
SOME PROBLEMS IN ALGEBRAIC AND

COMBINATORIAL NUMBER THEORY

CONNECTED WITH FINITE ABELIAN GROUPS

By
BIDISHA ROY

MATH08201504001

Harish-Chandra Research Institute, Prayagraj 

A thesis submitted to the 

Board of Studies in Mathematical Sciences

In partial fulfillment of requirements 

for the Degree of

DOCTOR OF PHILOSOPHY

of 

HOMI BHABHA NATIONAL INSTITUTE

 November, 2019









STATEMENT BY AUTHOR

This  dissertation  has  been  submitted  in  partial  fulfillment  of  requirements  for  an

advanced degree at Homi Bhabha National Institute (HBNI) and is deposited in the

Library to be made available to borrowers under rules of the HBNI.

Brief  quotations  from  this  dissertation  are  allowable  without  special  permission,

provided that accurate acknowledgement of source is made. Requests for permission

for extended quotation from or reproduction of this manuscript in whole or in part

may be granted by the Competent Authority of HBNI when in his or her judgment the

proposed use of the material is in the interests of scholarship. In all other instances,

however, permission must be obtained from the author.

    BIDISHA ROY





DECLARATION

I, hereby declare that the investigation presented in the thesis has been carried out by

me. The work is original and has not been submitted earlier as a whole or in part for a

degree / diploma at this or any other Institution / University. 

   BIDISHA ROY

 





List of Publications arising from the thesis

Journal
1. “Quadratic  nonresidues  and  nonprimitive  roots  satisfying  a

coprimality  conditions,”  Jaitra  Chattopadhyay,  Bidisha  Roy,

Subha Sarkar and R. Thangadurai, Bull. Aust. Math. Soc., 2019,

99, 177-183.

2. “On sums of polynomial-type exceptional Units in Z/nZ,”  

Anand, Jaitra Chattopadhyay and Bidisha Roy, Arch. Math. 

(Basel), 2020, 114, 271-283.

3. “On zero-sum subsequences in a finite abelian p-group of length

not exceeding a given number,”  Bidisha Roy  and R. 

Thangadurai, J. Number Theory, 2018, 191, 246-257.

Others

     1.   “Torsion groups of Mordell cuves over cubic and sextic fields,”

     Pallab Kanti Dey and Bidisha Roy,  Submitted.

Conferences

1. Pesented a talk “ On Quadratic non residues non primitive roots”

in International Conference on Class Groups of Number Fields 

and Related Topics-2018 at Harish-Chandra Research Institute, 

Allahabad, India, October-2018.

2. Presented a talk “On zero-sum subsequences in a finite abelian 

p-group” in Fifth mini symposium of the Roman Number Theory

Association at Università Roma Tre, Rome, Italy, April-2019.

   BIDISHA ROY





Dedicated to

My Father





ACKNOWLEDGEMENTS

At first, I would like to thank my Ph.D. supervisor, Prof. R. Thangadurai, for
his constant support, inspiration and good wishes throughout my HRI-days. He
always supports me to retain my focus in mathematics and overcome difficulties
in academic as well as non-academic issues.

I am thankful to my Doctoral committee members Prof. B. Ramakrishnan,
Prof. D. Surya Ramana, Prof. P. Batra and Prof. G. Prakash, for their constant
encouragement. I wish to thank all faculty members of HRI who taught us in
our course-work which stimulated me to look into some concepts more deeply.
Specially, I wish to mention about Prof. N Raghavendra who guided me in my
first year project of Ph.D. course-work and could make me confident to continue
further.

At the starting of my Ph.D., Prof. S. D. Adhikari motivated me to enjoy and
carry forward in Number theory and at the end, I am really thankful to him for
his initiative. I am thankful to Prof. A. Bremner, Prof. A. Robertson and Prof.
W. A. Schmid for supporting me to pursue my career. I wish to take opportunity
to thank Prof. M. J. Schlosser, Prof. F. Najman and Prof. E. González-Jiménez
for making my Ph.D. time more fruitful in several ways. Specially, I would
like to mention about Najman who taught me how to concentrate endlessly on
a particular topic. I am thankful to Prof. T. E. V. Balaji and Prof. A.V.
Jayanthan for their nice teaching in my M.Sc. and for their constant motivation
to continue in mathematics.

All my collaborators (Jaitra, Subha, Aaron Robertson, Thanga sir, Pallab
da and Anand) could make my Ph.D. life less stressful with some collaboration
in proper time and I am thankful for their support.

Also, I would like to thank HRI administrative staffs for their efforts to make
my Ph.D.-journey smooth and I specially thank ‘HRI-Mess’ which I think the
best part of HRI. My HRI days could not be so nice without the endless support
of HRI mess workers who always serve us whole-heartily.

I am thankful to my parents and brother for their continuous support in
their own way. It is not possible to pursue my Ph.D. without their support and
encouragement. I should obviously thank Ankur who always tried his best to
support me.

Whenever I needed some fresh air from outside-HRI, I got enough oxygen
from my friend group of M.Sc. batch (M & I). They supported me in every walk
of my life in last few years. So, I really owe them a lot and special mention goes
to Chanda for giving enormous time to me.

Last but not the least, I would like to thank all my friends & well-wishers
who taught me many aspects of life. Specially, I wish to mention about my
friends in HRI and batch mates (Deba, Jaitra, Subha and Lalit) who made my
HRI days significant and memorable. All my juniors and seniors in HRI made
my life comfortable and enjoyable in HRI with their constant attachment. It is
incomplete without referring Bobo who gifted me some nice moments in HRI.





Contents

Summary 11

1 Torsion groups of Mordell curves over cubic and sextic fields 33
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.2 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
1.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1111

1.3.1 Basics on Number field . . . . . . . . . . . . . . . . . . . 1111
1.3.2 Basics on elliptic curves over number field . . . . . . . . 1111
1.3.3 Basics on elliptic curves over finite field . . . . . . . . . . 1616

1.4 Proof of Theorem 1.2.11.2.1 . . . . . . . . . . . . . . . . . . . . . . . 1919
1.5 Proof of Theorem 1.2.21.2.2 . . . . . . . . . . . . . . . . . . . . . . . 2626
1.6 Proof of Theorem 1.2.31.2.3 . . . . . . . . . . . . . . . . . . . . . . . 3030
1.7 Proof of Theorem 1.2.41.2.4 . . . . . . . . . . . . . . . . . . . . . . . 3737

2 Quadratic non-residues and non-primitive roots satisfying a co-
primality condition 4343
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4444
2.2 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4545
2.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4646
2.4 Proof of Theorem 2.2.12.2.1 . . . . . . . . . . . . . . . . . . . . . . . 5656
2.5 Proof of Corollary 2.2.22.2.2 . . . . . . . . . . . . . . . . . . . . . . . 6161

3 On sums of polynomial-type exceptional units in Z/nZ 6363
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6363
3.2 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6565
3.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6767
3.4 Proof of Theorem 3.2.13.2.1 . . . . . . . . . . . . . . . . . . . . . . . 7373
3.5 Proof of Corollary 3.2.43.2.4 . . . . . . . . . . . . . . . . . . . . . . . 7575
3.6 Proof of Corollary 3.2.53.2.5 . . . . . . . . . . . . . . . . . . . . . . . 7676
3.7 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . 7878



4 On zero-sum subsequences in a finite abelian p-group of length
not exceeding a given number 8383
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8484
4.2 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8888
4.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8888
4.4 Proof of Theorem 4.2.14.2.1 . . . . . . . . . . . . . . . . . . . . . . . 107107

Bibliography 111111



Summary

This thesis deals with some problems of algebraic and combinatorial number
theory connected with finite abelian groups. In the first two chapters, we discuss
a problem related to elliptic curves and a problem regarding the distribution of
quadratic residues which are non-primitive roots. The last two chapters are
dedicated to combinatorial number theory. In the third and fourth chapter, we
consider have considered a problem generalizing exceptional units in the ring
Z/nZ and a problem on zero-sum subsequences in some finite abelian p-groups.

In the first chapter, we discuss torsion groups of elliptic curves defined over
number fields which is a classical topic and it has a vast literature in algebraic
number theory. In this chapter, we classify torsion groups of rational Mordell
curves explicitly over cubic fields as well as over sextic fields. Also, we classify
torsion groups of Mordell Curves over cubic fields. For Mordell curves over sextic
fields, we compute all possible torsion groups.

In the second chapter, we discuss a problem regarding distribution of residues.
More precisely, we proved the following. Let q ≥ 1 be any integer and let
� ∈ [ 1

11
, 1
2
) be a given real number. Then for all primes p satisfying

p ≡ 1 (mod q), log log p >
log 6.83
1
2
− �

and
φ(p− 1)

p− 1
≤ 1

2
− �,

there exists a quadratic non-residue g which is not a primitive root modulo p

such that gcd
�
g, p−1

q

�
= 1.

In the third chapter, we generalize exceptional units to a polynomial version
and solve a problem involving that. We know that a unit u in a commutative
ring R with unity is said to be exceptional if u− 1 is also a unit. We introduce
a notion of polynomial version of exceptional unit (abbreviated as f -exunits)
for any f(X) ∈ Z[X]. In fact, we find the number of representations of a
non-zero element of Z/nZ as a sum of two f -exunits, for an infinite family of
polynomials f of each degree ≥ 1. We also derive the exact formulae for certain
infinite families of linear and quadratic polynomials. This generalizes a result of
Sander.

In the last chapter, we consider a problem in zero-sum theory. For a finite
abelian additive group G and for a subset L ⊆ N, we know the constant sL(G) as
the least positive integer t such that every sequence over G of length t contains
a zero-sum subsequence of length � for some � ∈ L. For L = {1, 2, . . . , a}, we
denote the constant sL(G) by s≤a(G). In this chapter, we compute this constant
for many class of abelian p-groups. In particular, it proves a conjecture of Schmid
and Zhuang.

1





CHAPTER1
Torsion groups of Mordell curves

over cubic and sextic fields

In this chapter, we classify torsion groups of rational Mordell Curves explic-

itly over cubic fields as well as over sextic fields. Also, we classify torsion groups

of Mordell Curves over cubic fields. For Mordell curves over sextic fields, we

compute all possible torsion groups.

1.1 Introduction

Definition 1.1.1 A field K in C is called number field if the dimension of K as

a vector space over Q is finite. The dimension is known as the degree of K over

Q and it is denoted by [K : Q].

Definition 1.1.2 An Elliptic curve E over a field K is a curve of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

3



4 §1.1. Introduction

where a1, . . . , a6 ∈ K.

We consider the set E(K) = {P = (x, y) : x, y ∈ K and E(x, y) = 0} ∪ {O},

where O is the point of infinity. This set E(K) turns out to be a group under

binary operation, addition, and E(K) is called the set of all K-rational points

of the elliptic curve E. The group E(K) is also called the Mordell-Weil group

of E over K.

Theorem 1.1.3 [8989] Let E be an elliptic curve defined over K. Then E(K) is

a finitely generated abelian group.

Hence, by the structure theorem of finitely generated abelian groups, we have

E(K) ∼= T ⊕ Zr, for some non-negative integer r. We call r as the rank of the

elliptic curve E and T is called the torsion subgroup of E(K). Sometimes we

may write T = E(K)tors.

The next topic is about all possible groups appearing as E(K)tor.

Notation 1.1.4 For an integer d ≥ 1, we define Φ�(d) = {E(K)tors : K/Q is

a number field of degree d and E is an elliptic curve defined over K}. For any

two element A,B ∈ Φ�(d), we say A ∼ B if and only if A ∼= B. Then ∼ is an

equivalence relation on Φ�(d) and let Φ(d) := Φ�(d)/ ∼. In short, for a fixed

natural number d ≥ 1, the set of all possible torsion subgroups of elliptic curves

defined over number field of degree d is denoted by Φ(d).

Theorem 1.1.5 [6161] Let d ≥ 1 be an integer. Then the number of elements in

Φ(d) is finite.

When we restrict elliptic curves over Q, we define the following notation in a

similar way.
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Notation 1.1.6 When K varies over any number field of degree d and E varies

over any any rational elliptic curve, then the set of all possible torsion subgroups

of E(K) (up-to isomorphism) is denoted by ΦQ(d).

Note that when K = Q, we see that Φ(1) = ΦQ(1).

When K = Q, in [6060], Mazur proved that

Φ(1) = {Z/mZ : 1 ≤ m ≤ 12,m �= 11} ∪ {Z/2Z⊕ Z/2mZ : 1 ≤ m ≤ 4}.

By a result of Kamienny [4646] and by another result of Kenku and Momose

[4848], it is known that

Φ(2) = {Z/mZ : 1 ≤ m ≤ 18,m �= 17} ∪ {Z/2Z⊕ Z/2mZ : 1 ≤ m ≤ 6}

∪{Z/3Z⊕ Z/3mZ : 1 ≤ m ≤ 2} ∪ {Z/4Z}.

Also, in [4545], it has been proved that if K varies over all cubic number fields

and E varies over all elliptic curves over K, then the group structures which

appear infinitely often as E(K)tors are exactly the following

Z/mZ; 1 ≤ m ≤ 20,m �= 17, 19

Z/2Z⊕ Z/2nZ; 1 ≤ n ≤ 7.

From the above information, we can say that the set of these 25 groups is a

subset of Φ(3). Moreover, in the same paper [4545], they proved that if E varies

over all rational elliptic curves, then each elements of Φ(1) occurs infinitely often

as E(Q)tors. They have also mentioned that all 26 groups in Φ(2) occur infinitely

often as E(K)tors, when K varies over all quadratic number fields and E varies

over all elliptic curves over K.
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Moreover, in [4444], it has been determined that which groups of the form

Z/MZ⊕Z/NZ occur infinitely often as torsion groups E(K)tors when K varies

over all quartic number fields and E varies over all elliptic curves over K. How-

ever in general it is still unknown about the set Φ(d) for d ≥ 3.

Najman in [6868] focused only on rational elliptic curves and determined ΦQ(2)

as follows.

Theorem 1.1.7 [6868] We have

ΦQ(2) = {Z/mZ, m = 1, . . . , 10, 12, 15, 16}

∪ {Z/2Z⊕ Z/2mZ, 1 ≤ m ≤ 6}

∪ {Z/3Z⊕ Z/3mZ, m = 1, 2}

∪ {Z/4Z⊕ Z/4Z}.

In the same paper, Najman [6868] showed that

ΦQ(3) = {Z/mZ : 1 ≤ m ≤ 21, m �= 11, 15, 16, 17, 19, 20}

∪{Z/2Z⊕ Z/2mZ : 1 ≤ m ≤ 7,m �= 5, 6}

Very recently, González-Jiménez and Najman in [3838] completely determined

the set ΦQ(4). Priorer to the above, González-Jiménez [3737] had provided all

possible elements in the set ΦQ(5). For a given elliptic curve E/Q with torsion

subgroup G = E(Q)tors, H.B. Daniels and González-Jiménez, in [1010], studied

what groups (up to isomorphism) can occur as the torsion subgroup of E base-

extended to K, a degree 6 extension of Q. This is a first step towards the

complete classification of ΦQ(6). In [3838], it is also proved that ΦQ(d) = Φ(1) for

any integer d not divisible by 2, 3, 5 and 7.

In Notation 1.1.41.1.4, if we restrict E to those elliptic curves with complex
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multiplication (we call CM curves), then all possible torsion subgroups over

number fields of degree d is denoted by ΦCM(d). Analogously, following the

Notation 1.1.61.1.6, we define ΦCM
Q (d). The set ΦCM(1) was determined by Olson in

[7373]. Recently, Clark et al. in [99] have computed the sets ΦCM(d) for 2 ≤ d ≤ 13.

Definition 1.1.8 Any elliptic curve of the form y2 = x3 + c which is defined

over number field K (equivalently c ∈ K) is called Mordell curve.

At first, Knapp [4949] focused on the family of rational Mordell curves and

completely classified torsion subgroups upto isomorphism which is as follows.

Theorem 1.1.9 ([4949], Page 134) Let E : y2 = x3 + c be an elliptic curve for

some integer c which is 6-th power-free. If T is the torsion subgroup of E(Q),

then T is isomorphic to one of the following groups.

(1) T ∼= Z/6Z, if c = 1,

(2) T ∼= Z/3Z, if c �= 1 is a square, or if c = −432,

(3) T ∼= Z/2Z, if c �= 1 is a cube,

(4) T ∼= {O}, otherwise.

In particular, it is known that this family of curves are CM elliptic curves.

In the case of Mordell curves, we denote by ΦM(d) (respectively ΦM
Q (d)) the

analogue of the sets Φ(d) (respectively ΦQ(d)) but restrict to Mordell curves.

The set ΦM(1) was determined completely in [4949]. Recently, P. Dey in [1212]

computed the set ΦM
Q (d), for d = 2 and all d ≥ 5 with gcd(d, 6) = 1.

We have mentioned earlier that for an elliptic curve with complex multipli-

cation, we don’t know about the set ΦCM(d), when d is even. Since Mordell

curve is a member of the family of elliptic curves with complex multiplication,

the complete determination of ΦM(6) can shed light to even case.
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1.2 Main results

In this chapter, we prove the following theorems

Theorem 1.2.1 [1414] We have

ΦM
Q (3) = {Z/9Z,Z/6Z,Z/3Z,Z/2Z,O}.

Moreover, if K/Q is a cubic field and if E : y2 = x3+ c is a rational Mordell

curve for any 6-th power-free integer c, then T := E(K)tors is isomorphic to

(1) Z/9Z, if c = 16 and K = Q(r) with r satisfying r3 − 3r2 + 1 = 0,

(2) Z/6Z,





if c is both square and cube in K,

or c = −27 and 4 is a cube in K,

(3) Z/3Z,





if c(�= 16) is a square but not a cube in K,

or c = 16 and K �= Q(r) with r satisfying r3 − 3r2 + 1 = 0,

or 4c is a cube and − 3c is a square in K,

(4) Z/2Z,





if c(�= −27) is a cube but not a square in K,

or c = −27 but 4 is not a cube in K,

(5) {O}, otherwise.

Theorem 1.2.2 [1414] We have

ΦM(3) = {Z/9Z,Z/6Z,Z/3Z,Z/2Z,O}.

Moreover, if E : y2 = x3 + c is a Mordell curve defined over a cubic field K,

then T := E(K)tors is isomorphic to

(1) Z/9Z,





if c is a square and 4c is a cube in K with K = Q(r) where r

satisfying r3 − 3r2 + 1 = 0,
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(2) Z/6Z,





if c is both square and cube in K,

or c, 4 are cubes and − 3c is a square in K,

(3) Z/3Z,





if c is a square and 4c is a cube in K with K �= Q(r) where r

satisfying r3 − 3r2 + 1 = 0,

or c is a square but 4c is not a cube in K,

or 4c is a cube and − 3c is a square in K,

(4) Z/2Z,





if c is a cube but not a square in K and − 3c is not a square in K,

or c is a cube but not a square in K and 4 is not a cube in K,

(5) {O}, otherwise.

Theorem 1.2.3 [1414] We have

ΦM
Q (6) = ΦM

Q (3)∪

{Z/9Z⊕ Z/3Z,Z/6Z⊕ Z/6Z,Z/6Z⊕ Z/2Z,Z/3Z⊕ Z/3Z,Z/2Z⊕ Z/2Z}.

Moreover, if K/Q is a sextic field an if E : y2 = x3 + c is a Mordell curve

for any 6-th power-free integer c and ω be a primitive cubic root of unity, then

T := E(K)tors is isomorphic to

(1) Z/9Z,





if c is a square and 4c is a cube in K,ω /∈ K and Q(r) ⊂ K with r

satisfying r3 − 3r2 + 1 = 0,

(2) Z/6Z,





if c is both square and cube in K and ω /∈ K,

or c, 4 are cubes in K and − 3c is a square in K but ω /∈ K,
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(3) Z/3Z,





if c is a square but not a cube in K and 4c is not a cube in K,

or c is a square and 4c is a cube in K,ω /∈ K and Q(r) �⊂ K with r

satisfying r3 − 3r2 + 1 = 0,

or c is not a cube in K, 4c is a cube and − 3c is a square in K but

ω /∈ K,

(4) Z/2Z,





if c is a cube but not a square in K and 4 is not a cube in K,

or c is a cube but not a square in K and − 3c is not a square in K,

(5) Z/9Z⊕Z/3Z,





if c is a square and 4c is a cube in K,ω ∈ K and Q(r) ⊂ K with r

satisfying r3 − 3r2 + 1 = 0,

(6) Z/6Z ⊕ Z/6Z, if c is both square and cube in K, 4 is a cube in K and

ω ∈ K,

(7) Z/6Z⊕Z/2Z, if c is both square and cube in K, 4 is not a cube in K and

ω ∈ K,

(8) Z/3Z⊕Z/3Z,





if c is a square and not a cube in K, 4c is a cube in K,ω ∈ K and

Q(r) �⊂ K with r satisfying r3 − 3r2 + 1 = 0,

(9) Z/2Z⊕ Z/2Z, if c is a cube but not a square in K and ω ∈ K,

(10) {O}, otherwise.

Theorem 1.2.4 [1414] We have

ΦM(6) = ΦM
Q (6) ∪ {Z/19Z,Z/7Z,Z/14Z⊕ Z/2Z}.
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1.3 Preliminaries

1.3.1 Basics on Number field

In this section, we shall state some basics results in algebraic number theory

which are useful later. All the results can be found in [5252].

Proposition 1.3.1 Let K be a number field and OK be the ring of integers of

K. For a prime number p ∈ Z, the principal ideal can be written uniquely as a

product of prime ideals. That is, pOK = Pe1
1 · · · Per

r where P1, . . . ,Pr are prime

ideals in OK and r is some integer.

Here ei is called the ramification index of Pi.

Definition 1.3.2 Let p be a prime number in Z and P be a prime ideal in OK

such that POK ∩Z = pZ. Then OK/P is a finite dimensional vector space over

Z/pZ and the dimension is f = [OK/P : Z/pZ]. The number f is called the

residue degree of P .

Proposition 1.3.3 Let K be a number field and p be a prime number in Z such

that pOK = Pe1
1 · · · Per

r and fi = [OK/Pi : Z/pZ], for all i = 1, . . . , r. Then we

have [K : Q] =
r�

i=1

eifi.

