1 exp(−1
2
t)

(1 + exp(−t))
exp(−1

2
(α− 1)t)

(1− exp(−(α− 1)t))
dt

− 2−s
∞∑
n=1

ns−1 1

cos πn
2
α
,

where I(λ,∞) (for any positive number λ) denotes the integral path consisting

of the oriented line segment (+∞, λ), together with the positively-oriented circle

of radius λ with center at the origin, and the oriented line segment (λ,+∞).

Adding (1313) and (1414) we get the main result of La¨in et al. Theorem 0.3.10.3.1.

We note it as a corollary.
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Corollary 0.3.4

(α + 1)−sA∗
(

α

α + 1
, s,

1

2
, 0

)
+ (α− 1)−sA∗

(
−α
α− 1

, s,
1

2
, 0

)
= −

(2π)−se
[
− s

4

]
1− e

[
s
2

] ∫
I(λ,∞)

ts−1

∞∑
m=0

2−m−1Em
tm

m!

∞∑
n=0

(21−n − 1)Bn

× {(α + 1)n−1 + (α− 1)n−1}tn−1

n!
dt.

The following conjecture seems to be plausible:

Conjecture 0.3.5 Let (p, q) ∈ R2. If V1 =

(
a1 b1

c1 d1

)
and V2 =

(
a2 b2

c2 d2

)
are

inverses of each other in PSL2(Z), then

(c1α + d1)−sA∗ (V1α, s, p, q) + (c2α + d2)−sA∗ (V2α, s, p, q) ,

can be expressible in terms of rational combination of special values of some

zeta functions and L-functions.

The proof of Theorem 0.3.30.3.3 is obtained in [1919]. This is a joint work with S.

Kanemitsu and T. Kuzumaki. We shall see the detailed proof of these results in

the second chapter of the thesis.





CHAPTER 0
Basic Notation and de�nitions

0.1 Basic notation

In this chapter, we shall de�ne various basic notations, de�nitions and some

important results, which will be used throughout the thesis. Let N,Z,Q,R,C
denote the set of natural numbers, integers, rational numbers, real and complex

numbers respectively. The set of prime numbers is denoted by P.

A complex number z is said to be an algebraic number if there a polynomial

f(x) ∈ Q[x] such that f(z) = 0. A complex number z is said to be transcendental

if it is not an algebraic number. We let e be the Euler's number and π be the ratio

of the circumference of a circle to its diameter. Both e and π are transcendental

numbers.

For x ∈ R, let bxc denote the largest integer less than or equal to x and the

fractional part of x is de�ned by {x} := x− bxc.

For s ∈ C, real and imaginary part of s is denoted by <(s) and =(s) re-

spectively. The exponential function is de�ned on the whole complex plane as

follows:

exp(s) := es =
∞∑
n=0

sn

n!
.

To make the calculation simpler we use e[s] := exp(2πis).

De�nition 0.1.1 (Bernoulli polynomial) The generating function for Bernoulli

1
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polynomial Bn(x) is de�ned as

text

et − 1
=
∞∑
n=0

Bn(x)
tn

n!
.

For x = 0, Bn(0) = Bn is de�ned as the nth Bernoulli number. Bernoulli

numbers have many interesting properties and one can easily prove that Bn = 0

for all odd integers n > 1.

De�nition 0.1.2 (Euler polynomial) The generating function for Euler poly-

nomial En(x) is de�ned as follows:

2ext

et + 1
=
∞∑
n=0

En(x)
tn

n!
.

Corresponding to x = 1/2, the nth Euler number is de�ned as En := 2nEn(1/2).

Again, one can show that En = 0 for all odd integers n ≥ 1.

0.2 Some arithmetic functions

De�nition 0.2.1 (Arithmetic function) A complex valued function f de-

�ned on N is called an arithmetic function. An arithmetic function f is said to

be additive if it satis�es

f(mn) = f(m) + f(n),

for m,n relatively prime. If this property holds for all m and n, then f is said

to be completely additive. For example, f(n) = log n is completely additive.

Similarly, an arithmetic function g is multiplicative if it satis�es

f(mn) = f(m)f(n),

for m,n relatively prime. If this property holds for all m and n, then f is said to

be completely multiplicative. For example, f(n) = n−s with s ∈ C, is completely

multiplicative.

Let ω(n) denotes the number of distinct prime divisors of n and d(n), known

as divisor function, denotes the number of positive divisors of n.
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We will write f(n) = O(g(n)), for two arithmetic functions f and g, if there

is a constant K such that |f(n)| ≤ Kg(n) for all n ∈ N. Sometimes we also

use the notation � and write f(n) � g(n) to indicate the same thing. The

following result is well known.

Theorem 0.2.2 For every ε > 0, we have

d(n) = O(nε). (1)

One can �nd the proof of this theorem in [2525, p. 9].

De�nition 0.2.3 (Möbius function) The Möbius function is de�ned as fol-

lows:

µ(n) :=

(−1)ν(n), if n is square-free,

0, otherwise.
(2)

We can check that this is a multiplicative function.

De�nition 0.2.4 (Dirichlet characters) Let N ∈ N. A Dirichlet character

χ (mod N) is a homomorphism

χ : (Z/NZ)∗ → C∗.

We extend the de�nition of χ to all natural numbers by setting

χ(n) =

χ (n (mod N)), if gcd(n,N) = 1,

0, otherwise.

If χ(n) = 1 for all n ∈ N, then we call χ as a trivial character. Dirichlet

characters are completely multiplicative function.

0.3 Properties of Riemann zeta function

De�nition 0.3.1 (Riemann Zeta function) Let s ∈ C. The Riemann Zeta

function is de�ned as follows:

ζ(s) :=
∞∑
n=1

1

ns
for <(s) > 1.



4 �0.3. Properties of Riemann zeta function

For <(s) > 1, this series is absolutely convergent and has the Euler product

representation

ζ(s) =
∏
p∈P

(
1− 1

ps

)−1

. (3)

We can easily see that
1

ζ(s)
=
∞∑
n=1

µ(n)

ns
.

De�nition 0.3.2 (Dirichlet L-function) A Dirichlet L-series is a function of

the form

L(s, χ) :=
∞∑
n=1

χ(n)

ns
,

where χ is a Dirichlet character and s ∈ C with <(s) > 1.

If χ is the trivial character, then the associated Dirichlet L-function is the Rie-

mann zeta function. Since Dirichlet characters are completely multiplicative,

L(s, χ) will have an Euler product representation as follows:

L(s, χ) =
∏
p∈P

(
1− χ(p)

ps

)−1

, for <(s) > 1.

De�nition 0.3.3 (Gamma function) Let s ∈ C with <(s) > 0. The classical

Gamma function is de�ned by

Γ(s) :=

∫ ∞
0

xs−1e−xdx.

It satis�es the functional equation Γ(s + 1) = sΓ(s) and can be analytically

continued to a meromorphic function on the complex plane with poles at non-

positive integers.

Theorem 0.3.4 The Riemann Zeta function ζ(s) can be analytically continued

to the whole complex plane except for a simple pole at s = 1, and it satis�es the

functional equation

ξ(s) = ξ(1− s), (4)

where

ξ(s) :=
s(s− 1)

2
π−s/2Γ(s/2)ζ(s).
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One can �nd the proof of this celebrated result in [3737]. The derivative of ζ(s)

will be ζ ′(s) =
∑∞

n=1
− logn
ns

for <(s) > 1. It can be easily seen that ζ(s) has

trivial zeros at s = −2n for n ∈ N, which arise due to the poles of Γ(s/2). From

the Euler product of ζ(s) we can prove that

Theorem 0.3.5 The function ζ(s) has no zeros with <(s) ≥ 1.

One of the most important conjectures in mathematics is Riemann Hypothesis,

which is about non-trivial zeros of ζ(s).

Conjecture 0.3.6 (Riemann Hypothesis (RH) ) All the non-trivial zeros

of ζ(s) lie on the line <(s) = 1/2.

The following conjecture will also be used in the results.

Conjecture 0.3.7 (Grand Simplicity Hypothesis (GSH) ) The (positive)

imaginary parts of non-trivial zeros of L(s, χ) with χ running over all primitive

Dirichlet characters are linearly independent over Q (see Rubinstien and Sarnak

[3333]).

In particular, GSH implies that all the non-trivial zeros ζ(s) are simple.

0.4 Modular forms

In this section we recall some basic notions related to classical modular forms.

Let H denote the upper half plane. Let k be an even positive integer. Denote

SL(2,Z) by the

SL(2,Z) :=

{(
a b

c d

)∣∣∣a, b, c, d ∈ Z, ad− bc = 1

}
.

We know that SL(2,Z) acts on the upper half plane H by linear fractional

transformation, as follows:

SL(2,Z) : H −→ H(
a b

c d

)
: h 7−→ ah+ b

ch+ d
.

(5)
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De�nition 0.4.1 (Modular form) A complex-valued function f on H is said

to be a modular form of weight k for SL(2,Z) if it satis�es the following condi-

tions:

1. The function f is a holomorphic on H.

2. For h ∈ H, f
(
ah+b
ch+d

)
= (ch+ d)kf(h), ∀ γ =

(
a b

c d

)
∈ SL(2,Z).

3. The function f must be holomorphic as h→ i∞.

One can see that modular forms have a Fourier series expansion of the form

f(h) =
∞∑
n=0

c(n)qn,

where q = e2πih and h ∈ H. The coe�cients c(n) are knowns as the Fourier

coe�cients of f . This is an arithmetic function and it has many interesting

properties.

De�nition 0.4.2 (Cusp form) A modular form f of weight k for SL(2,Z), is

said to be a cusp form if it vanishes at the cusp i∞ i.e., if c(0) = 0. Then the

Fourier series expansion of f is

f(h) =
∞∑
n=1

c(n)qn.

De�nition 0.4.3 (Ramanujan's cusp form) Ramanujan's delta function ∆(h)

is a cusp form of weight 12 and is de�ned by

∆(h) := q
∞∏
n=1

(1− qn)24 =
∞∑
n=1

τ(n)qn.

Here the arithmetic function τ(n) is known as Ramanujan tau function. In 1916,

Ramanujan [2727] studied this function and stated the following conjectures:

1. τ(n) is a multiplicative function

2. τ(pr+1) = τ(p)τ(pr)− p11τ(pr−1)

3. |τ(p)| ≤ p11/2.
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The �rst two properties were proved by Mordell [2424] in 1917 and the third

one was proved by Deligne [1111] in 1974.

De�nition 0.4.4 (Dedekind eta-function) It is de�ned by

η(h) := ∆(h)1/24 = q1/24

∞∏
n=1

(1− qn). (6)

De�nition 0.4.5 The L-function associated to a cusp form f of weight k for

SL(2,Z) is de�ned as follows:

L(s, f) :=
∞∑
n=1

c(n)

ns
.

It is absolutely convergent for <(s) > k+1
2
. Hecke proved that the arithmetic

function c(n) is a multiplicative function. We denote Sk(Γ) by the space of cusp

forms of weight k for the full modular group Γ = SL(2,Z).

Theorem 0.4.6 (Hecke) Let f ∈ Sk(Γ). The function L(s, f) can be analyti-

cally continued to an entire function and satis�es the functional equation

(2π)−sΓ(s)L(s, f) = ik(2π)−(k−s)Γ(k − s)L(k − s, f). (7)

The proof of this result can be found in [2626, Theorem 5.3.7, p. 66].

Theorem 0.4.7 [1111, Deligne's bound] Let c(n) be the nth Fourier coe�cient

of the cusp form f ∈ Sk(SL2(Z)). Then

|c(n)| ≤ n
k−1
2 d(n), (8)

where d(n) is the divisor function.

Using Theorem 0.2.20.2.2, we get

|c(n)| ≤ n
k−1
2

+ε, for any ε > 0.

Now we shall state one important and useful theorem in Diophantine equa-

tions.
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Theorem 0.4.8 (Thue-Siegel-Roth) Let α be an algebraic irrational number.

For every ε > 0, ∣∣∣α− p

q

∣∣∣ < 1

q2+ε

can have only �nitely many solutions in co-prime integers p and q.

We can see the detail accounts of this theorem in [3434].



CHAPTER 1
Modular-type relation associated

to Rankin-Selberg L-function

In this chapter, we discuss the asymptotic expansion of a particular Lambert

series. Hafner and Stopple proved a conjecture of Zagier, related to the asymp-

totic expansion of a Lambert series associated to Ramanujan tau function. We

generalize their result and prove a similar result for any cusp form for the full

modular group. We have mainly studied the Rankin-Selberg L-function and the

symmetric square L-function associated to a cusp form and their corresponding

functional equations.

1.1 Introduction and Motivation

Ramanujan's work has in�uenced many areas of number theory. During his stay

at Cambridge, he showed the following identity to Hardy and Littlewood.

For any positive real number r,

∞∑
n=1

µ(n)e−r/n
2

n
=

√
π

r

∞∑
n=1

µ(n)e−π
2/n2r

n
. (1.1)

This formula was missing the contribution of non-trivial zeros of the Riemann

zeta function ζ(s). The corrected version of this formula was given by Hardy

and Littelwood and it is as follows:

Theorem 1.1.1 (Ramanujan, Hardy, Littlewood) [1818, p. 156, Section 2.5]

9
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Let α and β be two positive real numbers such that αβ = π. Assume that the

series
∑

ρ

Γ( 1−ρ
2 )

ζ′ (ρ)
βρ converges, where ρ runs through all non-trivial zeros of ζ(s),

and non-trivial zeros of ζ(s) are simple. Then

√
α

∞∑
n=1

µ(n)

n
e−α

2/n2 −
√
β

∞∑
n=1

µ(n)

n
e−β

2/n2

= − 1

2
√
β

∑
ρ

Γ
(

1−ρ
2

)
ζ ′(ρ)

. (1.2)

For more work related to this identity one can look into Berndt [66, p. 470]

and Titchmarsh [3737, p. 219]. Dixit [1212] obtained a character analogue of the

Ramanujan-Hardy-Littlewoood identity. Dixit et al. [1414] gave one variable gen-

eralization of the above identity and analogues of these identities to Hecke forms.

More importantly, in (1.21.2) one does not actually need to assume the convergence

of the in�nite series on the right hand side. This series is convergent if the terms

ρ are in the same bracket for which

|=(ρ)−=(ρ′)| < exp

(
−A ρ

log=(ρ)

)
+ exp

(
−A ρ′

log(=ρ′)

)
,

where A is a positive constant ( see [1818, p. 158] and [3737, p. 220] ). We still do

not know whether this series is convergent without the condition of bracketing

the terms but mathematicians believe that the series will converge in the usual

sense also.

