
SOME RESULTS RELATED TO RIESZ SUM AND 

K-FREE INTEGERS 

 
By 

DEBIKA BANERJEE 
 

MATH08201104003 
 

 

 

Harish-Chandra Research Institute, Allahabad 

 

 

 
A thesis submitted to the  

 

Board of Studies in Mathematical Sciences 
 

 

In partial fulfillment of requirements  

for the Degree of 

DOCTOR OF PHILOSOPHY 

of  

HOMI BHABHA NATIONAL INSTITUTE 
 

 

 

 
 

 

 

 

 

May, 2016 





STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfilment of requirements for an ad-

vanced degree at Homi Bhabha National Institute (HBNI) and is deposited in the

Library to be made available to borrowers under rules of the HBNI.

Brief quotations from this dissertation are allowable without special permission, pro-

vided that accurate acknowledgement of source is made. Requests for permission for

extended quotation from or reproduction of this manuscript in whole or in part may

be granted by the Competent Authority of HBNI when in his or her judgement the

proposed use of the material is in the interests of scholarship. In all other instances,

however, permission must be obtained from the author.

Date: Debika Banerjee





DECLARATION

I hereby declare that the investigation presented in the thesis has been carried out

by me. The work is original and has not been submitted earlier as a whole or in part

for a degree / diploma at this or any other Institution / University.

Date: Debika Banerjee





List of Publications arising from the thesis

Journal

1. “Linearized Product of two Riemann zeta functionsLinearized Product of two Riemann zeta functions”, Debika Banerjee and Jay

Mehta, Proceedings of The Japan Academy, Series A, Mathematical Sci-

ences, 2014, Vol. 90, Ser. A, No 8, 19-24.

2. “ The average behaviour of the error term in a new kind of the divisor problemThe average behaviour of the error term in a new kind of the divisor problem”,

Debika Banerjee and Makoto Minamide, Journal of Mathematical Analysis

and Applications, 2016, Volume 438, Issue 2, 533-550.

3. “On an analogue of Butchstab’s identityOn an analogue of Butchstab’s identity”, Debika Banerjee and Makoto Mi-

namide, Notes on Number theory and Discrete Mathematics, 2016, Vol.

22, No. 1, 8-17.

4. “Non k-free integers with large prime factorsNon k-free integers with large prime factors”, Debika Banerjee and Makoto

Minamide, preprint.

Date: Debika Banerjee

https://www.google.co.in/#q=Linearized+product+of+two+Riemann+zeta+functions
http://www.sciencedirect.com/science/article/pii/S0022247X16001372




Dedicated to my Parents





ACKNOWLEDGEMENTS

First and most of all, thanks to the Almighty God for blessing me to complete

my thesis successfully. Words are not enough to thank my parents for their

encouragement and support all these years. I like to thank my sister and her

family.

I would like to express my sincere gratitude to my advisor Prof. Kalyan

Chakraborty for all his guidance, warm encouragement and continued support.

Words are not enough to thank Prof. Makoto Minamide, not only for working

with me but also supporting me, encouraging me and understanding me. It is a

great pleasure for me to work with such a nice person.

I express my sincere thanks to Prof. Shigeru Kanemitsu for his guidance,

suggestions and support which helped me to write papers. Discussions with

him helped me to sharpen my knowledge and taught me how to deal with a

mathematical problem. My deepest thanks to Prof. Yoshio Tanigawa for guiding

me, supporting me and suggesting wonderful problems to me.

I thank the members of my Doctoral committee. I also thank the faculty

members of HRI for the courses they gave me. I am thankful to the administra-

tive staff and other members of HRI for their cooperation and for making my

stay at HRI comfortable. Remembering some wonderful moments, I thank my

friends from school, college, IIT and ofcourse from HRI. I want to thank all my

teachers who taught me mathematics and motivated me. A very special thanks

to my new family including my father and mother-in-law for supporting me and

encouraging me. Last but not the least I thank my husband for being with me

in my ups and down, supporting me, guiding me and understanding me.





Abstract

The thesis is divided into three chapters, a brief description of each chapter

is given below. The first two chapters deal with the results related to Riesz sum

and last chapter comprises of results concerning k-free integers.

The first chapter is based on a result related to Riesz Sum. In a joint work

with Jay Mehta, we have given another proof of well-known Wilton’s formula to

obtain the linearized product of two Riemann zeta functions.

In the second chapter, a brief review of Dirichlet divisor problem starting

with its definition, history and present development are given. In this chapter,

we studied a new kind of the divisor problem related to the nth co-efficient of

the square of the derived zeta function. In a joint work with Makoto Minamide,

we have derived the asymptotic formula for Reisz sum of order one for this

new kind of the divisor function. As a result, we have deduced an asymptotic

formula for the continuous mean value of error term. Also we have investigated

the difference of continuous and discrete mean value of error term of order one

and two respectively using Furuya’s result.

In the last chapter, the definition of square-free as well as k-free integers,

their distribution, density and their application are introduced. Then a few

results related to square free integers are described which is a joint work with

Makoto Minamade. The last part of the chapter, deals with problems related to

non k-free integers.
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Synopsis

0.1 Introduction

One may define analytic number theory as the branch of mathematics that

deals with the analytic methods to solve number-theoritic problem. That is

why it becomes constant source of inspiration for many number theorists. By

analytic methods, we mean a clever manipulation of sums, series and integrals,

error analysis, Fourier series and transform, contour integration and residues.

Some analytic number theorists also uses advanced tools such as modular form

and Laplacian spectral theory. There are many methods adopted by them to

solve problems such as Sieve Method, Circle method and L-functions (study

of their properties). In present days, methods developed in analytic number

theory have helped to solve many important problems in other fields. There are

various problems in number theory: the very first and main theorem which is the

main motivation of studying this subject is ‘The Prime Number Theorem’ which

describes the asymptotic distribution of prime numbers, Goldbach Conjecture-

the most oldest unsolved problem till now which states that even integers greater

than two can be expressed as sum of two primes, Waring problem, Riemann

hypothesis and many more. Proceeding towards the history, the credit goes to

iii
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Leonhard Euler who first used analytical techniques for studying properties of

integers. Euler’s used divergence of the zeta function to prove the existence of

infinite number of primes. That was the first step which initiated the study of

analytic number theory. P.G.L Dirichlet had tremendous contribution in this

regard whose theory of L-functions for characters resulted the proof of infinity

of prime numbers in arithmetic progression.

However, in the last few decades there has been efforts and various tools have

been developed to enhance our understanding of analytic number theory. This

thesis mainly focuses on particular classes of problems in analytic number theory.

In this short introduction, we will try to give a glimpse of work done in this

thesis.

The theme of the first chapter is the linear representations of the product of

two zeta functions. A brief description is given in 0.30.3. The second chapter is

based on the average behaviour of a new kind of divisor function. 0.40.4 contains

a short summary of this part. The third chapter is devoted to some problems

concerning k-free integers. 0.50.5 gives a brief view of this part.

0.2 A brief introduction to Riesz sum

Riesz sum was first introduced by M. Riesz which has been used extensively

in connection with summability of Dirichlet series. Let {an} be a sequence of

complex numbers and {λk} be a sequence of real numbers, then Riesz sum of

order κ is defined as the following:

Aκλ(x) =
∑′

λk≤x

(x− λk)κak

= κ

∫ x

0

(x− t)κ−1Aλ(t)dt
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where Aλ(x) =
∑

λk≤x ak and the prime on the summation sign means that the

corresponding term is to be halved when λk = x.

0.3 Linearized product of two Riemann zeta func-

tions

In 1929, Wilton [W2W2] gave an approximate functional equation for the product of

two zeta functions in the critical regions which is analogous to the approximate

functional equation for ζ2(s) obtained by Hardy and Littlewood [HL2HL2]. In course

of proving the above, he obtained the following

Theorem 0.3.1 For Re(u) > −1, Re(v) > −1, Re(u + v) > 0 and u + v 6= 2,

we have

ζ(u)ζ(v)

= ζ(u+ v − 1)

(
1

u− 1
+

1

v − 1

)
+ 2(2π)u−1

∞∑
n=1

σ1−u−v(n)nu−1u

∫ ∞
2πn

x−u−1 sinx dx

+ 2(2π)v−1
∞∑
n=1

σ1−u−v(n)nv−1v

∫ ∞
2πn

x−v−1 sinx dx

(1)

Wilton obtained the above by combining a result in [HL1HL1] with a result in [W1W1].

In 2003, M. Nakajima [NN] proved this well-known Wilton’s formula with the

help of Atkinson dissection. In a joint work with Jay Mehta in [BM4BM4], we gave

an alternative proof by considering Riesz sum of the order one and using a

property of incomplete gamma function. In the first chapter, the proof of the

above theorem is given elaborately.
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problem

0.4 The average behaviour of the error term in

a new kind of the divisor problem

A long standing unsolved problem in number theory is the Dirichlet Divisor

Problem. We first begin with the definition of arithmetical function d(n) which

counts the number of divisors of n. Also another way of defining it is the nth

coefficient of the square of zeta function. The asymptotic formula for
∑

n≤x d(n)

is

D(x) =
∑
n≤x

d(n) = x log x+ (2γ − 1)x+ ∆(x), (2)

where ∆(x) denotes the error term. From number theoretic point of view it is

of great importance to estimate the error term and in literature estimating the

error term ∆(x) is known as Dirichlet Divisor problem. First attempt was made

by Dirichlet himself who proved that ∆(x) = O(x
1
2 ) and later it was conjectured

that ∆(x) � x
1
4

+ε (for any ε > 0) based on mean value considerations. Since

then many mathematicians made an attempt to improve the bound. In 1904, G.

Voronoi [VV] made the first attempt and showed that error term can be improved

to O
(
x1/3 log x

)
. The proof was based on interpolation and is nearly forty pages

long. As a result in 1917, it was considered to be one of the deepest in the ana-

lytic theory of numbers by Hardy and Ramanujan [HR1HR1]. In 1922, J.G.Van der

Corput [Co1Co1] showed that the error term is of order O(x
33
100 ). His proof required

estimates for exponential sums. After six years in 1928, he [Co2Co2] improved it

to O(x
27
82 ). Later in 1969, Kolesnik [KK] improved it to O

(
x12/37

)
. These results

lead to the study of continuous and discrete mean value of ∆(x). Voronoi is

the first one to work in this direction. Further Dixon and Ferrar [DFDF] made a

remarkable contribution in this regard. First they estimated the asymptotic for-
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mula for weighted divisor sum that is Riesz sum of the type
∑

n≤x(x−n)α−1d(n)

for α > 2 and the established the formula for α = 2 by analytic continuation

argument. Using this they derived an asymptotic formual for
∫ X

1
∆(x)dx. Also

continuous and discrete mean values have been studied for higher powers of

∆(x). Hardy [HarHar] obtained some results in this direction. Moreover, Tong [ToTo],

Preissmann [PP], Lau and Tsang [LTLT] have several contributions in this regard.

The higher-power moments of ∆(x) was also studied by Zhai [Z1Z1], [Z2Z2], Ivić and

Sargos [ISIS].

Inspired by above, a new kind of divisor problem has been studied by Makoto

Minamide in [MM]. He investigated the nth coefficient of square of derived zeta

function and it turns out to be
∑

d|n(− log d)(− log n
d
) which he denoted by

D(1)(n). In his paper, he obtained an asymptotic formula
∑

n≤xD(1)(n). Just

like Dirichlet divisor problem he used the notation ∆(1)(x) to denote the error

term in the asymptotic formula. He also studied
∫ X

1
∆2

(1)(x)dx. So naturally one

can ask the following two questions

Question 1. Is it possible to calculate
∫ X

1
∆(1)(x)dx ?

The answer is affirmative. The calculation is given elaborately in chapter 1.

Question 2. Do
∫ X

1
∆(1)(x)dx and

∑
n≤X ∆(1)(n) behave differently for large

values of X ?

An affirmative answer to the above question is obtained by our first result given

below. Similar is the case with
∫ X

1
∆2

(1)(x)dx and
∑

n≤X ∆2
(1)(x)dx. Thus in

a joint work with Makoto Minamide in [BM3BM3], we established the relationship

between the discrete and continuous mean values of the error term.

Proceeding as in the line of Dixon and Ferrar in [DFDF], we obtained the

following result:

Theorem 0.4.1 Keeping the notations as above, let ε be a small positive con-
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stant. Then we have

∫ X

1

∆(1)(x)dx =
πX2

2

∞∑
n=1

d(n)λ2(4π
√
nX) log2 nX

+ 2πX2

∞∑
n=1

d(0,1)(n)λ2(4π
√
nX) log nX

+ 2πX2

∞∑
n=1

D(1)(n)λ2(4π
√
nX) +O

(
X

1
2

+ε
)
,

(3)

The proof is similar to the proof given by Dixon Ferrar in case of ∆(x) which

begins with considering Riesz sum of order greater than 2 but is more technical

and dicussed in chapter 2. Further, using the asymptotic formula for λ2 we get

Corollary 0.4.2

∫ X

1

∆(1)(x)dx =
X

3
4 log2X

8
√

2π2

∞∑
n=1

d(n)

n
5
4

sin
(

4π
√
nX − π

4

)
+

X
3
4

√
2π2

∞∑
n=1

3
8
d(n) log2 n− 1

2
l(n)

n
5
4

sin
(

4π
√
nX − π

4

)
+O

(
X

1
2

+ε
)
,

(4)

where l(n) =
∑

d|n log2 d.

Proceeding further with the help of Furuya’s result which is a generalization

of Segal’s result we obtained the following

Theorem 0.4.3

∑
n≤x

∆(1)(n) =

∫ x

1

∆(1)(u)du+
xP(3)(log x)

2
+O

(
x

1
3

+ε
)
, (5)

∑
n≤x

∆(1)(n) =
x

2
P(3)(log x) +O

(
x

3
4 log2 x

)
(6)

=
1

12
x log3 x− 1

4
x log2 x+

1− 2γ1

2
x log x−

(
2γ2 − γ1 +

1

2

)
x+O

(
x

3
4 log2 x

)
.