Notation 1.3.4 For a number field K, we denote the algebraic closure of K by

K. The Galois group of K over K is denoted by Gal(K/K), where Gal(K/K)

is the inverse limit of Gal(L/K) as L varies over all finite Galois extensions of

K.

1.3.2 Basics on elliptic curves over number field

Let K be a field. We consider elliptic curves as defined in Definition 1.1.21.1.2. If

char(K) �= 2, then the substitution y �→ 1
2
(y − a1x − a3) transforms E to the
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form

E : y2 = 4x3 + b2x
2 + 2b4x+ b6,

where b2 = a21 + 4a4, b4 = 2a4 + a1a3 and b6 = a23 + 4a6.

Again if char(K) �= 2, 3, then the substitution (x, y) �→
�
x−3b2
36

, y
108

�
elimi-

nates the x2 term and provides the simpler equation y2 = x3 − 27c4x − 54c6,

where c4 = b22 − 24b4 and c6 = −b32 + 36b2b4 − 216b6.

If K is a number field, then char(K) = 0 and hence we, now onwards, for

an elliptic curve E defined over a number field K, consider E is of the form

y2 = x3 + ax+ b, for some a, b ∈ K. (1.1)

For any point Q = (x, y) on the curve (1.11.1), we denote its reflection as

−Q = (−x, y). For any two points Q1 and Q2 on the curve, the line joining Q1

and Q2 cuts the curve E on the third point Q3 = Q1+Q2. We define “addition”

of Q1 and Q2 by Q1 ⊕ Q2 = −Q3 which is a point on the curve. Since E(K)

forms a group under the binary operation ⊕, we want to describe duplication

formula explicitly.

Addtion formula

Let Q1 = (x1, y1) and Q2 = (x2, y2) be two points on the curve (1.11.1) and

Q3 = (x3, y3) be the point Q1 +Q2 as described above, where x3 and y3 can be

computed as follows.

Case 1: (x1 �= x2)

Firstly, we consider the line joining Q1 and Q2 which is y = λx + ν with

λ = y2−y1
x2−x1

and ν = y1 − λx1 = y2 − λx2.

This line intersects the cubic E already in two points (x1, y1) and (x2, y2).

For finding the third intersecting point, we substitute y = λx + ν in the curve
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(1.11.1) and get y2 = (λx+ν)2 = x3+ bx+c ⇔ x3−λx2+(b−2λν)x+(c−ν2) = 0

which we can write as

x3 − λx2 + (b− 2λν)x+ (c− ν2) = (x− x1)(x− x2)(x− x3). (1.2)

After equating the coefficients of the x2 term on both side, we get λ2 − a =

x1 + x2 + x3 and thus

x3 = λ2 − x1 − x2, and y3 = λx3 + ν. (1.3)

Case 2: (x1 = x2).

If y2 = −y1, then we get Q1 ⊕Q2 = O, the point at infinity. If y2 = y1, then

we calculate Q1 ⊕ Q1 = 2Q1. For the curve (1.11.1), we calculate the slope of the

tangent which is given by,

λ =
dy

dx
=

3x2 + b

2y
.

Putting the value λ in the formula (1.31.3), we get the point 2Q1. Thus, we have

x coordinate of 2Q1 := x(2Q1) =
x4 − 2bx2 − 8cx+ b2

4x3 + 4bx+ 4c
. (1.4)

This formula is called as the duplication formula. Similarly one can calculate

the y coordinate of 2Q1 := y(2Q1)

=
2x6 + 4ax5 + 10ax4 + 40bx3 − 10a2x2 − (4a3 + 8ab)x− (2a3 + 16b2)

8y3
. (1.5)

In a similar way, for an integer n ≥ 2 and for any point P of an elliptic

curve E, one can calculate x(nP ) and y(nP ). It turns out that they are rational

functions in terms of x and y (see reference [8989], Page: 110).
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Now, for any elliptic curve E defined over a field K and for an positive integer

n, we define

E(K)[n] := {P = (x, y) ∈ E(K) : nP = O} ∪ {O}.

Any element of E(K)[n] is called an n-torsion point over K (or sometimes,

n-division point).

We observe that

E(K)tors =
∞�

n=1

E(K)[n]

and we define

E[n] := E(K)[n] = {P = (x, y) ∈ E(K) : nP = O} ∪ {O},

where E[n] is also called the full n-torsion of E.

Theorem 1.3.5 ([8989], page:86) Let E be an elliptic curve defined over number

field K. Then for any positive integer n ≥ 2, the group of all n-torsion points

E[n] ∼= Z/nZ⊕ Z/nZ.

Definition 1.3.6 Let E : y2 = x3 + a2x
2 + a4x+ a6 be an elliptic curve defined

over K. For a d ∈ K∗/(K∗)2, the d-quadratic twist of E is the curve Ed which

is defined by the equation

y2 = x3 + da2x
2 + d2a4x+ d3a6.

In the following lemma, we get the structure of n-torsion subgroup involving the

n-torsion subgroups of the given elliptic curve and its d-quadratic twist.

Lemma 1.3.7 ([3939], Corollary 4) Let E be an elliptic curve defined over a
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number field K. Let Ed be the d-quadratic twist of E for some d ∈ K∗/(K∗)2.

Then for any odd positive integer n,

E(K(
√
d))[n] ∼= E(K)[n]⊕ Ed(K)[n].

Definition 1.3.8 [8989] Let E1 and E2 be two elliptic curves defined over a field

K. A morphism from E1 to E2 is a rational map which is regular at every point

of E1.

Definition 1.3.9 [8989] Let E1 and E2 be elliptic curves. An isogeny from E1 to

E2 is a morphism

φ : E1 → E2, satisfying φ(O) = O.

If both E1 and E2 are defined over a number field K, then an isogeny φ

between them is called a K- rational isogeny.

A K-rational isogeny φ : E1 → E2 is called K-rational isogeny of degree n if

the kernel of φ, denoted by kerφ, is Gal(K̄/K)-invariant cyclic group of order

n. In this case, we say that E/K has an n-isogeny.

Lemma 1.3.10 ([6868], Proposition 14) Let E be a rational elliptic curve and

K/Q be a cubic field. Suppose E(K) has a point of order 9. Then E/Q has

either an isogeny of degree 9 or two independent isogenies of degree 3.

Definition 1.3.11 Let E : y2 = x3 + bx + c be an elliptic curve defined over

the number field K. Then j-invariant of E is defined as

j = j(E) = 123
12b3

12b3 + 27c2
.

Theorem 1.3.12 ([8989] Page: 45) Two elliptic curves defined over a number

field K are isomorphic over K if and only if they both have the same j-invariant.
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Theorem 1.3.13 [8989] Let K/Q be a number field and E : y2 = x3 + c be a

Mordell curve defined over K. If an elliptic curve E � is isomorphic to E, then

E � is of the from y2 = x3 + c�, where c� = b6c, for some b ∈ K∗.

Theorem 1.3.14 [5151] Let E be an elliptic curve defined over a number field K

and P ∈ E(K) be a point of order at least 4. Then E can be written of the form

y2 + (1− c)xy − by = x3 − bx2 (1.6)

for some b, c ∈ K with P = (0, 0).

The curve defined in (1.61.6) is called as the Kubert-Tate normal form of E,

and we denote this curve simply by E(b, c). The j-invariant of this elliptic curve

is given by

j(b, c) =
(16b2 + 8b(1− c)(c+ 2) + (1− c)4)3

b3(16b2 − b(8c2 + 20c− 1)− c(1− c)3)
. (1.7)

1.3.3 Basics on elliptic curves over finite field

For a given elliptic curve E : y2 = x3 + bx+ c with b, c ∈ Z, it is natural to look

at E by reducing the co-efficients modulo a prime p.

Definition 1.3.15 Let E : y2 = x3 + bx + c be an elliptic curve defined over

number field K with discriminant Δ = 4b3 − 27c2. If a prime number p ∈ Z

satisfies the condition p � Δ, then we say E has good reduction at prime p. Let

P ⊂ OK be a prime ideal lying above p. If P does not divide Δ, then we say

that E has a good reduction at P .

Notation 1.3.16 If E has good reduction at a prime p, then we denote y2 ≡

x3 + bx+ c (mod p) (equivalently y2 = x3 + bx+ c) by E.



§1.3. Preliminaries 17

In the following proposition, we record the nature of the reduction map over

a given number field.

Proposition 1.3.17 ([1313], Proposition 4) Let E be an elliptic curve defined

over K and T be the torsion subgroup of E(K). Let OK be the ring of integers

of K and let P be a prime ideal in OK. Suppose E has good reduction at P.

Let φ be the reduction modulo P map on T which means the reduction map

φ : T −→ Ē(OK/P) is defined as φ(P ) = φ((x, y)) = P̄ = (x̄, ȳ) if P �= O and

φ(O) = Ō. Then, the reduction map φ is an injective homomorphism except for

finitely many prime ideal P.

If E has good reduction at a prime p ∈ Z, then E : y2 = x3+ bx+ c is an elliptic

curve defined over Fp. Hasse-Weil theorem in [9393] states that −2
√
p ≤ |E(Fp)|−

p − 1 ≤ 2
√
p. Now, in the following three lemma we shall give information

regarding the cardinality of torsion subgroups of elliptic curves defined over

finite fields. Note that, since Fp is a finite field, T = E(Fp)tors = E(Fp).

Lemma 1.3.18 ([4949], Lemma 5.12, p. 149) Let E : y2 = x3 + c be an ellip-

tic curve for some nonzero integer c. Let p ≡ 2 (mod 3) be a prime for which

E has good reduction at p. Then, we have

|E(Fp)| = p+ 1.

Lemma 1.3.19 ([1212], Corollary 1) Let E : y2 = x3 + c be an elliptic curve

for some non-zero integer c. Let p ≡ 2 (mod 3) be a prime for which E has

good reduction at p. Then, for any natural number n, we have

|E(Fpn)| =





pn + 1, if n is odd,

(p
n
2 + 1)2, if n ≡ 2 (mod 4).
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Lemma 1.3.20 Let Ep : y2 = x3 + c be an elliptic curve defined over Fp3 and

assume that p ≡ 2 (mod 3) be an odd prime. Then we have

|Ep(Fp3)| = p3 + 1.

Proof. The multiplicative group (Fp3)
× has order p3 − 1. Since p ≡ 2 (mod 3),

we observe that p3 − 1 �≡ 0 (mod 3) and hence there is no element of order 3

in (Fp3)
×. Therefore, the homomorphism a → a3 is a bijection on (Fp3)

×. In

particular, for each y ∈ Fp3 , the element y2 − c has a unique cubic root, which

we can consider as x. Thus, in this process, we obtain p3 number of points on

Ep(Fp3). With the additional point at infinity, we see that Ep(Fp3) has p3 + 1

points. �

Now for given prime p, we see the existence of an elliptic curve with some

specified relevant properties in the following proposition.

Proposition 1.3.21 ([9393], Theorem 4.3, p. 98) Let q = pn be a power of

a prime p and set N = q + 1 − a. Then, there is an elliptic curve E defined

over Fq such that |E(Fq)| = N iff |a| ≤ 2
√
q and a satisfies one of the following

conditions.

1. gcd(a, p) = 1,

2. n is even and a = ±2
√
q,

3. n is even, p �≡ 1 (mod 3) and a = ±√
q,

4. n is odd, p = 2 or 3 and a = ±p(n+1)/2,

5. n is even, p �≡ 1 (mod 4) and a = 0,

6. n is odd and a = 0.
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Definition 1.3.22 [9393] Let K be a field with characteristic p and E be an ellip-

tic curve defined over the field K. If E[p] ∼= {O}, then E is called supersingular

elliptic curve.

In the next proposition and lemma, we provide some criteria to determine

the supersingularity of elliptic curves which will be needed later.

Proposition 1.3.23 ([8989], Theorem 4.1, p. 148) Let Fq be a finite field of

characteristic p ≥ 3. Let E be an elliptic curve over Fq given by a Weierstrass

equation

E : y2 = f(x),

where f(x) ∈ Fq[x] is a cubic polynomial with distinct roots in Fq. Then E is

supersingular if and only if the coefficient of xp−1 in f(x)(p−1)/2 is zero.

Lemma 1.3.24 ([9393], Proposition 4.31, p. 130) Let E be an elliptic curve

over Fq, where q is a power of the prime p. Let a = q + 1− |E(Fq)|. Then E is

supersingular if and only if a ≡ 0 (mod p).

1.4 Proof of Theorem 1.2.11.2.1

Throughout this section, K/Q stands for a cubic number field. We denote a

rational Mordell curve of the form y2 = x3 + c for some integer c, simply by E.

Also note T stands for the torsion subgroup of E(K).

Lemma 1.4.1 For any prime q ≥ 5, there is no element in T of order q.

Proof. Suppose there exists an element of order q in T . Then q divides |T |. Since

gcd(2, 3q) = 1, by Dirichlet’s theorem on primes in arithmetic progressions, there

exist infinitely many primes p ≡ 2 (mod 3q). Therefore there is a prime p ≡ 2

(mod 3q) such that E has good reduction at p. We consider such a prime and let
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pOK = Pe1
1 Pe2

2 Pe3
3 be the ideal decomposition in OK where P1,P2,P3 are prime

ideals in OK lying above p and 0 ≤ ei ≤ 1. For i = 1, 2, 3, if fi’s are the residual

degree of Pi, then by Proposition 1.3.31.3.3 we know that e1f1 + e2f2 + e3f3 = 3.

Hence we have a prime ideal Pj with fj = 1 or 3 for some j = 1, 2, 3.

Now, we consider the reduction mod Pj map. Since p ≡ 2 (mod 3), by

Lemma 1.3.191.3.19, we get |E(OK/Pj)| = pfj + 1. Hence by Proposition 1.3.171.3.17,

q divides |T | and thus we get q | (pfj + 1). Since p ≡ 2 (mod 3), we get

0 ≡ pfj + 1 ≡ 2fj + 1 (mod q). Since fj = 1 or 3, we see that 3 ≡ 0 (mod q) or

9 ≡ 0 (mod q), which is a contradiction to q ≥ 5. �

Lemma 1.4.2 Let ω be a cube root of unity. Then,

E(K)[2] ∼=





Z/2Z, if c
1
3 ∈ K or c

1
3ω ∈ K or c

1
3ω2 ∈ K,

O, otherwise.

Proof. If P = (x, y) is a point of order 2, then y = 0 and x satisfies the polyno-

mial equation x3 + c = 0. If K contains either c
1
3 or c

1
3ω or c

1
3ω2, then −x ∈ K

which implies (−x)3 = c ∈ K. Thus, in this case, E(K)[2] ∼= Z/2Z; otherwise it

is trivial. �

Lemma 1.4.3 Let E be a rational Mordell curve. Then,

E(K)[3] ∼=





Z/3Z, if c
1
2 ∈ K,

or

if (−3c)
1
2 ∈ K with (4c)

1
3 ∈ K or (4c)

1
3ω ∈ K or (4c)

1
3ω2 ∈ K,

O, otherwise,

where ω is a cube root of unity.
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Proof. If P = (x, y) is a point of order 3, then x-coordinate of P satisfies x(x3+

4c) = 0.

If x = 0, then c is a square in K. In that case, we conclude that E(K)[3] ∼=

Z/3Z.

If x �= 0, then we get x3 + 4c = 0 and hence y2 = −3c. Since X2 + 3 is an

irreducible polynomial over K, we note that c = y2 and −3c = y2 can not be

true together. Hence, in this case, we get E(K)[3] ∼= Z/3Z, if (−3c)
1
2 ∈ K with

(4c)
1
3 ∈ K or (4c)

1
3ω ∈ K or (4c)

1
3ω2 ∈ K. �

Lemma 1.4.4 T has no element of order 4.

Proof. Suppose P = (x, y) ∈ T is an element of order 4. Then, 2P is a point of

order 2 and therefore

y(2P ) = 0 ⇐⇒ x6 + 20cx3 − 8c2 = 0 ⇐⇒ x3 = −10c± 6c
√
3.

Since x3 ∈ K, we see that 10c±6c
√
3 ∈ K which in turn implies

√
3 ∈ K, which

is a contradiction as K is a cubic field. This proves the lemma. �

Lemma 1.4.5 Let E be a rational Mordell curve. Then,

E(K)[6] ∼=





Z/6Z, if c is a square as well as cube in K or

if c = −27 and 4 is a cube in K,

Z/3Z, if c is a square but not a cube in K or

if − 3c is a square in K and 4c is a cube in K,

Z/2Z, if c �= −27 is a cube but not a square in K or

if c = −27 but 4 is not a cube in K,

O, otherwise.
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Proof. Case 1. (c is a square as well as cube in K)

Since c is a square in K, by Lemma 1.4.31.4.3, there are two points of order 3 in

E(K)[6]. Also, since c is a cube in K, by Lemma 1.4.21.4.2, there is only one point

of order 2 in E(K)[6]. Hence, it has an element of order 6. Thus, we conclude

that E(K)[6] ∼= Z/6Z.

Case 2. (c is a cube in K but not a square in K)

Since c is a cube in K, E(K)[6] has only one element of order 2 by Lemma

1.4.21.4.2. If E(K)[6] has an element of order 3, by Lemma 1.4.31.4.3, we see that −3c is

a square and 4c is a cube in K. Since both c and 4c are cubes, we see that 4 is a

cube in K. Again, if c is not a cube of an integer, we observe that K = Q(c1/3),

which is not possible as c is not a power of 2. Hence c is a cube of an integer.

As [K : Q] = 3, we observe that −3c is also a square of an integer. Now,

combining the above two facts, we obtain c = −27. Therefore, in this case,

E(K)[6] ∼= Z/6Z when 4 is a cube in K.

Thus, if c �= −27 or 4 is not a cube in K, we conclude that E(K)[6] ∼= Z/2Z.

Case 3. (c is a square but not a cube in K)

Since c is not a cube in K, by Lemma 1.4.21.4.2, E(K)[6] has no element of order

2. Again, since c is a square, by Lemma 1.4.31.4.3, we conclude that E(K)[6] ∼= Z/3Z.

Case 4. (c is neither a square nor a cube in K)

Since c is not a cube in K, by Lemma 1.4.21.4.2, E(K)[6] has no element of order

2. If E(K)[6] has an element of order 3, by Lemma 1.4.31.4.3, we see that −3c is a

square in K and 4c is a cube in K. Thus, we conclude that E(K)[6] ∼= Z/3Z.�

Lemma 1.4.6 T has an element of order 9 if and only if c = 16 and K = Q(r)

with r satisfying the relation r3 − 3r2 + 1 = 0.

Proof. Let P = (x, y) be an element of order 9 in E(K)tors. Then 3P is a point

of order 3 in E(K)tors and hence we get x(3P )(x(3P )3 + 4c) = 0.
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If (x(3P )3 + 4c) = 0, then c = −a3

4
for some a ∈ K, where x(3P ) = a. Now,

let α be the slope of the line joining P and 2P . Then by the addition formula,

we have

α2 − x− x(x3 − 8c)

4(x3 + c)
= a = x(3P ),

where α =
�

7x6−4cx3+16c2

6xy(x3+4c)

�2

.

This equation can be written explicitly as

x9 − 9ax8 + 24a3x6 + 18a4x5 + 3a6x3 − 9a7x2 − a9 = 0.

By substituting x = at for some t ∈ K, the above equation becomes

t9 − 9t8 + 24t6 + 18t5 + 3t3 − 9t2 − 1 = 0.

Using magma, we see that the polynomial f(X) = X9 − 9X8 + 24X6 +

18X5 + 3X3 − 9X2 − 1 is irreducible over Q. Since [K : Q] = 3, the relation

t9 − 9t8 + 24t6 + 18t5 + 3t3 − 9t2 − 1 = 0 is impossible. Therefore we get

x(3P )3 + 4c �= 0.

Thus, we conclude x(3P ) = 0, which implies that c is a square in K. Again,

by the addition formula, we get

�
7x6 − 4cx3 + 16c2

6xy(x3 + 4c)

�2

− x− x(x3 − 8c)

4(x3 + c)
= 0.

The above equation reduces to

(x3 + c)(x9 − 96cx6 + 48c2x3 + 64c3) = 0.

If x3 + c = 0 then we have 2P = O, which is a contradiction to P is of order 9.
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Hence we get

x9 − 96cx6 + 48c2x3 + 64c3 = 0. (1.8)

Putting 4c = t ∈ K, the above equation further reduces to

x9 − 24tx6 + 3t2x3 + t3 = 0.

This equation can be rewritten as

(x3 + t)3 = 27tx6, (1.9)

which shows that t is a cube in K, say v3 for some v ∈ K. Since cube root of

unity, ω /∈ K, from equation (1.91.9), we have

x3 + v3 = 3vx2.

After Substituting x
v
= r ∈ K, the above equation reduces to

r3 − 3r2 + 1 = 0. (1.10)

Since the polynomial r3 − 3r2 + 1 is an irreducible polynomial and K is a cubic

field, we see that K = Q(r). As the equation (1.101.10) has three real roots, Q(r)/Q

is a normal extension.

Also we have
y2

c
=

x3

c
+ 1. Since c is a square in K with c =

v3

4
and r =

x

v
,

by putting γ = y/
√
c ∈ K, we get

γ2 = 4r3 + 1. (1.11)
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Combining equations (1.101.10) and (1.111.11), we have

γ6 − 99γ4 + 243γ2 − 81 = 0,

which further implies

(γ3 − 9γ2 − 9γ + 9)(γ3 + 9γ2 − 9γ − 9) = 0.

By letting f(X) = X3−9X2−9X+9, we see that either f(γ) = 0 or f(−γ) = 0.

Without loss of generality, we assume f(γ) = 0. Since f(X) is irreducible over

Q, we conclude that K = Q(r) = Q(γ).

Hence, if T has a point of order 9 in K, then c is a square in K and 4c is a

cube in K such that K = Q(r) with r satisfying the relation r3 − 3r2 + 1 = 0.

Now, we assume that 4c is not a cube of an integer. Therefore, we have

Q((4c)1/3) = Q(r) which is not possible as Q(r)/Q is a normal extension but

Q((4c)1/3)/Q is not a normal extension. Thus 4c is a cube of an integer. Since

[K : Q] = 3, we have c is a square of an integer also. Thus, we conclude that

c = 16.