Now we shall give few de�nitions.

De�nition 1.1.2 (Lambert Series) A Lambert series is a series of the form

S(q) =
∞∑
n=1

a(n)
qn

1− qn
,

where a(n) is any arithmetic function and q ∈ C with |q| < 1.

Then expanding naturally, we have

S(q) =
∞∑
n=1

a(n)
∞∑
k=1

qnk =
∞∑
n=1

b(n)qn,
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where b(n) =
∑

d|n a(d). If we choose q = exp(−z), where z is a positive real

number, then the Lambert series becomes

S(z) =
∞∑
n=1

b(n) exp(−nz).

Various Lambert series have been studied by many mathematicians. In this

chapter we will see the asymptotic expansion of one interesting Lambert series.

De�nition 1.1.3 (Ramanujan's delta function) The well known Ramanu-

jan delta function is a cusp form of weight 12 over the full modular group SL(2,Z)

and is de�ned as follows

∆(h) := q

∞∏
n=1

(1− qn)24 =
∞∑
n=1

τ(n)qn,

where q = exp(2πih) with h ∈ H.

In the introduction, we have seen three important conjectures of Ramanujan

related to tau function. Ramanujan also proved many interesting congruence

relations related to this tau function. Many mathematicians have intensively

studied this function.

In 1981, Zagier [4040] conjectured that the Lambert series

∞∑
n=1

τ 2(n) exp(−nz)

should have an asymptotic expansion when z → 0+ and this can be expressed

in terms of the non-trivial zeros of the Riemann zeta function ζ(s). Hafner and

Stopple [1717] veri�ed this conjecture. More importantly, Zagier mentioned that

the asymptotic expansion of the above series can actually be used to evaluate the

non-trivial zeros of ζ(s) using only the values of the Ramanujan tau function.

For us �Modular-type relation� of some L-function would mean some kind

of relation which can be obtained using the functional equation of the corre-

sponding L-function. In this thesis, we shall use the functional equation of the

Rankin-Selberg L-function to prove that the Lambert series

∞∑
n=1

|c2(n)| exp(−nz)
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also admits an asymptotic expansion when z → 0+, which can be expressed in

terms of the non-trivial zeros of ζ(s), where c(n) is the nth Fourier coe�cient

of any cusp form f over Γ = SL(2,Z).

1.2 L-function associated to cusp form

Let Sk(Γ) denote the space of cusp forms of weight k for the full modular group

Γ. Let f ∈ Sk(Γ) be a normalized Hecke eigenform with Fourier series expansion

f(h) =
∞∑
n=1

c(n)e2πinh,

where h ∈ H. Then the associated L-function has an Euler product,

L(s, f) :=
∞∑
n=1

c(n)

ns
=
∏
p

(
1− αp

ps

)−1(
1− βp

ps

)−1

for <(s) >
k + 1

2
,

where αp and βp are complex numbers satisfying αp+βp = c(p) and αpβp = pk−1.

Shimura [3535] has de�ned the symmetric square L-function as follows:

De�nition 1.2.1 (Symmetric square L-function) Let f ∈ Sk(Γ) be a nor-

malized Hecke eigenform. Then the symmetric square L-function associated to

f is

D(s) := L(s, Sym2f, ψ)

:=
∏
p

(
1− ψ(p)α2

pp
−s)−1(

1− ψ(p)αpβpp
−s)−1(

1− ψ(p)β2
pp
−s)−1

,

where ψ is a primitive Dirichlet character.

Shimura gave the analytic continuation and functional equation of the symmetric

square L-function.

Theorem 1.2.2 (Shimura) [3535, Theorem 1] Let

R(s) := π
−3s
2 Γ

(s
2

)
Γ

(
s+ 1

2

)
Γ

(
s− k + 2− λ0

2

)
D(s),
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where λ0 is 0 or 1 according as ψ(−1) = 1 or −1. Then R(s) can be analytically

continued to a meromorphic function with possible simple poles at s = k and

s = k − 1. It satis�es the functional equation

R(s) = R(2k − s− 1). (1.3)

One can actually show that R(s) is often an entire function. If ψ is the trivial

character, then R(s) is an entire function. More general conditions under which

R(s) is holomorphic at s = k or s = k − 1 is given in Shimura [3535, Theorem 2,

p. 94].

De�nition 1.2.3 (Rankin-Selberg L-function) The Rankin-Selberg L-function

associated to f is de�ned as

L(s, f ⊗ f) :=
∞∑
n=1

|c2(n)|
ns

. (1.4)

The following results about Rankin-Selberg L-function were proved by Rankin:

Theorem 1.2.4 (Rankin) [2929, Theorem 3] The Rankin-Selberg L-function L(s, f⊗
f) has the following properties:

1. It is absolutely convergent for <(s) > k.

2. It can be continued analytically to the whole complex plane with simple

poles at s = k, and at s = k − 1.

3. It satis�es the functional equation

R∗(s) = R∗(2k − 1− s), (1.5)

where

R∗(s) = (2π)−2sΓ(s)Γ(s− k + 1)ζ(2s− 2k + 2)L(s, f ⊗ f). (1.6)

We follow a more general treatment of Shimura [3535, Eqn. (0.4)] which relates

Rankin-Selberg L-function and symmetric square L-function by

L(s− k + 1, χψ)D(s) = L(2(s− k + 1), χ2ψ2)L(s, f ⊗ f, ψ). (1.7)
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Now with χ and ψ as trivial characters, we get

L(s, f ⊗ f) =
ζ(s− k + 1)

ζ(2(s− k + 1))
D(s). (1.8)

1.3 Some special functions

We recall the following special functions which will be used in the sequel.

De�nition 1.3.1 (Meijer G-function) Meijer G-function is de�ned by the

following line integral

Gm,n
p,q

(
z
∣∣∣ a1, .., ap

b1, .., bq

)
=

1

2πi

∫
L

∏m
j=1 Γ(bj − s)

∏n
j=1 Γ(1− aj + s)zs∏q

j=m+1 Γ(1− bj + s)
∏p

j=n+1 Γ(aj − s)
ds,

where m,n, p, q are integers with 0 ≤ m ≤ q , 0 ≤ n ≤ p and ai − bj 6∈ N for

1 ≤ i ≤ p , 1 ≤ j ≤ q.

De�nition 1.3.2 (Con�uent hypergeometric function) The following sec-

ond order di�erential equation (Kummer's equation)

z
d2w

dz2
+ (b− z)

dw

dz
− aw = 0

has two linearly independent solutions M(a, b, z) and U(a, b, z). These solutions

are known as con�uent hypergeometric function of �rst and second kinds, re-

spectively. Con�uent hypergeometric function of second kind has an integral

representation

U(a, b, z) =
1

Γ(a)

∫ ∞
0

e−ztta−1(1 + t)b−a−1dt,

where z is a positive real number, a and b are complex variables.

We refer [2020] for more information on these functions. These two functions have

many nice relations between them. We will make use of the following well-known

formula [2020, p. 58] relating G and U functions:

G2,0
1,2

(
z

∣∣∣∣∣ a

b, c

)
= e−z zb U

(
a− c, b− c+ 1, z

)
. (1.9)
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We now state the main result.

1.4 Main Theorem

Theorem 1.4.1 Let f ∈ Sk(Γ) with f(h) =
∑∞

n=1 c(n)e2πinh. Assume that the

non-trivial zeros of ζ(s) are simple. Then for positive real z,

∞∑
n=1

|c2(n)|e−4π2nz =
Γ(k)D(k)

(4π2z)kζ(2)
+ P(z)

+ z1−2k

∞∑
n=1

βne
−µn

z U

(
−1

2
, k,

µn
z

)
,

(1.10)

where

P(z) =
∑
ρ

Γ(ρ
2

+ k − 1)ζ(ρ
2
)D(ρ

2
+ k − 1)

ζ ′(ρ)(4π2z)
ρ
2

+k−1

with ρ = x + iy running over the non-trivial zeros of ζ(s). Moreover, the sum

over ρ involves bracketing the terms so that the terms for which

|=(ρ)−=(ρ′)| < exp

(
−A ρ

log(=(ρ))

)
+ exp

(
−A ρ′

log(=(ρ′))

)
holds are included in the same bracket, where A is a suitable positive constant

and µn = 4π2n, βn = 1√
π
|c2(n)|.

As in equation (1.21.2), in the above theorem too the in�nite series P (z) converges

under the condition of bracketing the terms.

1.5 Work of Roy, Zaharescu and Zaki

In a recent work Roy et al. [3232] considered

F (s, χ1, χ2, χ3) :=
L(s, χ3)

L(s, χ1)L(s, χ2)
=
∞∑
n=1

g(n)

ns
(1.11)

for σ = <(s) > 1 and with χi's (i = 1, 2, 3) being primitive Dirichlet characters.

Restricting χi (i = 1, 2) to be trivial and χ3 = χ a primitive character, the above
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series (1.111.11) reduces to

F (s, χ) =
L(s, χ)

ζ2(s)
=
∞∑
n=1

b(n)

ns
,

where b(n) = (χ ∗ µ ∗ µ)(n). Analogously we obtain b̄(n) = (χ̄ ∗ µ ∗ µ)(n) while

considering F (s, χ̄) (where χ̄ denotes the conjugate character of χ and ∗ denotes
convolution). Then F (s, χ) and F (s, χ̄) satisfy the functional equation

Γ

(
1− s

2

)
F (s, χ) =

√
πεχ(πq)−sΓ

(s
2

)
F (1− s, χ̄),

where εχ denotes the Gauss Sum with |εχ| =
√
q.

The authors [3232] went further to obtain a modular-type relation with an in�nite

sum of residues. As can be expected, the main result is the modular-type relation

between the two Lambert series, one of the form

∞∑
n=1

b(n)

n
e−

β2

n2

and the other with b and β replaced by b̄ and α respectively, where α > 0 and

β > 0 are related by αβ = qπ. A remarkable feature is that they are related via

the in�nite sum over the non-trivial zeros of ζ(s). Their result is:

Theorem 1.5.1 (Roy, Zaharescu and Zaki) [3232, Theorem 1] Let χ be an

even primitive character mod q. Assume that the zeros of ζ(s) are simple and

distinct from the zeros of L(s, χ). Then

√
α

εχ̄

∞∑
n=1

b̄(n)

n
e−

α2

n2 −

√
β

εχ

∞∑
n=1

b(n)

n
e−

β2

n2

= − 1

2
√
βεχ

∑
ρ

Sρ,

where ρ = x+ iy runs through the non-trivial zeros of ζ(s) and Sρ is given by

Sρ =
βρL(ρ, χ)Γ

(
1−ρ

2

)
(ζ ′(ρ))2

(
log β − ζ ′′(ρ)

ζ ′(ρ)
+
L′(ρ, χ)

L(ρ, χ)
− 1

2
ψ

(
1− ρ

2

))
,

where ψ denotes the digamma function. The sum over ρ involves bracketing the
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terms so that the terms for which

|y − y′| < exp

(
− Ay

log y

)
+ exp

(
− Ay′

log y′

)
,

where A is a suitable positive constant, are included in the same bracket.

The main step in their proof deals with estimating the following integral [3232,

Equn (3.7)]:

1

2πi

∫ λ+iT

λ−iT

Γ
(

1−2s
2

)
F (2s, χ)−1

(qπ
α

)2s

ds− 1

2πi

∫ c+iT

c−iT

Γ
(

1−2s
2

)
F (2s, χ)−1

(qπ
α

)2s

ds

=
∑

ρ,−T< Im ρ
2
<T

Res
ρ

+I2 + I3.

The convergence of the in�nite sum is proved as a consequence of the convergence

(vanishing) of the two horizontal integrals Ii(i = 2, 3) and the convergence of

the vertical integrals. The authors needed a delicate analysis of the distribution

of zeros of ζ(s) for the proof of vanishing of the horizontal integrals.

1.6 Work of Hafner and Stopple

Hafner and Stopple [1717] considered the L-function associated to the Ramanujan

delta function

L(s,∆) =
∞∑
n=1

τ(n)n−s

=
∏
p

(
1− αpp−s

)−1(
1− βpp−s

)−1
for <(s) >

13

2
.

The associated symmetric square L-function is

D(s) = L(s, Sym2∆)

=
∏
p

(
1− α2

pp
−s)−1(

1− αpβpp−s
)−1(

1− β2
pp
−s)−1

.
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The application of inverse Mellin transform would give

∞∑
n=1

τ 2(n)e−zn =
1

2πi

∫
(c)

Γ(s)
ζ(s− 11)

ζ(2(s− 11))
D(s)z−s ds. (1.12)

Even though a more general function g(x) is considered (which is di�erentiable

and of order x−α, α > 12) in [1717], but the concrete example is given with

g(x) = e−xz, which leads to the Bochner modular relation with the residual

function containing in�nitely many terms. They proved:

Theorem 1.6.1 (Hafner, Stopple) [1717, Corr. 2.3] Assume all the non-trivial

zeros of ζ(s) are simple. For z → 0+,

∞∑
n=1

τ 2(n)e−zn = 12Γ(11)z−12

+ z−11−1/4
∑
ρ

z1/4−ρ/2Γ
(ρ

2
+ 11

) ζ(ρ
2
)

ζ ′(ρ)
D
(ρ

2
+ 11

)
+O(z−11+1/2)

(1.13)

with ρ running over the non-trivial zeros of ζ(s).

Clearly, if one assumes the Riemann hypothesis, then Zagier's conjecture follows

from the above result [1717, Remark]. Here we generalize their work to arbitrary

cusp forms.

1.7 Proof of Theorem 1.4.11.4.1

We begin with a few lemmas which will be useful in what follows.

Lemma 1.7.1 (Stirling's formula for gamma function) For s = σ+iT in

a vertical strip α ≤ σ ≤ β,

|Γ(σ + iT )| =
√

2π|T |σ−
1
2 e−

1
2
π|T |
(

1 +O

(
1

|T |

))
(1.14)

as |T | → ∞

We can see the proof of this lemma in [2626, p. 92].
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Lemma 1.7.2 Let T be a sequence with arbitrarily large absolute value such

that |T − γ| > exp(−A1γ/ log γ) , for every ordinate γ of a zero of ζ(s) where

A1 is some suitable positive constant. Then,

1

|ζ(σ + iT )|
< eA2T (1.15)

for some suitable constant A2.

Proof. From [3737, p. 218, Equation (9.7.3)], we have

log |ζ(ρ+ iT )| ≥
∑
|T−γ|≤1

log |T − γ|+O(log T ).