The first assertion of the above theorem shows that the difference is very large.
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That is the means in continuous and discrete case behave differently for large

values of x. In case of square we have the following

Theorem 0.4.4

∑
n≤x

∆2
(1)(n) =

∫ x

1

∆2
(1)(u)du+

1

216
x log6 x− 1

36
x log5 x+

1

36
(5− 4γ2)x log4 x

+ a3x log3 x+ a2x log2 x+ a1x log x+ a0x+O
(
x

3
4 log5 x

)
,

where a3 = (4γ1−2γ2−5)/9, a2 = (2γ2
1−4γ1 +2γ2 +5)/3, a1 = −(4γ2

1−8γ1γ2−

8γ1 + 4γ2 + 10)/3, a0 = (4γ2
1 − 8γ1γ2 + 8γ2

2 − 8γ1 + 4γ2 + 10)/3.

The proofs of the above theorems are discussed elaborately in chapter 2.

Now we shall move to next part of my thesis where we will discuss problems

related to k-free integers

0.5 Problems related to k-free integers

To analyse many number theoritic algorithms we need to look on those integers

which have small prime factors. In literature, this types of numbers are called

“smooth numbers”. This term seems to have been first introduced by Leonard

Adleman and this has developed a vast research area. Similarly study of integers

with large prime factors has became a topic of deep research for many number

theorists. Dickman [DD], N.G.de Bruijn [Br1Br1] and [Br2Br2], Buchstab [Bu2Bu2], Fried-

lander [FR1FR1], [Fr2Fr2], [Fr3Fr3], [Fr4Fr4] and [Fr5Fr5], Granville [GraGra], Hilderbrand [HH] and

[HTHT], Pomerance [IPIP], Tenenbaum [ITIT] and Ivić [I1I1] and [I2I2], K. Ramachandra

[R1R1], [R2R2] and [R3R3] are the renowned mathematicians to work in this field. There

are many more. In 1930, Dickman [DD] obtained a famous result which is the

following:
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Let Ψ(x, y) =
∑

n≤x
p|n⇒p≤y

1. That is the number of integers up to x all of whose

prime factors are less than or equal to y. Dickman showed that Ψ(x, y) ∼ xρ(u)

as x → ∞ where x = yu . Here ρ(u) is called Dickman-de Bruijn ρ− function

and which is defined by

ρ(u) =


1 for 0 ≤ u ≤ 1,

1
u

∫ u
u−1

ρ(t)dt for u > 1

Infact we have the following result:

Ψ(x, y) = xρ(u) +

(
x

log y

)

uniformly for x ≥ y ≥ 2. Similarly, if we count by Φ(x, y) =
∑

n≤x
p|n⇒p>y

1, that

is the number of integers upto x all of whose prime factors are greater than y,

then one can obtain

Φ(x, y) =
xω(u)− y

log y
+

(
x

log2 y

)

uniformly for x ≥ y ≥ 2. Here uω(u) = 1 for 1 ≤ u ≤ 2 and 1 +
∫ u−1

1
ω(v)dv for

u > 2 (see, e.g., Tenenbaum [TT, p. 368, p. 400]).

There are many other results in this regard. Instead of going to further

details, we shall focus on studying Ψ(x, y, f) =
∑

n≤x
p|n⇒p≤y

f(n) and Φ(x, y, f) =∑
n≤x

p|n⇒p≤y
f(n) where f is a multiplicative function. We take f to be µ, µ2 and

µ/N , where µ is the Möbius function and N(n) = n. In a joint work with

Makoto Minamide in [BM1BM1], we have studied them.

For studying the above we have prepared the following analogues of Buchstab’s

identity:

Let us assume some restrictions on f . We assume all the functions satisfy



§0.5. Problems related to k-free integers xi

the following.:


(A) f is multiplicative,

(B) f(pm) = 0 for any prime and positive integer m ≥ 2.

Under these assumptions, we obtained analogues of Buchstab’s identity (see,

e.g., Tenenbaum [TT, p. 365, p. 398]).

Theorem 0.5.1 Keeping the notations as above and for x ≥ z ≥ y ≥ 2,

ψ(x; y; f) = 1 +
∑
p<y

f(p)ψ

(
x

p
, p; f

)
,

ψ(x, y; f) = ψ(x, z; f)−
∑
y≤p<z

f(p)ψ

(
x

p
, p; f

)
,

Φ(x, y; f) = 1 +
∑
y<p≤x

f(p)Φ

(
x

p
, p; f

)
,

Φ(x, y; f) = Φ(x, z; f) +
∑
y<p≤z

f(p)Φ

(
x

p
, p; f

)
.

As an application of the above we obtained the following:

Theorem 0.5.2 For xε < y ≤ x, then

Φ
(
x, y;

µ

N

)
= ρ(u) +O

(
1

log y

)
,

where u = log x/ log y and ρ(u) is the Dickman function.

As another application of the above analogues of Buchstab’s identity, we shall

define

Q(x, y) = Φ(x, y;µ2) =
∑
n≤x

p|n⇒p>y

µ2(n),



xii §0.5. Problems related to k-free integers

R(x, y) = Φ(x, y;µ) =
∑
n≤x

p|n⇒p>y

µ(n).

which will lead us to

Theorem 0.5.3 For xε < y ≤ x, by the prime number theorem of the form

(π(x) =
∑

p≤x 1 = x/ log x+O(x/ log2 x) ), we have

Q(x, y) =
xω(u)− y

log y
+O

(
x

log2 y

)
,

R(x, y) =
xρ′(u) + y

log y
+O

(
x

log2 y

)
,

where u = log x/ log y, ω(u) is the Buchstab’s function and ρ′(u) is the derivative

of ρ(u). Also we have

Theorem 0.5.4 Uniformly for x ≥ y ≥ 2, we have

Q(x, y) =
xω(u)− y

log y
+O

(
x

log2 y

)
,

R(x, y) =
xρ′(u) + y

log y
+O

(
x

log2 y

)
,

where the notation is same as the above.

Definition 0.5.5 Letm be a positive square-free integer and N (m) the number

of prime factors of m. For x ≥ y ≥ 1 we define the following counting functions:

Qeven(x, y) :=
∑

m≤x, m square−free, N (m): even
p|m⇒p>y

1 =
∑
n≤x

p|n⇒p>y

µ2(n) + µ(n)

2
,

Qodd(x, y) :=
∑

m≤x, m square−free, N (m): odd
p|m⇒p>y

1 =
∑
n≤x

p|n⇒p>y

µ2(n)− µ(n)

2
,

For large y, we get some interesting results.
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Theorem 0.5.6 Uniformly for x ≥ y ≥ 2 we have

Qeven(x, y) =
x

log y

(
ω(u) + ρ′(u)

2

)
+O

(
x

log2 y

)
,

Qodd(x, y) =
x

log y

(
ω(u)− ρ′(u)

2

)
− y

log y
+O

(
x

log2 y

)
.

We shall provide all the details in chapter 3.

0.5.1 On non k-free integers

We say that an integer n is k-free (k ≥ 2) if for every prime p the valuation

vp(n) < k. If Qk(x) denotes the the number of positive integers such that n is

k-free. Then it is easy to prove that Qk(x) = x
ζ(k)

+
(
x

1
k

)
. Here our main aim

is to study

Φk(x, y) :=
∑
n≤x

p|n⇒p>y

qk(n),

where

qk(n) :=


1 n is k-free,

0 otherwise.

In a joint work with Makoto Minamide in [BM2BM2] for Φk(x, y) we have the fol-

lowing theorem

Theorem 0.5.7 For xε < y ≤ x (any ε > 0) and u = log x/ log y, by the PNT

(π(x) :=
∑

p≤x 1 = x
log x

+O
(

x
log2 x

)
) we have

Φk(x, y) =
xω(u)− y

log y
+O

(
x

log2 y

)
,
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where ω is the Buchstab function .

In [BM2BM2], we studied Dk(x, y) := Φ(x, y) − Φk(x, y) which is the number of

non k-free integers ≤ x whose prime factors > y. Using the prime number

theorem of the form π(x) =
∑

p≤x 1 = x/ log x + O(x/ log2 x) (as x → ∞) and

Buchstabstab’s identity’ we showed the following upper bounds

Dk(x, y) =


0, x

1
k ≤ y ≤ x,

kx
1
k

log x
− y

log y
+O

(
x

1
k

log2 y

)
, x

1
k+1 ≤ y < x

1
k ,

O
(
xy1−k

log2 y

)
, x

1
k+l+1≤y<x

1
k+l ,

l=1,2,....

Also, one can have

Theorem 0.5.8 Using the PNT of the form π(x) =
∫ x

2
dt

log t
+O

(
x exp

(
−c
√

log x
))
,

we have

Dk(x, y) = O

(
xy1−k

log2 y

)

uniformly for x1/(k+1) ≥ y ≥ 2.

The proof of all the theorems is the content of the third and final part of the

thesis.



CHAPTER 1
Linearized product of two Riemann

zeta functions

In this chapter, we elucidate the well-known Wilton’s formula for the product
of two Riemann zeta functions. A proof of Wilton’s expression for product of
two zeta functions was given by M. Nakajima using Atkinson dissection. On the
similar line we derive Wilton’s formula using Riesz sum of the order κ = 1.

1.1 Introduction

In [NN], M. Nakajima derived an expression for the product of two Dirichlet
series. Using the derived expression he proved the well known Wilton’s formula
for the product of two Riemann zeta function. The main tool exploited was the
Atkinson dissection. The main aim of this chapter is to provide an alternative
proof using Riesz sum.

By the Atkinson dissection method, we mean, splitting of the double
∑∞

m, n=1

as
∞∑

m,n=1

=
∞∑
m=1

∑
n<m

+
∞∑

m=n=1

+
∞∑
n=1

∑
m<n

.

Nakajima divided the double sum by the following trick

∑
m,n

=
∞∑
m=1

∑
n≤m

′
+
∞∑
n=1

∑
m≤n

′
,

where
∑ ′ means that the corresponding term in the summation is to be halved

1
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when m = n.
On the other hand, the Riesz sum, introduced by M. Riesz, have been studied

in connection with summability of Fourier series and of Dirichlet series [CC] and
[HR2HR2]. For a given increasing sequence {λk} of reals and a sequence {αk} of
complex numbers, the Riesz sum of order κ is defined by

Aκ(x) = Aκλ(x) =
∑′

λk≤x

(x− λk)καk

= κ

∫ x

0

(x− t)κ−1Aλ(t)dt,

where Aλ(x) = A0
λ(x) =

∑′

λk≤x
αk, and the prime on the summation sign

means that when λk = x, the correponding term is to be halved.
Consider the Dirichlet series ϕ(s) and Φ(s) defined as

ϕ(s) =
∞∑
n=1

αn
λsn
, σ > σϕ and Φ(s) =

∞∑
n=1

an
γsn
, σ > σΦ,

where {λn} and {γn} are increasing sequences of real numbers and αn and an are
complex numbers. Assume that they can be analytically continued to the whole
complex plane (they may have poles) and saitsfy the following growth condition

ϕ(σ + it) << (|t|+ 1)sϕ(σ), Φ(σ + it) << (|t|+ 1)sΦ(σ),

in the strip −b < σ < c. In particular, for Riemann zeta function, sζ(−b) = 1
2
+b.

Let us consider an integral of the following form for Dirichlet series φ and ϕ,
(for c > 0 and κ ≥ 0),

Fc(ϕ(u),Φ(v);x) = Fκc (ϕ(u),Φ(v);x)

=
1

2πi

∫
(c)

Γ(w)

Γ(w + κ+ 1)
ϕ(u+ w)Φ(v − w)xw+κ dw,

where
∫

(c)
means

∫ −c+i∞
−c−i∞ . The above integral has its counterpart Fc(Φ(u), ϕ(v);x)

under the condition

Re(u) > σϕ + c, Re(v) > σΦ + c.

Subsequently we shall assume φ and ϕ to be the Riemann zeta functions.
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The Atkinson dissection is the special case of the Riesz sum Aκ(x) with κ = 0

in the sense that

Aκ(x) = Fκ(c)(ϕ(u),Φ(v);x) + Fκ(c)(Φ(u), ϕ(v);x)

=
1

Γ(κ+ 1)

∞∑
m=1

amγ
−v−κ
m

∑′

λn≤γmx

αnλ
−u
n (γmx− λn)κ

+
1

Γ(κ+ 1)

∞∑
n=1

αnλ
−u−κ
n

∑′

γm≤λnx

amγ
−v
m (λnx− γm)κ,

(1.1)

implies

∞∑
m,n=1

αmλ
−u
m anγ

−v
n =

∞∑
m=1

∑
n<m

αmλ
−u
m anγ

−v
n

+
∞∑
m=n

αnλ
−u
n anγ

−v
n +

∞∑
n=1

∑
m<n

αmλ
−u
m anγ

−v
n .

(1.2)

In this chapter, we prove the well-known Wilton’s formula by taking κ = 1 and
making use of a formula related to incomplete gamma function. The Wilton’s
formula can be stated as

Theorem 1.1.1 For Re(u) > −1, Re(v) > −1, Re(u + v) > 0 and u + v 6= 2,
we have

ζ(u)ζ(v)

= ζ(u+ v − 1)

(
1

u− 1
+

1

v − 1

)
+ 2(2π)u−1

∞∑
n=1

σ1−u−v(n)nu−1u

∫ ∞
2πn

x−u−1 sinx dx

+ 2(2π)v−1
∞∑
n=1

σ1−u−v(n)nv−1v

∫ ∞
2πn

x−v−1 sinx dx.

(1.3)

In the next section, first we will prove the above formula for the regionRe(u) > 1,
Re(v) > 1. We claim that (1.31.3) is valid in the region stated above by analytic
continuation since the integrals and the summations in the right hand side of
(1.31.3) are absolutely and uniformly convergent for Re(u) > −1, Re(v) > −1 and
Re(u+ v) > 0. In particular, if u = 1 or v = 1 but u+ v 6= 2 then left hand side
of the above expression coincides with the right hand side due to the presence
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of (u− 1)−1 and (v− 1)−1 factors in the right hand side of the above expression.