Conversely, we have that c is a square in K and 4c is a cube in K where

K = Q(r) with r satisfying the relation r3−3r2+1 = 0. Therefore, we can show

that ((4c)1/3r,±c1/2γ1), ((4c)1/3r,±c1/2γ2) and ((4c)1/3r,±c1/2γ3) are all points

of order 9 in K, where γ1, γ2, γ3 are roots of the equation γ3−9γ2−9γ+9 = 0.�

Lemma 1.4.7 T has no element of order 18 and 27.

Proof. Suppose T has an element of order 18 or 27. Hence there exists an

element of order 9 in T . Thus, by Lemma 1.4.61.4.6, we have c = 16 and K = Q(r)

with r satisfying the relation r3− 3r2+1 = 0. In this case, by using magma, we

see that T ∼= Z/9Z, which is a contradiction. Hence T has no element of order
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18 or 27. �

Now we are ready to prove Theorem 1.2.11.2.1.

Proof of Theorem 1.2.11.2.1. 1.4.11.4.1, 1.4.41.4.4, 1.4.51.4.5, 1.4.61.4.6 and 1.4.71.4.7, we conclude that

the possible orders of any element of T is either 2 or 3 or 6 or 9 and the proof

follows. �

1.5 Proof of Theorem 1.2.21.2.2

Throughout this section, K/Q stands for a cubic number field. We denote a

Mordell curve of the form y2 = x3+ c with c ∈ K, simply by E. Also, we denote

T as the torsion subgroup of E(K).

Lemma 1.5.1 For any odd prime q ≥ 5, there is no element in T of order q.

Proof. Suppose there exists an element of order q in T . Then q divides |T |. Since

gcd(2, 3q) = 1, by Dirichlet’s theorem on primes in arithmetic progressions, there

exist infinitely many primes p ≡ 2 (mod 3q). Therefore there is a prime p ≡ 2

(mod 3q) such that E has good reduction at p. We can consider such a prime

and also assume that pOK = Pe1
1 Pe2

2 Pe3
3 is the ideal decomposition in OK where

P1,P2,P3 are prime ideals in OK lying above p and 0 ≤ ei ≤ 1. If fi’s are then

residual degree of Pi for i = 1, 2, 3, then we know that e1f1 + e2f2 + e3f3 = 3.

Therefore there exists a prime ideal Pj such that fj = 1 or 3 for some j = 1, 2, 3

Now, we consider the reduction mod Pj map. Note that |OK/P|| = pfj ,

where fi = 1 or 3. Since p ≡ 2 (mod 3), by Lemma 1.3.191.3.19 and 1.3.201.3.20, we get

|E(OK/Pj)| = pfj + 1. Proposition 1.3.171.3.17 assures that we can find a prime p

which satisfies all above conditions along with the map φ : T −→ Ē(OK/Pj) is

injective. As q divides |T |, we conclude that q | (pfj + 1). Since p ≡ 2 (mod 3),

we get 0 ≡ pfj +1 ≡ 2fj +1 (mod q). We observe that fj = 1 or 3 implies either
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3 ≡ 0 (mod q) or 9 ≡ 0 (mod q) respectively. It is a contradiction to the fact

that q is a prime greater than or equal to 5. �

Lemma 1.5.2 Let ω be a cube root of unity. Then,

E(K)[2] ∼=





Z/2Z, if c
1
3 ∈ K or c

1
3ω ∈ K or c

1
3ω2 ∈ K,

O, otherwise.

Proof. Proof is similar to the proof of Lemma 1.4.21.4.2 and we omit the proof here.

�

Lemma 1.5.3 Let ω be a cube root of unity. Then,

E(K)[3] ∼=





Z/3Z, if c
1
2 ∈ K,

or

if (−3c)
1
2 ∈ K with (4c)

1
3 ∈ K or (4c)

1
3ω ∈ K

or (4c)
1
3ω2 ∈ K,

O, otherwise.

Proof. Proof is similar to the proof of Lemma 1.4.31.4.3 and we omit the proof here.

�

Lemma 1.5.4 T has no element of order 4.

Proof. Proof is similar to the proof of Lemma 1.4.41.4.4 and hence we omit the proof

here. �
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Lemma 1.5.5 Let E be a Mordell curve over K. Then,

E(K)[6] ∼=





Z/6Z, if c is a square as well as cube in K or ,

if − 3c is a square in K and c, 4c are cubes in K,

Z/3Z, if c is a square but not a cube in K or,

if − 3c is a square in K and 4c is a cube in K but

c is not a cube in K,

Z/2Z, if c is a cube but not a square in K and

−3c is not a square in K or,

if c is a cube but not a square in K and

4c is not a cube in K,

O, otherwise.

Proof. Case 1. (c is a square as well as cube in K)

Since c is a square in K, by Lemma 1.5.31.5.3, there are two points of order 3 in

E(K)[6]. Also, since c is a cube in K, by Lemma 1.5.21.5.2, there is only one point

of order 2 in E(K)[6]. Hence, it has an element of order 6. Thus, we conclude

that E(K)[6] ∼= Z/6Z.

Case 2. (c is a cube in K but not a square in K)

Since c is a cube in K, E(K)[6] has only one element of order 2 by Lemma

1.5.21.5.2. If E(K)[6] has an element of order 3, by Lemma 1.5.31.5.3, we see that −3c is

a square in K and 4c is a cube in K. In this case, E(K)[6] ∼= Z/6Z. Thus, if −3c

is not a square in K or 4c is not a cube in K, we obtain that E(K)[6] ∼= Z/2Z.

Case 3. (c is a square but not a cube in K)

Since c is not a cube in K, by Lemma 1.5.21.5.2, E(K)[6] has no element of order

2. Since c is a square, by Lemma 1.5.31.5.3, we conclude that E(K)[6] ∼= Z/3Z.
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Case 4. (c is neither a square nor a cube in K)

Since c is not a cube in K, by Lemma 1.5.21.5.2, E(K)[6] has no element of order

2. If E(K)[6] has an element of order 3, by Lemma 1.5.31.5.3, we see that −3c is a

square in K and 4c is a cube in K. Thus, we conclude that E(K)[6] ∼= Z/3Z.�

Lemma 1.5.6 T has an element of order 9 if and only if c is a square in K,

4c is a cube in K and K = Q(r) with r satisfying the relation r3 − 3r2 + 1 = 0.

Proof. Proof is similar to the proof of Lemma 1.4.61.4.6 and we omit it here. �

Lemma 1.5.7 T has no element of order 27.

Proof. We assume that there exists an element of order 27 in T . Then 27

divides |T |. Since gcd(2, 27) = 1, by Dirichlet’s theorem on primes in arithmetic

progressions, there exist infinitely many primes p ≡ 2 (mod 27). Therefore there

is a prime p ≡ 2 (mod 27) such that E has good reduction at p. We consider such

a prime and also assume pOK = Pe1
1 Pe2

2 Pe3
3 is the ideal decomposition in OK

where P1,P2,P3 are prime ideals in OK lying above p and 0 ≤ ei ≤ 1. If fi’s are

the residual degrees of Pi for i = 1, 2, 3, then we know that e1f1+e2f2+e3f3 = 3.

Then there exists a prime ideal Pj such that fj = 1 or 3 for some j = 1, 2, 3

Since fj ∈ {1, 3}, we know |E(OK/Pj)| ∈ {p + 1, p3 + 1} by Lemmas 1.3.191.3.19

and 1.3.201.3.20. Again since the reduction map φ : T −→ Ē(OK/Pj) is injective

except for finitely many primes, we conclude that |T | divides |Ē(OK/Pj)| and

hence 27 divides |Ē(OK/Pj)|. This is impossible as p ≡ 2 (mod 27). Hence

there is no element of order 27 in the group T . �

Lemma 1.5.8 T has no element of order 18.

Proof. Assume that T has a point of order 18. Then it has a point of order

2, which forces c = a3 for some a ∈ K. Since T has a point of order 9, say
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P = (x, y), then we have

x12 − 95a3x9 − 48a6x6 + 112a9x3 + 64a12 = 0.,

from the proof of Lemma 1.4.61.4.6.

After substituting t =
x

a
∈ K, the above equation reduces to

t12 − 95t9 − 48t6 + 112t3 + 64 = 0 ⇒ (t3 + 1)(t9 − 96t6 + 48t3 + 64) = 0.

Since (t3 + 1) �= 0, we have (t9 − 96t6 + 48t3 + 64) = 0. Now consider the

polynomial f(t) = (t9 − 96t6 + 48t3 + 64) and using magma, we get that f(t) is

an irreducible polynomial in Z[t]. Hence [Q(t) : Q] = 9, which is a contradiction

as t ∈ K and [K : Q] = 3. Hence there is no point of order 18 in T . �

Proof of Theorem 1.2.21.2.2. By Lemmas 1.5.11.5.1, 1.5.21.5.2, 1.5.31.5.3, 1.5.41.5.4, 1.5.61.5.6, 1.5.71.5.7 and

1.5.81.5.8, we conclude that the only possible orders of any nontrivial element of T

is either 2 or 3 or 6 or 9 and the proof follows. �

1.6 Proof of Theorem 1.2.31.2.3

Throughout this section K stands for a sextic field. We denote a rational Mordell

curve of the form y2 = x3 + c for c ∈ Z, simply by E. We also denote T as the

torsion subgroup of E(K).

Lemma 1.6.1 Let q > 3 be any prime. Then there does not exist any element

of order q in T .

Proof. Suppose there exists an element of order q in T . Then q divides |T |.

Sine gcd(2, 3q) = 1, by Dirichlet’s theorem on primes in arithmetic progressions,

there exist infinitely many primes p ≡ 2 (mod 3q). Therefore there is a prime
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p ≡ 2 (mod 3q) such that E has good reduction at p. We consider such a prime

and assume that pOK = Pe1
1 · · · Pe6

6 is the ideal decomposition in OK where

P1, . . . ,P6 are prime ideals in OK lying above p and 0 ≤ ei ≤ 1. If fi’s are

then residual degree of Pi for i = 1, . . . , 6, then we know that
�6

i=1 eifi = 6.

Therefore there exists a prime ideal Pj such that fj is either 1 or 2 or 3 or 6 for

some j = 1, 2, . . . , 6.

Now, we consider the reduction mod Pj map. Now we have |OK/Pj| = pfj ,

where fj = 1, 2, 3 or 6. Since p ≡ 2 (mod 3), we get |E(OK/Pj)| | (p3 +

1)2 by Lemma 1.3.191.3.19. Proposition 1.3.171.3.17 assures that we can find a prime p

which satisfies all above conditions along with the map φ : T −→ Ē(OK/Pj)

is injective. As q divides |T |, we conclude that q | (p3 + 1). But we also have

p ≡ 2 (mod q), which implies p3+1 ≡ 9 (mod q). It is a contradiction as q > 3.

Hence there does not exist any point of order q > 3. �

Lemma 1.6.2 Let E be a rational Mordell curve. Then

E(K)[2] ∼=





Z/2Z, if c
1
3 or c

1
3ω or c

1
3ω2 ∈ K but

√
−3 /∈ K

Z/2Z⊕ Z/2Z, if
√
−3 and c

1
3 ∈ K

O, otherwise,

where ω is a cube root of unity.

Proof. We consider two cases as follows.

Case 1. The polynomial X3 + c is reducible in Q[X].

In this case c = a3 for some non zero integer a. Therefore, x3 + a3 =

(x+ a)(x2 − ax+ a2) = 0 implies that the point (−a, 0) is a solution or (ωa, 0)

and (ω2a, 0) are two solutions. Thus, we conclude that the point of order 2 is

P =





(−a, 0) if
√
−3 /∈ K

(−a, 0), (ωa, 0), (ω2a, 0) if
√
−3 ∈ K

.
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Case 2. The polynomial X3 + c is irreducible over Q.

In this case, if c
1
3 ∈ K and

√
−3 ∈ K, then (−c

1
3 , 0), (ωc

1
3 , 0) and (ω2c

1
3 , 0)

are points of order 2 in T . If
√
−3 /∈ K, then (−c

1
3 , 0) is the only point of order

2 whenever c
1
3 ∈ K.

Hence combining both the cases we have the result. �

Lemma 1.6.3 Let E be a rational Mordell curve. Then

E(K)[3] ∼=





Z/3Z⊕ Z/3Z, if (4c)
1
3 ,
√
−3 and

√
−3c ∈ K

Z/3Z, if (4c)
1
3 and

√
−3c ∈ K but

√
c /∈ K

or
√
c ∈ K but

√
−3 or (4c)

1
3 /∈ K

O otherwise.

Proof. If P = (x, y) be a point of order 3 in T , then

x(x3 + 4c) = 0.

Case 1. x = 0.

In this case, y2 = c and hence
√
c ∈ K. Therefore, (0,±√

c) are the only

possible points of order 3 in T .

Case 2. x �= 0.

In this case, we have x3+4c = 0 and hence y2 = −3c. Therefore (−(4c)
1
3 ,±

√
−3c),

(−(4c)
1
3ω,±

√
−3c) or (−(4c)

1
3ω2,±

√
−3c) are the possible points of order 3 in

T .

Combining both cases we have the desired result. �

Lemma 1.6.4 T does not have any element of order 4.

Proof. We assume that P = (x, y) is an element of order 4 in T . Then we note

y(2P ) = 0 ⇐⇒ x6 + 20cx3 − 8c2 = 0 ⇐⇒ x3 = −10c± 6c
√
3. Since x ∈ K, we
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get x3 ∈ K and we already have c ∈ K. Thus, we get x3+10c
6c

=
√
3 ∈ K. Hence,

we conclude K = K1(
√
3), where K1 is a cubic subfield of K. If c

1
3 ∈ K1, then

we get x = (−1±
√
3)c

1
3 ∈ K.

Since y ∈ K, we can write y = t1 + t2
√
3 for some t1, t2 ∈ K1. Since

y2 = x3+c ∈ K = K1(
√
3), we get (t1+ t2

√
3)2 = (−10c±6c

√
3)+ c ∈ K. Since

{1,
√
3} is a basis of K over K1, we get two relations which are t21 + 3t22 = −9c

and t1t2 = ±3c. These two relations together imply t21+3t22±3t1t2 = 0. Putting

t =
t1
t2

∈ K1, we get

t2 ± 3t+ 3 = 0 =⇒ t =
∓3∓

√
−3

2
.

This implies that
√
3 ∈ K1 which is a contradiction as K1 is a cubic extension

over Q. This contradiction implies that c
1
3 �∈ K and thus we get x �∈ K. Hence,

we conclude that there does not exist any element of order 4 in E(K)tors. �

Lemma 1.6.5 T has an element of order 9 if and only if c is a square, 4c is a

cube in K and Q(r) ⊂ K with r satisfying the relation r3 − 3r2 + 1 = 0..

Proof. Let P = (x, y) be an element of order 9 in E(K)tors.

Then following the proof of Lemma 1.4.61.4.6, x satisfies the polynomial equation

(x3 + t)3 = 27tx6,

where t = 4c ∈ K with c is a square in K. From this equation we observe that

t is a cube in K, say v3 for some v ∈ K. Then we can write

(x3 + v3 − 3vx2)(x3 + v3 − 3vωx2)(x3 + v3 − 3vω2x2) = 0,

where ω is a cube root of unity. Substituting
x

v
= r1 ∈ K,

x

vω
= r2 ∈ K and
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x

vω2
= r3 ∈ K, the above equation reduces to

r3 − 3r2 + 1 = 0, (1.12)

where r ∈ K is one of r1, r2 and r3. Since the polynomial r3 − 3r2 + 1 is an

irreducible polynomial and K is a cubic field, we see that Q(r) ⊂ K is a cubic

extension over Q. Also, note that Q(r)/Q is a normal extension as the equation

(1.121.12) has three real roots.

Also we have
y2

c
=

x3

c
+ 1. Since c is a square in K with c =

v3

4
and r =

x

v
,

by putting γ = y/
√
c ∈ K, we get

γ2 = 4r3 + 1. (1.13)

Combining equations (1.121.12) and (1.131.13), we have

γ6 − 99γ4 + 243γ2 − 81 = 0,

which further implies,

(γ3 − 9γ2 − 9γ + 9)(γ3 + 9γ2 − 9γ − 9) = 0.

By letting f(X) = X3−9X2−9X+9, we see that either f(γ) = 0 or f(−γ) = 0.

Without loss of generality, we assume f(γ) = 0. Since f(X) is irreducible over

Q, we conclude that Q(γ) ⊂ K is a cubic extension over Q. Since r ∈ Q(γ), we

observe that Q(γ) = Q(r).

Hence, if T has a point of order 9 in K, then c is a square and 4c is a cube

in K where Q(r) ⊂ K with r satisfying the relation r3 − 3r2 + 1 = 0.

Conversely, if c is a square in K and 4c is a cube in K where Q(r) ⊂
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K with r satisfying the relation r3 − 3r2 + 1 = 0, then we can show that

((4c)1/3r,±c1/2γ1), ((4c)
1/3r,±c1/2γ2), ((4c)

1/3r,±c1/2γ3) are points of order 9 in

K, where γ1, γ2, γ3 are roots of the equation γ3 − 9γ2 − 9γ + 9 = 0. In fact if

ω /∈ K, then there are 6 points of order 9 in T and if ω ∈ K, then there are 18

points of order 9 in T . �

Lemma 1.6.6 T has no element of order 27.

Proof. Suppose T has an element of order 27. Hence there exists an element of

order 9 in T . Thus, by Lemma 1.6.51.6.5, we see that c is a square, 4c is a cube

in K and K = Q(r) with r satisfying the relation r3 − 3r2 + 1 = 0. Hence

K = Q(r)(
√
d) for some d ∈ (Q(r)/Q(r)2)∗. Then, by Lemma 1.3.71.3.7, we have

E(K)[27] ∼= E(Q(r))[27]× Ed(Q(r))[27].

Since, by Lemma 1.5.71.5.7, there are no points of order 27 in E(Q(r)) and Ed(Q(r)),

we conclude that there are no elements of order 27 in E(K). �

Lemma 1.6.7 T has no element of order 18.

Proof. Proof is similar to the proof of Lemma 1.5.81.5.8 and we omit here. �

Proof of Theorem 1.2.31.2.3. By Lemmas 1.6.11.6.1, 1.6.21.6.2, 1.6.31.6.3, 1.6.41.6.4, 1.6.51.6.5, 1.6.61.6.6 and

1.6.71.6.7, we conclude that the only possible orders for the nontrivial torsion points

in T are 2, 3, 6 and 9.

Case 1. (c is a cube and a square in K)

Subcase a. (
√
−3 /∈ K)

Since c is a square in K, there are two points of order 3 by Lemma 1.6.31.6.3.

Again c is a cube in K implies that there is only one point of order 2 in T by

Lemma 1.6.21.6.2. Hence, T ∼= Z/6Z.
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Subcase b. (
√
−3 ∈ K)

Since c is a square in K, there are eight points of order 3 by Lemma 1.6.31.6.3, if

4
1
3 ∈ K. Also c is a cube in K provides that there are three points of order 2 in

T by Lemma 1.6.21.6.2. Hence, in this case, T ∼= Z/6Z⊕Z/6Z. If 4
1
3 /∈ K, then there

are only two points of order 3 by Lemma 1.6.31.6.3 and we obtain T ∼= Z/6Z⊕Z/2Z.

Case 2. (c is a cube, but not a square in K)

In this case, write c = a3 for a ∈ K.

Subcase a. (
√
−3 ∈ K)

Since c is a cube in K, there are three points of order 2 in T by Lemma 1.6.21.6.2.

Also we observe that there does not exist any element of order 3 by Lemma 1.6.31.6.3.

Hence, T ∼= Z/2Z⊕ Z/2Z.

Subcase b. (
√
−3 /∈ K)

In this case, (−a, 0) is the only point of order 2 in T by Lemma 1.6.21.6.2. If −3c

is a square in K and 4
1
3 ∈ K, then there are two points of order 3 by Lemma

1.6.31.6.3. Since T is abelian, it has an element of order 6 and hence T ∼= Z/6Z. If

−3c is not a square in K or 4
1
3 /∈ K, then there does not exist any element of

order 3 in T by Lemma 1.6.31.6.3 and we conclude T ∼= Z/2Z.

Case 3. (c is a square, but not a cube in K)

At first we observe that there are no elements of order 2 in T .

Subcase a. (
√
−3 ∈ K)

Since c is square in K, there are 8 points of order 3 in T by Lemma 1.6.31.6.3

whenever 4c is a cube in K. If Q(r) ⊂ K with r satisfying r3−3r2+1 = 0, then by

Lemma 1.6.51.6.5, there are 18 points of order 9 in T and thus T ∼= Z/9Z⊕Z/3Z. If

Q(r) �⊂ K, then there are no points of order 9 in T and Hence T ∼= Z/3Z⊕Z/3Z.

If 4c is not a cube in K, then there are two points of order 3 in T by Lemma

1.6.31.6.3 and we obtain T ∼= Z/3Z.
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Subcase b. (
√
−3 /∈ K)

In this case, there are two elements of order 3 in T by Lemma 1.6.31.6.3. If 4c is

a cube in K and Q(r) ⊂ K with r satisfying r3 − 3r2 + 1 = 0, then by Lemma

1.6.51.6.5, there are 6 points of order 9 in T and thus T ∼= Z/9Z. If 4c is a cube in K

and Q(r) �⊂ K, then there are no points of order 9 in T and Hence T ∼= Z/3Z.

If 4c is not a cube in K, then we have T ∼= Z/3Z.

Case 4. (c is neither a square nor a cube in K)

Since c is not a cube, there are no elements of order 2 in T . If 4c is a cube

in K and −3c is a square in K, then there are two elements of order 3 in T and

in that case, T ∼= Z/3Z.

Hence combining all the cases, Theorem 1.2.31.2.3 follows. �

1.7 Proof of Theorem 1.2.41.2.4

If K varies over all sextic number fields and E varies over all elliptic curves with

complex multiplication over K, then, in [99] Clark et al., computed the following

all possible collection of torsion subgroups;

E(K)tors ∈





Z/mZ for m = 1, 2, 3, 4, 6, 7, 9, 10, 14, 18, 19, 26,

Z/2Z⊕ Z/mZ for m = 2, 4, 6, 14,

Z/3Z⊕ Z/mZ for m = 3, 6, 9,

Z/6Z⊕ Z/6Z.