Now choose a sequence of positive numbers T tending to in�nity such that

|T − γ| > exp(−A1
γ

log γ
) for every ordinate γ of a zero of ζ(s), where A1 is a

suitable positive constant. Then

log |ζ(σ + iT )| ≥ −
∑
|T−γ|≤1

A1
γ

log γ
+O(log T ) > −A2T

where A2 < π/4 if A1 is small enough. Hence the results follows.

Lemma 1.7.3 For s = σ + iT with |T | ≥ 1, in a vertical strip α ≤ σ ≤ β,

|D(s)| � |T |A(σ)+ε, (1.16)

for any ε > 0, with A(σ) being a constant dependent on σ.

Proof. The proof involves utilizing the functional equation (1.31.3) of D(s) and the

Stirling formula for Gamma function.

Lemma 1.7.4 [3737, p. 95] For all σ ≥ σ0 there exist a constant A(σ0), such

that

|ζ(σ + iT )| � |T |A(σ0) (1.17)

as T →∞.

Proof. It readily follows from the functional equation (44) of Riemann zeta func-

tion.
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1.7.1 Proof of the main Theorem 1.4.11.4.1

Proof. The functional equation (1.51.5) of the Rankin-Selberg L-function associ-

ated to the cusp form f gives

(2π)−2sΓ(s)L(s, f ⊗ f)

= (2π)−2(2k−1−s) Γ(2k − 1− s)Γ(k − s)ζ(2(k − s))
Γ(s− k + 1)ζ(2(s− k + 1))

L(2k − 1− s, f ⊗ f).

This would imply that

Γ(s)L(s, f ⊗ f)

(4π2)s

=
1√
π

Γ(2k − 1− s)Γ(k − s)
(4π2)(2k−1−s)Γ

(
2k−1

2
− s
) ζ(2(k − s))
ζ(2k − 1− 2s)

L(2k − 1− s, f ⊗ f).
(1.18)

Let us assume

λn = µn = 4π2n,

αn = c2(n),

βn =
1√
π
c2(n),

to make (1.181.18) more symmetric and denote

ϕ(s) :=
∞∑
n=1

αn
λsn
, and ψ(s) :=

∞∑
n=1

βn
µsn
. (1.19)

Then with the above notations,

ϕ(s) = (4π2)
−s
L(s, f ⊗ f)

= (4π2)
−s ζ(s− k + 1)

ζ(2(s− k + 1))
D(s), (using (1.81.8))

(1.20)

has a unique simple pole at s = k and in�nitely many poles in the critical strip

k − 1 < σ < k − 1/2. In terms of φ and ψ the functional equation (1.181.18) is,

Γ(s)ϕ(s) =
Γ(2k − 1− s)Γ(k − s)

Γ
(

2k−1
2
− s
) ζ(2(k − s))

ζ(2k − 1− 2s)
ψ(2k − 1− s). (1.21)
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The inverse Mellin transform for the Γ-function is

1

2πi

∫ c+i∞

c−i∞
Γ(s)x−sds =

e−x if c > 0,

e−x − 1 if − 1 < c < 0.

Now applying the inverse Mellin transform, we have (for µ > k)

∞∑
n=1

c2(n)e−zλn =
1

2πi

∫
(µ)

Γ(s)
∞∑
n=1

c2(n)

λsn
z−sds

=
1

2πi

∫
(µ)

Γ(s)ϕ(s)z−s ds.

(1.22)

The contour C for the above integration is de�ned as follows:

C is determined by the line segments (for large real positive T ) [µ − iT, µ +

iT ], [µ + iT, λ + iT ], [λ + iT, λ− iT ] and [λ− iT, µ− iT ] where µ > k and λ =

k − 3/2. Then by applying the residue theorem we get,

1

2πi

∫
C

Γ(s)ϕ(s)z−sds = Res
s=k

Γ(s)ϕ(s)z−s + P(z), (1.23)

where P(z) denotes the residual function consisting of in�nitely many terms

contributed by the non-trivial zeros of ζ(2(s− k + 1)).

Firstly, we prove that the horizontal integrals

H1 =
1

2πi

∫ λ+iT

µ+iT

Γ(s)φ(s)z−sds

and

H2 =
1

2πi

∫ µ−iT

λ−iT
Γ(s)φ(s)z−sds

vanish as T →∞. We have

H1 =
1

2πi

∫ λ+iT

µ+iT

Γ(s)ζ(s− k + 1)D(s)

ζ(2(s− k + 1))(4π2z)s
ds

=
1

2πi

∫ λ

µ

Γ(σ + iT )ζ(σ − k + 1 + iT )D(σ + iT )

ζ(2(σ − k + 1 + iT ))(4π2z)σ+iT
dσ.
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Thus

|H1| �
∫ λ

µ

|Γ(σ + iT )| |ζ(σ − k + 1 + iT )| |D(σ + iT )|
|ζ(2(σ − k + 1 + iT ))|(4π2z)σ

dσ. (1.24)

Now using (1.141.14), (1.151.15), (1.161.16) and (1.171.17) in (1.241.24) it is easily seen that,

|H1| � |T |A exp

(
A2T −

1

2
π|T |

)
.

Thus H1 → 0 as T → ∞. Similarly one shows that H2 → 0 as T → ∞.

Therefore (1.231.23) gives,

∞∑
n=1

c2(n)e−zλn = Res
s=k

Γ(s)ϕ(s)z−s + P(z) + I,

where

I =
1

2πi

∫
(k−3/2)

Γ(2k − 1− s)Γ(k − s)
Γ
(

2k−1
2
− s
) ζ(2(k − s))

ζ(2k − 1− 2s)
ψ(2k − 1− s)z−s ds.

(1.25)

The �rst residual term is (by using (1.201.20))

Res
s=k

Γ(s)ϕ(s)z−s = Γ(k)
(4π2)

−k

ζ(2)
D(k)z−k. (1.26)

We concentrate on the residual function P(z). It can be written as

P(z) =
∑
ρ

Res
Γ(s+ k − 1)ϕ(s+ k − 1)

zs+k−1
(s→ s+ k − 1)

=
∑
ρ

Res
Γ(s+ k − 1)ζ(s)D(s+ k − 1)

(4π2z)s+k−1ζ(2s)
,

where ρ runs over all the non-trivial zeros of ζ(s). As we have assumed that

all the zeros of ζ(s) are simple (Grand simplicity hypothesis 0.3.70.3.7), the residue

becomes

Resρ/2 = lim
s→ρ/2

(s− ρ/2)Γ(s+ k − 1)ζ(s)D(s+ k − 1)

(4π2z)s+k−1ζ(2s)
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=
Γ(ρ/2 + k − 1)ζ(ρ/2)D(ρ/2 + k − 1)

(4π2z)ρ/2+k−1ζ ′(ρ)
.

Hence,

P(z) =
1

zk−3/4

∑
ρ

Γ(ρ
2

+ k − 1)ζ(ρ
2
)D(ρ

2
+ k − 1)

z
ρ
2
−1/4ζ ′(ρ)(4π2)

ρ
2

+k−1
.

Now, if we assume Riemann hypothesis 0.3.60.3.6 i.e., ρ = 1/2 + it for some real t,

then

zρ/2−1/4 = zit,

which is purely oscillatory. This corroborates with Hafner-Stopple's result.

Let us now look at I in (1.251.25). It may be re-written as

I = z1−2k 1

2πi

∫
(k+1/2)

Γ(w)Γ(w − k + 1)

Γ
(
w + 1

2
− k
) ζ(2w − 2k + 2)

ζ(2w − 2k + 1)
ψ(w)

(
1

z

)−w
(−dw),

(1.27)

where w = 2k − 1− s.

We look at the functional equation (1.211.21) once more. The second factor on

the right hand side of (1.211.21) can be expanded into a Dirichlet series which is

absolutely convergent for σ = k − 3/2 < k − 1 and so we dwell on the �rst

gamma factors. Then the integral on the right of (1.271.27) is a Meijer G-function

G2,0
1,2(z |...).

Now we will make use of the relation (1.91.9) of G and U functions. The one

which is of our interest is

G2,0
1,2

(
1

z

∣∣∣∣∣ 1
2
− k

0, 1− k

)
= e−z

−1

U

(
−1

2
, k,

1

z

)
. (1.28)

Thus I becomes (using (1.281.28))

I = z1−2k 1

2πi

∫
(k+1/2)

Γ(w)Γ(w − k + 1)

Γ
(
w + 1

2
− k
) ∞∑

n=1

βn
µnw

(
1

z

)−w
(−dw)

(as ζ(2w−2k+2)
ζ(2w+2k+1)

is bounded on the line <(w) = k + 1/2.)

= z1−2k 1

2πi

∞∑
n=1

βn

∫
(k+1/2)

Γ(w)Γ(w − k + 1)

Γ
(
w + 1

2
− k
) (µn

z

)−w
(−dw)
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= z1−2k

∞∑
n=1

βnG
2,0
1,2

(
µn
z

∣∣∣∣∣ 1
2
− k

0, 1− k

)

= z1−2k

∞∑
n=1

βne
−µn

z U

(
−1

2
, k,

µn
z

)
. (1.29)

This completes the proof of Theorem 1.4.11.4.1.

We further re�ne the result by using �rst approximation of the U function.

Corollary 1.7.5 Assume all the conditions of Theorem 1.4.11.4.1. Then for z →
0+, we have

∞∑
n=1

|c2(n)|e−4π2nz = c′z−k + P(z) +
k∑
i=0

Ei +O(|z|3/2−k), (1.30)

where

c′ =
Γ(k)D(k)

(4π2)kζ(2)
,

Ei = z1−2k

∞∑
n=1

βne
−µn

z ci

(µn
z

)1/2−i
and

ci = (−1)i
(−1/2)i(−1/2− k + 1)i

i!
.

Proof. The main term c′z−k has already been calculated in (1.261.26). We use the

well-known asymptotic formula of U [1616, p.278] to get the third term. The

approximation is

U (a, c, z) =
N∑
n=0

(−1)n
(a)n(a− c+ 1)n

n!
z−a−n +O(|z|−a−N−1), (1.31)

where N is any non-negative integer and −3
2
π < arg z < 3

2
π with z → ∞. We

also use the symbol

(a)n =
a(a+ 1) · · · (a+ n− 1)

n!
.
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We use (1.311.31) in (1.291.29) and get

I = z1−2k

∞∑
n=1

βne
−µn

z

(
k∑
i=0

ci

(µn
z

)1/2−i
+O

(∣∣∣µn
z

∣∣∣1/2−k−1
))

,

where

ci = (−1)i
(−1/2)i(−1/2− k + 1)i

i!
.

Let us split

I =
k∑
i=0

Ei + E

with

Ei = z1−2k

∞∑
n=1

βne
−µn

z ci

(µn
z

)1/2−i

E = z1−2k

∞∑
n=1

βne
−µn

z O

(∣∣∣µn
z

∣∣∣1/2−k−1
)
.

We want E = O
(
|z|3/2−k

)
and for that we need to check the convergence of∑∞

n=1
βne
−µnz

µnk+1/2 . For this purpose, we use Deligne's well-known bound for the

growth of the Fourier coe�cients of a cusp form, i.e.,

|c(n)| ≤ n(k−1)/2d(n),

where d(n) is the number of divisors of n and we know that d(n) = O(nε) for

any ε > 0. Now

∞∑
n=1

βne
−µn

z

µnk+1/2
≤

∞∑
n=1

c2(n)

nk+1/2

≤
∞∑
n=1

nk−1+ε

nk+1/2

=
∞∑
n=1

1

n3/2−ε .

The last series in the above sequel is convergent for any 0 < ε < 1/2. We end

this section with a couple of useful remarks.
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Remark 1.7.6 One can easily show that, Ei ∼ ki z
1−k for each 0 ≤ i ≤ k,

where ki's are some constants. We calculate E0, and the estimation of the other

Ei's follow similarly.

E0 = z1−2k

∞∑
n=1

βn

√
µn
z
e−

µn
z

= z1/2−2k 1

2πi

∫
(c)

Γ(s)ψ

(
s− 1

2

)(
1

z

)−s
ds

∼ z1/2−2k Res
s=k+1/2

Γ (s)ψ

(
s− 1

2

)(
1

z

)−s
∼ k0z

1−k.

The constant k0 is easily calculable and depends on the weight of the particular

cusp form in consideration.

k0 = Res
w=k

Γ

(
w +

1

2

)
ψ(w)

= Res
w=k

Γ

(
w +

1

2

)
Γ(w − k + 1

2
)

Γ(w − k + 1)

ζ(2(w − k) + 1)

ζ(2(w − k + 1))
Γ (2k − 1− w)ϕ(2k − 1− w)

= Res
w=k

ζ(2(w − k) + 1)Γ(k − 1)Γ(k +
1

2
)
6
√
π

π2
ϕ(k − 1)

= 3Γ(k − 1)Γ(k +
1

2
)
D(k − 1)

π3/2(4π2)k−1
.

Remark 1.7.7 We must choose z
4π2 in place of z in (1.301.30), as our sequence is

λn = 4π2n, and with this choice

c′ =
Γ(k)D(k)

ζ(2)
.

Thus (1.131.13) can be recovered up to the treatment of the sum of residues, which

is of the order z−k+1 (according to [1717]). A closer analysis of a more general case

has been done in [3232].

1.8 Conclusion

Hafner and Stopple [1717] studied a general case of the function g with the concrete

example of the exponential function as is stated after (1.121.12). There are many
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other interesting cases of such modular-type relation, each of which will lead to

some intriguing results. In our case, this exhibits an interesting phenomenon

involving the G-function G2,0
1,3. In a particular degenerate case G2,0

1,3 [2020, p.245]

can be written as,

G2,0
1,3

(
z

∣∣∣∣∣ c

a, b, c

)
= z

1
2

(a+b)
{
− sin((c− b)π)Ya−b

(
2
√
z
)

+ cos((c− b)π) Ja−b
(
2
√
z
)} (1.32)

involving Jn and Yn which are Bessel functions of the �rst and second kind

respectively.

Here we concentrated on studying the integral

1

2πi

∫
(c)

Γ(s)ϕ(s)z−sds.