1.2 Proof of the Theorem

Let us start the proof by considering first the integral:

Fκ(c)(ζ(u), ζ(v);x) =
1

2πi

∫
(c)

Γ(w)

Γ(w + κ+ 1)
ζ(u+ w)ζ(v − w)xw+κdw, (1.4)

for Re(u) > 1 + c′ and Re(v) > 1 + c, with c, c′ > 0 and κ ≥ 1. These conditions
together with the fact Γ(s) ∼ e−

π
2
|t||t|σ− 1

2 for σ in any fixed interval [a, b] and
|t| −→ ∞ implies the absolute convergence of the above integral.
Hence by Cauchy’s residue theorem

Fκ(c)(ζ(u), ζ(v);x) = Fκ(−b)(ζ(u), ζ(v);x) +
xκζ(u)ζ(v)

Γ(κ+ 1)

− xκ−1ζ(u− 1)ζ(v + 1)

Γ(κ)
+
ζ(u+ v − 1)xκ+1−u

Γ(2 + κ− u)
, (1.5)

where

Fκ(−b)(ζ(u), ζ(v);x) =
1

2πi

∫
(−b)

Γ(w)

Γ(w + κ+ 1)
ζ(u+ w)ζ(v − w)xw+κdw, (1.6)

and we take 0 < Re(u)− 1 < b < 3
2
and 0 < Re(v)− 1 < b < 3

2
. The integrand

in (1.41.4) has poles at w = −1, 0, 1 − u each of order one, so we get the above
expression (1.51.5).

Let us first estimate the integral (1.61.6). First of all, let us recall the following
bound for the zeta function

ζ(s)�


|t| 12−σ+ε, σ ≤ 0,

|t| 12 (1−σ)+ε, 0 ≤ σ ≤ 1,

|t|ε, σ ≥ 1,

(1.7)

Hence the integral (1.61.6) is absolutely convergent. We know that the func-
tional equation for the Riemann zeta function ζ(s) = 2(2π)s−1 sin

(
sπ
2

)
Γ(1 −
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s)ζ(1− s). Now applying functional equation for ζ(u+ w) we have

Fκ(−b)(ζ(u), ζ(v);x)

= 2
1

2πi

∫
(−b)

Sκ(w)f(w)(2π)u+w−1 sin(
π

2
(u+ w)) Γ(1− u− w)dw,

where
Γ(w)

Γ(w + κ+ 1)
xw+κ = Sκ(w),

and
ζ(1− u− w)ζ(v − w) = f(w).

By change of variable and assuming Re(u) < b, we have

1

πi

∫
(b)

Sκ(−z)f(−z)(2π)u−z−1 sin(
π

2
(u− z)) Γ(1− u+ z)dz

=
1

πi

∫
(b)

Sκ(−z)(2π)u−z−1 sin(
π

2
(u− z))

∞∑
n=1

σv+u−1(n)n−v−zΓ(1− u+ z)dz

=
1

πi

∫
(b)

Sκ(−z)(2π)u−z−1 sin(
π

2
(u− z))

∞∑
n=1

σ1−u−v(n)nu−z−1Γ(1− u+ z)dz

=
1

πi

∞∑
n=1

σ1−u−v(n)(2nπ)u−1

∫
(b)

Sκ(−z) sin(
π

2
(u− z)) (2nπ)−zΓ(1− u+ z)dz,

where the second step follows due to the fact ζ(s)ζ(s − α) =
∑∞

n=1
σα(n)
ns

with
σ >max(1, 1 +Re(α)) and in our case α = u+ v− 1 and and in subsequent step
we have used the relation σα(n) = nασ−α(n). As we are only interested in the
case of κ = 1, so putting κ = 1 we have

F1
(−b)(ζ(u), ζ(v);x)

=
1

πi

∞∑
n=1

σ1−u−v(n)(2nπ)u−1

∫
(b)

S1(−z) sin(
π

2
(u− z)) (2nπ)−zΓ(1− u+ z)dz

=
1

πi

∞∑
n=1

σ1−u−v(n)(2nπ)u−1

∫
(b)

S1(−z)(2nπ)−z
{
ei
π
2

(u−z) − e−iπ2 (u−z)

2i

}
Γ(1− u+ z)dz.

Let

hb(u, v;x) =
1

2πi

∫
(b)

x−z+1(2nπ)−z

z(z − 1)
ei
π
2

(u−z−1)Γ(1− u+ z)dz.
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Similarly, let

gb(u, v;x) =
1

2πi

∫
(b)

x−z+1(2nπ)−z

z(z − 1)
e−i

π
2

(u−z−1)Γ(1− u+ z)dz.

Differentiation of the above integral hb(u, v;x) with respect to x, will lead us to

hb(u, v;x)′ = − 1

2πi

∫
(b)

x−z(2nπ)−z

z
ei
π
2

(u−z−1)Γ(1− u+ z)dz

= − 1

2πi
ei
π
2

(u−1)

∫
(b)

(2πnxei
π
2 )−z

z
Γ(1− u+ z)dz,

Then shifting the path of integration to the left, we get

hb(u, v;x)′ = − 1

2πi
ei
π
2

(u−1)

∫
(b1)

(2πnxei
π
2 )−z

z
Γ(1− u+ z)dz,

where 1
2

+ b1 < <(u), 0 < <(u− 1) < b1. Similarly, we have

gb(u, v;x)′ = − 1

2πi
ei
π
2

(1−u)

∫
(b1)

(2πnxe−i
π
2 )−z

z
Γ(1− u+ z)dz.

Now here we will make use of a formula for incomplete gamma function, which
is given as

1

2πi

∫
(c)

x−sΓ(s+ α)
1

s
ds = Γ(α, x) (c > 0,<x > 0),

1

2πi

∫
(c)

(ix)−sΓ(s+ α)
ds

s
= Γ(α, ix),

(c > 0,<α < 1

2
− c, x ∈ R),

where
Γ(α, x) =

∫ ∞
x

tα−1e−tdt (| argα| < π)

is the incomplete gamma function.
As a result we have,

hb(u, v;x)′ + gb(u, v;x)′ = − e−i
π
2

(1−u)Γ(1− u, 2πnxe
iπ
2 )

− ei
π
2

(1−u)Γ(1− u,−2πnxe
iπ
2 )
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= − 2

∫ ∞
2πnx

t−u cos tdt (<u > 0),

where we have used the following formula∫ ∞
u

xα−1 cosxdx =
1

2
e−i

π
2
αΓ(α, iu) +

1

2
ei
π
2
αΓ(α,−iu).

Hence, we obtain

(
F1

(−b)(ζ(u), ζ(v);x)
)′

= −
∞∑
n=1

σ1−u−v(n)(2πn)u−12

∫ ∞
2πnx

t−u cos tdt. (1.8)

We note that the differentiated series is absolutely convergent.
On the other hand if we put κ = 1 in (1.51.5), then we obtain

F1
(c)(ζ(u), ζ(v);x) = F1

(−b)(ζ(u), ζ(v);x) + xζ(u)ζ(v)

− ζ(u− 1)ζ(v + 1) +
ζ(u+ v − 1)x2−u

(u− 2)(u− 1)
. (1.9)

Now we want to use the result obtained in (1.81.8), for that we need to differentiate
the expression in (1.91.9)

(
F1

(c)(ζ(u), ζ(v);x)
)′

=
(
F1

(−b)(ζ(u), ζ(v);x)
)′

+ ζ(u)ζ(v) − ζ(u+ v − 1)x1−u

(u− 1)
.

(1.10)

Also, we know that

(
F1

(c)(ζ(u), ζ(v);x)
)′

=
∞∑
m=1

m−v
∑
n≤mx

′
n−u. (1.11)

Lastly we put (1.81.8) and (1.111.11) in (1.101.10)and take x = 1 which will give rise to

∞∑
m=1

m−v
∑
n≤m

′
n−u

= − 2
∞∑
n=1

σ1−u−v(n)(2πn)u−1u

∫ ∞
2πn

t−u−1 sin tdt+ ζ(u)ζ(v)− ζ(u+ v − 1)

(u− 1)
.

(1.12)
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Similarly, interchanging the role of u and v in (1.41.4) we have

∞∑
n=1

n−u
∑
m≤n

′
m−v

= − 2
∞∑
n=1

σ1−u−v(n)(2πn)v−1v

∫ ∞
2πn

t−v−1 sin tdt + ζ(u)ζ(v)− ζ(u+ v − 1)

(v − 1)
.

(1.13)

Adding the equations (1.121.12) and (1.131.13), we get

ζ(u)ζ(v) = − 2
∞∑
n=1

σ1−u−v(n)(2πn)u−1u

∫ ∞
2πn

t−u−1 sin tdt

− 2
∞∑
n=1

σ1−u−v(n)(2πn)v−1v

∫ ∞
2πn

t−v−1 sin tdt

+ 2ζ(u)ζ(v)− ζ(u+ v − 1)

{
1

v − 1
+

1

u− 1

}
,

and hence

ζ(u)ζ(v) = ζ(u+ v − 1)

{
1

v − 1
+

1

u− 1

}
+ 2(2π)u−1

∞∑
n=1

σ1−u−v(n)nu−1u

∫ ∞
2πn

t−u−1 sin tdt

+ 2(2π)v−1

∞∑
n=1

σ1−u−v(n)nv−1v

∫ ∞
2πn

t−u−1 sin tdt.

This proves the theorem.



CHAPTER 2
The average behaviour of the error

term in a new kind of divisor
problem

In this chapter, we define a new kind of divisor function D(1)(n) by the nth
coefficient of the Dirichlet series (ζ ′(s))2 and denote by ∆(1)(x) the error term in
the asymptotic formula for

∑
n≤xD(1)(n). Then we compute the first moment of

∆(1)(x) that is
∫ X

1
∆(1)(x)dx and consider ‘discrete mean values’

∑
n≤x ∆k

(1)(n)

(k = 1, 2) and deduce asymptotic formulas which are analogous to the results
obtained by Voronoï, Hardy and Furuya.

2.1 Introduction

We begin with the asymptotic formula

D(x) =
∑
n≤x

d(n) = x log x+ (2γ − 1)x+ ∆(x),

where d(n) stands for divisor function which is due to Dirichlet and ∆(x) denotes
the error term. From number theoretic point of view it is of great importance to
estimate the error term and in literature estimating the error term ∆(x) is known
as Dirichlet divisor problem. First attempt was made by Dirichlet himself who
proved that ∆(x) = O(x

1
2 ) and later it was conjectured that ∆(x) � x

1
4

+ε (for

9
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any ε > 0) based on mean value considerations. Since then it has been studied by
many number theorists. For more details see Titchmarsh [TiTi, Ch. 12] and Ivić [I3I3,
Ch. 3]. In 2003, Huxley [HuxHux] showed that ∆(x) = O

(
x

131
416 (log x)

26947
8320

)
which

is possibly the best known improvement in our present knowledge. However the
conjecture is still an open question.

In [VV], Voronoï studied the first moment of ∆(x), that is,
∫ x

1
∆(u)du and

obtained the formula (2.12.1) below. On the other hand, Cramér obtained the
formula (2.22.2) for

∫ x
1

∆2(u)du in [CrCr].

∫ x

1

∆(u)du =
1

4
x+

1

2
√

2π2
x

3
4

∞∑
n=1

d(n)n−
5
4 sin

(
4π
√
nx− π

4

)
+O

(
x

1
4

)
,

(2.1)∫ x

1

∆2(u)du =
1

6π2

∞∑
n=1

d2(n)

n
3
2

x
3
2 +O

(
x

5
4

+ε
)
, (for any ε > 0). (2.2)

The error term O(x5/4+ε) in (2.22.2) was improved to O
(
x log5 x

)
by Tong [ToTo].

Later Lau and Tsang [LTLT] showed the bound to beO (x(log x)3 log log x). Further
the higher-power moments of ∆(x) was initiated by Tsang [TsTs], Zhai [Z1Z1], [Z2Z2],
Ivić and Sargos [ISIS]. In literature these integrals

∫ x
1

∆k(u)du (where k is a
positive integer) are called ‘continuous mean values.’ Voronoï considered the
discrete counter part and showed that

∑
n≤x

∆(n) =
1

2
x log x+

(
γ − 1

4

)
x+O

(
x

3
4

)
for x ≥ 1, where γ is the Euler constant. The sums

∑
n≤x ∆k(n) (k = 1, 2, . . .)

are called ‘discrete mean values.’ Further, Hardy [HarHar] considered the difference
between the continuous and the discrete mean values of D2(x), where D(x) is a
function similar to ∆(x). From his result we can obtain

∑
n≤x

∆2(n) =

∫ x

1

∆2(u)du+O
(
x1+ε

)
, (2.3)

where ε > 0 is any small constant. See the appendix in [CFTZCFTZ]. Recently,
Furuya [FF] started the investigation of error term in (2.32.3) in further details. He
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improved (2.32.3) as follows:

∑
n≤x

∆2(n) =

∫ x

1

∆2(u)du+
1

6
x log2 x+ c1x log x+ c2x+O

(
x

3
4 log x

)
, (2.4)

where c1 = (8γ − 1)/12 and c2 = (8γ2 − 2γ + 1)/12. Moreover he deduced the
formula: ∑

n≤x

∆3(n) =

∫ x

1

∆3(u)du+ c3x
3
2 log x+ c4x

3
2 +O

(
x log5 x

)
(2.5)

with c3 = 3C/2 and c4 = C(3γ−1), where C denotes the coefficient of the main
term in (2.22.2). Lately, Cao, Furuya, Tanigawa, and Zhai developed the formula
similar to (2.52.5) up to 10th power-moments [CFTZCFTZ].