(1.14)

Now onwards, throughout this section, K stands for a sextic numer field and

we denote the Mordell curve of the form y2 = x3 + c for c ∈ K, simply by E.

Since any Mordell curve belongs to the family of elliptic curves with complex

multiplication, (1.141.14) provides all possible collection for E(K)tors.
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If we restrict c ∈ Q, then by Theorem 1.2.31.2.3 we have already proved

E(K)tors ∈ ΦM
Q (6) =





Z/mZ for m = 1, 2, 3, 6, 9,

Z/2Z⊕ Z/mZ for m = 2, 6,

Z/3Z⊕ Z/mZ for m = 3, 9,

Z/6Z⊕ Z/6Z.

Now, our task is to eliminate some groups listed in (1.141.14) and we show that

the other groups in the above listing (1.141.14) can occur as E(K)tor.

Lemma 1.7.1 The groups Z/4Z and Z/2Z⊕Z/4Z do not appear as E(K)tors,

for any K.

Proof. It is enough to prove that there is no element of order 4 in E(K)tors. By

the similar approach of the proof of Lemma 1.6.41.6.4, one can prove the result and

we omit the proof here. �

Lemma 1.7.2 The groups Z/10Z and Z/26Z do not appear as E(K)tors, for

any K.

Proof. It is enough to prove that there do not exist any element of order 5

and 13 in E(K)tors. Let us assume that there exists a point of order � in

E(K)tors, where � is either 5 or 13. Then, � divides |E(K)tors|. Now, we set

q = 13. Since gcd(5, 12q) = 1, by Dirichlet’s theorem on primes in arithmetic

progressions, there are infinitely many primes p ≡ 5 (mod 12q) . We consider

such a prime and also assume pOK = Pe1
1 · · · Pe6

6 is the ideal factorization in

OK where P1, . . . ,P6 are prime ideals in OK lying above p and with 0 ≤ ei ≤ 1.

Also we know that
�6

i=1 eifi = 6 where fi’s are residual degree for Pi’s. Hence

we can choose a prime ideal for which residual degree is either 1, 2, 3 or 6.
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Let Pi be such a prime ideal and consider the reduction modulo Pi map.

Note that |OK/Pi| = pfi , where fi = 1, 2, 3 or 6.

Since 2 and 3 both divide 6, it is enough to calculate |E(OK/Pi)| only for fi =

6. Since p ≡ 2 (mod 3), by Proposition 1.3.231.3.23, we see that E is a supersingular

elliptic curve over Fp6 . Therefor, we get E(Fp6) = p6 + 1 − a with |a| ≤ 2p3.

Also, by Lemma 1.3.241.3.24, we get p | a and by Proposition 1.3.211.3.21, we have either

a = ±p3 or ±2p3.

Also, for fi = 1, 2, 3 or 6, we have either |E(OK/Pi)| divides (p3 ± 1)2 or

|E(OK/Pi)| divides (p6 ± p3 − 1). Proposition 1.3.171.3.17 assures that we can find

a prime p which satisfies all above conditions along with the map φ : T −→

Ē(OK/Pj) is injective. As q divides |T |, we conclude that q | (p3 ± 1) or

q | (p6 ± p3 − 1) that is, 13 | (p3 ± 1) or 13 | (p6 ± p3 − 1). Since p ≡ 5

(mod q) ≡ 5 (mod 13) and � is either 5 or 13, we see that � � |(p3 ± 1) and

� � |(p6 ± p3 − 1), which is a contradiction. Hence there does not exist any point

of order 5 or 13. This completes the proof. �

Lemma 1.7.3 The group Z/14Z does not appear as E(K)tors, for any K.

Proof. Suppose E(K)tors ∼= Z/14Z. In this case, we first observe that E(K)[2] ∼=

Z/2Z. Since E(K)tors has a point of order 2, we see that c is a cube in K, say,

c = a3 for some a ∈ K. Since E(K)tors contains exactly one nontrivial point of

order 2, by Lemma 1.6.21.6.2, we get
√
−3 /∈ K. Let P = (x, y) be a point of order

7 in E(K)tors. Then the corresponding division polynomial equation is

(7t2 − 4t+ 16)(t6 + 564t5 − 5808t4 − 123136t3 − 189696t2 − 49152t+ 4096) = 0,

where t = x3

a3
∈ K.

If (7t2 − 4t + 16) = 0, then we get t = 2±6
√−3
7

. This is a contradiction as
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√
−3 /∈ K. Thus,

t6 + 564t5 − 5808t4 − 123136t3 − 189696t2 − 49152t+ 4096 = 0. (1.15)

Putting t = s3 = (x
a
)3 in (1.151.15), we get

s18 + 564s15 − 5808s12 − 123136s9 − 189696s6 − 49152s3 + 4096 = 0.

Using magma, we conclude that the polynomial in s variable is an irreducible

polynomial over Q, which is a contradiction as s ∈ K and [K : Q] = 6. Therefore

there does not exist a point of order 7 in E(K)tors. Hence the group Z/14Z does

not appear as a torsion subgroup in E(K). �

Lemma 1.7.4 The group Z/18Z does not appear as E(K)tors, for any K.

Proof. Proof of this lemma is similar to the proof of Lemma 1.5.81.5.8 and we omit

the proof here. �

Lemma 1.7.5 The group Z/3Z ⊕ Z/6Z does not appear as E(K)tors, for any

K.

Proof. At first observe that E(K)[2] �∼= {O} and hence c is a cube in K. Since

E(K)tors contains eight nontrivial elements of order 3, by Lemma 1.6.31.6.3 we con-

clude that
√
−3 ∈ K. Since

√
−3 ∈ K and c is a cube in K, by Lemma 1.6.21.6.2 we

see that E(K)tors has three points of order 2. This is a contradiction as there is

only one nontrivial point of order 2 in Z/3Z⊕ Z/6Z. �

Lemma 1.7.6 The groups Z/19Z,Z/7Z, and Z/2Z⊕Z/14Z appear as a torsion

subgroup of E(K) for some K.

Proof. Case 1: (Z/19Z)
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In this case, we let K = Q[e]/ < e6 + e4 − e3 − 2e2 + e + 1 > and consider

the elliptic curve E over K in Kubert-Tate Normal form as

E(2e5 − e4 + 2e3 − 4e2 + 2, 2e5 − 2e4 + 4e3 − 4e2 − 2e+ 3).

Then by Theorem 1.3.141.3.14, E is a Mordell curve over K. Hence, by a calculation

in [99], page 523, we get E(K)tors � Z/19Z.

Case 2: (Z/7Z)

We let K = Q(2
1
3 , ζ3), where ζ3 is a cube root of unity. Then by Theo-

rem 1.3.141.3.14, the elliptic curve E(ζ3,−1) over K is in Kubert-Tate Normal form.

Therefore, by the equation (1.71.7), we get j(E) = 0 and by Theorem 1.3.131.3.13, E

is a Mordell curve over K. Hence, by a calculation in [99], page 521, we get

E(K)tors ∼= Z/7Z.

Case 3: (Z/2Z⊕ Z/14Z)

We let K = Q((6ζ3 + 30)
1
3 )), where ζ3 is a cube root of unity. Then, we

consider the elliptic curve E : y2 = x3− ζ3+5
36

over K. In this case, using magma,

we can prove that E(K)tors ∼= Z/2Z⊕ Z/14Z. �

Hence proof of Theorem 1.2.41.2.4 follows by Lemmas 1.7.11.7.1, 1.7.21.7.2, 1.7.31.7.3, 1.7.41.7.4,

1.7.51.7.5 and 1.7.61.7.6. �





CHAPTER2
Quadratic non-residues and

non-primitive roots satisfying a

coprimality condition

Let q ≥ 1 be any integer and let � ∈ [ 1
11
, 1
2
) be a given real number. In this

chapter, we prove that for all primes p satisfying

p ≡ 1 (mod q), log log p >
log 6.83
1
2
− �

and
φ(p− 1)

p− 1
≤ 1

2
− �,

there exists a quadratic non-residue g which is not a primitive root modulo p

such that gcd
�
g, p−1

q

�
= 1.

43
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2.1 Introduction

Let p be an odd prime number. We know that there are exactly p−1
2

quadratic

residues as well as non-residues modulo p. It is a well known fact that the

multiplicative group (Z/pZ)∗ is cyclic (see [44]). An element of (Z/pZ)∗ is called

a primitive root modulo p if it is a generator of this cyclic group.

The distribution of quadratic residues, non-residues and primitive roots is

a very fundamental area in number theory and has been a topic of immense

interest to mathematicians for centuries.

In this chapter, we deal with the question that how many quadratic residue

(respectively, non-residue) g module p satisfying the condition gcd(g, p−1) = 1?

Since there are φ(p−1) numbers among 1, 2, . . . , p−1 which are co -prime to

p−1 and roughly half of them are quadratic residues (respectively, non-residues),

we expect the answer to the above question is φ(p−1)
2

. In fact, we estimate this

in Theorem 2.3.112.3.11.

Since φ(p−1)
2

is large enough, it is possible to ask the same question in subsets

like the set of all primitive roots and its complement in the set of all non-residues

modulo p.

In 2010, Levin, Pomerance and Soundararajan [5454] showed the existence of a

primitive root with the aforementioned co-primality condition. More precisely,

they proved the following result.

Theorem 2.1.1 For all prime numbers p ≥ 5, there exists a primitive root g

modulo p which satisfies the condition gcd(g, p− 1) = 1.

Levin, Pomerance and Soundararajan [5454] considered this problem (Theorem

2.1.12.1.1) to tackle a particular case of an important problem in computational num-

ber theory, namely, discrete log problem. More precisely, they prove Theorem

2.1.12.1.1 to tackle the fixed point discrete log problem as follows,
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Question 2.1.2 For a given primitive root g in (Z/pZ)∗, does there exists an

integer t ∈ [1, p− 1] such that gt ≡ t (mod p)?

Indeed, Theorem 2.1.12.1.1 solves the fixed point discrete log problem affirma-

tively. In this chapter, we deal with the similar problem (in Corollary 2.2.22.2.2)

for quadratic non-residues which are not primitive roots. For notational conve-

nience, we abbreviate ‘a quadratic non-residue which is not a primitive root’ by

QNRNP modulo p.

Earlier also, QNRNP modulo p has been considered in several articles. For

instance in [4040], Gun et al. proved the following theorem which gives information

regarding consecutive QNRNPs modulo p.

Theorem 2.1.3 Let � ∈ (0, 1
2
) be fixed and N be any positive integer. Assume

that p is a prime number with p ≥ exp(( 2
�
)8N) and satisfying φ(p−1)

p−1
≤ 1

2
− �.

Then there exist N consecutive QNRNP’s modulo p.

For further information on this related problem, see [4040], [4343] and [5757]. Motivated

by Theorems 2.1.12.1.1 and 2.1.32.1.3, in this chapter, we prove the following Theorem

2.2.12.2.1 for QNRNP residues.

2.2 Main results

Theorem 2.2.1 [55] Let q ≥ 1 be an integer and � ∈ [ 1
11
, 1
2
). Let p be a prime

satisfying

p ≡ 1 (mod q), log log p >
log 6.83
1
2
− �

and
φ(p− 1)

p− 1
≤ 1

2
− �.

Assume Np = {g : 1 ≤ g ≤ p− 1, g is QNRNP and gcd(g, p−1
q
) = 1}. Then

Np = φ

�
p− 1

q

��
q

2
− q

p− 1
φ(p− 1)

�
+O

�
p1−�φ(p− 1)

p− 1
log p

�
.



46 §2.3. Preliminaries

In particular, there exists an integer g satisfying 1 < g < p−1 and gcd
�
g, p−1

q

�
=

1 such that g is a QNRNP modulo p and when q = 1, there exists an integer g

with 1 < g < p− 1 and gcd(g, p− 1) = 1 such that g is a QNRNP modulo p.

In the statement of Theorem 2.2.12.2.1, one of the conditions on p is a natural

condition. If
φ(p− 1)

p− 1
=

1

2
, then one can easily check that every non-residue

modulo p is a primitive root modulo p. The condition
φ(p− 1)

p− 1
≤ 1

2
− � makes

sure that p− 1 has enough odd prime factors and hence abundance of QNRNP

residues modulo p.

As an application, we solve the fixed point discrete log problem for the cyclic

subgroup (analogous to Question 2.1.22.1.2) generated by a QNRNP as follows.

Corollary 2.2.2 [55] Let � ∈ [ 1
11
, 1
2
) be a real number. Let p be a prime satisfying

log log p >
log 6.83
1
2
− �

and
φ(p− 1)

p− 1
≤ 1

2
− �.

Then there is a QNRNP g and an integer x ∈ [1, p− 1] such that x is QNRNP

and gx ≡ x (mod p).

In [5454], first they proved their result for all large primes and used the com-

putations to check their result for small primes. However, computations may be

cumbersome in our result stated in Theorem 2.2.12.2.1 because of various parameters.

2.3 Preliminaries

In this section, we start with the definition of character of a group.

Definition 2.3.1 Ler G be an arbitrary group. A complex-valued function f

defined on G is called a character of G if f has the following multiplicative
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property

f(ab) = f(a)f(b),

for all a, b ∈ G and f(c) �= 0 for some c ∈ G.

Every group G has one character, namely, the function which is identity on

G. This is called the principal character of G. It is well known that a finite

abelian group G of order n has exactly n distinct characters (see for instance

[44]).

Let G be a finite abelian group of order n and the principal character of G

is denoted by f1. Other characters are denoted by f2, f3, . . . , fn and let �G =

{f1, . . . , fn}. We can define a binary operation on �G as

(fifj)(g) = fi(g)fj(g),

for all g ∈ G.

Theorem 2.3.2 (Dual group of G) [44] The set �G forms an abelian group of

order n with respect to the above binary operation and it is called as the dual

group of G. Moreover, G ∼= �G also holds.

Let G be a finite abelian group of order n. Also let f be a character of G.

Since G is a group, the multiplicative property of f implies that f(G) is a group

and f is a group homomorphism from G onto f(G). Since |G| = n, by the

homomorphism property of f , we see that f(g)n = 1, for all g ∈ G. Thus, it

implies f(G) ∼= µn, the multiplicative group of n-th roots of unity.

In this chapter, we take G to be (Z/pZ)∗, for any odd prime p. Hence, any

homomorphism χ : G → µp−1 is a character of (Z/pZ)∗. Since (Z/pZ)∗ is cyclic,

�(Z/pZ)∗ is also cyclic.

Also assume that χ : (Z/pZ)∗ → µp−1 is a character modulo p such that
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χ is a generator of �(Z/pZ)∗. For all integers � with 0 ≤ � ≤ p − 2, we get

χ�(ζ) = χ(ζ�) is also a character modulo p. Write (Z/pZ)∗ = {χ0,χ1, . . . ,χp−2}

with χ0 is the principal character and χ� = χ�.

As we mentioned in introduction, an element ζ ∈ (Z/pZ)∗ is said to be

a primitive root modulo p if ζ generates the cyclic group (Z/pZ)∗. Hence,

we easily see that QNRNP’s are precisely the elements of the set {ζ � : � =

1, 3, . . . , p− 2 and (�, p− 1) > 1}.

Suppose χ(ζ) = η. Since χ is a generator of the dual group of (Z/pZ)∗ and

ζ is a primitive root modulo p, we get that η is a primitive (p − 1)-th root of

unity. Since χ is a homomorphism, χ(ζ i) = χi(ζ) = ηi holds. Hence, by the

above observation, we get

χ(κ) = η� with (�, p− 1) > 1, � odd ⇔ κ is QNRNP module p. (2.1)

Following [4040], for non negative integer �, we define

β�(p− 1) =
�

1≤i≤p−1
i odd

(i,p−1)>1

(ηi)� and α�(p− 1) =
�

1≤i≤p−1
(i,p−1)=1

(ηi)�, (2.2)

where α�(p− 1) is known as Ramanujan sums.

Now, we list some basic lemmas and results which will be useful to us in

course of the proof of Theorem 2.2.12.2.1.

Lemma 2.3.3 [4040] For all integers � with 0 < � < p− 1, we have

β�(p− 1) = −α�(p− 1).
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Proof. Since
p−1�

i=0

ηi = 0 =

p−3
2�

i=0

η2i

holds, we get the lemma. �

Lemma 2.3.4 (characteristic function for QNRNP ’s) [4040] For any x ∈ (Z/pZ)∗,

we have
p−2�

�=0

β�(p− 1)χ�(x) =





p− 1; if x is a QNRNP,

0; otherwise.

Proof. Since x ∈ (Z/pZ)∗, let x �≡ 0 (mod p). Also, let η be a primitive (p− 1)-

th root of unity. Now we consider ηi1 , ηi2 , . . . , ηik , where 1 < i1 < · · · < ik ≤ p−2

and (ij, p− 1) > 1 with ij is odd for all j = 1, . . . , k. Now, the expression

1 + ηimχ1(x) + (ηim)2χ2(x) + · · ·+ (ηim)p−2χp−2(x)

gives the value p − 1 if (χ1(x))
−1 = ηim and zero otherwise whenever x �= 0.

Equivalently, χ1(x) = η−im with (−im.p − 1) > 1 ⇔ x is a QNRNP. Thus, by

summing over m, the above resulting expressions, we get

k�
m=1

�
1 + ηimχ1(x) + (ηim)2χ2(x) + · · ·+ (ηim)p−2χp−2(x)

�

=
k�

m=1

(ηim)0χ0(x) +
k�

m=1

(ηim)1χ1(x) + · · ·+
k�

m=1

(ηim)p−2χp−2(x)

= β0(p− 1)χ0(x) + · · ·+ βp−2(p− 1)χp−2(x), by (2.22.2)

=





p− 1; if x is a QNRNP,

0; otherwise.

which completes the proof of the lemma. �

Now, we shall state some basic definitions and results as follows.

Definition 2.3.5 [6666] For any positive integer n, the Möbius function µ is
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µ(1) = 1 and for n > 1, we write n = pa11 . . . pakk and define

µ(n) =





(−1)k; if a1 = · · · = ak = 1,

0; otherwise.

Lemma 2.3.6

(1) (Page no. 167 in [8484] and Chapter-3 in [6666] )

Let ω(n) denote the number of distinct prime divisors of n. Then we have

ω(p− 1) ≤ (1.385)
log p

log log p

for all primes p ≥ 5.

(2) [44] For any positive integer n, let µ(n) denote the Möbius function. Then,

we have
�

d|n
µ(d) =





1; if n = 1,

0; if n > 1.

(3) [9090] For any odd prime p and any divisor q of p− 1, we have

�

d| p−1
q

|µ(d)| = 2ω(
p−1
q ).

(4) [6565, 8585] For any integer n > 90, we have φ(n) > n
logn

, where φ(n) is the

Euler’s totient-function.

Proof. (1) The proof of this part is little technical and we omit the proof here.

(2) When n = 1, this result is trivially true from Definition 2.3.52.3.5. For n > 1,

we write n = pa11 . . . pakk .
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Also note that, µ(d) gives nonzero value whenever d = 1 or d is a product

of distinct prime numbers.

Hence, we get

�

d|n
µ(d) = 1 + µ(p1) + · · ·+ µ(pk) +

�

1≤i<j≤k

µ(pipj) + · · ·+ µ(p1 · · · pk)

= 1 +

�
k

1

�
(−1) +

�
k

2

�
(−1)2 + · · ·+

�
k

k

�
(−)k

= (1− 1)k = 0.

(3) At first, let ω( p−1
q
) = n and we write p−1

q
= pa11 · · · pann .

Now,

2n = 1 +

�
n

1

�
· 1 +

�
n

2

�
· 12 + · · ·+

�
n

n

�
· 1n

= 1 +

�
n

1

�
· |− 1|+

�
n

2

�
· |(−1)2|+ · · ·+

�
n

n

�
· |(−1)n|

= |µ(1)|+ |µ(p1)|+ · · ·+ |µ(pk)|+
�

1≤i<j≤n

|µ(pipj)|+ · · ·+ |µ(p1 · · · pn)|

=
�

d|n
|µ(d)|

and the proof follows.

(4) New elementary proof of this result can be found in [8585].

�

Lemma 2.3.7 (Theorem: 272 in [4141]) If gcd(�,m) = a, then

α�(m) = φ(m)
µ(m

a
)

φ(m
a
)
.
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Lemma 2.3.8 [9090] We have,

p−2�

�=0

|α�(p− 1)| = 2ω(p−1)φ(p− 1).

Proof. Using Lemma 2.3.72.3.7, we get

p−2�

�=0

|α�(p− 1)| =

p−2�

�=0

φ(p− 1)
|µ

�
p−1

gcd(�,p−1)

�
|

φ
�

p−1
gcd(�,p−1)

�

= φ(p− 1)
�

d|p−1,d>0

|µ(p−1
d
)|

φ(p−1
d
)
φ

�
p− 1

d

�

= φ(p− 1)2ω(p−1), by Lemma 2.3.62.3.6(3).

�

The following result is a standard theorem to estimate a character sum over

an interval which was first proved by Pólya and I.M.Vinogradov independently.

The proof of this theorem can be found in [44].

Theorem 2.3.9 (Pólya-Vinogradov) Let p be any odd prime and χ be a non-

principal character modulo p. Then, for any integers 0 ≤ M < N ≤ p − 1, we

have, �����
N�

m=M

χ(m)

����� ≤
√
p log p.

Later, this theorem has been studied in literature by several mathematicians.

In 2011, D. A. Frolenkov provided a numerically explicit version of Pólya-

Vinogradov which was an improvement of the previous version by C. Pomerance

[7777]. In 2013, D.A. Frolenkov and K. Soundararajan[2424] obtained a sharper ver-

sion which is as follows.

Theorem 2.3.10 [2424] Let p ≥ 100 be any odd prime and χ be a non-principal
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character modulo p. Then, for any integers 0 ≤ M < N ≤ p− 1, we have,

�����
N�

m=M

χ(m)

����� ≤
√
p

π
√
2
(log p+ 6) +

√
p.