Instead, if we had
1

2πi

∫
(c)

Γ(s)

Γ(s+ ρ+ 1)
ϕ(s)z−s ds,

then we would have got

1

2πi

∫
(c)

Γ(s)

Γ(s+ ρ+ 1)
ϕ(s)z−s ds = Res

s=k

Γ(s)

Γ(s+ ρ+ 1)
ϕ(s)z−s + P(z)+

1

2πi

∫
(k−3/2)

Γ(2k − 1− s)Γ(k − s)
Γ
(

2k−1
2
− s
)

Γ(s+ ρ+ 1)

ζ(2(k − s))
ζ(2k − 1− 2s)

ψ(2k − 1− s)z−s ds.

(1.33)

The last integral on the right-hand side of (1.331.33) becomes

z1−2k

· 1

2πi

∫
(k+1/2)

Γ(w)Γ(w − k + 1)

Γ
(
w + 1

2
− k
)

Γ(2k + ρ− w)

ζ(2w − 2k + 2)

ζ(2w + 2k + 1)
ψ(w)

(
1

z

)−w
dw

and corresponds to (1.271.27). In terms of the G-function, this becomes

G2,0
1,3

(
1

z

∣∣∣∣∣ 1
2
− k

0, 1− k, 1− (2k + ρ)

)
. (1.34)
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This corresponds to our previous relation (1.91.9). Interestingly, in the special case

ρ = −k + 1
2
, the G-function G2,0

1,3

(
1
z
|...
)
as in (1.341.34), can be explicitly calculated

by (1.321.32).

1.9 Future Work

Our ongoing work is to try to extend the results in the thesis to any cusp form

for congruence subgroup. In that case the asymptotic expansion of the Lambert

series
∞∑
n=1

|c2(n)| exp(−nz), z → 0+,

can be expressed in terms of non-trivial zeros of L(s, χ), where c(n) is the nth

Fourier coe�cient of a cusp form f for congruence subgroup.

It would also be interesting to study the problem for di�erent classes of

modular forms.



CHAPTER 2
Limiting values of Lambert series

and the secant zeta function

In this chapter, we discuss the cotangent and secant zeta functions and their

generalizations. Recently, Lalín, Rodrigue and Rogers have studied the secant

zeta function and its convergence. They found many interesting values of the

secant zeta function at some particular quadratic irrational numbers. They also

gave modular transformation properties of the secant zeta function. We have

tried to generalize the secant zeta function as a Lambert series and proved a

generalized result for Lambert series, from which the main result of Lalín et

al. follows as a corollary, using the theory of generalized Dedekind eta-function,

developed by Lewittes, Berndt and Arakawa.

2.1 Introduction

The Dedekind eta-function and its limiting values have been considered by sev-

eral authors starting from Riemann's posthumous fragment [3131], Wintner [3939]

and later by Reyna [3030] and Wang [3838]. There are many generalizations of

the Dedekind eta-function as a Lambert series including that of Lewittes [2323],

Berndt [33] and Arakawa [11, 22]. In particular cases, they reduce to the cotangent

or the cosecant zeta function.

The values of ζ(s) at positive even integers is given by:

29
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Theorem 2.1.1 (Euler) For any positive integer k,

ζ(2k) =
(−1)k+1B2kπ

2k

2(2k)!
,

where B2k is a Bernoulli number.

Thus ζ(2k) ∈ π2kQ, as B2n is a rational number. But, unfortunately for ζ(2n+1)

we do not have such a simple result. Still, ζ(2n+1) does satisfy some other nice

relations and it can be found in Ramanujan's second notebook [55, pp. 275�276].

Immediately, after seeing the above theorem, one can ask

Question 2.1.2 Is it true that

ζ(2k + 1) ∈ π2k+1Q,

for any positive integer k ?

This is an unsolved problem till now. It is even very di�cult to show that a

particular value of ζ(2n+ 1) is an irrational number.

2.2 Cotangent zeta function

Lerch [2222] in 1904 introduced the cotangent zeta function for an algebraic irra-

tional number z and an odd positive integer s as

ξ(z, s) :=
∞∑
n=1

cot(nπz)

ns
.

He stated the following functional equation for the cotangent zeta function, but

without proof.

Theorem 2.2.1 (Lerch, [2222]) For any algebraic irrational number z and suf-

�ciently large positive integer k = k(z), we have

ξ(z, 2k + 1) + z2kξ

(
1

z
, 2k + 1

)
= (2π)2k+1φ(z, 2k + 1), (2.1)
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where

φ(z, n) :=
n+1∑
i=0

BiBn+1−j

j!(n+ 1− j)!
zj−1,

where Bi is the i-th Bernoulli number.

Berndt [44], in 1973, focused on the cotangent zeta function for general s ∈ C,
and proved the Lerch's functional equation for cotangent zeta function. He found

many interesting explicit formulas for ξ(z, s) when z is a quadratic irrational and

s ≥ 3 an odd integer. One such pleasing formula is:

ξ

(
1 +
√

5

2
, 3

)
= − π3

45
√

5
.

In fact Berndt's work implies that
√
jξ(
√
j, s)π−s ∈ Q, where j is any positive

integer and s ≥ 3 an odd integer. In 1988, Arakawa [22] also studied the analytic

continuation and a functional equation of the cotangent zeta function.

2.3 Secant zeta function

Recently, Lalín et al. [2121] considered the secant zeta function

ψ(z, s) :=
∞∑
n=1

sec(nπz)

ns
(2.2)

and found its special values at some particular quadratic irrational arguments.

They proved the following results.

Theorem 2.3.1 (Lalín, Rodrigue, Rogers) [3232, Theorem 1] The series (2.22.2)

is absolutely convergent in the following cases:

1. When z = p
q
a rational number with q odd and s > 1.

2. When z is an algebraic irrational number, and s ≥ 2.

To prove this theorem, they have used the celebrated Thue-Siegel-Roth theorem.

Theorem 2.3.2 (Lalín, Rodrigue, Rogers) [3232, Theorem 3] Let Em de-

note the Euler numbers, and let Bm denote the Bernoulli numbers. Suppose that
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l is an even positive integer. Then for appropriate values of α:

(α + 1)l−1ψ

(
α

α + 1
, l

)
− (−α + 1)l−1ψ

(
α

−α + 1
, l

)
=

(πi)k

k!

l∑
n=0

(2n−1 − 1)BnEk−n

(
l

n

)
[(1 + α)n−1 − (1− α)n−1].

(2.3)

They found the values of the secant zeta function at some quadratic irrational

numbers. For j ∈ Z,

ψ(
√

2j(2j + 1), 2) = (3j + 1)
π2

6
,

ψ(
√

8j(2j + 1), 2) =
π2

6
,

ψ(
√

2j(2j + 1), 4) =
75j2 + 46j + 6

8j + 3

π4

180
.

(2.4)

After observing these values, they conjectured that

Conjecture 2.3.3 (La¨in, Rodrigue, Rogers) [2121, Cojecture 1] If j is any

positive integer and s is an even positive integer, then

ψ(
√
j, s)π−s ∈ Q.

By a clever use of residue theorem, Berndt and Straub [77] proved the above

functional equation (2.32.3) and from it they derived

ψ(
√
r, s)π−s ∈ Q, (r ∈ Q+, s ∈ 2N).

Furthermore, they connected the secant Dirichlet series with Eichler integrals of

Eisenstein series and checked uni-modularity of period polynomials. On the

other hand, Charollis and Greenberg [1010] related the secant Dirichlet series

ψ(α, s) to the generalized eta-function which was studied by Arakawa [11]. They

proved that for s ∈ 2N,
ψ(α, s)π−s ∈ Q(α)

for all real quadratic irrationals α. They used Arakawa's result to give an explicit

formula for ψ(α, s) for real quadratic irrational numbers α.
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In this chapter, we will introduce a generalization of the secant zeta function

as a Lambert series. Using the theory of generalized Dedekind eta-function due

to Lewittes [2323], Berndt [33] and Arakawa [11], we shall give a generalization of

the Theorem 2.3.22.3.2.

We begin by brie�y describing the theory of Generalized Dedekind eta-

function, developed by Lewittes [2323], Berndt [33] and Arakawa[11], which is a

main tool in our study.

2.4 Work of Lewittes and Berndt

Lewittes and Berndt treat the case of the upper half-plane H while Arakawa

treats the case of upper half plane limiting to an algebraic irrational number.

Hereafter we use the following notations:

e[w] := exp(2πiw), w ∈ C,

〈x〉 ∈ R, 0 < 〈x〉 5 1, x− 〈x〉 ∈ Z,

{x} ∈ R, 0 5 {x} < 1, x− {x} ∈ Z.

Lewittes [2323] de�ned the generalization of the Dedekind eta-function as a

Lambert series. For a pair (r1, r2) of real numbers, z ∈ H and arbitrary s ∈ C,
he considered the series

A(z, s, r1, r2) :=
∑

m>−r1

∞∑
k=1

ks−1e[kr2 + k(m+ r1)z], (2.5)

where the �rst summation is over all integers m with m > −r1. He also intro-

duced its associate as

H(z, s, r1, r2) := A(z, s, r1, r2) + e
[s

2

]
A(z, s,−r1,−r2). (2.6)

Let s = r1 = r2 = 0. Put A(z, 0, 0, 0) = A(z), then H(z, 0, 0, 0) = 2A(z). Using

the product de�nition (0.4.40.4.4) of η(z), it is easy to show that

log(η(z)) =
πi

12
− A(z).
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Let us see a couple of examples.

Example 2.4.1 For special choices of parameters r1 and r2, the A and H-

functions reduce to the cosecant and cotangent zeta functions.

1(
1 + e

[
s
2

])H (z, s,(1

2
, 0

))
= A

(
z, s,

1

2
, 0

)
=
∑
m>− 1

2

∞∑
k=1

ks−1e

[
k

(
m+

1

2

)
z

]

=
∞∑
k=1

ks−1 e
[

1
2
kz
]

1− e[kz]

=
i

2

∞∑
k=1

cosec(πkz)

k1−s .

Also,

1(
1 + e

[
s
2

])H(z, s, (1, 0)) = A(z, s, 1, 0)

=
∑
m>−1

∞∑
k=1

ks−1e[k(m+ 1)z]

=
∞∑
k=1

ks−1 e[kz]

1− e[kz]

=
1

2

∞∑
k=1

ks−1

{
1 + e[kz]

1− e[kz]
− 1

}
=
i

2

∞∑
k=1

cotπkz

k1−s −
1

2
ζ(1− s).

Some more de�nitions will be required.

De�nition 2.4.1 (Hurwitz zeta function) For a positive number a, the Hur-

witz zeta function

ζ(s, a) :=
∞∑
n=0

(n+ a)−s, <(s) > 1. (2.7)
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De�nition 2.4.2 Let Ω denote the characteristic function of integers, i.e.

Ω(a) :=

{
1, if a ∈ Z,
0, if a 6∈ Z.

(2.8)

For any positive number λ, let I(λ,∞) denote the integration path consisting

of the oriented line segment (+∞, λ), the positively-oriented circle of radius λ

with center at the origin, and the oriented line segment (λ,+∞).

Let

G2(z, (ω1, ω2); t) :=
exp(−zt)

(1− exp(−ω1t))(1− exp(−ω2t))
(2.9)

for any pair (ω1, ω2) of positive numbers and for z, t ∈ C.
Berndt [33] proved the following transformation formula.

Theorem 2.4.3 (Berndt) [33, Theorem 2 ] Let V =

(
a b

c d

)
∈ SL(2,Z)

with c > 0. For any pair (r1, r2) of real numbers, set R1 = r1a + r2c, R2 =

r1b + r2d, ρ = {R2}c − {R1}d. For z ∈ H with c<(z) + d > 0 let β = cz + d.

Then for arbitrary s ∈ C, we have

β−sH(V z, s, r1, r2)−H(z, s, R1, R2)

= −Ω(r1)(2π)−se
[s

4

]
β−sΓ(s)

(
ζ(s, 〈r2〉) + e

[s
2

]
ζ(s, 〈−r2〉)

)
+ Ω(R1)(2π)−se

[
−s

4

]
Γ(s)

(
ζ(s, 〈−R2〉) + e

[s
2

]
ζ(s, 〈R2〉)

)
+ (2π)−se

[
−s

4

]
L(z, s, R1, R2, c, d),

where

L(z, s, R1, R2, c, d) (2.10)

= −
c∑
j=1

∫
I(λ,∞)

ts−1 exp(−(1− { (jd+%)
c
}+ (cz+d)(j−{R1})

c
)t)

(1− exp(−t))(1− exp(−(cz + d)t))
dt,(

0 < λ < 2π,
2π

|β|

)
.

Here, log t is understood to be real-valued on the upper segment (+∞, λ) of

I(λ,∞).
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2.5 Work of Arakawa

Arakawa studied certain Lambert series associated to a complex variable s and

an irrational real algebraic number α. Those Lambert series are de�ned as

limiting (boundary) values of the generalized Dedekind eta-functions studied

by Berndt [33]. Arakawa obtained transformation formulae under the action of

SL(2,Z) on those α.

For an irrational real algebraic number α and a pair (p, q) of real numbers,

Arakawa [11] introduced a generalized eta-function de�ned as

η(α, s, p, q) :=
∞∑
n=1

ns−1 e[n(pα + q)]

1− e[nα]
, s ∈ C, (2.11)

and its associate by

H(α, s, (p, q)) := η(α, s, 〈p〉, q) + e
[s

2

]
η(α, s, 〈−p〉,−q). (2.12)

Example 2.5.1 Again, if we consider (p, q) = (1/2, 0) and (p, q) = (1, 0), then

also we will get the cosecant and cotangent zeta function.

1(
1 + e

[
s
2

])H (α, s,(1

2
, 0

))
= η

(
α, s,

1

2
, 0

)
=
∞∑
k=1

ks−1 e
[

1
2
kα
]

1− e[kα]

=
i

2

∞∑
k=1

cosec(πkα)

k1−s ,

and

1(
1 + e

[
s
2

])H(α, s, (1, 0)) = η(α, s, 1, 0)

=
∞∑
k=1

ks−1 e[kz]

1− e[kz]

=
i

2

∞∑
k=1

cotπkz

k1−s −
1

2
ζ(1− s),
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where s ∈ C with <(s) < 0.

Theorem 2.5.1 (Arakawa) [11, Lemma 1 and Theorem 2] Suppose α ∈
R ∩ Q̄ and α 6∈ Q. Then the in�nite series η(α, s, p, q) is absolutely convergent

if <(s) < 0. If, in addition, [Q(α) : Q] = 2 and (p, q) ∈ Q2 then H(α, s, p, q)

has analytic continuation to C− {0}, and the singularity at s = 0 is at worst a

simple pole.

Arakawa proved the absolute convergence of η(α, s, p, q) for <(s) < 0, by using

the Thue-Siegel-Roth theorem.