This chapter, takes its origin from the above consideration on ∆(x) and a
new kind of divisor problem which was studied recently by Makoto Minamide
[MM]. First of all, we shall set

∆(1)(x) :=
∑
n≤x

D(1)(n)− xP(3)(log x) (2.6)

where

P(3)(u) =
u3

3!
− u2

2!
+

1− 2γ1

1!
u+ 2γ1 − 4γ2 − 1, (2.7)

and the constants γ1 and γ2 are defined as follows:

ζ(s) =
1

s− 1
+ γ + γ1(s− 1) + γ2(s− 1)2 + · · · . (2.8)

In [MM, p. 330, (9)], it is shown that xP(3)(log x) = Ress=1 (ζ ′(s))2 xs/s and an
arithmetical function D(1)(n) is defined by

D(1)(n) :=
∑
d|n

(− log d)
(
− log

n

d

)
.

The definition of D(1)(n) comes from the square of the derivative of the Riemann
zeta function,
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(ζ ′(s))
2

=
∞∑
n=1

D(1)(n)

ns
(Re s > 1). (2.9)

Similarly, we shall define d(0,1)(n) by the following identity,

ζ(s)ζ ′(s) =
∞∑
n=1

d(0,1)(n)

ns
(Re s > 1). (2.10)

It turns out to be d(0,1)(n) =
∑

d|n(− log d). Arithmetical functions like D(1)(n)

and d(0,1)(n) were appeared in Gonek [GonGon], Hall [HH], [FMT1FMT1], and [FMT2FMT2].
By the definitions (2.92.9) and (2.102.10) we observe that D(1)(n) � d(n) log2 n and
d(0,1)(n) = −(1/2)d(n) log n. A result of [MM] established the mean square formula
for ∆(1)(x):

∫ x

1

∆2
(1)(u)du =

1

96π2

∞∑
n=1

d2(n)

n
3
2

x
3
2 log4 x+O

(
x

3
2 log3 x

)
.

For details of this formula and the truncated Voronoï formula for ∆(1)(x) see
[MM]. The main object of this chapter, is to study the asymptotic formula for∫ x

1
∆(1)(u)du by employing Dixon and Ferrar’s method [DFDF]. Then next goal

is to investigate the bounds for the difference between the discrete mean value
and the continuous one for ∆k

(1)(x) in case of k = 1 and 2 with the help of an
identity by Furuya [FF] which is a generalization of Segal’s identity [SS].

A necessary ingredient for this chapter is an identity analogous to a famous
identity in [DFDF] for the Riesz sum

∑
n≤x d(n)(x−n)q−1 where q is a real number

and q > 2 which is the following:

1

Γ(q)

∑
n≤x

d(n)(x− n)q−1 − xq−1

4Γ(q)
− xq

Γ(q + 1)
{γ + log x− ψ(1 + q)}

= 2πxq
∞∑
n=1

d(n)λq(4π
√

(nx)),

where λq is defined below. Then Dixon and Ferrar established the identity for
q = 2 by analytic continuation. Here λq is the generalized Bessel function and
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the original definition for λq(z) is

λq(z) :=
π

2
× 1

2πi

∫ α+i∞

α−i∞

(z/2)2s−2

Γ(s)Γ(s+ q) cos2(πs/2)
ds, (2.11)

where Γ(z) is the Gamma function, q is a complex variable, and α real satisfying

Re q > 0, −1 < α < 1, Re (q) + 2α− 2 > 0.

This has the expression:

λq(z) = − 2

π

∞∑
m=0

(z/2)4m

Γ(2m+ 1)Γ(2m+ 1 + q)
×

× (2 log(z/2)− ψ(2m+ 1)− ψ(2m+ 1 + q)) ,

where ψ(z) = Γ′(z)/Γ(z). If we take q = 1, we observe that

−2z

π
λ1(2z) = K1(2z) +

π

2
Y1(2z),

where K1 and Y1 are Bessel functions in the usual sense. For details of these
Bessel functions, see [DFDF, Section 3], [I3I3, Chapter 3] and Jutila [JJ, Chapter 1].

To be short for a statement of a result of this chapter, we shall modify the
definition (2.62.6) as follows.

∆(1)(x) :=
∑
n≤x

D(1)(n)−Ress=1 (ζ ′(s))
2 x

s

s
−Ress=0 (ζ ′(s))

2 x
s

s
. (2.12)

2.2 The main results

Theorem 2.2.1 Keeping the notations as above let ε be a small positive con-
stant. Then we have∫ X

1

∆(1)(x)dx =
πX2

2

∞∑
n=1

d(n)λ2(4π
√
nX) log2 nX

+ 2πX2

∞∑
n=1

d(0,1)(n)λ2(4π
√
nX) log nX

+ 2πX2

∞∑
n=1

D(1)(n)λ2(4π
√
nX) +O

(
X

1
2

+ε
)
.

(2.13)
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Using the asymptotic formula for λ2 (see [DFDF, p. 41], [I3I3, p. 91]) we get

Corollary 2.2.2∫ X

1

∆(1)(x)dx =
X

3
4 log2X

8
√

2π2

∞∑
n=1

d(n)

n
5
4

sin
(

4π
√
nX − π

4

)
+

X
3
4

√
2π2

∞∑
n=1

1
8
d(n) log2 n− 1

2
l(n)

n
5
4

sin
(

4π
√
nX − π

4

)
+O

(
X

1
2

+ε
)
,

(2.14)

where

l(n) =
∑
d|n

log2 d. (2.15)

Here note that the term of logX does not appear.

By Corollary 2.2.22.2.2 we have
∫ x

1
∆(1)(u)du � x3/4 log2 x. From this estimate

and Lemma 1 of [FF, p. 6] we find formulas for the differences
∑

n≤x ∆k
(1)(n) −∫ x

1
∆k

(1)(u)du (k = 1, 2). Thus we have

Theorem 2.2.3∑
n≤x

∆(1)(n) =

∫ x

1

∆(1)(u)du+
xP(3)(log x)

2
+O

(
x

1
3

+ε
)
, (2.16)

∑
n≤x

∆(1)(n) =
x

2
P(3)(log x) +O

(
x

3
4 log2 x

)
(2.17)

=
1

12
x log3 x− 1

4
x log2 x+

1− 2γ1

2
x log x−

(
2γ2 − γ1 +

1

2

)
x+O

(
x

3
4 log2 x

)
.

The first assertion of the above theorem shows that the difference is very large.
That is the means in continuous and discrete case behave differently for large
values of x.

Theorem 2.2.4∑
n≤x

∆2
(1)(n) =

∫ x

1

∆2
(1)(u)du+

1

216
x log6 x− 1

36
x log5 x+

1

36
(5− 4γ1)x log4 x
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+ a3x log3 x+ a2x log2 x+ a1x log x+ a0x+O
(
x

3
4 log5 x

)
,

where a3 = (4γ1−2γ2−5)/9, a2 = (2γ2
1−4γ1 +2γ2 +5)/3, a1 = −(4γ2

1−8γ1γ2−
8γ1 + 4γ2 + 10)/3, a0 = (4γ2

1 − 8γ1γ2 + 8γ2
2 − 8γ1 + 4γ2 + 10)/3.

Theorems 2.2.32.2.3 and 2.2.42.2.4 are analogues of Voronoï’s result (2.12.1) and Hardy
and Furuya’s results (2.32.3) and (2.42.4) respectively.

Remark 2.2.5 Furuya, Minamide, and Tanigawa [FMT1FMT1] generalized ∆(1)(x)

to ∆(k,l)(x) (k and l are arbitrarily nonnegative integers) which arises from the
product of the kth and the lth derivatives of the Riemann zeta function. The au-
thors proved a ‘Chowla-Walum formula’ for ∆(k,l)(x), and ∆(k,l) = O

(
x229/696 logk+l−1 x

)
.

On the other hand, [FMT2FMT2] is an attempt to a ‘new circle problem.’ The authors
investigated a ‘truncated Voronoï formula’ for ζ ′(s)L′(s, χ4), where L(s, χ4) is
the Dirichlet L-function with the Dirichlet character mod 4.

2.3 Preliminary Theorem

Following the method of [DFDF] we shall start the proof of Theorem 2.2.12.2.1. Let
s = σ+ it (σ, t ∈ R), a real variable q > 2, (for a while, later q will be a complex
variable) and

Gq(s) :=
Γ(s)

Γ(s+ q)
,

where Γ(s) is the Gamma function. Here we shall remark that

Gq(s)�
1

|t|q
(2.18)

for σ in any fixed interval [a, b] and |t| > 2 because of the bound Γ(s) =

O
(
e−

π
2
|t||t|σ− 1

2

)
for σ in any fixed interval [a, b] and |t| −→ ∞.

We shall consider the following integral:

1

2πi

∫
(c0)

(ζ ′(s))
2
xs+q−1Gq(s)ds,
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where x is a large parameter, c0 > 1 is a constant, and q > 2. We recall the
definition (2.92.9) and estimates of ζ ′(s) ([GonGon, p. 127, (20)]).

ζ ′(s)�


|t| 12−σ+ε, σ ≤ 0,

|t| 12 (1−σ)+ε, 0 ≤ σ ≤ 1,

|t|ε, σ ≥ 1,

(2.19)

where ε is arbitrary and |t| ≥ 1. Now we know that

1

2πi

∫ b+i∞

b−i∞

Γ(s)

Γ(s+ q)

(x
n

)s
ds =

0, 0 ≤ x ≤ n

1
Γ(q)

(1− n
x
)q−1, x > n

(2.20)

given that b > 0 and q > 1. Now we are familiar with the fact D(1)(n) = O (nε)

(for any ε > 0) so the series
∑∞

n=1 D(1)(n)n−s converges absolutely for Re(s) > 1.
Using (2.202.20) and taking c0 > 1 we get

xq−1

Γ(q)

∑
n≤x

D(1)(n)
(

1− n

x

)q−1

= xq−1
∑
n≤x

D(1)(n)
1

2πi

∫ c0+i∞

c0−i∞

Γ(s)

Γ(s+ q)

(x
n

)s
ds

+ xq−1
∑
n≥x

D(1)(n)
1

2πi

∫ c0+i∞

c0−i∞

Γ(s)

Γ(s+ q)

(x
n

)s
ds

=
1

2πi

∫
(c0)

∞∑
n=1

D(1)(n)

ns
xs+q−1Gq(s)ds.

We have interchanged in the last step summation and integration (The integrals
converge absolutely as Γ(s) = O

(
e−

π
2
|t||t|σ− 1

2

)
for σ in any fixed interval [a, b]

and |t| −→ ∞). Now we shall fix a constant c such that 0 < c < min(1/2, q/2−
1). By the residue theorem, (2.192.19) and (2.182.18) we get

D
(1)
q−1(x) :=

xq−1

Γ(q)

∑
n≤x

D(1)(n)
(

1− n

x

)q−1

=
1

2πi

∫
(c0)

(ζ ′(s))
2
xs+q−1Gq(s)ds

=
1

2πi

∫
(−c)

(ζ ′(s))
2
xs+q−1Gq(s)ds+ (Ress=0 +Ress=1) ζ ′(s)2xs+q−1Gq(s)

= I + (Ress=0 +Ress=1) ζ ′(s)2xs+q−1Gq(s),

(2.21)
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where
I :=

1

2πi

∫
(−c)

ζ ′(s)2xs+q−1Gq(s)ds.

Also we have

Ress=0 (ζ ′(s))
2
xs+q−1Gq(s) = lim

s−→0
s (ζ ′(s))

2
xs+q−1Gq(s)

= (ζ ′(0))
2 x

q−1

Γ(q)
=

(log2 2π)xq−1

4Γ(q)
, (2.22)

Ress=1 (ζ ′(s))
2
xs+q−1Gq(s) = lim

s−→1

1

3!

d3

ds3

{
(s− 1)4 (ζ ′(s))

2
xs+q−1Gq(s)

}
=

xq

Γ(1 + q)

(
log3 x

3!
− 2γ1 log x

1!
− 4γ2

)
+ xqgq(1)

(
log2 x

2!
− 2γ1

)
+ xqgq(2)

log x

1!
+ xqgq(3),

(2.23)

where γi is defined in (2.82.8) and gq(i) (i = 1, 2, 3) is defined as follows:

Γ(s)

Γ(s+ q)
=

1

Γ(1 + q)
+ gq(1)(s− 1) + gq(2)(s− 1)2 + gq(3)(s− 1)3 + · · ·

Using the functional equation for ζ(s), that is, ζ(s) = χ(s)ζ(1 − s) (where
χ(s) = (2π)s/2Γ(s) cos(sπ/2)), we observe that

ζ ′(s)2 = χ′(s)2ζ2(1− s)− 2χ(s)χ′(s)ζ(1− s)ζ ′(1− s) + χ2(s)ζ ′(1− s)2.

(2.24)

Now we use (2.242.24) in (2.212.21) to get the following

I =
1

2πi

∫
(−c)

χ′(s)2ζ2(1− s)xs+q−1Gq(s)ds

− 2
1

2πi

∫
(−c)

χ(s)χ′(s)ζ(1− s)ζ ′(1− s)xs+q−1Gq(s)ds

+
1

2πi

∫
(−c)

χ2(s)ζ ′(1− s)2xs+q−1Gq(s)ds.

Then we interchange the integration and summation to obtain the expression

(2.252.25) below. Since using the formula χ(s) ∼
(
|t|
2π

)1/2−σ
as |t| → ∞ and χ′(s) ∼
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(
− log |t|

2π

)(
|t|
2π

)1/2−σ
as |t| → ∞ (see (2.322.32) below) one can easily show that the

integrals are absolutely convergent.

I =
∞∑
n=1

d(n)

nq
1

2πi

∫
(−c)

(χ′(s))
2

(nx)s+q−1Gq(s)ds

−
∞∑
n=1

d(0,1)(n)

nq
1

2πi

∫
(−c)

2χ(s)χ′(s)(nx)s+q−1Gq(s)ds

+
∞∑
n=1

D(1)(n)

nq
1

2πi

∫
(−c)

χ(s)2(nx)s+q−1Gq(s)ds.

(2.25)

Now in order to calculate I, we shall define

J1(Y ) :=
1

2πi

∫
(−c)

(χ′(s))
2
Y s+q−1Gq(s)ds,

J2(Y ) :=
1

2πi

∫
(−c)

2χ(s)χ′(s)Y s+q−1Gq(s)ds,

J3(Y ) :=
1

2πi

∫
(−c)

χ2(s)Y s+q−1Gq(s)ds.