Assuming a little improvement of Pólya-Vinogradov, improvement of some

well known theorems have been shown (see for instance [5959, 2323]). Smoothed

version of Pólya-Vinogradov can be found in [11].

In the following theorem, we estimate the number of quadratic non-residues

modulo p which are coprime with p − 1. Though this estimate is expected, we

include here for completeness.

Theorem 2.3.11 Let q ≥ 1 be an integer and � ∈ (0, 1
2
). Let p be a prime

satisfying

p ≡ 1 (mod q) and log log p >
log 2.63
1
2
− �

.

Consider the set Qp := {g : 1 < g < p − 1,
�
g
p

�
= −1 and gcd

�
g, p−1

q

�
= 1}.

Then, we get

Qp =
q

2
φ

�
p− 1

q

�
+O

�
p1−� log p

�
.

In particular, when q = 1, for all prime p > exp 7.19, there exists an integer g

with 1 < g < p− 1 and gcd(g, p− 1) = 1 such that g is a non-residue modulo p.

Proof. Let q ≥ 1 be a given integer and let � ∈ (0, 1
2
) be also given. Now, we

consider all primes p ≡ 1 (mod q) with log log p > log 2.63
1
2
−�

. By Dirichlet’s theorem

on primes in arithmetic progressions, we can see that there are infinitely many

such primes.

For any integer m, we get the following characteristic function of quadratic
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non-residues.

g(m) :=
1

2

�
1−

�
m

p

��
=





1; if m is a quadratic non-residue,

0; for otherwise.

By letting Qp :=

p−1�

m=1
(m, p−1

q
)=1

g(m), we see that Qp counts the number of Quadratic

non-residues in {1, . . . , p− 1} which are relatively prime with p−1
q

.

To finish the proof of Theorem 2.3.112.3.11, it suffices to prove that Qp ≥ 1 for all

primes p > exp 7.19 satisfying p ≡ 1 (mod q).

Therefore, we consider

Qp =

p−1�

m=1

(m, p−1
q )=1

g(m)

=
1

2

p−1�

m=1

(m, p−1
q )=1

�
1−

�
m

p

��

=
1

2


qφ

�
p− 1

q

�
−

p−1�

m=1

(m, p−1
q )=1

�
m

p

�

 ,

where we have used the fact that the number of integers m in {1, . . . , p−1} such

that
�
m, p−1

q

�
= 1 is qφ

�
p−1
q

�
. Now, we see that

Qp −
1

2
qφ

�
p− 1

q

�
= −1

2

p−1�

m=1

�
m

p

� �

d|(m, p−1
q )

µ(d), by Lemma 2.3.62.3.6 (2)

= −1

2

p−1�

m=1

�
m

p

�
− 1

2

p−1�

m=1

�
m

p

� �

d|(m, p−1
q )

d>1

µ(d)
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= 0− 1

2

�

d| p−1
q

µ(d)

p−1
d�

t=1

�
d

p

��
t

p

�

= −1

2

�

d| p−1
q

µ(d)

�
d

p

� p−1
d�

t=1

�
t

p

�
.

Hence, by Theorem 2.3.92.3.9 and Lemma 2.3.62.3.6 (3), we get

����Qp −
1

2
qφ

�
p− 1

q

����� ≤
1

2

�

d| p−1
q

|µ(d)|

������

p−1
d�

t=1

�
t

p

�������
≤ 1

2
· 2ω(

p−1
q )√p log p. (2.3)

Now observe that for � ∈ (0, 1
2
) if p > exp exp log 2.63

( 1
2
−�)

, then we get the following

p
1
2
−� > p

log 2.63
log log p > 2ω(p−1), (2.4)

by Lemma 2.3.62.3.6 (1).

Since ω
�

p−1
q

�
≤ ω(p− 1) holds, by (2.32.3) and (2.42.4) we conclude

����Qp −
q

2
φ

�
p− 1

q

����� ≤
1

2

√
p log p · p 1

2
−�. (2.5)

This proves the first part of Theorem.

Now when q = 1, we have to show that Qp ≥ 1, for all prime p > exp(7.19).

By (2.52.5), it is enough to show that

1

2
φ(p− 1)− 1

2

√
pp

1
2
−� log p > 0 ⇔ φ(p− 1) > p1−� log p.

Again by Lemma 2.3.62.3.6(4), the above inequality holds if

p− 1

log(p− 1)
> p1−� log p (2.6)
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is true.

If we choose � = 1/100, then exp exp log 2.63

( 1
2
−�)

< exp(7.19).

For all prime p > exp(7.19) with � = 1
100

, the inequality (2.62.6) is also true

which completes the proof of the theorem.

2.4 Proof of Theorem 2.2.12.2.1

Let q ≥ 1 be a given integer and let � ∈ [ 1
11
, 1
2
) be also given. Now, we consider

all primes p ≡ 1 (mod q) with φ(p−1)
p−1

≤ 1
2
− �. By Dirichlet’s theorem on primes

in arithmetic progressions, we can see that there are infinitely many such primes.

By Lemma 2.3.42.3.4, for any integer m with gcd(m, p) = 1, we let,

f(m) :=
1

p− 1

p−2�

�=0

β�(p− 1)χ�(m) =





1; if m is a QNRNP,

0; for otherwise.

By letting Np :=

p−1�

m=1
(m, p−1

q
)=1

f(m), we see that Np counts the number of QNRNP’s

in {1, . . . , p− 1} which are relatively prime with p−1
q

.

To finish the proof of Theorem 1, it suffices to prove that Np ≥ 1 for all

primes p > exp exp log 6.83
1
2
−�

satisfying p ≡ 1 (mod q) and φ(p−1)
p−1

≤ 1
2
− �.

Therefore, we consider

Np =

p−1�

m=1

(m, p−1
q )=1

f(m)

=
1

p− 1

p−1�

m=1

(m, p−1
q )=1

p−2�

�=0

β�(p− 1)χ�(m)
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=
1

p− 1

p−2�

�=0

β�(p− 1)

p−1�

m=1

(m, p−1
q )=1

χ�(m)

=
1

p− 1


β0(p− 1)qφ

�
p− 1

q

�
+

p−2�

�=1

β�(p− 1)

p−1�

m=1

(m, p−1
q )=1

χ�(m)


 ,

where we have used the fact that the number of integers m in {1, . . . , p−1} such

that
�
m, p−1

q

�
= 1 is qφ

�
p−1
q

�
.

Let us define

Ep := Np −
1

p− 1
β0(p− 1)qφ

�
p− 1

q

�

= Np − φ

�
p− 1

q

��
q

2
− q

p− 1
φ(p− 1)

�
, since β0(p− 1) =

p− 1

2
− φ(p− 1)

=
1

p− 1

p−2�

�=1

β�(p− 1)

p−1�

m=1

(m, p−1
q )=1

χ�(m). (2.7)

In order to prove Np ≥ 1, we need to get an upper bound for Ep. For that,

we need to estimate
p−1�

m=1

(m, p−1
q )=1

χ�(m) and
1

p− 1

p−2�

�=1

β�(p− 1) separately.

First we consider the sum
p−1�

m=1

(m, p−1
q )=1

χ�(m) as follows. For a given integer �

with 1 ≤ � ≤ p− 2, we have

p−1�

m=1

(m, p−1
q )=1

χ�(m) =

p−1�

m=1

χ�(m)
�

d|(m, p−1
q )

µ(d)

=
�

d| p−1
q

µ(d)

p−1
d�

t=1

χ�(d)χ�(t)
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=
�

d| p−1
q

µ(d)χ�(d)

p−1
d�

t=1

χ�(t),

by Lemma 2.3.62.3.6 (2). Hence, by Theorem 2.3.92.3.9 and Lemma 2.3.62.3.6 (3), we get

���������

p−1�

m=1

(m, p−1
q )=1

χ�(m)

���������
≤

�

d| p−1
q

|µ(d)|

������

p−1
d�

t=1

χ�(t)

������
≤ 2ω(

p−1
q )√p log p.

Also, by Lemma 2.3.32.3.3 and Lemma 2.3.82.3.8, we see that

�����

p−2�

�=1

β�(p− 1)

����� ≤
p−2�

�=1

|β�(p− 1)| ≤
p−2�

�=0

|α�(p− 1)| = 2ω(p−1)φ(p− 1).

Thus, using the above two estimates in (2.72.7), we get,

|Ep| =

����Np −
1

p− 1
β0(p− 1)qφ

�
p− 1

q

�����

≤ 1

p− 1

p−2�

�=1

|β�(p− 1)| ·

���������

p−1�

m=1

(m, p−1
q )=1

χ�(m)

���������

≤ 2ω(
p−1
q )+ω(p−1)φ(p− 1)

p− 1

√
p log p. (2.8)

Observe that (2.82.8) implies

−2ω(
p−1
q )+ω(p−1)φ(p− 1)

p− 1

√
p log p ≤ Np −

qφ
�

p−1
q

�

(p− 1)
β0(p− 1),

which is equivalent to

Np ≥
φ
�

p−1
q

�

p−1
q

β0(p− 1)− 2ω(
p−1
q )+ω(p−1)φ(p− 1)

p− 1

√
p log p.
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Thus to establish Np > 0, it is enough to show that,

φ
�

p−1
q

�

p−1
q

β0(p− 1)− 2ω(
p−1
q )+ω(p−1)φ(p− 1)

p− 1

√
p log p > 0,

which is equivalent of showing that

β0(p− 1) > 2ω(
p−1
q )+ω(p−1) φ(p− 1)

qφ
�

p−1
q

�√p log p. (2.9)

Now, it is clear that

φ(p− 1) ≤ qφ

�
p− 1

q

�
⇐⇒ φ(p− 1)

qφ
�

p−1
q

� ≤ 1. (2.10)

Since ω
�

p−1
q

�
≤ ω(p− 1), by (2.92.9) and (2.102.10), it is enough to prove that

β0(p− 1) > 4ω(p−1)√p log p, (2.11)

for primes p > exp exp log 6·83
1
2
−�

satisfying φ(p−1)
p−1

≤ 1
2
− �.

Let p be a prime satisfying p > exp exp log 6.83
1
2
−�

. Therefore, we get

p
1
2
−� > p

log 6.83
log log p . (2.12)

By Lemma 2.3.62.3.6 (1), we also know that

ω(p− 1) ≤ 1.385
log p

log log p
.

Therefore, we get

4ω(p−1) ≤ 41.385
log p

log log p ≤ 6.83
log p

log log p = p
log 6.83
log log p < p

1
2
−�. (2.13)
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Now, by (2.72.7), (2.82.8) and (2.132.13), we get

Np = φ

�
p− 1

q

��
q

2
− q

p− 1
φ(p− 1)

�
+O

�
p1−�φ(p− 1)

p− 1
log p

�

and this proves the first part of Theorem.

Hence, from (2.122.12), we have,

p
1
2
−� > 4ω(p−1) ⇐⇒ p1−�(log p) > 4ω(p−1)√p log p.

In order to prove (2.112.11), it is enough to show that

β0(p− 1) > p1−� log p (2.14)

for all primes p > exp exp log 6.83
1
2
−�

satisfying φ(p−1)
p−1

≤ 1
2
− �.

Note that the condition

φ(p− 1)

p− 1
≤ 1

2
− � ⇐⇒ �(p− 1) ≤ p− 1

2
− φ(p− 1) = β0(p− 1).

Therefore, to prove (2.142.14), it is enough to prove that �(p − 1) ≥ p1−� log p,

for all primes p > exp exp
log 6.83
1
2
− �

.

Since � ∈ [ 1
11
, 1
2
), we write � = 1

c
for some real number c with 2 < c ≤ 11 and

note that

log log p >
log 6.83
1
2
− �

> 3.84× 1.22 > 4.68 and log p > e4.68 > 107.7.

In order to prove �(p− 1) ≥ p1−� log p for all primes p > exp exp
log 6.83
1
2
− �

, it
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is enough to prove that

p

1.1
>

1

�
p1−� log p ⇐⇒ p > (1.1c)c(log p)c ⇐⇒ log p > c log(1.1c) + c log log p.

Since we know ex/x ≥ 22 for all x ≥ 4.68, we apply for x = log log p and see

that

log p > 2c log log p for all 2 < c ≤ 11.

Hence, it is enough to prove that

log p > c log(1.1) + c log c+
log p

2
⇐⇒ log p > 2c log(1.1) + 2c log c.

Since c ≤ 11, we see that

2c log(1.1) + 2c log c ≤ 22 log(1.1) + 22 log 11 ≤ 54.86 < 107.7 < log p.

Thus the inequality in (2.142.14) holds true, which completes the proof of the theo-

rem. �

2.5 Proof of Corollary 2.2.22.2.2

By Theorem 2.2.12.2.1, there is a QNRNP x modulo p satisfying x ∈ [1, p − 1]

and gcd(x, p − 1) = 1. Let y be the multiplicative inverse of x modulo p − 1.

Put g = xy. Then note that g is also a QNRNP modulo p. Hence, we get

gx ≡ xxy ≡ x (mod p). �





CHAPTER3
On sums of polynomial-type

exceptional units in Z/nZ

A unit u in a commutative ring R with unity is called exceptional if u − 1

is also a unit. We introduce a notion of polynomial version of exceptional unit

(abbreviated as f -exunits) for any f(X) ∈ Z[X]. In this chapter, we find the

number of representations of a non-zero element of Z/nZ as a sum of two f -

exunits, for an infinite family of polynomials f of each degree ≥ 1. We also

derive the exact formulae for certain infinite families of linear and quadratic

polynomials. This generalizes a result of Sander in [8383].

3.1 Introduction

In this chapter, we start with the following definition of exceptional unit.

Definition 3.1.1 (Exceptional unit) An element u in a commutative ring R

with unity is said to be an exceptional unit if both u and u− 1 are units in R.

63
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For the rest of this chapter, following [8383], we shall abbreviate exceptional

units as exunits.

Nagell [6767] introduced exunits in connection with certain Diophantine equa-

tions. From then onwards, it gained rapid popularity among number theorists

and found many applications in various seemingly diverse areas of number the-

ory. For instance, Lenstra [5353] showed that the existence of a certain number of

exunits in a sequence in the ring of integers OK of an algebraic number field K,

implies that OK is an Euclidean domain with respect to the norm map. He used

this criterion to prove that some number fields are norm-Euclidean that were

previously unknown. Later, J. Houriet [4242] obtained 42 new Euclidean number

fields by a computational method which also depends on exunits.

J. H. Silverman (in [8787] and [8888]) connected exceptional unit with Lehmer’s

conjecture of small Mahler measure. Other than applications of exunits in num-

ber fields, many mathematicians are interested about quantitative nature of

exunits. For instance, G. Nilkash discussed this topic in [7070] and [7171]. In partic-

ular, he determined all exunits in quartic number field in [7171].

In number theory, one of the most important rings to work with is Z/nZ and

it is interesting to study the exunits in this ring. We use the notation En to denote

the set of exunits in Z/nZ. Note that, for an integer a ≥ 1, a (mod n) ∈ En if

and only if gcd(a, n) = gcd(a − 1, n) = 1. Equivalently, a (mod n) ∈ En if and

only if gcd(a(a− 1), n) = 1. This point of view motivated us to investigate the

co-primality condition of the values of any polynomial f(X) ∈ Z[X] instead of

X(X − 1) in particular. Thus we introduce “f -exunits" as follows.

Definition 3.1.2 Let n ≥ 2 be an integer and let f(X) ∈ Z[X]. An integer a

with 1 ≤ a ≤ n is said to be an f -exunit if gcd(f(a), n) = 1. We denote the set

of all f -exunits in Z/nZ by Ef,n.
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Remark 3.1.3 Note that, if f is a constant polynomial, then |Ef,n| = 0 or n.

Therefore, for the rest of the discussion, we shall assume that f is a non-constant

polynomial. Also, in particular, if we take f(X) = X2 −X, then clearly Ef,n =

En. Thus f -exunit is indeed a generalization of exunit in Z/nZ.

We observe that the existence of an exunit in Z/nZ is equivalent to the

existence of a solution of the equation x + y = 1 with x, y ∈ (Z/nZ)∗. For any

integer c with 1 ≤ c ≤ n − 1, it is therefore natural to study the more general

equation x+ y = c in (Z/nZ)∗.

Sander addressed this question in [8383] and determined the number of solu-

tions of the equation x + y = c with x, y ∈ En. In 2019, D. Dolžan (in [1515])

generalized this representation problem over finite ring. C. Miguel (in [6363] and

[6464]) also generalized some of the properties of exunits over finite commutative

rings.

In this chapter, we consider the analogous representation problem for f -

exunits, for certain infinite families of polynomials f over Z. More precisely, our

main theorem is as follows.

3.2 Main results

Theorem 3.2.1 [33] Let r ≥ 1 be an integer and let a1, . . . , ar, b1, . . . , br−1 and br

be positive integers such that gcd(ajt + bj, akt + bk) = 1 for all 1 ≤ j �= k ≤ r

and for all integer t. Let n ≥ 2 be an integer such that gcd

�
n,

r�

i=1

aibi

�
= 1

and consider f(X) =
r�

i=1

(aiX + bi). For an integer c with 1 ≤ c ≤ n− 1, let

Ef,n(c) := {(x, y) ∈ Ef,n × Ef,n : x+ y ≡ c (mod n)}.
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Then

|Ef,n(c)| = n
�

p|n

�
1− N f (p, c)

p

�
, (3.1)

where N f (p, c) = # {� (mod p) | either f(�) ≡ 0 (mod p) or f(c− �) ≡ 0 (mod p)} .

Remark 3.2.2 In Proposition 3.3.33.3.3, we shall establish the existence of a poly-

nomial f of any given degree that satisfies the aforementioned co-primality con-

dition. Also, note that if f(X) =
r�

i=1

(aiX + bi) satisfies the hypotheses of

Theorem 3.2.13.2.1, then so does the polynomial g(X) =
r�

i=1

(aimX + bi) for any

integer m for which gcd(n,m) = 1. In other words, we have an infinite family

of polynomials satisfying the hypotheses of Theorem 3.2.13.2.1.

Remark 3.2.3 We shall observe in Proposition 3.7.13.7.1, that the expression (3.13.1)

holds for any non-constant polynomial f(X) ∈ Z[X] and for any n = p, where

p is a prime number. In other words, |Ef,p(c)| = p
�
1− Nf (p,c)

p

�
holds for any c

with 1 ≤ c ≤ p−1. Therefore, it is reasonable to expect that (3.13.1) holds for any

non-constant polynomial over Z and for any integer n ≥ 2, but the techniques

used in the proof of our main result can be applied only for the particular type

of polynomials considered in Theorem 3.2.13.2.1.

For linear and quadratic polynomials, we get the following results as corol-

laries of Theorem 3.2.13.2.1.

Corollary 3.2.4 [33] Let n ≥ 2 be an integer and let f(X) = aX + b ∈ Z[X] be

a linear polynomial such that gcd(ab, n) = 1. Then for any integer c ≥ 1 with

1 ≤ c ≤ n− 1, we have |Ef,n(c)| = n
�

p|n

�
1− N f (p, c)

p

�
, where

N f (p, c) =





1 ; if ac ≡ −2b (mod p)

2 ; if ac �≡ −2b (mod p).
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Corollary 3.2.5 [33] Let f(X) = (aX + 1)(bX + 1) ∈ Z[X] be a quadratic

polynomial such that gcd(at + 1, bt + 1) = 1 for all integer t. Let n ≥ 2 be an

integer with gcd(2ab, n) = 1. Then for any integer c with 1 ≤ c ≤ n − 1, we

have |Ef,n(c)| = n
�

p|n

�
1− N f (p, c)

p

�
, where

N f (p, c) =





2 ; if a+ b ≡ −abc (mod p)

3 ; if ac ≡ −2 (mod p) or bc ≡ −2 (mod p)

4 ; otherwise .

3.3 Preliminaries

In this section, we give the necessary account of the results which will be used

in the course of the proofs of our results. We first give a formula for the cardi-

nality of Ef,n in the following lemma which was mentioned as an exercise in [7272]

(Exercise 47 after section 2.3).

Lemma 3.3.1 Let f(X) ∈ Z[X] and n ≥ 2 be an integer. Then

|Ef,n| = n
�

p|n

�
1− N f (p)

p

�
,

where N f (p) stands for the number of solutions of the congruence f(X) ≡ 0

(mod p).

Proof. Let a be an integer with 1 ≤ a ≤ n. Then the probability that a ∈ Ef,n is
|Ef,n|
n

. On the other hand, gcd(f(a), n) = 1 if and only if gcd(f(a), p) = 1 for all

prime divisor p of n. That is a ∈ Ef,n if and only if a ∈ Ef,p for all prime p | n.

Equivalently, a ∈ Ef,n if and only if f(a) �≡ 0 (mod p) for all prime p | n. Since
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for a given prime p | n, the probability that a ∈ Ef,p is
�
1− Nf (p)

p

�
, we have

|Ef,n|
n

=
�

p|n

�
1− N f (p)

p

�
.

This completes the proof of Lemma 3.3.13.3.1. �

The next important lemma is about the mutually co-prime values of two

linear polynomials over Z and it will play a crucial role in the proof of Corollary

3.2.53.2.5. The proof can be found in [5050] but we present it here for the sake of

completeness.

Lemma 3.3.2 [5050] Let a and c be integers with a < c and let f(X) = aX +

1 and g(X) = cX +1 be polynomials. Let a = qm1
1 . . . qms

s and c− a = pn1
1 . . . pnt

t

be the respective prime factorizations. Then the condition gcd(f(k), g(k)) = 1

holds true for all integers k if and only if {p1, . . . , pt} ⊆ {q1, . . . , qs}.

Proof. Let A = {q1, . . . , qs} and B = {p1, . . . , pt}. Assume that f(k) and g(k)

are relatively prime for all integers k. If B �⊆ A, there exists pi ∈ B \A for some

i ∈ {1, . . . , t}. Since pi �∈ A, we have pi � a and hence the congruence aX+1 ≡ 0

(mod pi) has a solution t0 in Z. In other words, pi | f(t0). Also, pi ∈ B implies

that pi | (c− a). Thus we obtain

pi | {(at0 + 1) + (c− a)t0} = ct0 + 1 = g(t0).