Consider the generalized eta-function

η(z, s, p, q) =
∞∑
n=1

ns−1 e[n(pz + q)]

1− e[nz]
, s ∈ C, (2.13)

corresponding to (2.112.11), for z ∈ H and a pair (p, q) ∈ R2 with p > 0. Then one

can see that this series is absolutely convergent for arbitrary s ∈ C. It can be

easily checked that there is a link between the in�nite series A(z, s, r1, r2) and

η(z, s, r1, r2).

Lemma 2.5.2 For any pair (r1, r2) ∈ R2 and z ∈ H, we have

A(z, s, r1, r2) = η(z, s, 〈r1〉, r2), s ∈ C.

Now from the de�nition of H-function (2.62.6), we have

H(z, s, r1, r2) = A(z, s, r1, r2) + e
[s

2

]
A(z, s,−r1,−r2).

Hence using Lemma 2.5.22.5.2, we get

H(z, s, r1, r2) = η(z, s, 〈r1〉, r2) + e
[s

2

]
η(z, s, 〈−r1〉,−r2).

Similarity, we have

Lemma 2.5.3 For any algebraic irrational number α and a pair (p, q) ∈ R2,

A(α, s, p, q) = η(α, s, 〈p〉, q) with <(s) < 0.
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Again by the de�nition of H-function (2.122.12)(due to Arakawa), we have

H(α, s, p, q) = η(α, s, 〈p〉, q) + e
[s

2

]
η(α, s, 〈−p〉, q).

Therefore, by the Lemma 2.5.32.5.3, we get

H(α, s, p, q) = A(α, s, p, q) + e
[s

2

]
A(α, s,−p, q).

Proposition 2.5.4 (Arakawa) [11, Proposition 1] Let V =

(
a b

c d

)
∈

SL(2,Z) and α be an irrational real algebraic number and (p, q) ∈ R2 with p > 0.

Let z = α + iy with y > 0. Set z∗ = V z and β = V α = (aα + b)(cα + d)−1. If

<(s) < −3, then

lim
y→0+

η(z∗, s, p, q) = η(β, s, p, q).

Arakawa obtained the following transformation formulae for H(α, s, (p, q)),

by virtue of the Theorem 2.4.32.4.3 of Berndt and Proposition 2.5.42.5.4.

Theorem 2.5.5 (Arakawa) [11, Theorem 1] Let α be any real algebraic irra-

tional, and let V =

(
a b

c d

)
∈ SL(2,Z) with c > 0 such that β := cα + d >

0. For any pair (p, q) of real numbers, set p′ = pa + qc, q′ = pb + qd and

ρ = {q′}c− {p′}d. Then for <(s) < 0,

D1(V, α, s, (p, q)) :=β−sH(V α, s, (p, q))−H(α, s, (p, q)V ) (2.14)

=β−sH(V α, s, (p, q))−H(α, s, (p′, q′))

=− Ω(p)(2π)−se
[s

4

]
β−sΓ(s)

(
ζ(s, 〈q〉) + e

[s
2

]
ζ(s, 〈−q〉)

)
+ Ω(p′)(2π)−se

[
−s

4

]
Γ(s)

(
ζ(s, 〈−q′〉) + e

[s
2

]
ζ(s, 〈q′〉)

)
+ (2π)−se

[
−s

4

]
L(α, s, (p′, q′), c, d),

where

L(α, s, p′, q′, c, d) (2.15)

= −
c∑
j=1

∫
I(λ,∞)

ts−1G2

(
1−

{(jd+ ρ)

c

}
+

(j − {p′})β
c

, (1, β); t

)
dt
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(
0 < λ < 2π,

2π

β

)
.

Berndt [33, p. 499] found the special values of L(α, s, (p′, q′), c, d) at non-negative

integral arguments s = −m,

L(α,−m, (p′, q′), c, d)

=
2πi

(m+ 2)!

c∑
j=1

m+2∑
k=0

(
m+ 2

k

)
Bk

(
j − {p′}

c

)
B̄m+2−k

(
jd+ ρ

c

)
(−β)k−1,

where Bn(x) denotes the nth Bernoulli polynomial and B̄n(x) = Bn({x}).

Lemma 2.5.6 (Arakawa) [11, Lemma 4] Let α be an irrational number in

a real quadratic �eld Q(∆) and let (p, q) be a pair of rational numbers. Then

there exist a totally positive unit β of Q(∆) and an element V =

(
a b

c d

)
of

SL(2,Z) which satisfy the conditions:

(i) c > 0,

(ii) (p, q)V ≡ (p, q) mod 1,

(iii) β

(
α

1

)
= V

(
α

1

)
.

We choose such a β ∈ Q(∆) and V ∈ SL(2,Z) i.e., which satisfy the condi-

tions of the Lemma 2.5.62.5.6. Then using condition (ii), we have

H(α, s, (p, q)) = H(α, s, (p, q)V ).

Since V α = α and c > 0, we can see easily from Theorem 2.5.52.5.5 that,

H(α, s, (p, q)) =− Ω(p)(2π)−se
[s

4

]
Γ(s)ζ(s, 〈q〉) (2.16)

+ Ω(p)(2π)−se
[
−s

4

]
Γ(s)ζ(s, 〈q〉)1− e [s] β−s

β−s − 1

+
(2π)−se

[
− s

4

]
β−s − 1

L(α, s, (p, q), c, d).

Example 2.5.2 Let α, β and V as in Lemma 2.5.62.5.6, and with (p, q) = (1, 0) and
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(p, q) = (1/2, 0). Then

H(α, s, (1, 0)) =(2π)−s
(
−e
[s

4

]
+ e

[
−s

4

] 1− e [s] β−s

β−s − 1

)
Γ(s)ζ(s)

+
(2π)−se

[
− s

4

]
β−s − 1

L(α, s, (1, 0), c, d),

H

(
α, s,

(
1

2
, 0

))
=

(2π)−se
[
− s

4

]
β−s − 1

L(α, s,

(
1

2
, 0

)
, c, d).

2.5.1 Values at some particular matrices

We �x the following matrices

V0 =

(
0 −1

1 0

)
, V1 =

(
1 0

1 1

)
and V2 = V 2

0 V
−1

1 =

(
−1 0

1 −1

)
. (2.17)

Example 2.5.3 Theorem 2.5.52.5.5 gives the following:

D1(V0, α, s, (p, q)) = α−sH

(
−1

α
, s, (p, q)

)
−H(α, s, (q,−p))

= −Ω(p)(2π)−se
[s

4

]
α−sΓ(s)

(
ζ(s, 〈q〉) + e

[s
2

]
ζ(s, 〈−q〉)

)
+ Ω(q)(2π)−se

[
−s

4

]
Γ(s)

(
ζ(s, 〈p〉) + e

[s
2

]
ζ(s, 〈−p〉)

)
+ (2π)−se

[
−s

4

]
L(α, s, (q,−p), 1, 0) ,

(2.18)

D1(V1, α, s, (p, q)) = (α + 1)−sH

(
α

α + 1
, s, (p, q)

)
−H(α, s, (p+ q, q))

= −Ω(p)(2π)−se
[s

4

]
(α + 1)−sΓ(s)

(
ζ(s, 〈q〉) + e

[s
2

]
ζ(s, 〈−q〉)

)
+ Ω(p+ q)(2π)−se

[
−s

4

]
Γ(s)

(
ζ(s, 〈−q〉) + e

[s
2

]
ζ(s, 〈q〉)

)
+ (2π)−se

[
−s

4

]
L(α, s, (p+ q, q), 1, 1) ,

(2.19)
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and

D1(V2, α, s, (p, q)) = (α− 1)−sH

(
−α
α− 1

, s, (p, q)

)
−H(α, s, (−p+ q,−q))

= −Ω(p)(2π)−se
[s

4

]
(α− 1)−sΓ(s)

(
ζ(s, 〈q〉) + e

[s
2

]
ζ(s, 〈−q〉)

)
+ Ω(−p+ q)(2π)−se

[
−s

4

]
Γ(s)

(
ζ(s, 〈q〉) + e

[s
2

]
ζ(s, 〈−q〉)

)
+ (2π)−se

[
−s

4

]
L(α, s, (−p+ q,−q), 1,−1) .

(2.20)

In particular, when (p, q) = (1, 0), we have

D1 (V0, α, s, (1, 0)) =(2π)−se
[s

4

]{
e
[
−s

2

]
− α−s

}
Γ(s)

(
1 + e

[s
2

])
ζ(s)

+ (2π)−se
[
−s

4

]
L(α, s, (0,−1), 1, 0),

D1 (V1, α, s, (1, 0)) = (2π)−se
[s

4

]{
e
[
−s

2

]
− (α + 1)−s

}
Γ(s)

(
1 + e

[s
2

])
ζ(s)

+ (2π)−se
[
−s

4

]
L(α, s, (1, 0), 1, 1),

D1 (V2, α, s, (1, 0)) = (2π)−se
[s

4

]{
e
[
−s

2

]
− (α− 1)−s

}
Γ(s)

(
1 + e

[s
2

])
ζ(s)

+ (2π)−se
[
−s

4

]
L(α, s, (−1, 0), 1,−1).

If we choose (p, q) = (1/2, 0), we get

D1

(
V0, α, s,

(
1

2
, 0

))
= α−sH

(
−1

α
, s,

(
1

2
, 0

))
−H

(
α, s,

(
0.− 1

2

))
= (2π)−s

(
e
[s

4

]
+ e

[
−s

4

])
Γ(s)ζ

(
s,

1

2

)
+ (2π)−se

[
−s

4

]
L

(
α, s,

(
0,−1

2

)
, 1, 0

)
,

D1

(
V1, α, s,

(
1

2
, 0

))
= (α + 1)−sH

(
α

α + 1
, s,

(
1

2
, 0

))
−H

(
α, s,

(
1

2
, 0

))
= (2π)−se

[
−s

4

]
L

(
α, s,

(
1

2
, 0

)
, 1, 1

)
,
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D1

(
V2, α, s,

(
1

2
, 0

))
= (α− 1)−sH

(
−α
α− 1

, s,

(
1

2
, 0

))
−H

(
α, s,

(
−1

2
, 0

))
= (2π)−se

[
−s

4

]
L

(
α, s,

(
−1

2
, 0

)
, 1,−1

)
.

Note that for non-negative integers m, we have the following explicit formulae

for Vj, where j = 0, 1, 2,

L(α,−m, (1, 0)Vj, c, d)

=
2πi

(m+ 2)!

m+2∑
k=0

(
m+ 2

k

)
Bk(1)B̄m+2−k(1)(−β)k−1,

L

(
α,−m,

(
1

2
, 0

)
Vj, c, d

)
=

2πi

(m+ 2)!

m+2∑
k=0

(
m+ 2

k

)
Bk

(
1

2

)
B̄m+2−k

(
1

2

)
(−β)k−1.

2.6 Generalization of the secant zeta function

We introduce two Lambert series corresponding to (2.112.11) and (2.52.5). These in-

clude the generalizations of secant and tangent zeta functions as will be shown

in Example 2.6.12.6.1 below. Let α be any algebraic irrational number and (p, q) a

pair of real numbers. Then we de�ne the series η∗ by

η∗(α, s, p, q) :=
∞∑
n=1

ns−1 e[n(pα + q)]

1 + e[nα]
, <(s) < 0, (2.21)

and another in�nite series A∗ by

A∗(z, s, r1, r2) :=
∑

m>−r1

(−1)m
∞∑
k=1

ks−1e[kr2 + k(m+ r1)z] (2.22)

for a pair (r1, r2) ∈ R2, z ∈ H and s ∈ C.

Example 2.6.1 If we take (r1, r2) = (1, 0) and (1
2
, 0), then (2.222.22) becomes

A∗(α, s, 1, 0) = η∗(α, s, 1, 0)

=
∞∑
k=1

ks−1 e[kα]

1 + e[kα]
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=
1

2

∞∑
k=1

ks−1

(
e[kα]− 1

1 + e[kα]
+ 1

)
=
i

2

∞∑
k=1

ks−1 tanπkα +
1

2
ζ(1− s),

and

A∗
(
α, s,

1

2
, 0

)
= η

(
α, s,

1

2
, 0

)
(2.23)

=
1

2

∞∑
k=1

ks−1 1

cosπkα

=
1

2
ψ(α, 1− s)

respectively.

By virtue of the results of Lewittes, Berndt and Arakawa, we have the fol-

lowing results.

Lemma 2.6.1 Let α be an algebraic irrational number and (p, q) be a pair of

real numbers. The series η∗(α, s, p, q) is absolutely convergent, if s ∈ C with

<(s) < 0.

Proof. One can prove this result applying the Thue-Siegel-Roth theorem, in a

similar manner to Arakawa's procedure for proving the absolute convergence of

the series η(α, s, p, q).

Lemma 2.6.2 If z ∈ H and a pair (p, q) ∈ R2 with p > 0, then the series

η∗(z, s, p, q) is absolutely convergent for any s ∈ C.

Proof. Since z ∈ H, assume z = x+ iy with y > 0. We have

η∗(z, s, p, q) =
∞∑
n=1

ns−1 e[n(pz + q)]

1 + e[nz]

=
∞∑
n=1

ns−1

∞∑
m=0

(−1)me[nq + n(m+ p)z].
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Thus,

η∗(z, s, p, q)| ≤
∞∑
n=1

∞∑
m=0

ns−1 exp(−2πn(m+ p)y)

≤
∞∑
n=1

∞∑
m=0

ns−1 K!

(2πn(m+ p)y)K

≤
∞∑
n=1

ns−1 C

nK
<∞,

where C is some constant and we can choose a large enough positive integer K

such that K > <(s) for given any s ∈ C.

Lemma 2.6.3 Let z ∈ H and α be an irrational algebraic number. Then for

any pair of real numbers (r1, r2), we have

A∗(z, s, r1, r2) = (−1)−r1+〈r1〉η∗(z, s, 〈r1〉, r2) for s ∈ C,

and

A∗(α, s, r1, r2) = (−1)−r1+〈r1〉η∗(α, s, 〈r1〉, r2) for <(s) < 0.