Thus we can rewrite the right hand side of (2.252.25) as follows.

I =
∞∑
n=1

d(n)

nq
J1(nx)−

∞∑
n=1

d(0,1)(n)

nq
J2(nx) +

∞∑
n=1

D(1)(n)

nq
J3(nx). (2.26)

We shall try to express Ji(Y ) (i = 1, 2, 3) by the generalized Bessel function
λq

(
4π
√
Y
)
. We have in Section 1 (2.112.11) and also [I3I3, Ch. 3]. By (2.112.11) ([DFDF,

p. 39, (3.21)]) we have

J3(Y ) = 2πY qλq

(
4π
√
Y
)
. (2.27)

Our next purpose is to express J1(Y ) and J2(Y ) in tems of J3(Y ) as we already
have information about it. Hence we have

Lemma 2.3.1

J1(Y ) =
log2 Y

4
J3(Y ) +O

((
1 +

1

|q − 2c− 1|3

)
Y q−1−c log2 Y

)
, (2.28)

J2(Y ) =− (log Y )J3(Y ) +O

((
1 +

1

|q − 2c− 1|

)
Y q−1−c

)
. (2.29)
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To show Lemma 2.3.12.3.1, we shall recall the following estimates on χ(s).

Lemma 2.3.2 For s = σ + it, |t| ≥ 2, and a ≤ σ ≤ b (a, b are arbitrary fixed
real number) we have

χ(σ + it) =

(
|t|
2π

) 1
2
−σ−it

ei(t±
π
4 )
(

1 +O

(
1

|t|

))
, (2.30)

χ2(σ + it) =

(
|t|
2π

)1−2σ

eiE(t)

(
1 +O

(
1

|t|

))
, (2.31)

where

E(t) =

−2t log |t|
2π

+ 2t+ π
2

(t > 0),

−2t log |t|
2π

+ 2t− π
2

(t < 0).

Moreover, we assume that |(σ − 1)/t| < 1. For the kth derivative of χ(s), we
have

χ(k)(σ + it) = χ(σ + it)

(
− log

|t|
2π

)k
+O

(
|t|−

1
2
−σ(log |t|)k−1

)
. (2.32)

Proof. For the formula (2.302.30) see [TiTi, p. 78, (4.12.3)]. For the formula (2.322.32)
refer Gonek [GonGon, p. 133, Lemma 6].

Proof of Lemma 2.3.12.3.1. By integration by parts, we have

J2(Y ) =
1

2πi

∫
(−c)

(
χ2(s)

)′
Y s+q−1Gq(s)ds

=− log Y

2πi

∫
(−c)

χ2(s)Y s+q−1Gq(s)ds

− 1

2πi

∫
(−c)

χ2(s)Y s+q−1Gq(s)(ψ(s)− ψ(s+ q))ds,

where ψ(s) = Γ′(s)/Γ(s) is the digamma function. For the second integral, we
divide the integral line (−c) as∫

(−c)
=

∫ −c−2i

−c−i∞
+

∫ −c+2i

−c−2i

+

∫ −c+i∞
−c+2i

. (2.33)
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Trivially we have ∫ −c+2i

−c−2i

χ2(s)Y s+q−1Gq(s)ds� Y q−1−c.

Since χ2(−c+ it)� |t|1+2c (for |t| ≥ 2, by (2.312.31)) and ψ(−c+ it)− ψ(−c+ q +

it)�q 1/|t| (q is bounded and |t| ≥ 2) we see that(∫ −c−2i

−c−i∞
+

∫ −c+i∞
−c+2i

)
χ2(s)Y s+q−1Gq(s) (ψ(s)− ψ(s+ q)) ds

� Y q−1−c
∫ ∞

2

t2c−qdt� Y q−1−c

|q − 2c− 1|
.

Therefore we get (2.292.29).

Before showing (2.282.28) we shall set a notation. Since through out this chapter,
we will often use the division (2.332.33) of the integral line (−c), to avoid complicated
integral expressions we shall write∫

(−c)
= :=

∫ −c−2i

−c−i∞
+

∫ −c+i∞
−c+2i

and

∫ ∞
−∞
= :=

∫ −2

−∞
+

∫ ∞
2

.

Now we proceed to show (2.282.28). Since (χ′(s))2 = (χ(s)χ′(s))′ − χ(s)χ′′(s) we
have

J1(Y ) =
1

2πi

∫
(−c)

(χ(s)χ′(s))
′
Y s+q−1Gq(s)ds

− 1

2πi

∫
(−c)

χ(s)χ′′(s)Y s+q−1Gq(s)ds

=− log Y

2
J2(Y )− 1

2πi

∫
(−c)
= χ(s)χ′′(s)Y s+q−1Gq(s)ds

+O

(
Y q−1−c

∫ ∞
−∞
= |t|2c−q log |t|dt

)
+O

(
Y q−1−c)

=− log Y

2
J2(Y ) +O

((
1 +

1

|q − 2c− 1|
+

1

|q − 2c− 1|2

)
Y q−1−c

)
− 1

2πi

∫
(−c)
= χ(s)χ′′(s)Y s+q−1Gq(s)ds.

Here we shall make use of Lemma 2.3.22.3.2 and (2.182.18).

J ′1 =− 1

2πi

∫
(−c)
= χ(s)χ′′(s)Y s+q−1Gq(s)ds
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=− 1

2πi

∫ ∞
−∞
=

(
|t|
2π

)1+2c(
− log

|t|
2π

)2

eiE(t)Y −1−c+q+itGq(−c+ it)idt

+O

(
Y q−1−c

∫ ∞
−∞
= |t|2c−q log2 |t|dt

)
.

We have by integration by parts, using d
dt

(
eiE(t)

2i

)
=
(
− log |t|

2π

)
eiE(t),

− 1

2πi

∫ ∞
−∞
=

(
|t|
2π

)1+2c(
− log

|t|
2π

)2

eiE(t)Y −1−c+q+itGq(−c+ it)idt

=
log Y

2

1

2πi

∫ ∞
−∞
=

(
|t|
2π

)1+2c(
− log

|t|
2π

)
eiE(t)Y −1−c+q+itGq(−c+ it)idt

+O

((
1 +

1

|q − 2c− 1|
+

1

|q − 2c− 1|2
+

1

|q − 2c− 1|3

)
Y q−1−2c

)
.

Once again by integration by parts we have

J ′1 =− (log Y )2

4

∫ ∞
−∞
=

(
|t|
2π

)1+2c

eiE(t)Y −1−c+q+itGq(−c+ it)idt

+O

((
1 +

1

|q − 2c− 1|3

)
Y q−1−c log Y

)
.

Using Lemma 2.3.22.3.2 (2.312.31) we obtain

1

2πi

∫ ∞
−∞
=

(
|t|
2π

)1+2c

eiE(t)Y −1−c+q+itGq(−c+ it)idt

= J3(Y ) +O

((
1 +

1

|q − 2c− 1|

)
Y q−1−c

)
.

Hence

J ′1 = −(log Y )2

4
J3(Y ) +O

((
1 +

1

|q − 2c− 1|3

)
Y q−2c−1 log2 Y

)
.

Hence we obtain the assertion of (2.282.28).

Now we take Y = nx for (2.272.27), (2.282.28), and (2.292.29), then by (2.262.26) we get the
following representation for the integral in (2.252.25).

Theorem 2.3.3 Let q > 2 and 0 < c < min (1/2, (q/2) − 1). For the inte-
gral I which is defined in (2.252.25) we have the following expression involving the
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generalized Bessel function λq.

I =
π

2
xq

∞∑
n=1

d(n)(log nx)2λq
(
4π
√
nx
)

+ 2πxq
∞∑
n=1

d(0,1)(n)(log nx)λq
(
4π
√
nx
)

+ 2πxq
∞∑
n=1

D(1)(n)λq
(
4π
√
nx
)

+O

((
1 +

1

|q − 2c− 1|3

)
xq−1−c log2 x

)
.

(2.34)

Remark 2.3.4 Since λq (4π
√
nx) � (nx)−

q
2
− 1

4 ( for detail see [DFDF, p. 42,
(4.12)]) the above infinite series are absolutely and uniformly convergent for
bounded q (> 3/2) with respect to x in any closed x-interval excluding origin.

Using this theorem and the asymptotic formula for λq(z) we shall prove Theorem
2.2.12.2.1 in the next section.

2.4 Proof of Theorem 2.2.12.2.1 and Corollary 2.2.22.2.2

Here, we shall prove Theorem 2.2.12.2.1. By (2.212.21), (2.252.25) and Theorem 2.3.32.3.3 we
have

1

Γ(q)

∑
n≤x

D(1)(n)(x− n)q−1

=
πxq

2

∞∑
n=1

d(n)(log nx)2λq(4π
√
nx)

+ 2πxq
∞∑
n=1

d(0,1)(n)(log nx)λq(4π
√
nx)

+ 2πxq
∞∑
n=1

D(1)(n)λq(4π
√
nx)

+Ress=0 (ζ ′(s))
2
xs+q−1Gq(s) +Ress=1 (ζ ′(s))

2
xs+q−1Gq(s) +O

(
xq−1−c)

+O

((
1 +

1

|q − 2c− 1|3

)
xq−1−c log2 x

)
(2.35)

for q > 2 and 0 < c < min (1/2, (q/2)− 1).
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Here we shall consider the asymptotic formula ([DFDF, p. 42 (4.12)]) for λq(4π
√
nx):

λq(4π
√
nx) =

1

(nx)
q
2

+ 1
4

(
Aq sin

(
4π
√
nx− π

4
− qπ

2

)
+Bqe

−4π
√
nx
)

+O

(
1

(nx)
q
2

+ 5
4

)
+O

(
1

(nx)2

) (2.36)

and we note that Aq and Bq are bounded for all q, n and x. Moreover, the above
O-constant does not depend on q over any finite part of q-plane. However, for a
fixed x the convergence of the series in (2.352.35) are uniform with respect to any q
in any finite part of Re(q) > 3

2
. Both the sides of (2.352.35) are analytic functions

of q in the region Re(q) > 3
2
. By the grace of the above formula (2.362.36) and

continuity we observe that (2.352.35) is valid for q = 2.

If q = 2, by (2.222.22) and (2.232.23) we observe that

Ress=0 (ζ ′(s))
2
xs+1 Γ(s)

Γ(s+ 2)
=

(log 2π)2

4
x,

Ress=1 (ζ ′(s))
2
xs+1 Γ(s)

Γ(s+ 2)

= x2

(
log3 x

12
− 3 log2 x

8
+

(
7

8
− γ1

)
log x+

(
−2γ2 +

3

2
γ1 −

15

16

))
.

By the definition (2.122.12) of ∆(1)(x) we see that

∫ X

1

∆(1)(x)dx =

∫ X

1

(∑
n≤x

D(1)(n)−Ress=1 (ζ ′(s))
2 x

s

s
− (ζ ′(0))

2

)
dx

=
∑
n≤X

D(1)(X − n)−
∫ X

1

Ress=1 (ζ ′(s))
2 x

s

s
dx− (ζ ′(0))

2
X +O(1).

(2.37)

We shall consider
∫ X

1
Ress=1 (ζ ′(s))2 xs

s
dx. Here we shall note that in (2.352.35) if we

put q = 2, then we have Ress=1 (ζ ′(s))2 xs+1G2(s) = Ress=1 (ζ ′(s))2 xs+1/(s(s+

1)). Moreover we observe that

Ress=1 (ζ ′(s))
2 x

s

s
=

d

dx
Ress=1 (ζ ′(s))

2 xs+1

s(s+ 1)
.
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This implies that∫ X

1

Ress=1 (ζ ′(s))
2 x

s

s
dx = Ress=1 (ζ ′(s))

2 Xs+1

s(s+ 1)
+O(1). (2.38)

By (2.372.37) and (2.382.38) we get

∑
n≤X

D(1)(n)(X − n) =

∫ X

1

∆(1)(x)dx+Ress=1 (ζ ′(s))
2 Xs+1

s(s+ 1)
+ (ζ ′(0))

2
X +O(1).

(2.39)

Therefore substituting (2.392.39) into (2.352.35) with q = 2, and choosing c = 1/2 − δ
(a small δ > 0 ) we obtain the assertion of Theorem 2.2.12.2.1.

Next we shall show Corollary 2.2.22.2.2. Using [I3I3, p. 85, p. 91]

λq(z) ∼
(

2

z

)q (
−Yq(z) +

2eqπi

π
Kq(z)

)
− 2

π

∞∑
r=1

Γ(2r)

Γ(q − 2r + 1)

(
2

z

)4r

,

Yq(z) ∼
(

2

πz

)1/2
{

sin
(
z − πq

2
− π

4

) ∞∑
m=0

(−1)m(q, 2m)

(2z)2m

+ cos
(
z − πq

2
− π

4

) ∞∑
m=0

(−1)m(q, 2m+ 1)

(2z)2m+1

}
,

Kq(z) ∼
( π

2z

)1/2

e−z
∞∑
m=0

(q,m)

(2z)m
,

where (q,m) = Γ(q +m+ 1/2)/(m!Γ(q −m+ 1/2)), we obtain

λ2(4π
√
nx) =

1

4
√

2π3(nx)5/4
sin
(

4π
√
nx− π

4

)
+O

(
1

(nx)7/4

)
. (2.40)

We substitute (2.402.40) into (2.132.13), then∫ X

1

∆(1)(x)dx

=
X

3
4 log2X

8
√

2π2

∞∑
n=1

d(n)

n5/4
sin
(

4π
√
nX − π

4

)
+
X

3
4 logX

4
√

2π2

∞∑
n=1

(
d(n) log n+ 2d(0,1)(n)

)
n5/4

sin
(

4π
√
nX − π

4

)
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+
X

3
4

√
2π2

∞∑
n=1

(
1
8
d(n) log2 n+ 1

2
d(0,1)(n) log n+ 1

2
D(1)(n)

)
n5/4

sin
(

4π
√
nX − π

4

)
+O

(
X

1
2

+ε
)
.