This implies pi | gcd(f(t0), g(t0)), which contradicts our hypothesis that

gcd(f(k), g(k)) = 1 for all k ∈ Z. Hence B ⊆ A.

Conversely, suppose that B ⊆ A. In order to prove gcd(f(�), g(�)) = 1 for

an integer �, it is enough to prove that for a prime number p, if p | f(�), then

p � g(�). For that, we choose a prime number p such that p | f(�) = (a� + 1).

Then p � a and p � �. Since p � a, we have p �∈ A. By our assumption, B ⊆ A
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and hence p �∈ B. Then p � (c− a) and so p � (c− a)�. Now,

g(�) = c�+ 1 = (a�+ 1) + (c− a)�.

Since p | (a�+ 1) and p � (c− a)�, we conclude that p � g(�). This completes the

proof of the lemma. �

In order to prove Theorem 3.2.13.2.1, we need to exploit the fact that the linear

factors of f(X) are pairwise relatively prime, when evaluated at any integer. A

priori, we may not always find such a polynomial. But the following proposition

guarantees the existence of a polynomial fulfilling the required criterion. More

precisely, we prove the following.

Proposition 3.3.3 [33] Let r ≥ 2 be an integer. Then there exist a polynomial

f(X) =
r�

i=1

(aiX + bi) for some integers ai and bi for i = 1, . . . , r− 1 and r such

that gcd(bi, bj) = 1 = gcd(aik + bi, ajk + bj) for all integers k, whenever i �= j.

Proof. We shall use induction on r. Note that, for r = 2, the polynomial

(5X + 3)(8X + 5) is a required choice for f . For, if an integer d divides both

5k+3 and 8k+5 for some integer k, then d | {5(8k+5)− 8(5k+3)} = 1, which

implies d = 1.

Now, suppose that there exists a polynomial g(X) =
r−1�

i=1

(aiX + bi) of degree

r − 1 such that aik + bi and ajk + bj are relatively prime whenever i �= j. We

shall construct a polynomial f(X) of degree r using g(X). We first choose two

positive integers a and b such that gcd(bi, b) = 1 for all i ∈ {1, . . . , r − 1} and

let m =
r−1�

i=1

(aib− abi). Now, let

f(X) = (a1mX + b1) . . . (ar−1mX + br−1)(amX + b).

Claim. gcd(ajmk+ bj, amk+ b) = 1 for all j ∈ {1, . . . , r− 1} and for all k ∈ Z.
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If possible, suppose gcd(ajmt+ bj, amt+ b) > 1 for some integer t and some

j ∈ {1, . . . , r − 1}. Let p be a prime divisor of gcd(ajmt + bj, amt + b). Then

p | {aj(amt + b) − a(ajmt + bj)} = ajb − abj. From the construction of m, we

have (ajb− abj) | m. Thus we get p | m.

Therefore, we have p | m, p | (ajmt+ bj) and p | (amt+ b). Thus p | b and p |

bj, which contradicts our assumption that gcd(bj, b) = 1 for all j ∈ {1, . . . , r−1}.

Hence gcd(ajmk + bj, amk + b) = 1 for all j ∈ {1, . . . , r − 1}, for all k ∈ Z and

the claim follows.

Now, by our induction hypothesis, we have gcd(aik+ bi, ajk+ bj) = 1 for all

integers k and for all integers i and j with 1 ≤ i �= j ≤ r − 1. Therefore, the

induction hypothesis along with the above claim imply that all the linear factors

of f(X) are pairwise co-prime, when evaluated at any integer t. This completes

the proof of Proposition 3.3.33.3.3. �

The next lemma is a generalization of the Chinese remainder theorem and

will be useful in the proof of Theorem 3.2.13.2.1.

Lemma 3.3.4 [7676, 9595] Let 0 ≤ ai < ni be integers for all i = 1, 2, . . . , k −

1 and k. Suppose that ai ≡ aj (mod gcd(ni, nj)) for all 1 ≤ i < j ≤ k. Then

the system of congruences,

x ≡ a1 (mod n1)

...

x ≡ ak−1 (mod nk−1)

and x ≡ ak (mod nk).

has a unique solution x0 (mod n), where n = lcm(n1, . . . , nk).

The following lemma, proved in [8383], is useful to compute the cardinality of
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{(x, y) ∈ Ef,n × Ef,n : x+ y ≡ c (mod n)}.

Lemma 3.3.5 [8383] Let c1, . . . , ck−1 and ck be fixed integers. Then the following

statements are true.

(1) The arithmetic function g defined by

g(n) = gc1,...,ck(n) :=
n�

a=1
gcd(a−ci,n)=1

i=1,...,k

1

is a multiplicative function.

(2) For any prime number p and an integer m ≥ 1,

gc1,...,ck(p
m) = pm−1(p− vp(c1, . . . , ck)),

where vp(c1, . . . , ck) = #{� (mod p) | � ≡ ci (mod p) for some i ∈ [1, k]}.

Proof. (1) Let m and n be two positive integers such that gcd(m,n) = 1. We

have to prove that g(mn) = g(m)g(n).

Now, we observe

g(mn) =
mn�

a=1
gcd(a−ci,mn)=1

i=1,...,k

1 =
n−1�

s=0

m�

r=1
gcd(sm+r−ci,mn)=1

i=1,...,k

1. (3.2)

Note that gcd(t,mn) = 1 if and only if gcd(t,m) = 1 = gcd(t, n) holds.

Using this fact in (3.23.2), we get

g(mn) =
m�

r=1
gcd(r−ci,m)=1

i=1,...k

n−1�

s=0
gcd(sm+r−ci,n)=1

i=1,...,k

1. (3.3)
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For a fixed r ∈ [1,m], we observe

n−1�

s=0
gcd(sm+r−ci,n)=1

i=1,...,k

1 =
n�

�=1
gcd(�−ci,n)=1

i=1,...,k

1 = g(n). (3.4)

After putting (3.43.4) in (3.33.3), we get

g(mn) =
m�

r=1
gcd(r−ci,m)=1

i=1,...k

g(n) = g(n)
m�

r=1
gcd(r−ci,m)=1

i=1,...k

1 = g(n)g(m)

and this proves the first part of Lemma.

(2) For any prime number p and an integer m ≥ 1,

gc1,...,ck(p
m) =

pm�

�=1
gcd(�−ci,p

m)=1
i=1,...k

1 =

pm�

�=1
p�(�−ci)
i=1,...k

1

=

pm−1−1�

s=0

p�

r=1
p�(sp+r−ci)
i=1,...,k

1

=

pm−1−1�

s=0

p�

r=1
p�(r−ci)
i=1,...,k

1

= pm−1(p− vp(c1, . . . , ck)),

where vp(c1, . . . , ck) = #{� (mod p) | � ≡ ci (mod p) for some i ∈ [1, k]}. �



§3.4. Proof of Theorem 3.2.13.2.1 73

3.4 Proof of Theorem 3.2.13.2.1

By considering the definition of Ef,n, we have

|Ef,n(c)| =
n�

x=1
gcd(f(x),n)=1

n�

y=1
gcd(f(y),n)=1

y+x≡c (mod n)

1 =
n�

x=1
gcd(f(x),n)=1

n�

y=1
gcd(f(y),n)=1

y≡c−x (mod n)

1

=
n�

x=1
gcd(f(x),n)=1

n�

y=1
y≡c−x (mod n)


 �

d|gcd(f(y),n)
µ(d)


 , by Lemma 2.3.62.3.6(2)

=
n�

x=1
gcd(f(x),n)=1

n�

y=1
y≡c−x (mod n)


 �

d1| gcd(a1y+b1,n)

µ(d1)


 . . .


 �

dr| gcd(ary+br,n)

µ(dr)




=
n�

x=1
gcd(f(x),n)=1

�

d1|n
µ(d1) . . .

�

dr|n
µ(dr)

n�

y=1
y≡c−x (mod n)

a1y+b1≡0 (mod d1)

...
ary+br≡0 (mod dr)

1.

Since gcd(n, a1 . . . ar) = 1, we have gcd(di, ai) = 1 for all i ∈ {1, . . . , r}.

In other words, ai has a multiplicative inverse in Z/diZ, where ai denotes the

residue of ai in Z/diZ. We rewrite the following set of equations in a different

manner as follows.

y ≡ c− x (mod n)

a1y + b1 ≡ 0 (mod d1) ⇔ y ≡ −a�1b1 (mod d1), where a1a
�
1 ≡ 1 (mod d1)

...

ary + br ≡ 0 (mod dr) ⇔ y ≡ −a�rbr (mod dr), where ara
�
r ≡ 1 (mod dr).

By our hypotheses, aik + bi and ajk + bj are co-prime for all integers k and

for all integers i and j with 1 ≤ i �= j ≤ r. Therefore, di and dj are co-prime

whenever i �= j and thus all the hypotheses of Lemma 3.3.43.3.4 are satisfied. Hence
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the above mentioned set of congruences admit a unique solution for y if and only

if

c− x ≡ −a�1b1 (mod d1)

...

c− x ≡ −a�rbr (mod dr)

hold. Using these three congruences, we rewrite the previous expression of

|Ef,n(c)| in the following way,

|Ef,n(c)| =
n�

x=1
gcd(f(x),n)=1




�

d1|n
d1|(c−x+a�1b1)

µ(d1)


 . . .




�

dr|n
dr|(c−x+a�rbr)

µ(dr)


 .

Using the fact gcd(di, ai) = 1 for all i ∈ {1, . . . , r}, we get

|Ef,n(c)| =
n�

x=1
gcd(f(x),n)=1




�

d1|n
d1|a1(c−x+a�1b1)

µ(d1)


 . . .




�

dr|n
dr|ar(c−x+a�rbr)

µ(dr)




=
n�

x=1
gcd(f(x),n)=1




�

d1|n
d1|(a1c−a1x+b1)

µ(d1)


 . . .




�

dr|n
dr|(arc−arx+br)

µ(dr)




=
n�

x=1
gcd(f(x),n)=1

gcd(a1c−a1x+b1,n)=···=gcd(arc−arx+br,n)=1

1

= g− b1
a1

,...,− br
ar

,c+
b1
a1

,...,c+ br
ar

(n),

where
1

ai
stands for the multiplicative inverse of ai in (Z/nZ)∗ for all i = 1, . . . , r
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=
�

p|n
g− b1

a1
,...,− br

ar
,c+

b1
a1

,...,c+ br
ar

(pep(n)), (since g is multiplicative, by Lemma 3.3.53.3.5)

where ep(n) is the highest power of p appearing in the prime factorizarion of n

= n
�

p|n

�
1−

vp(− b1
a1
, . . . ,− br

ar
, c+ b1

a1
, . . . , c+ br

ar
)

p

�

= n
�

p|n

�
1− N f (p, c)

p

�
, where

N f (p, c) =

p�

�=1
p|(�+ b1

a1
)...(�+ br

ar
) or

p|(c+ b1
a1

−�)...(c+ br
ar

−�)

1 =

p�

�=1
p|(a1�+b1)...(ar�+br) or

p|(a1(c−�)+b1)...(ar(c−�)+br)

1

= # {� (mod p) | either f(�) ≡ 0 (mod p) or f(c− �) ≡ 0 (mod p)} .

This completes the proof of Theorem 3.2.13.2.1. �

3.5 Proof of Corollary 3.2.43.2.4

In the light of Theorem 3.2.13.2.1, we only need to prove that

N f (p, c) =





1 ; if ac ≡ −2b (mod p)

2 ; if ac �≡ −2b (mod p).

for all prime number p | n.

Since gcd(ab, n) = 1, for every prime divisor p of n, we have gcd(ab, p) = 1.

Let p be any prime divisor of n. Since aX+b ≡ 0 (mod p) has a unique solution

modulo p, in order to compute N f (p, c), we need to know whether a common

solution to the equations aX + b ≡ 0 (mod p) and aX − ac − b ≡ 0 (mod p)

exists.

Suppose that ac ≡ −2b (mod p). In this case, we prove that there exists

� (mod p) satisfying f(�) ≡ 0 (mod p) and f(c − �) ≡ 0 (mod p) and hence
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we get N f (p, c) = 1. Since ac ≡ −2b (mod p), we get ac + b ≡ −b (mod p)

and hence c + ba� ≡ −ba� (mod p), where aa� ≡ 1 (mod p). Then we note that

f(−ba�) ≡ a(−ba�)+b ≡ 0 (mod p) and f(c+ba�) ≡ f(−ba�) ≡ 0 (mod p). Thus

−ba� is a common solution modulo p and hence we conclude that N f (p, c) = 1.

Suppose that ac �≡ −2b (mod p). If there is a common solution � satisfying

a�+ b ≡ 0 (mod p) and ac+ b− a� ≡ 0 (mod p), then adding these two congru-

ences, we get ac ≡ −2b (mod p) which is a contradiction. Hence in this case,

N f (p, c) = 2. �

3.6 Proof of Corollary 3.2.53.2.5

In view of Theorem 3.2.13.2.1, it suffices to prove that

N f (p, c) =





2 ; if a+ b ≡ −abc (mod p)

3 ; if ac ≡ −2 (mod p) or bc ≡ −2 (mod p)

4 ; otherwise .

for all prime number p | n.

Let us fix a prime divisor p of n. For an integer �, we have f(�) = (a�+1)(b�+

1) and f(c− �) = (ac+1−a�)(bc+1− b�). Since, by hypothesis, gcd(ab, n) = 1,

we have gcd(ab, p) = 1. Thus each of the linear congruences a�+1 ≡ 0 (mod p),

b�+1 ≡ 0 (mod p), a�+1− ac ≡ 0 (mod p) and b�+1− bc ≡ 0 (mod p) has a

unique solution (mod p). In order to compute N f (p, c), we need to know about

the common solutions of f(X) ≡ 0 (mod p) and f(c−X) ≡ 0 (mod p).

Claim. A common solution of f(X) ≡ 0 (mod p) and f(c−X) ≡ 0 (mod p)

exists if and only if either a+b ≡ −abc (mod p) or ac ≡ −2 (mod p) or bc ≡ −2

(mod p).
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Suppose � is a common solution of f(X) ≡ 0 (mod p) and f(c − X) ≡ 0

(mod p). Then (a�+ 1)(b�+ 1) ≡ 0 (mod p) and (ac+ 1− a�)(bc+ 1− b�) ≡ 0

(mod p). We note that since gcd(ak+1, bk+1) = 1 for all integer k, by Lemma

3.3.23.3.2 we have, the set of prime divisors of b − a is a subset of the set of prime

divisors of a. In particular, gcd(b − a, p) = 1. Now, if a� + 1 ≡ 0 (mod p) and

b�+1 ≡ 0 (mod p), then p | (b−a)�. Since gcd(b−a, p) = 1, we have p � (b−a).

Therefore, we must have � ≡ 0 (mod p). This together with a�+1 ≡ 0 (mod p)

implies that 1 ≡ 0 (mod p), which is a contradiction. Hence a�+1 ≡ 0 (mod p)

and b�+ 1 ≡ 0 (mod p) do not have a common solution (mod p). In a similar

way, we can also show that ac+1−a� ≡ 0 (mod p) and bc+1− b� ≡ 0 (mod p)

do not have a common solution (mod p).

Suppose that a� + 1 ≡ 0 (mod p) and b(c − �) + 1 ≡ 0 (mod p). Let a�

and b� be integers such that aa� ≡ 1 (mod p) and bb� ≡ 1 (mod p). Then we

have � ≡ −a� (mod p) and hence b(c − �) + 1 ≡ b(c + a�) + 1 ≡ 0 (mod p).

Therefore, ba� + 1 ≡ −bc (mod p) which implies that a + b ≡ −abc (mod p).

Similarly, if b� + 1 ≡ 0 (mod p) and a(c− �) + 1 ≡ 0 (mod p) together implies

that a+ b ≡ −abc (mod p).

Now, suppose a�+1 ≡ 0 (mod p) and a(c−�)+1 ≡ 0 (mod p) hold simulta-

neously for some integer �. Then from � ≡ −a� (mod p), we get a(c+a�)+1 ≡ 0

(mod p) and thus c + a� ≡ −a� (mod p). This implies ac ≡ −2 (mod p).

Similarly, the existence of a common solution of bX + 1 ≡ 0 (mod p) and

b(c−X) + 1 ≡ 0 (mod p) implies that bc ≡ −2 (mod p).

Conversely, first suppose a+b ≡ −abc (mod p). Now, multiplying both sides

of the congruence a + b ≡ −abc (mod p) by a�b�, we get c + b� ≡ −a� (mod p).

We note that −a� is the solution of the congruence a�+1 ≡ 0 (mod p) and c+b�

is the solution of the congruence bc + 1 − b� ≡ 0 (mod p). Thus in this case,

aX + 1 ≡ 0 (mod p) and b(c − X) + 1 ≡ 0 (mod p) have a common solution.
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Similarly, we can show that bX +1 ≡ 0 (mod p) and a(c−X) + 1 ≡ 0 (mod p)

have a common solution, namely, −b�. Hence we get N f (p, c) = 2 in this case.

Next, we consider the case when ac ≡ −2 (mod p). Multiplying both sides

of the congruence by a�, we get c+ a� ≡ −a� (mod p). Now, −a� is the solution

of aX + 1 ≡ 0 (mod p) and c+ a� is the solution of a(c−X) + 1 ≡ 0 (mod p).

Hence the congruences a�+ 1 ≡ 0 (mod p) and ac+ 1− a� ≡ 0 (mod p) have a

common solution (mod p). Similarly, we can also show that b�+1 ≡ 0 (mod p)

and bc + 1− b� ≡ 0 (mod p) have a common solution (mod p), when bc ≡ −2

(mod p). Both the conditions ac ≡ −2 (mod p) and bc ≡ −2 (mod p) cannot

occur simultaneously, for otherwise, it would imply 2(a− b) ≡ 0 (mod p), which

is a contradiction to the fact that gcd(a−b, p) = 1 and p is odd . Therefore, the

solution of the congruence a�+1 ≡ 0 (mod p) is distinct from that of b�+1 ≡ 0

(mod p). Henc e we get N f (p, c) = 3, if ac ≡ −2 (mod p) or bc ≡ −2 (mod p)

and the proof of the claim follows.

Finally, if a + b �≡ −abc (mod p), ac �≡ −2 (mod p) and bc �≡ −2 (mod p),

then from the above claim, it follows that all the four congruences aX + 1 ≡ 0

(mod p), bX + 1 ≡ 0 (mod p), a(c−X) + 1 ≡ 0 (mod p) and b(c−X) + 1 ≡ 0

(mod p) have pairwise distinct solutions (mod p). Hence N f (p, c) = 4 in this

case. This completes the proof of Corollary. �

3.7 Concluding remarks

By Proposition 3.3.33.3.3 and Remark 3.2.23.2.2, it is clear that the expression (3.13.1) holds

for an infinite family of polynomials over Z. In view of Remark 3.2.33.2.3, in the

following proposition, we prove that the expression (3.13.1) also holds for any non-

constant polynomial over Z and when n is a prime number p. However, the

argument in Proposition 3.7.13.7.1 does not go through for n other than primes.
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Proposition 3.7.1 Let f(X) ∈ Z[X] be a non-constant polynomial and p be

any prime number. For an integer c with 1 ≤ c ≤ p− 1, let Ef,p(c) := {(x, y) ∈

Ef,p × Ef,p : x+ y ≡ c (mod p)}. Then

|Ef,p(c)| = p

�
1− N f (p, c)

p

�
,

where N f (p, c) = # {� (mod p) | either f(�) ≡ 0 (mod p) or f(c− �) ≡ 0 (mod p)} .

Proof. For a non-constant polynomial f(X) ∈ Z[X], the set of all f -exunits in

Z/pZ, Ef,n, is {1 ≤ a ≤ p : p � f(a)}. Therefore, we see that Ef,p(c) = {1 ≤ a ≤

p : p � f(a)} ∩ {1 ≤ a ≤ p : p � f(c− a)}. Thus, we obtain

|Ef,p(c)| = |{1 ≤ a ≤ p : p � f(a)} ∩ {1 ≤ a ≤ p : p � f(c− a)}|

= p− |{1 ≤ a ≤ p : f(a) ≡ 0 (mod p)} ∪ {1 ≤ a ≤ p : f(c− a) ≡ 0 (mod p)}|

= p−N f (p, c)

and the proof follows.

The above Proposition shows that when n is a prime number, the expression

(3.13.1) is valid for any polynomial f(X) ∈ Z[X]. This motivates us to ask the

following question.

Question 3.7.2 For any non-constant polynomial f(X) ∈ Z[X] and for an

integer n ≥ 2, does the expression (3.13.1) hold to be true?

In the remaining part of this section, we provide a few observations regarding

the infinite family of polynomials mentioned in Theorem 3.2.13.2.1.

(i) For any integer N ≥ 1, we consider the following set

A := {f(X) ∈ Z[X] : deg(f) = r and H(f) ≤ N} ,
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where f(X) = (a1X+ b1) · · · (arX+ br) is as in Theorem 3.2.13.2.1 and H(f) is

the height of the polynomial f (defined as the maximum of its coefficients

in modulus value). We claim that |A| ≥ N 1/r(r−1).

For a given (a1, . . . , ar), where 1 ≤ ai ≤ N1/r2(r−1), we consider m =
r�

i,j=1
i>j

(ai − aj) and f(X) = (a1mX + 1) · · · (armX + 1). Since |m| ≤

(N1/r2(r−1))
r(r−1)

2 = N1/2r, one can easily check that H(f) ≤ N and

gcd(aimk+1, ajmk+1) = 1 for all integer k. Since ai is any integer in be-

tween 1 and N 1/r2(r−1), we get |A| ≥ (N 1/r2(r−1))r = N1/r(r−1). Therefore,

we ask the following question.

Question 3.7.3 What is the lower bound for |A| as a function of N?

(ii) To answer Question 3.7.33.7.3, several families of polynomials satisfying the

co-primality condition in Theorem 3.2.13.2.1 are needed. Hence this leads to

ask the more general question as follows.

Question 3.7.4 Given an integer r ≥ 1, classify all positive integers

a1, . . . , ar, b1, . . . , br such that gcd(aik + bi, ajk + bj) = 1 for all integers k

and i �= j .