Proof. If r1 ∈ Z, then m > −r1 implies m = −r1 + r for r = 1, 2, 3, · · · . By the

de�nition of A∗(z, s, r1, r2), we know

A∗(z, s, r1, r2) =
∑

m>−r1

(−1)m
∞∑
k=1

ks−1e[kr2 + k(m+ r1)z]

=
∞∑
k=1

ks−1

∞∑
r=1

(−1)−r1+re[kr2 + krz]

= (−1)−r1+1

∞∑
k=1

ks−1e[kr2 + kz]
∞∑
r=0

(−1)re[krz]

= (−1)−r1+1

∞∑
k=1

ks−1 e[kr2 + kz]

1 + e[kz]

= (−1)−r1+〈r1〉η∗(z, s, 〈r1〉, r2), since 〈r1〉 = 1.

Again, if r1 6∈ Z, then m > −r1 implies m = −br1c + r for r = 0, 1, 2, · · · . So
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we will have

A∗(z, s, r1, r2) =
∑

m>−r1

(−1)m
∞∑
k=1

ks−1e[kr2 + k(m+ r1)z]

=
∞∑
k=1

ks−1

∞∑
r=0

(−1)−br1c+re[kr2 + k(〈r1〉+ r)z]

= (−1)−br1c
∞∑
k=1

ks−1e[kr2 + k〈r1〉z]
∞∑
r=0

(−1)re[krz]

= (−1)−br1c
∞∑
k=1

ks−1 e[kr2 + k〈r1〉z]

1 + e[kz]

= (−1)−r1+〈r1〉η∗(z, s, 〈r1〉, r2).

Similarly we can see that

A∗(α, s, r1, r2) = (−1)−r1+〈r1〉η∗(α, s, 〈r1〉, r2) for <(s) < 0.

Lemma 2.6.4 If z ∈ H then A∗(z, s, r1, r2) is absolutely convergent for any

s ∈ C.

Proof. Using the Lemma 2.6.22.6.2 and Lemma 2.6.32.6.3, we can show that A∗(z, s, r1, r2)

is absolutely convergent for s ∈ C.

2.7 Main Results

Consider the di�erence

D∗(V ) := D∗
(
V, α, s,

1

2
, 0

)
:= β−sA∗

(
V α, s,

1

2
, 0

)
− A∗

(
α, s,

1

2
, 0

)
(2.24)

for each V from (2.172.17). Now the second term in the above expression is the

secant zeta function in view of (2.232.23). This di�erence is quite natural in the

sense that it expresses the surplus after the modular transformation is applied.

We interpret the main result of Lalín et al. Theorem 2.3.22.3.2 in this setting as a



46 �2.7. Main Results

special case of

(α + 1)−sA∗
(
V1α, s,

1

2
, 0

)
+ (α− 1)−sA∗

(
V2α, s,

1

2
, 0

)
(2.25)

for <(s) < 0 and locate it in a natural way as we will see in Corollary 2.7.22.7.2. Our

main theorem is the following.

Theorem 2.7.1 For a real algebraic irrational α and a complex variable s with

<(s) < 0, we have

D∗(V0) = α−sA∗
(
−1

α
, s,

1

2
, 0

)
− A∗

(
α, s,

1

2
, 0

)
(2.26)

= 21−2sπ−se
[
−s

4

]
(Φ0 + Γ(s)Ω0) + 21−sΨ0

= −
(2π)−se

[
− s

4

]
1− e

[
s
2

] ∫
I(λ,∞)

ts−1 exp(−(1
2

+ α)t)

(1 + exp(−t))(1− exp(−αt))
dt

+ 2−2sπ−se
[
−s

4

]
Γ(s)

(
ζ

(
s,

1

4

)
− ζ

(
s,

3

4

))
− 21−s

∞∑
n=1

ns−1 e
[
n
(

1
2
α + 1

4

)] (
e
[

1
2
nα
]

+ 1
)

1− e[nα]

+ 22−s
∞∑
n=1

(2n)s−1 e
[

3
2
· nα

]
1− e[2nα]

.

D∗(V1) = (α + 1)−sA∗
(

α

α + 1
, s,

1

2
, 0

)
− A∗

(
α, s,

1

2
, 0

)
(2.27)

= 21−2sπ−se
[
−s

4

]
Φ1 + 21−sΨ1

= −
(2π)−se

[
− s

4

]
1− e

[
s
2

] ∫
I(λ,∞)

ts−1 exp(−1
2
t)

(1 + exp(−t))
exp(−1

2
(α + 1)t)

(1− exp(−(α + 1)t))
dt

+ 2−s
∞∑
n=1

ns−1 (−1)n−1

cos πn
2
α
.

Also,

D∗(V2) = (α− 1)−sA∗
(
−α
α− 1

, s,
1

2
, 0

)
− A∗

(
α, s,

1

2
, 0

)
(2.28)

= 21−2sπ−se
[
−s

4

]
Φ2 + 21−sΨ2
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= −
(2π)−se

[
− s

4

]
1− e

[
s
2

] ∫
I(λ,∞)

ts−1 exp(−1
2
t)

(1 + exp(−t))
exp(−1

2
(α− 1)t)

(1− exp(−(α− 1)t))
dt

− 2−s
∞∑
n=1

ns−1 1

cos πn
2
α
,

where Φk and Ψk, k = 0, 1, 2 are de�ned later. They indicate the block of L-

integrals and the block of H-functions, corresponding to the matrix Vk, respec-

tively. Also, Ω0 is de�ned in (2.482.48).

We recover the main result of Lalín et al. [2121, Theorem 3] i.e., Theorem 2.3.22.3.2

by adding the equations (2.272.27) and (2.282.28). We note it as a corollary.

Corollary 2.7.2

(α + 1)−sA∗
(

α

α + 1
, s,

1

2
, 0

)
+ (α− 1)−sA∗

(
−α
α− 1

, s,
1

2
, 0

)
(2.29)

= −
(2π)−se

[
− s

4

]
1− e

[
s
2

] ∫
I(λ,∞)

ts−1

∞∑
m=0

2−m−1Em
tm

m!

∞∑
n=0

(21−n − 1)Bn

× {(α + 1)n−1 + (α− 1)n−1}tn−1

n!
dt.

The genesis of the transformation formula of Lalín et al. [2121, Theorem 3] for

the secant zeta function is given by the sum of D∗(V1) and D∗(V2), which we

have seen in the above Corollary 2.7.22.7.2. We will see in the proof of corollary 2.7.22.7.2

that the term 2A∗
(
α, s, 1

2
, 0
)
on the left side and the secant zeta function on the

right hand side naturally cancel each other. As this occurs only in such a pairing,

this elucidates the hidden structure of the paired transformation formula from

a more general standpoint.

2.7.1 Deduction of the main theorem of Lalín et al.

Firstly we deduce Theorem 2.3.22.3.2 from Corollary 2.7.22.7.2. To do that, let l = 2k be

an even positive integer and s = 1− l. Then (2.292.29) amounts to

(α + 1)2k−1A∗
(

α

α + 1
,−2k + 1,

1

2
, 0

)
+ (α− 1)2k−1A∗

(
−α
α− 1

,−2k + 1,
1

2
, 0

)
= −

(2π)2k−1e
[
−−2k+1

4

]
1− e

[−2k+1
2

]
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×
∫
I(λ,∞)

t−2k

∞∑
m=0

2−m−1Em
tm

m!

∞∑
n=0

(21−n − 1)Bn
{(α + 1)n−1 + (α− 1)n−1}tn−1

n!
dt

= −22k−1π2k(−1)k

2πi

×
∫
I(λ,∞)

t−2k

∞∑
m=0

∞∑
n=0

2−m−1(21−n − 1)EmBn{(α + 1)n−1 + (α− 1)n−1}t
m+n−1

m!n!
dt

= −22k−1π2k(−1)k

×
2k∑
n=0

1

(2k − n)!n!
2−2k+n−1(21−n − 1)E2k−nBn{(α + 1)n−1 + (α− 1)n−1}

=
1

2
π2k(−1)k

2k∑
n=0

1

(2k − n)!n!
(2n−1 − 1)E2k−nBn{(α + 1)n−1 + (α− 1)n−1}.

This proves Theorem 2.3.22.3.2.

The following conjecture seems to be plausible.

Conjecture 2.7.3 Let W1 =

(
a1 b1

c1 d1

)
and W2 =

(
a2 b2

c2 d2

)
be two matrices

in PSL2(Z) which are inverses to each other. Then for a pair (p, q) ∈ R2,

(c1α + d1)−sA∗ (W1α, s, p, q) + (c2α + d2)−sA∗ (W2α, s, p, q) (2.30)

can be expressible in terms of special values of the zeta and L-functions as we

have seen for the sum of two explicit expressions for

(c1α + d1)−sA∗
(
Vjα, s,

(
1

2
, 0

))
− A∗

(
α, s,

(
1

2
, 0

))
, j = 1, 2.

2.8 A* in terms of A and H-functions

Before proving our main theorem we need to express A∗ in terms of A and H.

We know that given a sum S =
∑

n an with its even and odd parts Se and

So, where the even part is over all even integer values and odd part over odd

integer values, the sum 2Se − S is the alternating sum
∑

n (−1)nan. Using this

observation, we have the following result.

Lemma 2.8.1 A∗(z, s, r1, r2) = 2A
(
2z, s, r1

2
, r2

)
− A(z, s, r1, r2).
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Proof. By the de�nition of A∗(z, s, r1, r2), we have

A∗(z, s, r1, r2) =
∑

m>−r1

(−1)m
∞∑
k=1

ks−1e[kr2 + k(m+ r1)z]

= 2
∑

m>−r1
m:even

∞∑
k=1

ks−1e[kr2 + k(m+ r1)z]

−
∑

m>−r1

∞∑
k=1

ks−1e[kr2 + k(m+ r1)z]

= 2
∑

2m>−r1

∞∑
k=1

ks−1e[kr2 + k(2m+ r1)z]

−
∑

m>−r1

∞∑
k=1

ks−1e[kr2 + k(m+ r1)z]

= 2A
(

2z, s,
r1

2
, r2

)
− A(z, s, r1, r2).

There is a duplication formula for A(z, s, r1, r2) which is as follows:

Lemma 2.8.2 A(z, s, r1, r2) + A
(
z, s, r1, r2 + 1

2

)
= 2sA(2z, s, r1, 2r2)

Proof. From the de�nition (2.52.5) of A(z, s, r1, r2), we have

A(z, s, r1, r2) + A

(
z, s, r1, r2 +

1

2

)
=
∑

m>−r1

∞∑
k=1

ks−1e [kr2 + k(m+ r1)z]

+
∑

m>−r1

∞∑
k=1

ks−1e

[
k

(
r2 +

1

2

)
+ k(m+ r1)z

]

=
∑

m>−r1

∞∑
k=1

ks−1e [kr2 + k(m+ r1)z]

(
1 + e

[
1

2
k

])

= 2
∑

m>−r1

∞∑
k=1

(2k)s−1e [2kr2 + 2k(m+ r1)z]

= 2s
∑

m>−r1

∞∑
k=1

ks−1e [k(2r2) + k(m+ r1)(2z)]

= 2sA(2z, s, r1, 2r2).

Using the duplication formula i.e., Lemma 2.8.22.8.2 in Lemma 2.8.12.8.1, we get
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Lemma 2.8.3

A∗(z, s, r1, r2) = 21−sA
(
z, s,

r1

2
,
r2

2

)
+ 21−sA

(
z, s,

r1

2
,
r2

2
+

1

2

)
(2.31)

− A(z, s, r1, r2).

On the other hand,

H(z, s, r1, r2) = A(z, s, r1, r2) + e
[s

2

]
A(z, s,−r1,−r2),

and

H(z, s,−r1,−r2) = A(z, s,−r1,−r2) + e
[s

2

]
A(z, s, r1, r2).

Therefore,

A(z, s, r1, r2) =
1

1− e[s]

{
H(z, s, r1, r2)− e

[s
2

]
H(z, s,−r1,−r2)

}
. (2.32)

Substituting (2.322.32) in the Lemma 2.8.32.8.3, we deduce the following proposition.

Proposition 2.8.4 For a real algebraic irrational α, a pair (p, q) of real num-

bers with p > 0, and a complex variable s with <(s) < 0, we have

(1− e[s])A∗(α, s, p, q) = 21−s
{
H
(
α, s,

(p
2
,
q

2

))
− e

[s
2

]
H
(
α, s,

(
−p

2
,−q

2

))}
+ 21−s

{
H

(
α, s,

(
p

2
,
q

2
+

1

2

))
− e

[s
2

]
H

(
α, s,

(
−p

2
,−q

2
− 1

2

))}
− (1− e[s])A(α, s, p, q),

where

(1− e[s])A(α, s, p, q) =
{
H(α, s, (p, q))− e

[s
2

]
H(α, s, (−p,−q))

}
. (2.33)

as in (2.322.32).

Example 2.8.1 If we consider (p, q) = (1, 0) and (1/2, 0), then we get

A∗(α, s, 1, 0)
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=
1

1 + e
[
s
2

] {21−sH

(
α, s,

(
1

2
, 0

))
+ 21−sH

(
α, s,

(
1

2
,
1

2

))
−H(α, s, (1, 0))

}
and

A∗
(
α, s,

1

2
, 0

)
=

21−s

1− e[s]
H

(
α, s,

(
1

4
, 0

))
−

21−se
[
s
2

]
1− e[s]

H

(
α, s,

(
−1

4
, 0

))
(2.34)

+
21−s

1− e[s]
H

(
α, s,

(
1

4
,
1

2

))
−

21−se
[
s
2

]
1− e[s]

H

(
α, s,

(
−1

4
,−1

2

))
−

1− e
[
s
2

]
1− e[s]

H

(
α, s,

(
1

2
, 0

))
.

For the last term, with s an even integer, we use either

H

(
α, s,

(
1

2
, 0

))
=

(2π)−se
[
− s

4

]
β−s − 1

L

(
α, s,

(
1

2
, 0

)
, c, d

)
(2.35)

or

1

1 + e[ s
2
]
H

(
α, s,

(
1

2
, 0

))
=
i

2

∞∑
k=1

1

k1−s
1

sinπkα
(2.36)

which follows from Example 2.4.12.4.1 and Example 2.5.22.5.2, respectively.