We remark the relation in ([HalHal, p. 297])

d(0,1)(n) = −1

2
d(n) log n, D(1)(n) =

1

2
d(n) log2 n− l(n)

(for the definition of l(s) see (2.152.15)) to obtain the assertion of Corollary 2.2.22.2.2.

2.5 Proof of Theorems 2.2.32.2.3 and 2.2.42.2.4

We give proofs of Theorems 2.2.32.2.3 and Theorem 2.2.42.2.4. To this end, we apply
Lemma 1 of [FF, p. 6] which is a generalization of a Lemma of Segal [SS, p. 279,
p. 765].

Lemma 2.5.1 (Furuya [FF, p. 6]) Let f(n) be an arithmetical function sais-
fying ∑

n≤x

f(n) = g(x) + E(x),

where g(x) is the main term and E(x) is the error term. We assume that g(x)

is continuously differentiable for x ≥ 1 and fix a natural number k. Then we
have ∑

n≤x

Ek(n) =

(
1

2
− ψ(x)

)
Ek(x) +

∫ x

1

Ek(u)du

+ k

∫ x

1

(
1

2
− ψ(u)

)
g′(u)Ek−1(u)du,

where ψ(x) = x− [x]− 1/2.

Proof of Theorem 2.2.32.2.3. We use this lemma for k = 1, g(x) = xP(3)(log x) +

(ζ ′(0))2 and E(x) = ∆(1)(x) (see (2.72.7) and (2.122.12)). Also throughout this section,
we will use the notation B1(x) to denote the Bernoulli polynomial ψ(x) = x −
[x] − 1/2 in order to avoid any discrepancy (notation for digamma function is
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also ψ(u) which we have used already). Then

∑
n≤x

∆(1)(n) =

(
1

2
−B1(x)

)
∆(1)(x) +

∫ x

1

∆(1)(u)du+
1

2
(g(x)− g(1))

−
∫ x

1

B1(u)g′(u)du.

Since ∆(1)(x) � x1/3+ε which is proved in ([MM]) and
∫ x

1
B1(u)g′(u)du � log3 x

(see (2.412.41) and (2.422.42)), immediately we get the first assertion (2.162.16) of Theorem
2.2.32.2.3. Moreover,

∫ x
1

∆(1)(u)du � x3/4 log2 x so we obtain the second assertion
of (2.172.17).

Let us prove
∫ x

1
B1(u)g′(u)du� log3 x. We take N = [x]. Also we will make

use of the following facts

g′(u) =
log3 u

3!
− 2γ1 log u− 4γ2, (2.41)

B′2(t) = B1(t) ∀t ∈ (0, 1), both the functions are periodic with period 1 and
B2(1) = B2(0) = 1

6
to estimate the following:∫ x

1

B1(u)g′(u)du

=

∫ N

1

B1(u)g′(u)du+O
(
log3N

)
=

N−1∑
n=1

∫ n+1

n

B1(u)g′(u)du+O
(
log3N

)
=

N−1∑
n=1

∫ 1

0

B1(t)g′(n+ t)dt+O
(
log3N

)
=

N−1∑
n=1

∫ 1

0

B′2(t)g′(n+ t)dt+O
(
log3N

)
=

N−1∑
n=1

(
B2(t)g′(n+ t)|10 −

∫ 1

0

B2(t)g′′(n+ t)dt

)
+O

(
log3N

)
=

1

6

N−1∑
n=1

(g′(n+ 1)− g′(n)) +O

(
N−1∑
n=1

∫ 1

0

log2(n+ t)

(n+ t)
dt

)
+O

(
log3N

)
= O

(
log3N

)
+O

(
log2N

N−1∑
n=1

1

n

)
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= O
(
log3N

)
(2.42)

Proof of Theorem 2.2.42.2.4. We shall apply Lemma 2.5.12.5.1 for k = 2, and get

∑
n≤x

∆2
(1)(n) =

∫ x

1

∆2
(1)(u)du+O

(
x

2
3

+ε
)

+ 2

∫ x

1

(
1

2
−B1(u)

)
g′(u)∆(1)(u)du,

(2.43)

where ε > 0 is a small constant. Since we have (2.412.41) so we need to estimate
the following integrals one by one∫ x

1

(
1

2
−B1(u)

)
∆(1)(u) logj udu (for j = 3, 1, 0). (2.44)

We have denoted [x] by N , so we have∫ x

1

(
1

2
−B1(u)

)
∆(1)(u) logj udu =

∫ N

1

(
1

2
−B1(u)

)
∆(1)(u) logj udu

+O
(
x

2
3

+ε
)
.

(2.45)

We remark that∫ N

1

(
1

2
−B1(u)

)
∆(1)(u) logj udu

=
N−1∑
n=1

∫ n+1

n

(1− {u})∆(1)(u) logj udu

=

∫ 1

0

(1− t)
N−1∑
n=1

(
∆(1)(n+ t) logj(n+ t)−∆(1)(n) logj n

)
dt (2.46)

+

(∫ 1

0

(1− t)dt
)N−1∑

n=1

∆(1)(n) logj n (j = 3, 1, 0).

To calculate the above we prepare the following formulas.

Lemma 2.5.2 Let j denote non-negative integers, T ≥ 1 a real number and
N ≥ 1 an integer. We have

∫ T

1

logj tdt = T

j∑
k=0

(−1)k
j!

(j − k)!
logj−k T − (−1)jj!, (2.47)
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N∑
n=1

logj n =

∫ N

1

logj tdt+O
(
logj N

)
. (2.48)

Proof. Using integration by parts we get (2.472.47) and by the Euler-Maclaurin
formula we find the second assertion (2.482.48). Moreover, we need the following
lemmas

Lemma 2.5.3

N−1∑
n=1

∆(1)(n) log3 n =
N log6N

12
− N log5N

2
+

(
5

2
− γ1

)
N log4N

− 2c1N log3N + 6c1N log2N − 12c1N logN + 12c1N

(2.49)

+O
(
N

3
4 log3N

)
N−1∑
n=1

∆(1)(n) log n =
N log3N

12
− 1

3
N log3N + (1− γ1)N log2N − c2N logN

+ 2c2N +O
(
N

3
4 log4N

)
, (2.50)

where c1 = γ2 − 2γ1 + 5 and c2 = γ2 − γ1 + 1.

Proof. Using the result of Thorem 2.2.32.2.3 and partial summation, we have

N−1∑
n=1

∆(1)(n) log3 n

=
N log6N

12
− N log4N

4
+

(1− 2γ1)N log4N

2
−
(

2γ2 − γ1 +
1

2

)
N log3N

− 1

4

∫ N−1

1

log5 tdt+
3

4

∫ N−1

1

log4 tdt− 3(1− 2γ1)

2

∫ N−1

1

log3 tdt

+ 3

(
2γ2 − γ1 +

1

2

)
+O

(
N

3
4 log3N

)
.

By (2.472.47) of Lemma 2.5.22.5.2 we have the first assertion (2.492.49). By the same way,
we get the second assertion (2.502.50). We shall now consider the case j = 3 in
(2.462.46). ∫ N

1

(
1

2
−B1(u)

)
(log u)3∆(1)(u)du
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=

∫ 1

0

(1− t)
N−1∑
n=1

∆(1)(n+ t)
(
log3(n+ t)− log3 n

)
dt

+

∫ 1

0

(1− t)
N−1∑
n=1

(
∆(1)(n+ t)−∆(1)(n)

)
log3 ndt

+
1

2

N−1∑
n=1

∆(1)(n) log3 n

=: K1 +K2 +K3 (say). (2.51)

As log3(n+ t)− log3 n = O
(
n−1 log2 n

)
, we have by ([MM]) ∆(1)(n+ t)� n1/3+ε.

Therefore we get K1 = x1/3+ε. For K2, since (n + t) log3(n + t) − n log3 n =

t log3 n + 3t log2 n + O
(
n−1 log2 n

)
, (n + t) log2(n + t) − n log2(n) = t log2 n +

2t log n+O (n−1 log n), and (n+ t) log(n+ t)−n log n = t log n+ t+O (n−1) we
find that

∆(1)(n+ t)−∆(1)(n) = −(g(n+ t)− g(n))

= −
(
t log3 n

6
− 2γ1t log n− 4γ2t+O

(
log2 n

n

))
.

(2.52)

By (2.522.52) and Lemma 2.5.22.5.2 we have

K2 =− 1

6

∫ 1

0

(1− t)tdt
N−1∑
n=1

log6 n+ 2γ1

∫ 1

0

(1− t)tdt
N−1∑
n=1

log4 n

+ 4γ2

∫ 1

0

(1− t)tdt
N−1∑
n=1

log3 n+O

(∫ 1

0

(1− t)dt
N−1∑
n=1

log5 n

n

)

=− 1

36
N log6N +

1

6
N log5N +

(
γ1

3
− 5

6

)
N log4N

+
2

3
(γ2 − 2γ1 + 5)N log3N − 2 (γ2 − 2γ1 + 5)N log2N

+ 4(γ2 − 2γ1 + 5)N logN − 4(γ2 − 2γ2 + 5)N +O
(
log6N

)
.
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For K3 we use (2.492.49) of Lemma 2.5.32.5.3. Hence we get∫ N

1

(
1

2
−B1(u)

)
∆(1)(u) log3 udu

=
1

72
N log6N − 1

12
N log5N +

(
5

12
− γ1

6

)
N log4N − c1

3
N log3N

+ c1N log2N − 2c1N logN + 2c1N +O
(
N

3
4 log5N

)
, (c1 = γ2 − 2γ1 + 5).

(2.53)

By calculations (using Lemma 2.5.22.5.2) similar to the above we obtain∫ N

1

(
1

2
−B1(u)

)
∆(1)(u) log udu

=
1

72
N log4N − 1

18
N log3N +

(
1

6
− γ1

6

)
N log2N − c2

3
N logN

+
c2

3
N logN +

c2

3
N +O

(
N

3
4 log4N

)
, (c2 = γ2 − γ1 + 1).

(2.54)

Moreover by the same argument as above and using Theorem 2.2.32.2.3 we get∫ N

1

(
1

2
−B1(u)

)
∆(1)(u)du

=
1

72
N log3N − 1

24
N log2N +

(
1

12
− γ1

6

)
N logN

+

(
2γ2

3
+
γ1

6
− 1

12

)
+O

(
N

3
4 log2N

)
.

(2.55)

From the above results (2.432.43)–(2.462.46), (2.512.51), and (2.532.53)–(2.552.55) we obtain the
assertion of Theorem 2.2.42.2.4.

2.6 A concluding remark

In this chapter, we studied averages of ∆(1)(x) as a new direction from the clas-
sical divisor problem and a further development of [MM]. Here we shall compare
Voronoï’s result (2.12.1) and our result (2.142.14). These results are similar. But the
error term in (2.142.14) is bigger than that of (2.12.1). The cause is the employment of
Gonek’s Lemma (2.322.32) in calculations for I1 and I2 of (2.252.25). It rises the error
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terms in (2.352.35). To overcome this difficuty, we have to analyze the integrals

1

2πi

∫
(−c)

χ(s)χ′(s)(nx)s+q−1Gq(s)ds,

1

2πi

∫
(−c)

(χ′(s))
2

(nx)s+q−1Gq(s)ds,

directly, and find formula which are connected to the generalaized Bessel func-
tion λq(z). This is a problem for future consideration. We expect that the error
terms O

(
X

1
2

+ε
)
in (2.132.13) and (2.142.14)to be smaller. We conjecture :

Conjecture. The error terms O
(
X1/2+ε

)
in (2.132.13) and (2.142.14) can be improved

to O
(
X

1
4

+ε
)
.





CHAPTER 3
Some problems on k-free integers

In this chapter, we consider sums of the type Φ(x, y; f) =
∑

n≤x,p|n⇒p>y f(n)

and ψ(x, y; f) =
∑

n≤x,p|n⇒p<y f(n). Through out this chapter, p will denote a
prime, f certain kind of arithmetical functions and prove some identities for
Φ and ψ which are analogous to the ‘so-called’ Buchstab’s identity. As an ap-
plication, we will prove some formulas for square-free integers and also we will
deduce a formula for the number of non k-free integers ≤ x whose prime factors
> y.

3.1 Introduction

An integer with all its prime factors ≤ y is called y-smooth number. An impor-
tant problem is to study the distributions of all the y-smooth numbers up to x
and Ψ(x, y) denotes the number of integers up to x whose prime factors are all
≤ y that is:

Ψ(x, y) =
∑
n≤x

p|n⇒p≤y

1.

An important identity related to it is the following

Ψ(x, y) = Ψ(x, z)−
∑
y<p≤z

Ψ

(
x

p
, p

)
, (3.1)

33
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where x, y and z are positive real numbers such that 2 ≤ y ≤ z ≤ x. The
above identity is called Buchstab’s identity ([CMCM]). By using this identity (3.13.1),
Chebycheff’s estimate

π(x) =
∑
p≤x

1 = O

(
x

log x

)
, (3.2)

and Mertens’ formula∑
p≤x

1

p
= log log x+ A+ E1(x), E1(x) = O

(
1

log x

)
, (3.3)

we obtain for any ε > 0 and xε < y ≤ x,

Ψ(x, y) = xρ(u) +O

(
x

log y

)
,

where u = log x/ log y and the function ρ(u) is defined by

ρ(u) =

1 (0 ≤ u ≤ 1),

1−
∫ u

1
ρ(v−1)
v

dv (u ≥ 1).
(3.4)

This function ρ(u) is called Dickman’s function [DD]. Similarly, one can con-
sider the following analogue of Buchstab’s identity by defining Φ(x, y) to be the
number of integers n ≤ x all of whose prime factors are greater than y:

Φ(x, y) =
∑
n≤x

p|n⇒p>y

1.

For x ≥ z ≥ y ≥ 2, we have

Φ(x, y) = Φ(x, z) +
∑
y<p≤x

Φ

(
x

p
, p

)
+O

(
x

y

)
.