Under certain assumptions, we provide the answer to Question 3.7.43.7.4 for the

particular case r = 3 in the following proposition.

Proposition 3.7.5 Let f1(X) = pX+1, f2(X) = qX+1 and f3(X) = rX+1 be

three polynomials over Z such that 1 < p < q < r and there are exactly two prime

numbers among p, q and r. Assume that for any k ∈ Z and for 1 ≤ i < j ≤ 3, we

have gcd(fi(k), fj(k)) = 1. Then either (p, q, r) = (2, 3, 4) or (p, q, r) = (2, 3, 6).

Proof. We denote the set of all prime divisors of an integer n by p(n) and

we define p(1) = ∅. Since the hypothesis of the proposition satisfies all the
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conditions of Lemma 3.3.23.3.2, we get p(q−p) ⊆ p(p), p(r−q) ⊆ p(q) and p(r−p) ⊆

p(p). Then we observe that among p, q and r, exactly one can be odd number

and hence exactly one of those two prime numbers has to be even prime. Now

we claim that p = 2.

If q = 2, then f1(X) = X + 1 and hence there is no choice of f3(X). Again

if r = 2, then f2(X) = X + 1 and we can not find any suitable f1(X). Hence

the claim follows.

We observe that another odd prime number must be q. For otherwise, since

p(r − 2) ⊆ p(2), we get r = 3 which is not possible as 2 = p < q < r. Thus we

get r is an even composite number. Again p(q − 2) ⊆ p(2) implies that q = 3

since q is an odd prime number.

Now p(r − 2) ⊆ p(2) implies that r = 2s + 2 with s ≥ 1 and p(r − 3) ⊆ p(3)

implies r = 3t +3 with t ≥ 0. Combining these two relations we get 2s − 3t = 1.

We claim that either s = 1, t = 0 or s = 2, t = 1 are two possible solutions.

To prove this claim, first observe that if (s, t) �= (1, 0), then s is even. For,

if s is odd, then 2s − 3t ≡ 2 (mod 3), which is not possible since 2s − 3t = 1.

Thus, let s = 2k, for some integer k ≥ 1. Now the equation becomes 3t =

2s − 1 = 22k − 1 = (2k − 1)(2k +1). Therefore, by the unique factorization in Z,

we conclude that

2k − 1 = 3u and 2k + 1 = 3v

for some integers u and v. From this, we get 3v−3u = 2 and the only possibility

is (u, v) = (0, 1). This, in turn, implies that k = 1 and hence we get s = 2.

Plugging this in the original equation 2s − 3t = 1, we get t = 1. Hence the only

choice is either (p, q, r) = (2, 3, 4) or (p, q, r) = (2, 3, 6). �





CHAPTER4
On zero-sum subsequences in a

finite abelian p-group of length not

exceeding a given number

Let G be a finite abelian group written additively. For a subset L ⊆ N, we

define the constant sL(G) as the least positive integer t such that every sequence

over G of length t contains a zero-sum subsequence of length � for some � ∈ L.

For L = {1, 2, . . . , a}, we denote the constant sL(G) by s≤a(G). In this chapter,

we compute this constant for many class of abelian p-groups. In particular, it

proves a conjecture of Schmid and Zhuang [8686].

83
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4.1 Introduction

Let G be a finite abelian additive group with exponent exp(G). A sequence S

over G is written as

S =

|S|�

i=1

gi =
�

g∈G
gvg(S) with vg(S) ∈ Z≥0

where vg(S) is called the multiplicity of g in S and |S| denotes the length of the

sequence S. By the definition of multiplicity, we see that

|S| =
�

g∈G
vg(S) ∈ Z≥0.

The sum of all the terms of the sequence S is given by

σ(S) =
�

g∈G
vg(S)g ∈ G.

A sequence S over G is called a zero-sum sequence if σ(S) = 0. For any integer

k ∈ Z≥0 and for a sequence S over G, we define

Nk(S) =

�����

�
I ⊂ [1, |S|] :

�

i∈I
gi = 0, |I| = k

������ , (4.1)

which denotes the number of zero-sum subsequences of S of length k.

For a subset L ⊆ N, we define a constant sL(G) which is the least positive

integer t such that given any sequence S over G of length |S| ≥ t satisfying

N �(S) ≥ 1 for some integer � ∈ L.

When L = {1, . . . , k} for a given positive integer k ≥ 1, the constant sL(G)

is denoted by s≤k(G).

Definition 4.1.1 [8181] If L = N, then sL(G) is denoted by D(G) and it is called
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Davenport constant. In other words, D(G) is defined as the least positive integer

t such that any given sequence S over G of length ≥ t satisfying N k(S) ≥ 1 for

some integer k ≥ 1.

The other well-known constant η(G) is nothing but η(G) = s≤exp(G)(G).

Definition 4.1.2 If L = {exp(G)}, then sL(G) is denoted by s(G) and it is

called Erdős-Ginzurg-Ziv-constant (EGZ-constant).

These constants D(G) and η(G) have received a lot of attention (see for instance

[66, 1616, 1717, 1919, 2020, 2121, 2727, 3030, 3232, 3636, 8686, 9191, 5555]). When G is a cyclic group, we

have η(G) = |G|, D(G) = |G| and s(G) = 2|G| − 1. When G ∼= C2
p for a

prime p, Olson [7474, 7575] proved in 1969 that η(C2
p) = 3p − 2 and for any p-

group G, he proved that D(G) = D∗(G) where, for any finite abelian group

G� ∼= Cm1 ⊕ · · · ⊕ Cmr with 1 < m1 ≤ m2 ≤ · · · ≤ mr are integers satisfying

mi|mi+1, the constant D∗(G�) is defined by

D∗(G�) = 1 +
r�

i=1

(mi − 1). (4.2)

Analogously, in 1983, Kemnitz [4747] conjectured that s(C2
p) = 4p−3 = η(C2

p)+

p− 1 and it was confirmed by C. Reiher [8080] in 2007.

If G ∼= Cm⊕Cn with m|n is the abelian group of rank 2, then it is known that

η(G) = 2m+n−2 = s(G)−n+1 as given in [3232] and D(G) = m+n−1 = D∗(G).

In 1992, Geroldinger [3333] proved that D(G) > D∗(G) for infinitely many

finite abelian groups G with r(G) ≥ 4. Recently, in [5555], some finer results were

obtained for some finite abelian groups.

Before that, van Emde Boas [1818] (in 1969), R. Meshulam [6262] (in 1990),

Alford et al. [22] (in 1994), Rath et al. [7979] (in 2008) proved a general upper
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bound as follows;

D(G) ≤ exp(G)

�
1 + log

|G|
exp(G)

�
.

In 2014, Gao, Moriya, Pal and Thangadurai [77] proved a linear bound which

states that

D(Cn1 ⊕ · · ·⊕ Cnr) ≤ nr + nr−1 + (c(3)− 1)nr−2 + · · ·+ (c(r − 2)− 1)n1

for some computable constants c(r) which depends only on r.

Recently in 2018, B. Girand [3434] proved the following result.

D(Cr
n) ≤ r(n− 1) + 1 + d(r)

�
n

P (n)
− 1

�
,

where P (n) is the greatest prime power dividing n with the convention P (1) = 1

and d(r) is a computable constant depends only on r. Moreover, he proved that

D(Cr
n) ∼

n→+∞
rn which confirms the following Conjecture 4.1.14.1.1(a) in asymptotic

sense.

The following Conjecture 4.1.14.1.1(a) regarding exact values of D(G) is in the

literature for long time but it can be found formally stated in [2727].

Conjecture 4.1.1 (a) [2727] For all integers n, r ≥ 1, D(Cr
n) = r(n− 1) + 1.

(b) [6969] D(G) ≤
r�

i−1

mi, where, for any finite abelian group G ∼= Cm1⊕· · ·⊕Cmr

with 1 < m1 ≤ m2 ≤ · · · ≤ mr are integers satisfying mi|mi+1.

(c) [2525, 2626] D(G) = D∗(G), for all finite abelian group of rank 3.

Regarding the relation between η(G) and s(G), Gao and Geroldinger [2727] (in

2006) conjectured the following for any finite abelian group.

Conjecture 4.1.2 [2727] For every finite abelian group G, the relation s(G) =

η(G) + exp(G)− 1 holds.
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In general, for any group G of rank ≥ 3, nothing much is known. For any

odd prime p, it is known that η(C3
p) ≥ 8p − 7 ([1717]) and η(C4

p) ≥ 19p − 18

([1616]) and their exact values are still unkonwn. In 2007, Gao, Hou, Schmid and

Thangadurai [2929] conjectured that s(C3
n) = 9n− 8, for any odd positive integer

n. Recently, Fan, Gao, Wang and Zhong [2121] determined the value η(G) for

special type of abelian groups of rank 3. Very recently, Girand and Schmid

([3535]) determined η(G) for the group G = C2 ⊕ Cn ⊕ Cm with 2|n|m.

Apart from these results, Schmid and Zhuang [8686] proved that if G is a finite

abelian p-group with D(G) = 2 exp(G) − 1, then η(G) = 2D(G) − exp(G) =

s(G)− exp(G) + 1. Moreover, they conjectured the following.

Conjecture 4.1.3 ([8686]) Let G be a finite abelian p-group satisfying D(G) ≤

2 exp(G)− 1. Then

η(G) = 2D(G)− exp(G) = s(G)− exp(G) + 1.

In 2016, Gao, Han and Zhang [2828] proved Conjecture 4.1.34.1.3 for the abelian p-

groups G satisfying p > 2r(H) and
�

2D(H)
exp(H)

�
is either even or at most 3. Recently,

in [88], Chintamani, Paul and Thangadurai considered similar problem for the

complementary case and obtained an upper bound.

The constants s≤k(G) was introduced by Delorme, Ordaz and Quiroz [1111].

It is easy to see that if k ≥ D(G), then s≤k(G) = D(G) and if 1 ≤ k <

exp(G), we see that s≤k(G) = ∞. In general, the problem of determining

exact value of s≤k(G) is quite difficult. In 2010, Freeze and Schmid [2222] proved

that s≤3(C
r
2) = 2r−1 + 1. In 2017, Wang and Zhao [9292] proved that when

G = Cm⊕Cn, the constant s≤D(G)−k(G) = D(G)+k for all integers k ∈ [0, m−1]

and sr−k(C
r
2) = r + 2 for all r − k ∈

��
2r+2
3

�
, r

�
.
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4.2 Main result

It is clear that s≤exp(G)+�(G) ≤ η(G) for all integers � ≥ 0. In this chapter,

we prove that s≤exp(G)+�(G) ≤ η(G) − � for many finite abelian p-groups and

for many integers � ≥ 0. Moreover, we prove the equality for � = 0 and when

G ∼= Cpm ⊕Cpn with n ≥ m+1, we prove the equality for all integers � ≤ pm−1,

which matches with the result of Wang and Zhao [9292]. Moreover, in this chapter,

we prove the following result.

Theorem 4.2.1 [8282] Let H be a finite abelian p-group with exp(H) = pm for

some integer m ≥ 1 and for a prime number p > 2r(H). Let D(H) be its

Davenport constant such that D(H) − 1 = kpm + t for some integers k ≥ 1

and 0 ≤ t ≤ pm − 1. Let n be an integer satisfying pn ≥ 2(D(H) − 1) and let

G = Cpn ⊕ H. Let � be any integer satisfying � = apm + t� for some integer a

with 0 ≤ a ≤ k − 1 and for some integer t� with 0 ≤ t� ≤ t. Then, we have

s≤exp(G)+�(G) ≤ exp(G) + 2(D(H)− 1)− � = 2D(G)− exp(G)− �.

Moreover, when � = 0, we get the equality which proves Conjecture 4.1.34.1.3 for all

such p-groups G and when G ∼= Cpm ⊕ Cpn with n ≥ m + 1, for all integers

0 ≤ � ≤ pm − 1, we get

s≤exp(G)+�(G) = 2D(G)− exp(G)− �.

By refining the method employed in [2828], we shall prove Theorem 4.2.14.2.1.

4.3 Preliminaries

We start with the following definition of Group Ring.
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Definition 4.3.1 Let G be a finite abelian group and R be a commutative ring

with 1, unit element. Consider the formal expressions

R[G] :=

��

g∈G
agg : ag ∈ R

�
.

In this set R[G], we declare two elements

x =
�

g∈G
agg and y =

�

g∈G
bgg

are said to be equal if and only if

ag = bg for all g ∈ G.

Note that since 1 ∈ R, we identify g ∈ G as a element of R[G] by writing

1.g ∈ R[G]. Also note that 1 = 1.e ∈ R[G] where e is the identity element of G.

We can define component wise addition as follows; If

x =
�

g∈G
agg and y =

�

g∈G
bgg

are the elements of R[G], we define

x+ y =
�

g∈G
(ag + bg)g.

Then note that since ag, bg ∈ R and it is a ring, ag + bg = cg ∈ R. Therefore,

x + y ∈ R[G]. It can be easily check that with respect to addition (R[G],+) is

an abelian group. Also, with respect to multiplication of the ring R, we define
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a multiplication in R[G] as follows; If

x =
�

g∈G
agg and y =

�

g∈G
bgg

are the elements of R[G], we define

x.y =
�

g∈G
cgg where cg =

�

g1,g2∈G

�

g1g2=g

ag1bg2 .

Note that since R is a ring, it is clear that cg ∈ R and hence x.y ∈ R[G]. Thus

(R[G],+, .) forms a commutative ring. Also, note that we can identify G inside

R[G] because for any element g ∈ G, we define ag = 1 ∈ R and 1.g ∈ R[G].

This commutative ring R[G] is called group ring.

Lemma 4.3.2 For an abelian group G, we have

D∗(G) ≤ D(G) ≤ |G|.

Proof. First we prove the upper bound. Let S = a1a2 . . . a|G| be a given sequence

of elements of G of length |G|. Construct a new sequence T = b1b2 . . . b|G| of

elements of G of length |G|, where

bi = a1 + a2 + · · ·+ ai for all i = 1, 2, . . . , |G|.

If all the elements of bi are distinct, then as the length of T is |G|, then there

exists j such that bj = 0. If all the elements are not distinct, then there exist

i < j such that bi = bj which means that

a1 + a2 + · · ·+ ai = a1 + a2 + · · ·+ ai + ai+1 + · · ·+ aj.
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This gives us that ai+1 + · · ·+ aj = 0, which proves the upper bound.

Now to prove the lower bound, we need to construct a sequence S of elements

of G of length D∗(G)−1 which does not contain any zero-sum subsequence. Let

G ∼= Cm1 ⊕ · · · ⊕ Cmr with m1m2 . . .mr = |G|. Let xi = 1 be the generator of

Cmi
, for all i = 1, 2, . . . , r. We embed xi in G as xi = (0, . . . , 0, 1, 0, . . . , 0) where

1 is in the ith position and rest is 0 as an element of Cmi
. Now consider the

sequence

S =


x1, . . . , x1� �� �

m1−1 times

, . . . ,����xr, . . . , xrmr−1 times




of elements of G of length D∗(G) − 1. Clearly, this sequence doesn’t have a

zero-sum subsequence in it because, any subsequence sum has a i-th co-ordinate

which is non-zero as 1 repeats at most mi − 1 times. This proves the lower

bound. �

Corollary 4.3.3 Let G = Cn be the cyclic group of order n. Then

D(Cn) = n.

Proof. Since |G| = n = D∗(G), by the above theorem, we get the result. �

Theorem 4.3.4 [7474] Let G be a finite abelian p-group written multiplicatively

such that G ∼= Cpe1 ⊕ · · · ⊕ Cper . If S is a sequence over G with |S| = � ≥

1 +
r�

i=1

(pei − 1) = D∗(G), then for g = e,

1−N1
e (S) +N2

e (S)− · · · (−1)�N �
e(S) = a1 ≡ 0 (mod p).

and for g �= e,

−N1
g (S) +N2

g (S)− · · · (−1)�N �
g(S) = ag ≡ 0 (mod p),
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where N i
g(S) denotes the number of subsequences of S of i-length whose product

is equal to g, for each g ∈ G and for 1 ≤ i ≤ |S|.

Proof. Since G ∼= Cpe1⊕· · ·⊕Cper , let xi be the generator of Cpei , for i = 1, . . . , r.

Then any element g ∈ G will be of the form g = xa1
1 . . . xar

r . First note that if

h ∈ G and h = uv, then we can write

(1− h) = (1− uv) = (1− u) + u(1− v).

Therefore, we can write any element (1− xa1
1 . . . xar

r ) as follows;

(1− xa1
1 . . . xar

r ) = (1− x1) + x1(1− x1) + · · ·+ xa1−1
1 (1− x1)

+ xa1
1 (1− x2) + xa1

1 x2(1− x2) + · · ·+ xa1
1 xa2−1

2 (1− x2)

· · · · · · · · ·

+ xa1
1 . . . x

ar−1

r−1 (1− xr) + xa1
1 . . . x

ar−1

r−1 xr(1− xr)

+ . . .+ xa1
1 . . . xar

r .

Since xci
i are elements of G and all (1 − xj) ∈ Z[G] a group ring element, we

note that right hand side element lies in the group ring Z[G].

Now, consider the given sequence S = g1 . . . g� of elements of G of length �

such that � ≥ 1 +
r�

i=1

(pei − 1). Since each element of the sequence gi is of the

form xa1
1 . . . xar

r for some integers ai ≥ 0, by the above observation, we see that

(1− g1) · · · (1− g�) =
�

g∈G
gJg,

where Jg = (1 − x1)
c1 · · · (1 − xr)

cr with
r�

i=1

ci ≥ � and ci ≥ 0 integers. Since
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� ≥
r�

i=1

(pei − 1) + 1, we conclude that

r�

i=1

ci ≥ � >

r�

i=1

(pei − 1).

For all i = 1, 2, . . . , r, if we have ci ≤ pei − 1, then we get

r�

i=1

ci ≤
r�

i=1

(pei − 1) < �

which is impossible. Hence there exists i such that 1 ≤ i ≤ r and ci ≥ pei . Then

consider that element of the group ring

(1− xi)
ci = (1− xi)

pei (1− xi)
ci−pei .

By the binomial expansion, we see that

(1− xi)
pei = 1− peixi + p · elements of Z[G] + (−1)p

eixpei
i ∈ Z[G].

As xi is a generator of Cpei , we have xpei
i = 1 in Cpei . If p is an odd prime, then

(−1)p
ei = −1 and hence, in this case, we get

(1− xi)
pei = 1− p · elements of Z[G]− 1 = p · elements of Z[G] ∈ pZ[G].

When p = 2, then

(1− xi)
2ei = 1− 2 · elements of Z[G] + 1 = 2 · elements of Z[G] ∈ 2Z[G].

In both cases, we get (1 − xi)
pei ∈ pZ[G]. This implies for each g ∈ G, we see
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that Jg ∈ pZ[G] which in turn implies

(1− g1) · · · (1− g�) =
�

g∈G
gJg ∈ pZ[G]. (4.3)

Note that we know the following identity:

(1− y1) · · · (1− yr) = 1−
r�

i=1

yi +
�

i<j

yiyj − · · · (−1)ry1 . . . yr. (4.4)

Therefore, in the expression (1−g1)(1−g2) · · · (1−g�), even length subsequences

product comes with + sign, while odd length subsequences product comes with

− sign. In above, we see that

(1− g1)(1− g2) · · · (1− g�) =
�

g∈G
agg, (4.5)

where ag denotes the number of subproducts of g1 . . . g� is equal to g. Thus, by

(4.34.3) and (4.44.4), ag ≡ 0 (mod p) for all g ∈ G.

When g = e, we take the ring element 1 ∈ Z and write it as 1.e ∈ Z[G].

Hence for g = e, by (4.54.5), we get

1−N1
e (S) +N2

e (S)− · · · (−1)�N �
e(S) = ae ≡ 0 (mod p).

On the other hand, when g �= e, by (4.54.5), we get

−N1
g (S) +N2

g (S)− · · · (−1)�N �
g(S) = ag ≡ 0 (mod p).

Thus, we get the theorem. �

Theorem 4.3.5 [7474] Let G be a finite belian p-group written multiplicatively.
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Then

D(G) = D∗(G).

Proof. By Lemma 4.3.24.3.2, we know that D(G) ≥ D∗(G). We need to prove that

D(G) ≤ D∗(G).

Let S = g1g2 . . . gD∗(G) be given sequence in G. By Theorem 4.3.44.3.4, we get

−N1
e (S) +N2

e (S)− · · · (−1)|S|N |S|
e (S) ≡ −1 (mod p).

This means that either N i
e(S) �= 0, for some 1 ≤ i ≤ |S|. Therefore, there exists

a non-empty subsequence of length i such that its product is e. This implies

D(G) ≤ D∗(G). �

From the last two theorems, we get the following two corollaries for any finite

abelian additive p-groups which we list as a lemma.

Lemma 4.3.6 [7474] Let G be a finite abelian p-group written additively. Then

D(G) = D∗(G). Moreover, if S is a sequence over G with |S| = � ≥ D∗(G),

then

1−N1(S) +N2(S)− · · ·+ (−1)�N �(S) ≡ 0 (mod p),

where N i(S) is defined in equation (4.14.1).

Lemma 4.3.7 ([1818]) Let H be a finite abelian p-group with D(H) ≤ pn− 1 and

let G = Cpn ⊕H. Then, D(G) = pn +D(H)− 1 = exp(G) +D(H)− 1.

Proof. Since G is also a finite abelian p-group, by Lemma 4.3.64.3.6, it is clear that

D(G) = D∗(G) = D∗(H)+pn−1 = pn+D(H)−1. Again we have D(H) ≤ pn−1

which implies exp(G) = pn. Hence the proof follows. �

Lemma 4.3.8 ([1616]) Let G be any finite abelian p-group with exponent exp(G)

such that D(G) ≤ 2 exp(G)− 1. Then η(G) ≥ 2D(G)− exp(G).
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Proof. We can write G = H⊕�a�, where H is a subgroup of G and a is an element

of order exp(G). Since D(G) ≤ 2 exp(G)−1, we also have D(H) ≤ 2 exp(G)−1.