2.9 General Procedure

The general procedure is to transform

D∗(V ) := D∗(V, α, s, p, q) :=β−sA∗ (V α, s, p, q)− A∗ (α, s, p, q) . (2.37)

We recall the following notations

D1(V, α, s, (p, q)) = β−sH(V α, s, (p, q))−H(α, s, (p, q)V ) (2.38)

D∗0(V, α, s, p, q) = β−sA (V α, s, p, q)− A (α, s, p, q) (2.39)
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A(z, s, r1, r2) =
1

1− e[s]

{
H(z, s, r1, r2)− e

[s
2

]
H(z, s,−r1,−r2)

}
. (2.40)

Now using Proposition 2.8.42.8.4, we can write

D∗(V, α, s, p, q) +D∗0(V, α, s, p, q) (2.41)

=
21−s

1− e[s]

(
β−sH

(
V α, s,

(p
2
,
q

2

))
−H

(
α, s,

(p
2
,
q

2

)))
−

21−se
[
s
2

]
1− e[s]

(
β−sH

(
V α, s,

(
−p

2
,−q

2

))
−H

(
α, s,

(
−p

2
,−q

2

)))
+

21−s

1− e[s]

(
β−sH

(
V α, s,

(
p

2
,
q

2
+

1

2

))
−H

(
α, s,

(
p

2
,
q

2
+

1

2

)))
−

21−se
[
s
2

]
1− e[s]

(
β−sH

(
V α, s,

(
−p

2
,−q

2
− 1

2

))
−H

(
α, s,

(
−p

2
,−q

2
− 1

2

)))
.

For (p, q) = (1/2, 0), we have

D∗0

(
V, α, s,

1

2
, 0

)
=

1

1 + e
[
s
2

](β−sH (V α, s,(1

2
, 0

))
−H

(
α, s,

(
1

2
, 0

)))
.

(2.42)

We now transform (2.412.41) by using (2.382.38),

D∗(V, α, s, p, q) +D∗0(V, α, s, p, q) (2.43)

=
21−s

1− e[s]

(
D1

(
V, α, s,

(p
2
,
q

2

))
+H

(
α, s,

(p
2
,
q

2

)
V
)
−H

(
α, s,

(p
2
,
q

2

)))
−

21−se
[
s
2

]
1− e[s]

(
D1

(
V, α, s,

(
−p

2
,−q

2

))
+H

(
α, s,

(
−p

2
,−q

2

)
V
)
−H

(
α, s,

(
−p

2
,−q

2

)))

+
21−s

1− e[s]

(
D1

(
V, α, s,

(
p

2
,
q

2
+

1

2

))

+H

(
α, s,

(
p

2
,
q

2
+

1

2

)
V

)
−H

(
α, s,

(
p

2
,
q

2
+

1

2

)))

−
21−se

[
s
2

]
1− e[s]

(
D1

(
V, α, s,

(
−p

2
,−q

2
− 1

2

))
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+H

(
α, s,

(
−p

2
,−q

2
− 1

2

)
V

)
−H

(
α, s,

(
−p

2
,−q

2
− 1

2

)))
,

where

D∗0(V, α, s, p, q) (2.44)

=
1

1− e [s]
(D1 (V, α, s, (p, q)) +H (α, s, (p, q)V )−H (α, s, (p, q)))

−
e
[
s
2

]
1− e[s]

(D1 (V, α, s, (−p,−q)) +H (α, s, (−p,−q)V )−H (α, s, (−p,−q)))

in case of (2.392.39), while

D∗0

(
V, α, s,

1

2
, 0

)
=

1

1 + e
[
s
2

](D1

(
V, α, s,

(
1

2
, 0

))
(2.45)

+H

(
α, s,

(
1

2
, 0

)
V

)
−H

(
α, s,

(
1

2
, 0

)))

in case of (2.422.42). Hence

D∗(V, α, s, p, q) +D∗0(V, α, s, p, q) (2.46)

=
21−s

1− e[s]
D1

(
V, α, s,

(p
2
,
q

2

))
−

21−se
[
s
2

]
1− e[s]

D1

(
V, α, s,

(
−p

2
,−q

2

))
+

21−s

1− e[s]
D1

(
V, α, s,

(
p

2
,
q

2
+

1

2

))
−

21−se
[
s
2

]
1− e[s]

D1

(
V, α, s,

(
−p

2
,−q

2
− 1

2

))
+

21−s

1− e[s]

(
H
(
α, s,

(p
2
,
q

2

)
V
)
−H

(
α, s,

(p
2
,
q

2

)))
−

21−se
[
s
2

]
1− e[s]

(
H
(
α, s,

(
−p

2
,−q

2

)
V
)
−H

(
α, s,

(
−p

2
,−q

2

)))

+
21−s

1− e[s]

(
H

(
α, s,

(
p

2
,
q

2
+

1

2

)
V

)
−H

(
α, s,

(
p

2
,
q

2
+

1

2

)))

−
21−se

[
s
2

]
1− e[s]

(
H

(
α, s,

(
−p

2
,−q

2
− 1

2

)
V

)
−H

(
α, s,

(
−p

2
,−q

2
− 1

2

)))
,

where the last term is either (2.392.39) or (2.452.45).
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2.10 Proof of Theorem [2.7.12.7.1, (2.262.26)]

The three identities in Theorem 2.7.12.7.1 are proved on similar lines. We begin by

using (2.432.43) and (2.452.45).

D∗(V0) = D∗
(
V0, α, s,

1

2
, 0

)
= α−sA∗

(
−1

α
, s,

1

2
, 0

)
− A∗

(
α, s,

1

2
, 0

)
=

21−s

1− e[s]
D1

(
V0, α, s,

(
1

4
, 0

))
+

21−se
[
s
2

]
1− e[s]

D1

(
V0, α, s,

(
−1

4
, 0

))
+

21−s

1− e[s]
D1

(
V0, α, s,

(
1

4
,
1

2

))
−

21−se
[
s
2

]
1− e[s]

D1

(
V0, α, s,

(
−1

4
,−1

2

))
−

1− e
[
s
2

]
1− e[s]

D1

(
V0, α, s,

(
1

2
, 0

))
+

21−s

1− e[s]

(
H

(
α, s,

(
1

4
, 0

)
V0

)
−H

(
α, s,

(
1

4
, 0

)))
− 21−s

1− e[s]

{
H

(
α, s,

(
1

4
, 0

)
V0

)
−H

(
α, s,

(
−1

4
, 0

))}
+

21−s

1− e[s]

{
H

(
α, s,

(
1

4
,
1

2

)
V0

)
−H

(
α, s,

(
1

4
,
1

2

))}
−

21−se
[
s
2

]
1− e[s]

{
H

(
α, s,

(
−1

4
,−1

2

)
V0

)
−H

(
α, s,

(
−1

4
,−1

2

))}
−

1− e
[
s
2

]
1− e[s]

{
H

(
α, s,

(
1

2
, 0

)
V0

)
−H

(
α, s,

(
1

2
, 0

))}
.

Then applying (2.182.18), we deduce that

D∗(V0) =
21−s

1− e[s]
(2π)−s

{
e
[
−s

4

]
L

(
α, s,

(
0,−1

4

)
, 1, 0

)
− e

[s
4

]
L

(
α, s,

(
0,

1

4

)
, 1, 0

)}
+

21−s

1− e[s]
(2π)−s

{
e
[
−s

4

]
L

(
α, s,

(
1

2
,−1

4

)
, 1, 0

)
− e

[s
4

]
L

(
α, s,

(
−1

2
,
1

4

)
, 1, 0

)}
−

1− e
[
s
2

]
1− e[s]

(2π)−se
[
−s

4

]
L

(
α, s,

(
0,−1

2

)
, 1, 0

)
−

21−se
[
s
2

]
1− e[s]

(2π)−se
[
−s

4

]
Γ(s)

(
ζ

(
s,

3

4

)
+ e

[s
2

]
ζ

(
s,

1

4

))
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+
21−s

1− e[s]
(2π)−se

[
−s

4

]
Γ(s)

(
ζ

(
s,

1

4

)
+ e

[s
2

]
ζ

(
s,

3

4

))
−

1− e
[
s
2

]
1− e[s]

(2π)−se
[
−s

4

]
Γ(s)

(
ζ

(
s,

1

2

)
+ e

[s
2

]
ζ

(
s,

1

2

))
−

1− e
[
s
2

]
1− e[s]

{
H

(
α, s,

(
0,−1

2

))
−H

(
α, s,

(
1

2
, 0

))}
+

21−s

1− e[s]

{
H

(
α, s,

(
0,−1

4

))
−H

(
α, s, (

1

4
, 0)

)}
−

21−se
[
s
2

]
1− e[s]

{
H

(
α, s,

(
0,

1

4

))
−H

(
α, s,

(
−1

4
, 0

))}
+

21−s

1− e[s]

{
H

(
α, s,

(
1

2
,−1

4

))
−H

(
α, s,

(
1

4
,
1

2

))}
−

21−se
[
s
2

]
1− e[s]

{
H

(
α, s,

(
−1

2
,
1

4

))
−H

(
α, s,

(
−1

4
,−1

2

))}
.

Let

(1− e[s])Φ0 = L

(
α, s,

(
0,−1

4

)
, 1, 0

)
+ L

(
α, s,

(
1

2
,−1

4

)
, 1, 0

)
(2.47)

− e
[s

2

]
L

(
α, s,

(
0,

1

4

)
, 1, 0

)
− e

[s
2

]
L

(
α, s,

(
−1

2
,
1

4

)
, 1, 0

)
−
(

1− e
[s

2

])
2s−1L

(
α, s,

(
0,−1

2

)
, 1, 0

)
,

(1− e[s])Ω0 =ζ

(
s,

1

4

)
− e [s] ζ

(
s,

1

4

)
(2.48)

− 2s−1
(

1− e
[s

2

])(
ζ

(
s,

1

2

)
+ e

[s
2

]
ζ

(
s,

1

2

))
and

(1− e[s])Ψ0 (2.49)

=H

(
α, s,

(
0,−1

4

))
−H

(
α, s,

(
1

4
, 0

))
− e

[s
2

]
H

(
α, s,

(
0,

1

4

))
+ e

[s
2

]
H

(
α, s,

(
−1

4
, 0

))
+H

(
α, s,

(
1

2
,−1

4

))
−H

(
α, s,

(
1

4
,
1

2

))
− e

[s
2

]
H

(
α, s,

(
−1

2
,
1

4

))
+ e

[s
2

]
H

(
α, s,

(
−1

4
,−1

2

))
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− 2s−1
(

1− e
[s

2

]){
H

(
α, s,

(
0,−1

2

))
−H

(
α, s,

(
1

2
, 0

))}
.

Now we can express the di�erence D∗(V0) as

D∗(V0) = 21−2sπ−se
[
−s

4

]
(Φ0 + Γ(s)Ω0) + 21−sΨ0. (2.50)

Using the integral representation (2.152.15) of L(α, s, (p′, q′), c, d), we calculate Φ0.

Therefore,

(1− e[s])Φ0 = −
∫
I(λ,∞)

ts−1 exp(−(1
4

+ α)t) + exp(−(1
4

+ 1
2
α)t)

(1− exp(−t))(1− exp(−αt))
dt

+ e
[s

2

] ∫
I(λ,∞)

ts−1 exp(−(3
4

+ α)t) + exp(−(3
4

+ 1
2
α)t)

(1− exp(−t))(1− exp(−αt))
dt

+ 2s−1
(

1− e
[s

2

]) ∫
I(λ,∞)

ts−1 exp(−(1
2

+ α)t)

(1− exp(−t))(1− exp(−αt))
dt.

Combining the �rst two integrals, we have

(1− e[s])Φ0

= I0 + 2s−1
(

1− e
[s

2

]) ∫
I(λ,∞)

ts−1 exp(−(1
2

+ α)t)

(1− exp(−t))(1− exp(−αt))
dt,

where

I0 =

∫
I(λ,∞)

ts−1− exp(−1
4
t)
(
1− exp

(
πis− 1

2
t
)) (

exp(−αt) + exp(−1
2
αt)
)

(1− exp(−t))(1− exp(−αt))
dt.

Now making the change of variable t↔ 2t, we get

I0 = 2s
∫
I(λ,∞)

ts−1 − exp(−1
2
t) (1− exp(πis− t)) (exp(−2αt) + exp(−αt))

(1 + exp(−t))(1− exp(−t))(1 + exp(−αt)(1− exp(−αt))
dt.

Hence after eliminating the common factor, we arrive at

(1− e[s])Φ0 = 2s
∫
I(λ,∞)

ts−1 exp(−1
2
t) (−1 + exp(πis− t)) exp(−αt)

(1 + exp(−t))(1− exp(−t))(1− exp(−αt))
dt
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+ 2s−1
(

1− e
[s

2

]) ∫
I(λ,∞)

ts−1 exp(−(1
2

+ α)t)

(1− exp(−t))(1− exp(−αt))
dt.

Therefore,

Φ0 = − 2s−1

1− e
[
s
2

] ∫
I(λ,∞)

ts−1 exp(−(1
2

+ α)t)

(1 + exp(−t))(1− exp(−αt))
dt. (2.51)

Our next target is to calculate Ψ0. Using (2.122.12), we have

Ψ0 =η

(
α, s, 1,−1

4

)
− η

(
α, s,

1

4
, 0

)
+ η

(
α, s,

1

2
,−1

4

)
(2.52)

− η
(
α, s,

1

4
,
1

2

)
− 2s

{
η

(
α, s, 1,

1

2

)
− η

(
α, s,

1

2
, 0

)}
.

Now using the de�nition of the η-function, we get

Ψ0 =
∞∑
n=1

ns−1 e
[
n
(
α− 1

4

)]
1− e[nα]

+
∞∑
n=1

ns−1 e
[
n
(

1
2
α− 1

4

)]
1− e[nα]

−
∞∑
n=1

ns−1 e
[

1
4
nα
]

1− e[nα]
−
∞∑
n=1

ns−1 e
[
n
(

1
4
α + 1

2

)]
1− e[nα]

− 2s
∞∑
n=1

ns−1 e
[
n
(
α + 1

2

)]
1− e[nα]

+ 2s
∞∑
n=1

ns−1 e
[

1
2
nα
]

1− e[nα]

=
∞∑
n=1

ns−1 e
[
n
(

1
2
α− 1

4

)] (
e
[

1
2
nα
]

+ 1
)

1− e[nα]

− 2
∞∑
n=1

(2n)s−1 e
[
2n
(

1
2
α− 1

4

)]
(1 + e[nα])

1− e[2nα]

−
∞∑
n=1

ns−1 e
[

1
4
nα
]

(1 + (−1)n)

1− e[nα]
+ 2

∞∑
n=1

(2n)s−1 e
[

1
4
· 2nα

]
(1 + e[nα])

1− e[2nα]
.