This identity helps one to derive an asymptotic formula for Φ(x, y). For any
ε > 0 and xε < y ≤ x, using the prime number theorem of the form

π(x) =
x

log x
+O

(
x

log2 x

)
(3.5)
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one can get

Φ(x, y) =
xω(u)− y

log y
+O

(
x

log2 y

)
. (3.6)

Here ω(u) is defined recursively as:

ω(u) =

 1
u

(1 ≤ u ≤ 2),

1
u

+ 1
u

∫ u−1

1
ω(v)dv (u ≥ 2).

(3.7)

Some analogues of Ψ(x, y) and Φ(x, y) are considered by Alladi [Al1Al1], [Al2Al2]
and Ivić [I2I2]. Being motivated by these studies we shall consider analogues of
Buchstab’s identity and deduce some results concerning square free integers.

Now we shall define three summatory functions concerned with f as follows:

Definition 3.1.1 Let x ≥ y ≥ 2 and for an arithmetical function f , we define

M(x; f) =
∑
n≤x

f(n),

ψ(x, y; f) =
∑
n≤x

p|n⇒p<y

f(n),

Φ(x, y; f) =
∑
n≤x

p|n⇒p>y

f(n).

Remark 3.1.2 If y ≥ x, then clearly,

ψ(x, y; f) = M(x; f) +O(|f(x)|) and Φ(x, y; f) = 1.

Now we add two restrictions on f :(A) f is multiplicative,

(B) f(pm) = 0 for any prime and positive integer m ≥ 2.
(3.8)

Under these assumptions, we obtain analogues of Buchstab’s identity (see, e.g.,
Tenenbaum [TT, p. 365, p. 398]).
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Theorem 3.1.3 Keeping the notations as above and for x ≥ z ≥ y ≥ 2,

ψ(x; y; f) = 1 +
∑
p<y

f(p)ψ

(
x

p
, p; f

)
, (3.9)

ψ(x, y; f) = ψ(x, z; f)−
∑
y≤p<z

f(p)ψ

(
x

p
, p; f

)
, (3.10)

Φ(x, y; f) = 1 +
∑
y<p≤x

f(p)Φ

(
x

p
, p; f

)
, (3.11)

Φ(x, y; f) = Φ(x, z; f) +
∑
y<p≤z

f(p)Φ

(
x

p
, p; f

)
. (3.12)

We shall apply the above formulas (3.113.11) and (3.123.12) to the arithmetical
functions µ, µ2 and µ/N , where µ is the Möbius function and N(n) = n. These
three functions satisfy the required conditions (3.83.8).

For example we have

Theorem 3.1.4 For xε < y ≤ x, then

Φ
(
x, y;

µ

N

)
= ρ(u) +O

(
1

log y

)
, (3.13)

where u = log x/ log y and ρ(u) is the Dickman function.

Corollary 3.1.5 For any α > 1

lim
x→∞

Φ
(
x, x1/α;

µ

N

)
= ρ(α).

As another application of Theorem 3.1.33.1.3, we shall define

Φ2(x, y) = Φ(x, y;µ2) =
∑
n≤x

p|n⇒p>y

µ2(n), (3.14)

R(x, y) = Φ(x, y;µ) =
∑
n≤x

p|n⇒p>y

µ(n). (3.15)

By formulas (3.113.11) and (3.123.12) we have

Theorem 3.1.6 For xε < y ≤ x, by the prime number theorem of the form
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(3.53.5), we have

Φ2(x, y) =
xω(u)− y

log y
+O

(
x

log2 y

)
, (3.16)

R(x, y) =
xρ′(u) + y

log y
+O

(
x

log2 y

)
, (3.17)

where u = log x/ log y, ω(u) is the Buchstab function (see (3.73.7)) and ρ′(u) is the
derivative of ρ(u).

Trivially, when y ≥ x ≥ 1 we see Φ2(x, y) = R(x, y) = 1.

Remark 3.1.7 Alladi [Al1Al1, p. 87, Theorem 1] studied the asymptotic formula
for R(x, y), by using (3.53.5). His result showed the error term of (3.173.17) is O(x ·
u2/ log2 y) uniformly for x ≥ y ≥ 2. We will consider the above theorem by
observing the prime number theorem of the form

π(x) = li(x) +O
(
x exp

(
−c
√

log x
))

, (3.18)

(where li(x) =
∫ x

2
dt

log t
, c > 0 is a constant),

3.2 Proof of Theorem 3.1.33.1.3 and an application

First of all we shall prove Theorem 3.1.33.1.3. Let f be an arithmetical function
satisfying (3.83.8). By Definition 3.1.13.1.1 we have the assertion (3.93.9) as follows

ψ(x, y; f) = 1 +
∑
p<y

∑
pm≤x, p-m
q|m⇒q<p

f(pm) = 1 +
∑
p<y

f(p)
∑
pm≤x

q|m⇒q<p

f(m).

The second assertion (3.103.10) follows from (3.93.9) easily.
By an argument similar to the above, we have the formula (3.113.11)

Φ(x, y; f) = 1 +
∑
y<p≤x

∑
pm≤x, p-m
q|m⇒q>p

f(pm) = 1 +
∑
y<p≤x

f(p)
∑
m≤x/p
q|m⇒q>p

f(m).

Form (3.113.11), we can obtain the identity (3.123.12) easily.
Let u = log x/ log y. As an application of Theorem 3.1.33.1.3, we shall prove

Theorem 3.1.43.1.4.
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Proof of Theorem 3.1.43.1.4 Let us assume u ∈ (1, 2], then by Eratosthenes’ sieve
and (3.33.3) we observe that

Φ
(
x, y;

µ

N

)
= 1−

∑
y<p≤x

1

p
= 1− log u+O

(
1

log y

)
.

Now we assume that the formula (3.133.13) is true for u ∈ (1, 2], (2, 3], . . . , (K−1, K].

In the case of u ∈ (K,K + 1], we put in (3.123.12), y = x1/u and z = x1/K then

Φ
(
x, x1/u;

µ

N

)
= ρ(K) +O

(
1

log y

)
−

∑
x1/u<p≤x1/K

1

p
Φ

(
x

p
, p;

µ

N

)
.

In the above sum, since
log x

p

log p
≤ K we shall apply our assumption to get

∑
x1/u<p≤x1/K

{
1

p
ρ

(
log x

log p
− 1

)
+O

(
1

p log p

)}

=
∑

x1/u<p≤x1/K

1

p
ρ

(
log x

log p
− 1

)
+O

(
1

log y

)

=

∫ x1/K

x1/u

ρ

(
log x

logw
− 1

)
d log logw +

∫ x1/K

x1/u

ρ

(
log x

logw
− 1

)
dE1(w)

+O

(
1

log y

)
:= A+B +O

(
1

log y

)
(say),

where E1(·) is the same error term in (3.33.3). Putting v = log x/ logw we have
A =

∫ u
K
ρ(v − 1)v−1dv. Moreover since ρ, ρ′ are bounded ([TT, p. 366]) we see

B = O(1/ log y). Therefore, for u ∈ (K,K + 1] we obtain

Φ
(
x, x1/u;

µ

N

)
= ρ(K)−

∫ u

K

ρ(v − 1)

v
dv +O

(
1

log y

)
= ρ(u) +O

(
1

log y

)
.

From this, we observe that the assertion (3.133.13) is valid for xε < y ≤ x.
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3.3 On square-free integers

In this section, we shall consider applications of (3.113.11) and (3.123.12) on square-free
numbers. So we shall prove Theorem 3.1.63.1.6.

Proof of Theorem 3.1.63.1.6: We will prove the formula (3.173.17) only. The other
formula (3.163.16) follows by a similar method. First we shall notice that

ρ′(u) =

− 1
u

(1 ≤ u ≤ 2),

− 1
u
− 1

u

∫ u
2
ρ′(v − 1)dv (u ≥ 2).

(3.19)

By (3.113.11), Eratosthenes’ sieve, the prime number theorem (3.53.5), and (3.193.19) we
have

R(x, y) = 1 +
∑
y<p≤x

µ(p) = 1− π(x) + π(y)

=
xρ′(u) + y

log y
+O

(
x

log2 y

)
for u ∈ (1, 2] (or

√
x ≤ y < x). (3.20)

For u ∈ (2, 3], using (3.123.12) with f = µ, y = x1/u, and z = x1/2 we have

R(x, y) = R(x, x1/2)−
∑

x1/3<p≤x1/2

R
(
x

p
, p

)
+O

(
x

log2 y

)
.

Since (log x/p)/ log p = log x/ log p−1 ≤ 2, using (3.203.20) we can show that (3.173.17)
is valid for u ∈ (2, 3] (the method is similar to the generalized argument just
below).

Here we assume the formula (3.173.17) is true for u ∈ (3, 4], (4, 5], . . . , (N−1, N ]

(N ≥ 3 ). We shall consider it for u ∈ (N,N + 1] and take f = µ, y = x1/u and
z = x1/N in (3.123.12), then we have

R(x, y) =
xρ′(N) + x1/N

log x1/N
+

y

log y
− y

log y

−
∑

x1/u<p≤x1/N

R
(
x

p
, p

)
+O

(
x

log2 y

)
.

Since
log x

p

log p
= log x

log p
− 1 ≤ N we can get
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∑
x1/u<p≤x1/N

R
(
x

p
, p

)
= x

∑
x1/u<p≤x1/N

ρ′
(

log x
log p
− 1
)

p log p
+

∑
x1/u<p≤x1/N

p

log p

+O

x ∑
x1/u<p≤x1/N

1

p log2 p


=: xA+B + C (say).

Using (3.53.5) and (3.33.3) we have B, C � x/ log2 y respectively. Also by (3.33.3) we
see

A =

∫ 1/N

x1/u

ρ′
(

log x
logw
− 1
)

logw
d log logw +

∫ x1/N

x1/u

ρ′
(

log x
logw
− 1
)

logw
dE1(w).

By putting v = log x/ logw, the former integral is

− 1

log x

∫ N

u

ρ′(v − 1)dv,

and the latter integral is

ρ′
(

log x
logw
− 1
)

logw
E1(w)

x
1/N

x1/u

(3.21)

+ log x

∫ x1/N

x1/u

ρ′′
(

log x
logw
− 1
)

w log3w
E1(w)dw +

∫ x1/N

x1/u

ρ′
(

log x
logw
− 1
)

w log2w
E1(w)dw.

Since ρ′ is bounded and E1(w) = O(1/ logw) the first part of (3.213.21) is estimated
as O(1/ log2 y). Moreover, since 1/ log y = O(N/ log x) and log((N + 1)/N) =

O(1/N) we can estimate the middle and last parts of (3.213.21) as O(1/ log2 y)

respectively. Hence for u ∈ (N,N + 1] we obtain

R(x, y) =
xρ′(N)

log x1/N
+

x

log x

∫ N

u

ρ′(v − 1)dv +
y

log y
+O

(
x

log2 y

)
=

x

log y

(
(log y)ρ′(N)

log x1/N
+

log y

log x

∫ N

u

ρ′(v − 1)dv

)
+

y

log y
+O

(
x

log2 y

)
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=
x

log y

(
N

u

(
− 1

N
− 1

N

∫ N

2

ρ′(v − 1)dv

)
− 1

u

∫ u

N

ρ′(v − 1)dv

)
+

y

log y
+O

(
x

log2 y

)
=
xρ′(u) + y

log y
+O

(
x

log2 y

)
.

This shows that the formula (3.173.17) is valid for xε < y ≤ x. We will consider
some applications of Theorem 3.1.63.1.6 on square-free integers.

Definition 3.3.1 Letm be a positive square-free integer and N (m) the number
of prime factors of m. For x ≥ y ≥ 1 we define the following counting functions:

Qeven(x, y) :=
∑

m≤x, m square−free, N (m): even
p|m⇒p>y

1 =
∑
n≤x

p|n⇒p>y

µ2(n) + µ(n)

2
,

Qodd(x, y) :=
∑

m≤x, m square−free, N (m): odd
p|m⇒p>y

1 =
∑
n≤x

p|n⇒p>y

µ2(n)− µ(n)

2
,

where we regard N (1) = 1 as even.

If we use M(x;µ) = o(x) (which is equivalent to the prime number theorem in
the form π(x) ∼ x/ log x) and M(x;µ2) = 6

π2x+O(
√
x), then we have easily

Qeven(x, 1) =
3

π2
x+ o(x) and Qodd(x, 1) =

3

π2
x+ o(x).

However if y is large by Theorem 3.1.63.1.6 we get the following corollary.

Corollary 3.3.2 For xε < y ≤ x and u = log x
log y

,

Qeven(x, y) =
x

log y

(
ω(u) + ρ′(u)

2

)
+O

(
x

log2 y

)
,

Qodd(x, y) =
x

log y

(
ω(u)− ρ′(u)

2

)
− y

log y
+O

(
x

log2 y

)
.

3.4 Remarks

In this final section, following [TT, p. 400, Theorem 3] we shall attempt to extend
the range xε < y ≤ x in Theorem 3.1.63.1.6. By the prime number theorem of the
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form (3.183.18) we have

∑
p≤x

1

p
= log log x+ A+O

(
exp

(
−B
√

log x
))

, (3.22)

where A and B are some positive constants. With the help of (3.183.18) and (3.223.22)
we obtain the following.

Theorem 3.4.1 Uniformly for x ≥ y ≥ 2, we have

Φ2(x, y) =
xω(u)− y

log y
+O

(
x

log2 y

)
, (3.23)

R(x, y) =
xρ′(u) + y

log y
+O

(
x

log2 y

)
, (3.24)

where the notation is same as the above.