Hence, by Lemma 4.3.74.3.7, we get

D(G) = D(H) + exp(G)− 1. (4.6)

Let T = g1 . . . g� be a sequence over H of length |T | = � = D(H)− 1 which has

no zero-sum subsequence. Now we construct the following the sequence over G

S = a . . . a� �� �
(exp(G)−1)−times

g1 . . . g�(g1 + a) . . . (g� + a)

and obviously it has no zero-sum subsequence of any length �1, where 1 ≤ �1 ≤

exp(G). This implies η(G) ≥ |S|+1 = 2(D(H)− 1)+ exp(G). Therefore, using

(4.64.6), we get η(G) ≥ 2D(G)− exp(G). �

Lemma 4.3.9 ([2828]) Let G be a finite abelian p-group and let m be a positive

integer. If S is a sequence over G of length |S| ≥ D(G) + pm − 1, then we have

1 +

� |S|
pm ��

j=1

(−1)jN jpm(S) ≡ 0 (mod p).

Proof. Let us assume G ⊕ Cpm = G ⊕ �a�, where �a� = Cpm . Also assume

Φ : G → G⊕ Cpm be defined by Φ(g) = g + a for every g ∈ G. Let S = g1 . . . g�

be a sequence over G. Hence Φ(S) = (g1 + a) . . . (g� + a) is a sequence over

G⊕ Cpm .

Since |Φ(S)| = D(G) + pm − 1 = D∗(G), we can apply Lemma 4.3.64.3.6 to the
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sequence Φ(S) and hence we get

1 +

� |S|
pm ��

j=1

(−1)jN jpm(Φ(S)) ≡ 0 (mod p).

Note that, Φ(T ) is a zero-sum subsequence of Φ(S) over G⊕Cpm if and only

if T is a zero-sum subsequence of S and |T | ≡ 0 (mod pm).

Using this observation, we get

1 +

� |S|
pm ��

j=1

(−1)jN jpm(S) ≡ 0 (mod p)

which completes the proof. �

Throughout this section, now on, we take H to be a finite abelian p-group

of rank r(H) and exponent exp(H) = pm for some positive integer m. Also, we

write D(H)−1 = kpm+ t for some positive integer k and a non-negative integer

t satisfying 0 ≤ t ≤ pm − 1. Choose any integer n such that pn ≥ 2(D(H)− 1)

and let G = Cpn ⊕ H. Let � be any integer satisfying � = apm + t� for some

integer a with 0 ≤ a ≤ k − 1 and for some integer t� with 0 ≤ t� ≤ t.

We need the following lemma which was proved in ([2828]) for the case when

� = 0. We prove for all integers � satisfying as above.

Lemma 4.3.10 Let v = (k + 1)pm −D(H) = pm − t− 1. Let S be a sequence

over G of length |S| = pn+2(D(H)−1)− � such that N b(S) = 0 for all integers

b with 1 ≤ b ≤ pn + �. Then for any integers i ∈ [0, k − a− 1], h ∈ [0, v + �] or

i = k−a and h = v+� and for any subsequence T of S of length |T | = |S|− ipm,

we have

1 +
h�

u=0

�
h

u

� k�

j=a+1

(−1)j−1Npn+jpm−u(T ) ≡ 0 (mod p). (4.7)
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Proof. First, we claim the following.

Claim. N i(S) = 0 for all i ∈ [1, pn + �] ∪ [pn +D(H), |S|].

Since S has no zero-sum subsequence of length ≤ pn + �, by the hypothesis,

we assume that N i(S) �= 0 for some integer i ∈ [pn + D(H), |S|]. Let W be

a zero-sum subsequence of S of length |W | = i ≥ pn + D(H). Since D(G) =

pn +D(H)− 1, there exist two disjoint zero-sum subsequences W1 and W2 such

that |W1| ≤ |W2| and W = W1W2. Since N j(S) = 0 for any j ∈ [1, pn + �], it

is clear that |Wb| ≥ pn + � + 1 for all integers b = 1, 2. Therefore, |S| ≥ |W | =

|W1| + |W2| ≥ 2pn + 2� + 2, which is a contradiction to the assumption that

|S| ≤ 2pn. Therefore, we get the claim.

In order to get those congruences, we need to apply Lemma 4.3.94.3.9 suitably.

In order to apply Lemma 4.3.94.3.9, we shall consider the finite abelian group G� =

G⊕ Cpm and consider the homomorphism f : G → G� by f(g) = g + e where e

is a generator of the cyclic group Cpm . Under this homomorphism, we consider

the image of the given sequence f(S).

Let i be a fixed integer with 0 ≤ i ≤ k− a− 1. Let T be a subsequence of S

of length |T | = |S|− ipm = pn+2(D(H)− 1)− �− ipm. Let h be a fixed integer

with 0 ≤ h ≤ v + � and consider the sequence T0h. Then,

|T0h| = |T |+ h = pn +D(H)− 1 +D(H)− 1 + h− �− ipm

= D(G) + kpm + t+ h− apm − t� − ipm

= D(G) + (k − a− i)pm + t− t� + h

≥ D(G) + pm

holds true for all integers i ∈ [0, k − a − 1] and for all integers h ∈ [0, v + �] as
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t� ≤ t. Also, when i = k − a, we take h = v + � so that we get

|T0v+�| = D(G) + t− �+ v + � = D(G) + t+ pm − t− 1 = D(G) + pm − 1.

Now, we apply Lemma 4.3.94.3.9 to the sequence f(T0h) to get

1 +
z�

j=1

(−1)jN jpm(f(T0h)) ≡ 0 (mod p) (4.8)

where z =

� |T0h|
pm

�
, for all integers i ∈ [0, k− a− 1] and h ∈ [0, v+ �] and when

i = k − a, take h = v + �. Note that for each integer j = 1, 2, . . . , z, we have

N jpm(f(T0h)) =
h�

u=0

�
h

u

�
N jpm−u(T ).

Therefore, for every integers i ∈ [0, k−a−1] and h ∈ [0, v+�] or when i = k−a,

we take h = v + �, we get,

1 +
h�

u=0

�
h

u

� z�

j=1

(−1)j−1N jpm−u(T ) ≡ 0 (mod p).

Since, by claim, we know that N b(T ) = 0 for all b ∈ [1, pn+ �]∪ [pn+D(H), |T |],

and pn +D(H) = pn + (k + 1)pm − v, we get

1 +
h�

u=0

�
h

u

� k�

j=a+1

(−1)j−1Npn+jpm−u(T ) ≡ 0 (mod p)

is true for all integers i ∈ [0, k − a − 1] and h ∈ [0, v + �] and when i = k − a,

take h = v + �. From this, we get the required congruences. �

Now, we shall prove the following refinement of Lemma 3.1 (3.3) in [2828].

Lemma 4.3.11 Let v = (k+1)pm−D(H) = pm−t−1. Let S be a sequence over
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G of length |S| = pn+2(D(H)−1)− � for some integer � satisfying � = apm+ t�

for some integer a with 0 ≤ a ≤ k − 1 and for some integer t� with 0 ≤ t� ≤ t

such that N b(S) = 0 for all integers b with 1 ≤ b ≤ pn + �. For any integers i

and h satisfying 0 ≤ i ≤ k − a− 1 and 0 ≤ h ≤ v + �, we have

� |S|
ipm

�
+

k�

j=a+1

(−1)j−1

h�

u=0

�
h

u

��|S|− pn − jpm + u

ipm

�
Npn+jpm−u(S)

≡ 0 (mod p). (4.9)

and

� |S|
(k − a)pm

�
+

v+��

u=0

�
v + �

u

� k�

j=a+1

(−1)j−1

�|S|− pn − jpm + u

(k − a)pm

�
Npn+jpm−u(S)

≡ 0 (mod p). (4.10)

Proof. In order to get (4.94.9), we take a subsequence T of S such that |T | =

|S| − ipm for a given integer i with 0 ≤ i ≤ k − a − 1. Then for any integer

h ∈ [0, v + �], by (4.74.7), we get

1 +
h�

u=0

�
h

u

� k�

j=a+1

(−1)j−1Npn+jpm−u(T ) ≡ 0 (mod p).

Now we sum over all the subsequences T with |T | = |S|− ipm and we get

�

T,|T |=|S|−ipm

�
1 +

h�

u=0

�
h

u

� k�

j=a+1

(−1)j−1Npn+jpm−u(T )

�
≡ 0 (mod p). (4.11)

Since each subsequence W of S with |W | ≤ |S| − ipm can be extended to a

subsequence T of length |T | = |S|− ipm in

�|S|− |W |
|T |− |W |

�
=

�|S|− |W |
|S|− |T |

�
=

�|S|− |W |
ipm

�
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ways, by starting with 0 length subsequence W of S, we see that the number of

ways to get subsequences T of S with |T | = |S| − ipm is
� |S|
ipm

�
. Then, using

this and expanding the sum in (4.114.11), we arrive at (4.94.9). To get (4.104.10), we put

i = k − a and h = v + � in (4.74.7) and apply the same proceedure. This proves

the lemma. �

Corollary 4.3.12 Let S be a sequence over G as defined in Lemma 4.3.114.3.11. For

any integer i with 0 ≤ i ≤ k − a− 1 and for every integer h wth 1 ≤ h ≤ v + �,

we have

� |S|
ipm

�
+

k�

j=a+1

(−1)j−1

�|S|− pn − jpm

ipm

�
Npn+jpm(S) ≡ 0 (mod p) (4.12)

and

k�

j=a+1

(−1)j−1

�|S|− pn − jpm + h

ipm

�
Npn+jpm−h(S) ≡ 0 (mod p). (4.13)

Proof. To prove (4.124.12), we put h = 0 in (4.94.9) (Lemma 4.3.114.3.11) and we get the

congruence.

We shall prove (4.134.13) by induction on h. When h = 1, by (4.94.9) (Lemma

4.3.114.3.11), we get,

� |S|
ipm

�
+

k�

j=a+1

(−1)j−1

��
1

0

��|S|− pn − jpm

ipm

�
Npn+jpm(S)

+

�
1

1

��|S|− pn − jpm + 1

ipm

�
Npn+jpm−1(S)

�
≡ 0 (mod p).

Therefore, by (4.124.12), we get (4.134.13) with h = 1.

Suppose we assume (4.134.13) is true for all integers b < h and we shall prove
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for h. We shall rewrite (4.94.9) with h as follows.

� |S|
ipm

�
+

k�

j=a+1

(−1)j−1

h�

b=0

�
h

b

��|S|− pn − jpm + �

ipm

�
Npn+jpm−b(S)

≡ 0 (mod p)

=⇒
� |S|
ipm

�
+

h−1�

b=0

�
h

�

� k�

j=a+1

(−1)j−1

�|S|− pn − jpm + b

ipm

�
Npn+jpm−b(S)

+
k�

j=a+1

(−1)j−1

�|S|− pn − jpm + h

ipm

�
Npn+jpm−h(S) ≡ 0 (mod p)

By applying induction hypothesis, we get,

k�

j=a+1

(−1)j−1

�|S|− pn − jpm + h

ipm

�
Npn+jpm−h(S) ≡ 0 (mod p)

as required. �

Theorem 4.3.13 ([5858]) Let p be a prime number. Let a and b be positive in-

tegers with a = anp
n + an−1p

n−1 + · · · + a0 with ai ∈ {0, 1, . . . , p − 1} and

b = bnp
n + bn−1p

n−1 + · · ·+ b0 with bi ∈ {0, 1, . . . , p− 1}. Then

�
a

b

�
≡

�
an
bn

��
an−1

bn−1

�
· · ·

�
a0
b0

�
(mod p).

where
�
ai
bi

�
= 0, if ai < bi and

�
0
0

�
= 1.

Proof. At first note that

(1 + x)a = (1 + x)anp
n+an−1pn−1+···+a0

= (1 + x)anp
n · · · (1 + x)a1p(1 + x)a0
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≡ (1 + xpn)an · · · (1 + xp)a1(1 + x)a0 (mod p).

If b < a, then coefficient of xb of (1+ x)a is
�
a
b

�
and the coefficient of xb on right

is
�
an
bn

��
an−1

bn−1

�
· · ·

�
a0
b0

�
(mod p). Thus comparing those suitable coefficients, the

result follows. �

Theorem 4.3.14 ([2828]) Let n and k be positive integers with 1 ≤ 2k ≤ n. Let

A be the following (k + 1)× (k + 1) matrix with positive integers

A =




1 1 · · · 1
�
n
1

� �
n−1
1

�
· · ·

�
n−k
1

�

�
n
2

� �
n−1
2

�
· · ·

�
n−k
2

�

· · · · · ·
�
n
k

� �
n−1
k

�
· · ·

�
n−k
k

�




.

Then, the determinant of A is

det(A) =

�
k�

t=1

t!

�−1 �

0≤i<j≤k

(i− j).

Proof. It is given that

A =




1 1 · · · 1

n n− 1 · · · n− k

n(n−1)
2!

(n−1)(n−2)
2!

· · · (n−k)(n−k−1)
2!

· · · · · ·
n···(n−k+1)

k!
(n−1)···(n−k)

k!
· · · (n−k)···(n−2k+1)

k!




.
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Therefore, we note that det(A) = 1�
1≤t≤k

t!
det(B), where

B =




1 1 · · · 1

n n− 1 · · · n− k

n(n− 1) (n− 1)(n− 2) · · · (n− k)(n− k − 1)

· · · · · ·

n · · · (n− k + 1) (n− 1) · · · (n− k) · · · (n− k) · · · (n− 2k + 1)




.

Now, we denote the i-th row of B by RowB(i). At first, we replace RowB(3) by

RowB(3) +RowB(2) and get the following matrix

B =




1 1 · · · 1

n n− 1 · · · n− k

n2 (n− 1)2 · · · (n− k)2

· · · · · ·

n · · · (n− k + 1) (n− 1) · · · (n− k) · · · (n− k) · · · (n− 2k + 1)




.

Here we denote the new matrix also by B. Now, we consider the polynomial

fi(x) = x(x−1)·(x−i+2) = xi−1+ai−2x
i−2+· · ·+a1x. Using coefficients of this

polynomial, for 4 ≤ i ≤ k + 1, we successively replace RowB(i) by RowB(i) −

ai−2RowB(i− 1)− · · ·− a1RowB(2). For simplicity, after each row-replacement,

we denote the new matrix by B. Therefore, after all row-replacements, we get

C =




1 1 · · · 1

n n− 1 · · · n− k

n2 (n− 1)2 · · · (n− k)2

· · · · · ·

nk (n− 1)k · · · (n− k)k




.
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Next, we note that det(C) is a Vandermonde determinant and det(C) =

det(B). Hence, we get

det(A) =
1�

1≤t≤k

t!
det(C) =

1�
1≤t≤k

t!

�

0≤i<j≤k

(n−j−n+ i) =
1�

1≤t≤k

t!

�

0≤i<j≤k

(i−j).

�

The following is the crucial observation for the proof of Theorem 4.2.14.2.1.

Theorem 4.3.15 [8282] Let S be a sequence over G which is defined as in Lemma

4.3.114.3.11. Then for every integer j ∈ [a+ 1, k] and for every integer h ∈ [1, v + �],

we get,

Npn+jpm−h(S) ≡ 0 (mod p).

Proof. Since pn ≥ 2(D(H) − 1) = 2(kpm + t) and p > 2r(H), we see that

2k + 1 < p. Let h be a fixed integer such that 1 ≤ h ≤ v + �. For any integer

j = a+ 1, a+ 2, . . . , k, we see that

|S|−pn− jpm+h = pn+2(kpm+ t)−pn− jpm+h− � = (2k− j)pm+2t+h− �.

Note that

2t+h−� ≤ 2t+v+�−� = 2t+pm−t−1 = t+pm−1 ≤ pm−1+pm−1 = 2pm−2,

as t ≤ pm − 1. Hence, for each integer j = a+ 1, a+ 2, . . . , k, we see that

|S|− pn − jpm + h = (2k − j + c)pm + f

where c = 0 or 1 depending on values t and h and for some integer 0 ≤ f < pm.
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Therefore, by Theorem 4.3.134.3.13, we get

�|S|− pn − jpm + h

ipm

�
=

�
(2k − j)pm + 2t+ h

ipm

�
≡

�
2k − j + c

i

�
(mod p)

(4.14)

for all integers j = a+ 1, a+ 2, . . . , k and i = 0, 1, . . . , k − a− 1 where c = 0 or

1.

Let h be a fixed integer with 1 ≤ h ≤ v + � and let

Xj = (−1)j−1Npn+jpm−h(S)

for every integer j = a + 1, a + 2, . . . , k. Then by the congruence (4.134.13) in

Corollary 4.3.124.3.12, we get a system of k − a number of linear equations in k − a

variables over Fp as follows.

Xa+1 +Xa+2 + · · ·+Xk = 0;

�|S|− pn − pm + h

pm

�
Xa+1 +

�|S|− pn − 2pm + h

pm

�
Xa+2 +

· · ·+
�|S|− pn − kpm + h

pm

�
Xk = 0;

· · · · · · · · ·

�|S|− pn − pm + h

(k − a− 1)pm

�
Xa+1 +

�|S|− pn − 2pm + h

(k − a− 1)pm

�
Xa+2 +

· · ·+
�|S|− pn − kpm + h

(k − a− 1)pm

�
Xk = 0;

By (4.144.14), the coefficient matrix of the above system of linear equations over Fp
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is 


1 1 · · · 1
�
2k−a−1+c

1

� �
2k−a−2+c

1

�
· · ·

�
2k−k+c

1

�

�
2k−a−1+c

2

� �
2k−a−2+c

2

�
· · ·

�
2k−k+c

2

�

· · · · · ·
�
2k−a−1+c
k−a−1

� �
2k−a−2+c
k−a−1

�
· · ·

�
2k−k+c
k−a−1

�




whose determinant, by Theorem 4.3.144.3.14, is non-zero modulo p, by taking n =

2k− 1+ c in Theorem 4.3.144.3.14. Hence the above system must have zero solutions

in Fp. This proves the theorem. �

4.4 Proof of Theorem 4.2.14.2.1

We prove that s≤pn+�(G) ≤ pn + 2(D(H) − 1) − � for all integers � satisfying

� = apm + t� for some integer a with 0 ≤ a ≤ k − 1 and for some integer t�

with 0 ≤ t� ≤ t where t is an integer satisfying D(H) − 1 = kpm + t with

0 ≤ t ≤ pm − 1.

Let S be a sequence over G of length |S| = pn + 2(D(H)− 1)− �. Suppose

that N b(S) = 0 for all integers 1 ≤ b ≤ pn + �. Then, by Theorem 4.3.154.3.15, we

know that

Npn+jpm−h(S) ≡ 0 (mod p)

for all integers j ∈ [a + 1, k] and integers h ∈ [1, v + �]. Therefore, by Lemma

4.3.114.3.11, we get,

� |S|
(k − a)pm

�
+

k�

j=a+1

(−1)j−1

�|S|− pn − jpm

(k − a)pm

�
Npn+jpm(S) ≡ 0 (mod p)

(4.15)
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and by Corollary 4.3.124.3.12 (4.124.12), we get,

� |S|
ipm

�
+

k�

j=a+1

(−1)j−1

�|S|− pn − jpm

ipm

�
Npn+jpm(S) ≡ 0 (mod p) (4.16)

holds true for all integers i ∈ [0, k − a− 1].

Now, we put

Xj = (−1)j−1Npn+jpm(S)

for all j = a+ 1, a+ 2, . . . , k and Xa = 1. Then, by (4.154.15) and (4.164.16), we get a

system of (k−a+1) linear equations in (k−a+1) unknowns over Fp as follows.

�|S|
0

�
Xa +

�|S|− pn − pm

0

�
Xa+1 + · · ·+

�|S|− pn − kpm

0

�
Xk

≡ 0 (mod p);

· · · · · · · · ·

� |S|
(k − a− 1)pm

�
Xa +

�|S|− pn − pm

(k − a− 1)pm

�
Xa+1 + · · ·+

�|S|− pn − kpm

(k − a− 1)pm

�
Xk

≡ 0 (mod p);

� |S|
(k − a)pm

�
Xa +

�|S|− pn − pm

(k − a)pm

�
Xa+1 + · · ·+

�|S|− pn − kpm

(k − a)pm

�
Xk

≡ 0 (mod p).

Now, we need to compute the determinant of the coefficient matrix of the above

system. We shall prove that this determinant is non-zero modulo p, which in turn

implies that the system has only zero solutions modulo p. This is a contradiction

to Xa �≡ 0 (mod p), which proves the theorem. Hence, we need to compute the



§4.4. Proof of Theorem 4.2.14.2.1 109

coefficients modulo p and its determinant. Since the calculation is the same as

in the proof of Theorem 4.3.154.3.15, we omit the details here. This proves the upper

bound for s≤pn+�(G).

Note that when � = 0, by Lemma 4.3.74.3.7, Lemma 4.3.84.3.8 and by the above upper

bound, we get

s≤pn(G) = η(G) = pn + 2(D(H)− 1).

Now, we shall assume that G ∼= Cpm ⊕Cpn with n ≥ m+1. Then H = Cpm and

D(H)−1 = pm−1. Hence t = pm−1 and 0 ≤ � ≤ t = pm−1. In order to prove

the lower bound for s≤exp(G)+�(Cpm ⊕ Cpn), we consider the following sequence

S = (0, e)p
n−1(f, 0)p

m−1(f, e)p
m−1−�

over G ∼= Cpm ⊕ Cpn of length pn + 2(pm − 1)− � = exp(G) + 2(D(H)− 1)− �,

where e is a generator of Cpn and f is a generator of Cpm . If T is a zero-sum

subsequence of S of length ≤ pn + �, then

T = (0, e)a(f, 0)b(f, e)c

for some non-negative integers a, b and c. Since pn ≥ ppm with p ≥ 5 and T

is a zero-sum sequence, we see that a + c = pn and b + c = pm. Therefore,

a + 2c + b = pn + pm. Since |T | = a + b + c = pn + z where z ≤ �, then we get

c = pm − z ≥ pm − �, which is a contradiction to the fact that c ≤ pm − 1 − �.

Therefore, N b(S) = 0 for all integers 0 ≤ b ≤ pn + �. This proves the lower

bound. �
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