= −
∞∑
n=1

ns−1 e
[
n
(

1
2
α + 1

4

)] (
e
[

1
2
nα
]

+ 1
)

1− e[nα]

+ 2
∞∑
n=1

(2n)s−1 e
[

3
2
· nα

]
1− e[2nα]

.
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To calculate Ω0, we use 2sζ
(
s, 1

2

)
= ζ

(
s, 1

4

)
+ ζ

(
s, 3

4

)
, and we get

Ω0 =

(
ζ

(
s,

1

4

)
− 2s−1ζ

(
s,

1

2

))
(2.53)

= 2−1

(
ζ

(
s,

1

4

)
− ζ

(
s,

3

4

))
.

Finally, combining the expressions for Φ0,Ψ0, and Ω0 we deduce Theorem [2.7.12.7.1,

(2.262.26)].

2.11 Proof of Theorem [2.7.12.7.1, (2.272.27)]

By using Proposition 2.8.42.8.4 and from (2.192.19), we have

D∗(V1) = D∗
(
V1, α, s,

1

2
, 0

)
(2.54)

= (α + 1)−sA∗
(

α

α + 1
, s,

1

2
, 0

)
− A∗

(
α, s,

1

2
, 0

)
=

21−s

1− e[s]
(2π)−s

×
{
e
[
−s

4

]
L

(
α, s,

(
1

4
, 0

)
, 1, 1

)
− e

[s
4

]
L

(
α, s,

(
−1

4
, 0

)
, 1, 1

)}
+

21−s

1− e[s]
(2π)−s

×
{
e
[
−s

4

]
L

(
α, s,

(
3

4
,
1

2

)
, 1, 1

)
− e

[s
4

]
L

(
α, s,

(
−3

4
,−1

2

)
, 1, 1

)}
+

21−s

1− e[s]

{
H

(
α, s,

(
3

4
,
1

2

))
−H

(
α, s,

(
1

4
,
1

2

))}
−

21−se
[
s
2

]
1− e[s]

{
H

(
α, s,

(
−3

4
,−1

2

))
−H

(
α, s,

(
−1

4
,−1

2

))}
−

1− e
[
s
2

]
1− e[s]

(2π)−se
[
−s

4

]
L

(
α, s,

(
1

2
, 0

)
, 1, 1

)
.

Let

(1− e[s])Φ1 = L

(
α, s,

(
1

4
, 0

)
, 1, 1

)
+ L

(
α, s,

(
3

4
,
1

2

)
, 1, 1

)
(2.55)

− e
[s

2

]
L

(
α, s,

(
−1

4
, 0

)
, 1, 1

)
− e

[s
2

]
L

(
α, s,

(
−3

4
,−1

2

)
, 1, 1

)
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−
(

1− e
[s

2

])
2s−1L

(
α, s,

(
1

2
, 0

)
, 1, 1

)
.

and

(1− e[s])Ψ1 = H

(
α, s,

(
3

4
,
1

2

))
−H

(
α, s,

(
1

4
,
1

2

))
(2.56)

− e
[s

2

]
H

(
α, s,

(
−3

4
,−1

2

))
+ e

[s
2

]
H

(
α, s,

(
−1

4
,−1

2

))
.

We now express (2.542.54) as

D∗(V1) = 21−2sπ−se
[
−s

4

]
Φ1 + 21−sΨ1.

Now utilizing the integral representation (2.152.15) of L(α, s, (p′, q′), c, d), we have

(1− e[s])Φ1

= −
∫
I(λ,∞)

ts−1 exp(−(1
4

+ 3
4
(α + 1))t) + exp(−(1

4
+ 1

4
(α + 1))t)

(1− exp(−t))(1− exp(−(α + 1)t))
dt

+ e
[s

2

] ∫
I(λ,∞)

ts−1 exp(−(3
4

+ 1
4
(α + 1))t) + exp(−(3

4
+ 3

4
(α + 1))t)

(1− exp(−t))(1− exp(−(α + 1)t))
dt

+ 2s−1
(

1− e
[s

2

]) ∫
I(λ,∞)

ts−1 exp(−(1
2

+ 1
2
(α + 1))t)

(1− exp(−t))(1− exp(−(α + 1)t))
dt.

Again, we write the left hand side of the above equation as

(1− e[s])Φ1 = I1 (2.57)

+ 2s−1
(

1− e
[s

2

]) ∫
I(λ,∞)

ts−1 exp(−(1
2

+ 1
2
(α + 1))t)

(1− exp(−t))(1− exp(−(α + 1)t))
dt,

where

I1 =

∫
I(λ,∞)

ts−1(
− exp(−1

4
t) + exp(πis− 3

4
t)
) (

exp(−1
4
(α + 1)t) + exp(−3

4
(α + 1)t)

)
(1− exp(−t))(1− exp(−(α + 1)t))

dt.
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Now, by change of variable t ↔ 2t followed by the elimination of the common

factor 1 + exp(−(α + 1)t), we get

I1 = 2s
∫
I(λ,∞)

ts−1 exp(−1
2
t) (−1 + exp(πis− t)) exp(−1

2
(α + 1)t)

(1 + exp(−t))(1− exp(−t))(1− exp(−(α + 1)t))
dt.

Thus, substituting I1 in (2.572.57), we see that

Φ1 = − 2s−1

1− e
[
s
2

] ∫
I(λ,∞)

ts−1 exp(−(1
2

+ 1
2
(α + 1))t)

(1 + exp(−t))(1− exp(−(α + 1)t))
dt. (2.58)

Using the de�nition of H-function, from (2.562.56), we have

Ψ1 = η

(
α, s,

3

4
,
1

2

)
− η

(
α, s,

1

4
,
1

2

)
=
∞∑
n=1

ns−1 e
[
n
(

3
4
α + 1

2

)]
1− e[nα]

−
∞∑
n=1

ns−1 e
[
n
(

1
4
α + 1

2

)]
1− e[nα]

.

The nth summand is

ns−1 e
[
n
(

1
4
α + 1

2

)] (
e
[

1
2
nα
]
− 1
)

1− e[nα]

from which we may eliminate the common factor e
[

1
2
nα
]
− 1. Therefore,

Ψ1 =
∞∑
n=1

ns−1 (−1)n−1e
[

1
4
nα
]

e
[

1
2
nα
]

+ 1
=

1

2

∞∑
n=1

ns−1 (−1)n−1

cos πn
2
α
. (2.59)

Now we substitute (2.582.58) and (2.592.59) in (2.542.54), and �nally get

(α + 1)−sA∗
(

α

α + 1
, s,

1

2
, 0

)
− A∗

(
α, s,

1

2
, 0

)
= −

(2π)−se
[
− s

4

](
1− e

[
s
2

]) ∫
I(λ,∞)

ts−1 exp(−1
2
t)

(1 + exp(−t))
exp(−1

2
(α + 1)t)

(1− exp(−(α + 1)t))
dt

+ 2−s
∞∑
n=1

ns−1 (−1)n−1

cos πn
2
α
.

(2.60)

This completes the proof of Theorem [2.7.12.7.1, (2.272.27)].
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2.12 Proof of Theorem [2.7.12.7.1,(2.282.28)]

We follow the same route, �rst we use Proposition 2.8.42.8.4 and then using (2.202.20),

we obtain

D∗(V2) = D∗
(
V2, α, s,

1

2
, 0

)
= (α− 1)−sA∗

(
−α
α− 1

, s,
1

2
, 0

)
− A∗

(
α, s,

1

2
, 0

)
=

21−s

1− e[s]
(2π)−s

{
e
[
−s

4

]
L

(
α, s,

(
−1

4
, 0

)
, 1,−1

)
− e

[s
4

]
L(α, s, (

1

4
, 0), 1,−1)

}
+

21−s

1− e[s]
(2π)−s

{
e
[
−s

4

]
L

(
α, s,

(
1

4
,−1

2

)
, 1,−1

)
− e

[s
4

]
L

(
α, s,

(
−1

4
,
1

2

)
, 1,−1

)}
−

1− e
[
s
2

]
1− e[s]

(2π)−se
[
−s

4

]
L

(
α, s,

(
−1

2
, 0

)
, 1,−1

)
+

21−s

1− e[s]

{
H

(
α, s,

(
−1

4
, 0

))
−H

(
α, s,

(
1

4
, 0

))}
−

21−se
[
s
2

]
1− e[s]

{
H

(
α, s,

(
1

4
, 0

))
−H

(
α, s,

(
−1

4
, 0

))}
= 21−2sπ−se

[
−s

4

]
Φ2 + 21−sΨ2,

where

(1− e[s])Φ2 = L

(
α, s,

(
−1

4
, 0

)
, 1,−1

)
− e

[s
2

]
L

(
α, s,

(
1

4
, 0

)
, 1,−1

)
+ L

(
α, s,

(
1

4
,−1

2

)
, 1,−1

)
− e

[s
2

]
L

(
α, s,

(
−1

4
,
1

2

)
, 1,−1

)
−
(

1− e
[s

2

])
2s−1L

(
α, s,

(
−1

2
, 0

)
, 1,−1

)
,

(2.61)

and

(1− e[s])Ψ2 = H

(
α, s,

(
−1

4
, 0

))
−H

(
α, s,

(
1

4
, 0

))
(2.62)

− e
[s

2

]
H

(
α, s,

(
1

4
, 0

))
+ e

[s
2

]
H

(
α, s,

(
−1

4
, 0

))
=
(

1 + e
[s

2

])(
H

(
α, s,

(
−1

4
, 0

))
−H

(
α, s,

(
1

4
, 0

)))
.
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To simplify Φ2, we make use of the integral representation (2.152.15) of L(α, s, (p′, q′), c, d).

So we have

(1− e[s])Φ2 = I2

+ 2s−1
(

1− e
[s

2

]) ∫
I(λ,∞)

ts−1 exp(−(1
2

+ 1
2
(α− 1))t)

(1− exp(−t))(1− exp(−(α− 1)t))
dt,

where

I2 =

∫
I(λ,∞)

ts−1(
− exp(−1

4
t) + exp(πis− 3

4
t)
) (

exp(−1
4
(α− 1)t) + exp(−3

4
(α− 1)t)

)
(1− exp(−t))(1− exp(−(α− 1)t))

dt.

As before, by eliminating the common factor 1− exp(−t), we obtain

I2 = 2s
∫
I(λ,∞)

ts−1 exp(−1
2
t) exp(−1

2
(α− 1)t)(−1 + exp(πis− t))

(1 + exp(−t))(1− exp(−t))(1− exp(−(α− 1)t)
dt.

Whence it follows that

Φ2 = − 2s−1

1− e
[
s
2

] ∫
I(λ,∞)

ts−1 exp(−(1
2

+ 1
2
(α− 1))t)

(1 + exp(−t))(1− exp(−(α− 1)t))
dt. (2.63)

While handling (2.622.62), we decompose it as

Ψ2 = η

(
α, s,

3

4
, 0

)
− η

(
α, s,

1

4
, 0

)
.

In the series expression of Ψ2 we factor out e
[

1
4
nα
]
as before and eliminate the

common factor
(
e
[

1
2
nα
]
− 1
)
to obtain

Ψ2 = −
∞∑
n=1

ns−1 e
[

1
4
nα
]

e
[

1
2
nα
]

+ 1
= −1

2

∞∑
n=1

ns−1 1

cos πn
2
α
. (2.64)

Finally substituting the expressions for Φ2 and Ψ2, we have

(α− 1)−sA∗
(
−α
α− 1

, s,
1

2
, 0

)
− A∗

(
α, s,

1

2
, 0

)
(2.65)

= −
(2π)−se

[
− s

4

]
1− e

[
s
2

] ∫
I(λ,∞)

ts−1 exp(−1
2
t)

(1 + exp(−t))
exp(−1

2
(α− 1)t)

(1− exp(−(α− 1)t)
dt
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− 2−s
∞∑
n=1

ns−1 1

cos πn
2
α
.

This �nishes the proof of Theorem [2.7.12.7.1, (2.282.28)].

2.13 Proof of Corollary 2.7.22.7.2

We conclude this chapter by �nally proving Corollary 2.7.22.7.2. We add (2.602.60) and

(2.652.65) and derive that

(α + 1)−sA∗
(

α

α + 1
, s,

1

2
, 0

)
+ (α− 1)−sA∗

(
−α
α− 1

, s,
1

2
, 0

)
− 2A∗

(
α, s,

1

2
, 0

)
= −

(2π)−se
[
− s

4

]
1− e

[
s
2

] ∫
I(λ,∞)

ts−1 exp(−1
2
t)

(1 + exp(−t))
exp(−1

2
(α + 1)t)

(1− exp(−(α + 1)t))
dt

−
(2π)−se

[
− s

4

]
1− e

[
s
2

] ∫
I(λ,∞)

ts−1 exp(−1
2
t)

(1 + exp(−t))
exp(−1

2
(α− 1)t)

(1− exp(−(α− 1)t))
dt

+ 2−s
∞∑
n=1

ns−1 (−1)n−1

cos πn
2
α
− 2−s

∞∑
n=1

ns−1 1

cos πn
2
α

= −
(2π)−se

[
− s

4

]
1− e

[
s
2

] ∫
I(λ,∞)

ts−1 exp(−1
2
t)

1 + exp(−t)

{
exp(−1

2
(α + 1)t)

1− exp(−(α + 1)t)

+
exp(−1

2
(α− 1)t)

1− exp(−(α− 1)t)

}
dt− 2 · 2−s

∞∑
n=1

(2n)s−1 1

cos π2n
2
α
.

Now in the above expression 2A∗
(
α, s, 1

2
, 0
)
on the left hand side and secant

zeta function on the right hand side will cancel each other, as they are the same

(from (2.232.23)). Therefore, we have

(α + 1)−sA∗
(

α

α + 1
, s,

1

2
, 0

)
+ (α− 1)−sA∗

(
−α
α− 1

, s,
1

2
, 0

)
(2.66)

= −
(2π)−se

[
− s

4

]
1− e

[
s
2

] ∫
I(λ,∞)

ts−1 exp(−1
2
t)

1 + exp(−t)

{
exp(−1

2
(α + 1)t)

1− exp(−(α + 1)t)

+
exp(−1

2
(α− 1)t)

1− exp(−(α− 1)t)

}
dt



= −
(2π)−se

[
− s

4

]
1− e

[
s
2

] ∫
I(λ,∞)

ts−1

∞∑
m=0

Em

(
1

2

)
tm

2m!

×

{
∞∑
n=0

Bn

(
1

2

)
{(α + 1)n−1 + (α− 1)n−1}tn−1

n!

}
dt,

and thus the Corollary 2.7.22.7.2 follows.

2.14 Future work

Our ongoing project is to derive the general modular transformation formula for

A∗(α, s, p, q) for all (p, q) ∈ R2, and from which we would like to see the truth

of our conjecture.
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