Proof. Since trivially Φ2(x, y) andR(x, y) = O(x), so if y is bounded then (3.233.23)
and (3.243.24) are obviously true. So we assume that y ≥ y0, where y0 is a sufficiently
large constant. We may also assume that u > 3 in fact we have already proved
the result for 1 ≤ u ≤ 3 in theorem 3.1.63.1.6. Let ∆(x, y) be the function implicitly
defined by the formula

R(x, y) =
x

log y

(
ρ′(u) +

∆(x, y)

log y

)
, (3.25)

We shall establish by induction on integers k ≥ 3, that the quantity

∆k := sup {|∆(x, y)| | y ≥ y0, 2 < u ≤ k} .

is finite and bounded independently of k. By Theorem 3.1.63.1.6 we see that ∆3 <

+∞. Let k ≥ 3 be such that ∆k < +∞. We shall consider the case y ≥ y0 and
2 < u ≤ k + 1. By the identity (3.123.12) with f = µ and z =

√
x and (3.253.25) we

observe that

R(x, y) = R
(
x,
√
x
)
−

∑
y<p≤

√
x

x

p log p

{
ρ′
(

log x

log p
− 1

)
+
θp∆k

log p

}
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with θp = θp(x) ∈ [−1, 1]. By (3.53.5) we have

R
(
x,
√
x
)

= − x

log x
+O

(
x

log2 y

)
,

By (3.223.22) for any sufficiently large y ≥ y0 we have

∑
p>y

1

p log2 p
=

1
2

+O
(
exp

(
−B
√

log x
))

log2 y
≤ 3

4 log2 y
,

H(v) =
∑

x1/v<p≤
√
x

1

p
= log

v

2
+O

(
exp

(
−B
√

log x1/v
))

. (3.26)

By the Stieltjes integral with (3.263.26) we see that

∑
y<p≤

√
x

ρ′
(

log x
log p
− 1
)

p log p
=

1

log x

∫ u

2

ρ′(v − 1)dv +O

(
u exp

(
−B
√

log y
)

log x

)

=
−uρ′(u) + 1

log x
+O

(
u exp

(
−B
√

log y
)

log x

)
.

Collecting the above calculations we have

R(x, y) =
x

log y

(
ρ′(u) +O

(
exp

(
−B
√

log y
)))

+
x (θ∆k +O(1))

log2 y
. (3.27)

where |θ| ≤ 3
4
. By (3.273.27) we see that ∆k+1 ≤ max(∆k,

3
4
∆k+C) with a constant

C > 0. Since ∆k ≤ ∆k+1, this completes the proof of (3.243.24). By a similar
argument we may prove (3.233.23). We have also

Corollary 3.4.2 Uniformly for x ≥ y ≥ 2 we have

Qeven(x, y) =
x

log y

(
ω(u) + ρ′(u)

2

)
+O

(
x

log2 y

)
,

Qodd(x, y) =
x

log y

(
ω(u)− ρ′(u)

2

)
− y

log y
+O

(
x

log2 y

)
.

The proofs are similar.
Now we will look into some further topics related to non-square free integers
and widening the range to non k-free integers.
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3.5 Results on non k-free integers

From (3.63.6) and (3.163.16), we have

D2(x, y) :=
∑
n≤x

p|n⇒p>y

(
1− µ2(n)

)
= Φ(x, y)− Φ2(x, y) = O

(
x

log2 y

)

for (xε < y ≤ x). This quantity D2(x, y) denotes the number of positive non
square-free integers up to x whose all prime factors is greater than y, where a
non square-free integer n means that n is divided by a square of a prime p. It
may be interesting to improve the above O-term. We shall now generalize this
problem. Fix k ≥ 2 an integer, and define the function

Φk(x, y) :=
∑
n≤x

p|n⇒p>y

qk(n),

where

qk(n) :=

1 n is k-free,

0 otherwise.

As in the two cases of Φ(x, y) and Φ2(x, y), applying a ‘Buchstab’s identity’ for
Φk(x, y) (see Lemma 3.6.13.6.1 below) we shall prove the following theorem.

Theorem 3.5.1 If x = y, then Φk(x, y) = 1. For xε < y ≤ x (any ε > 0) and
u = log x/ log y, by the PNT (3.53.5) we have

Φk(x, y) =
xω(u)− y

log y
+O

(
x

log2 y

)
, (3.28)

where ω is the Buchstab function (3.73.7).

From (3.63.6) and (3.283.28) we immediately observe that

Dk(x, y) := Φ(x, y)− Φk(x, y) = O

(
x

log2 y

)
for xε < y ≤ x. (3.29)

Here Dk(x, y) denotes that the number of positive ‘non k-free’ integers ≤ x

whose prime factors > y. If an integer n has a prime power pα (α ≥ k), then we
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shall call n as non k-free integer. In this present section, our aim is to improve
the above estimate (3.293.29). It is not difficult to see that the number of non
k-free integers ≤ x is (1 − 1/ζ(k))x + O

(
x1/k

)
, where ζ(k) is the value of the

Riemann zeta function ζ(s) =
∑∞

n=1 n
−s (Re s > 1) at s = k. However, we

shall investigate an influence of the condition ‘prime factors of n ≤ x which are
greater than y.’

Theorem 3.5.2 Under the same condition and notation, we have

Dk(x, y) =


0, x

1
k ≤ y ≤ x,

kx
1
k

log x
− y

log y
+O

(
x

1
k

log2 y

)
, x

1
k+1 ≤ y < x

1
k ,

O
(
xy1−k

log2 y

)
, x

1
k+l+1≤y<x

1
k+l ,

l=1,2,....

(3.30)

To prove this, we will introduce an analogue of Buchstab’s identity for Dk(x, y)

given in the next section. By a direct approach with π(t) ∼ t/ log t and pj ∼
j log j (pj denotes jth prime) we get

Dk(x, y) ≤
∑

y<p≤x1/k

x

pk
= x

∑
π(y)<j≤π(x1/k)

1

pkj
� xy1−k

log y
.

The third assertion of Theorem 3.5.23.5.2 is better by a factor 1/ log y from the
above. In the proof of the theorem, it is important to estimate the difference
Φ(x, y)− Φk(x, y) carefully.

In the above, we need the PNT (3.53.5). In addition, if we use the prime number
theorem in the form

π(x) =

∫ x

2

dt

log t
+O

(
x exp

(
−c
√

log x
))

, (3.31)

(where c > 0 is a constant) we obtain the following theorem.

Theorem 3.5.3 Using the PNT (3.313.31), we have

Dk(x, y) = O

(
xy1−k

log2 y

)
(3.32)

uniformly for x1/(k+1) ≥ y ≥ 2.
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3.6 Buchstab’s identity for k-free integers

To prove Theorem 3.5.13.5.1 we shall deduce an analogue of Buchstab’s identity for
k-free integers.

Lemma 3.6.1 Keeping the notation in Section 1. For x ≥ z ≥ y ≥ 1 we have

Φk(x, y) = 1 +
∑
y<p≤x

k−1∑
j=1

Φk

(
x

pj
, p

)
, (3.33)

Φk(x, y) = Φk(x, z) +
∑
y<p≤z

k−1∑
j=1

Φk

(
x

pj
, p

)
. (3.34)

Proof. Denote by q a prime. By the multiplicative property of qk(n), and the
definition of k-free integers, we obtain the formula (3.333.33) by the following way.

Φk(x, y)

= 1 +
∑
y<p≤x

 ∑
pm≤x

q|m⇒q>p

qk (pm) +
∑
p2m≤x
q|m⇒q>p

qk
(
p2m

)
+ · · ·+

∑
pk−1m≤x
q|m⇒q>p

qk
(
pk−1m

)

= 1 +
∑
y<p≤x

 ∑
m≤x/p
q|m⇒q>p

qk(m) + · · ·+
∑

m≤x/pk−1

q|m⇒q>p

qk(m)


= 1 +

∑
y<p≤x

k−1∑
j=1

Φk

(
x

pj
, p

)
.

The formula (3.343.34) is an immediate consequence of (3.333.33).

We shall recall the following Buchstab identity on Φ(x, y) (see, e.g. [CMCM,
p. 78]):

Φ(x, y) = Φ(x, z) +
∑
y<p≤z

∞∑
j=1

Φ

(
x

pj
, p

)
(x ≥ z ≥ 1). (3.35)

Subtracting (3.343.34) from (3.353.35) we obtain the Buchstab identity for Dk(x, y)

which will help us to deduce Theorem 3.5.23.5.2.
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Lemma 3.6.2 For x ≥ z ≥ y ≥ 1, we have

Dk(x, y) = Dk(x, z) +
∑
y<p≤z

k−1∑
j=1

Dk

(
x

pj
, p

)
+
∑
y<p≤z

∞∑
j=k

Φ

(
x

pj
, p

)
. (3.36)

Remark 3.6.3 In a proof of the formula (3.63.6), we use (3.353.35) and estimate the
sum ∑

y<p≤z

∑
j≥2

Φ

(
x

pj
, p

)
= O

(
x

y

)
.

However, in our proof of Theorem 3.5.23.5.2 we treat

∑
y<p≤z

∑
j≥k

Φ

(
x

pj
, y

)

carefully as it plays an important role in the study. We learn that it is important
for the study of the distribution of non k-free integers. This is a new aspect of
the Buchstab identity.

3.7 Proof of theorem 3.5.13.5.1

First of all, we shall prove Theorem 3.5.13.5.1. This is a natural generalization of
(3.163.16). Let k be fixed an integer ≥ 2 and u = log x/ log y, where x and y are large
parameters. We will use the PNT (3.53.5). When x = y we have Φk(x, x) = 1,
trivially. Next we shall consider Φk(x, y) in the case x1/2 ≤ y < x. Since
x/p < p we see Φk(x/p, p) = 1. Moreover, for j ≥ 2 since x/pj < 1 we observe
that Φk(x/p

j, p) = 0 (2 ≤ j ≤ k − 1). Hence, by (3.333.33) in Lemma 3.6.13.6.1 and
(3.53.5) we obtain

Φk(x, y) = 1 +
∑
y<p≤x

1 = π(x)− π(y) + 1

=
x

log x
− y

log y
+O

(
x

log2 y

)
=

x

log y

1

u
− y

log y
+O

(
x

log2 y

)
.

(3.37)
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We see that Theorem 3.5.13.5.1 is true for x1/2 ≤ y ≤ x. Now we shall consider the
case x1/3 ≤ y < x1/2. In formula (3.343.34) of Lemma 3.6.13.6.1, take z = x1/2 then we
have by (3.373.37)

Φk(x, y) = Φk

(
x, x

1
2

)
+

∑
y<p≤x

1
2

k−1∑
j=1

Φk

(
x

pj
, p

)

=
x

log x
1
2

1

2
− x

1
2

log x
1
2

+
∑

y<p≤x
1
2

Φk

(
x

p
, p

)

+
∑

y<p≤x1/2

k−1∑
j=2

Φk

(
x

pj
, p

)
+O

(
x

log2 y

)
.

(3.38)

By using the trivial bound Φk(x, y)� x we have

∑
y<p≤x1/2

k−1∑
j=2

Φk

(
x

pj
, p

)
�

∑
y<p≤x1/2

x

p2
� x

2
3 .

Here we shall remark that the primes p (y < p ≤ x1/2) satisfy (x/p)1/2 < p ≤ x/p.
Then by (3.373.37) we have

∑
y<p≤x

1
2

Φk

(
x

p
, p

)

=
∑

y<p≤x
1
2

x

p log p

1
log x
log p
− 1
−

∑
y<p≤x

1
2

p

log p
+O

 ∑
y<p≤x

1
2

x

p log2 p

 .

(3.39)

In the right hand side of (3.393.39), the second sum is estimated by Chebycheff’s
estimate π(x)� x/ log x as follows:∑

y<p≤x
1
2

p

log p
� x

log2 y
. (3.40)

In O-term of the right hand side of (3.393.39), the sum is estimated by the Mertens
formula ∑

p≤t

1

p
= log log t+ c+R(t), R(t) = O

(
1

log t

)
, (3.41)
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as follows: ∑
y<p≤x

1
2

x

p log2 p
� x

log2 y

∑
y<p≤x

1
2

1

p
� x

log2 y
. (3.42)

For the first sum in the right hand side of (3.393.39) we shall express it by the
Stieltjes integral and by the formula (3.413.41) we get

∑
y<p≤x

1
2

1

p log p

1
log x
log p
− 1

=

∫ x
1
2

y

1(
log x
logw
− 1
)

logw
d

(∑
p≤w

1

p

)

=

∫ x
1
2

y

1(
log x
logw
− 1
)

logw
d log logw +

∫ x
1
2

y

1(
log x
logw
− 1
)

logw
dR(w)

=: A+B (say). (3.43)

For the integral A we write v = log x/ logw, then

d log logw

dw
=

1

w logw
and

dv

dw
= − v

w logw
.

Hence we have

A =

∫ 2

u

1

(v − 1) log x
v

(
−1

v

)
dv =

1

log x

∫ u

2

1

v − 1
dv =

1

log y

log y

log x

∫ u−1

1

dv

v

=
1

log y
· 1

u

∫ u−1

1

dv

v
. (3.44)

For the integral B, integral by parts gives

B =

 1(
log x
logw
− 1
)

logw
R(w)

x
1
2

y

−
∫ x

1
2

y

1

w
(

log x
logw
− 1
)2

log2w
R(w)dw

� 1

log2 y
+

∫ x
1
2

y

1

w log3w
dw � 1

log2 y
. (3.45)
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Collecting (3.383.38), (3.393.39), (3.403.40), (3.423.42), (3.433.43), (3.443.44) and (3.453.45) we observe that

Φk(x, y) =
x

log x
1
2

1

2
− x

1
2

log x
1
2

+
x

log y

1

u

∫ u−1

1

dv

v
+O

(
x

log2 y

)
=

x

log y

(
1

u
+

∫ u−1

1

dv

v

)
− y

log y
+
y log x

1
2 − x 1

2 log y

(log y)(log x
1
2 )

+O

(
x

log2 y

)
=
xω(u)− y

log y
+O

(
x

log2 y

)
for x

1
3 ≤ y < x

1
2 .

So with the previous result (3.373.37) we obtain Theorem 3.5.13.5.1 in the case of x1/3 ≤
y ≤ x1/2. Here we shall assume that Theorem 3.5.13.5.1 is true for x1/(m+1) ≤ y ≤
x1/m (m = 1, 2, . . . , N − 1). We shall consider the case x1/(N+1) ≤ y < x1/N .
In the formula (3.343.34) we chose z = x1/N , and use the assumption. The primes
p in y < p ≤ x1/N satisfy (x/p)1/N ≤ p ≤ (x/p)1/(N−1), then we can use the
assumption. Then

Φk(x, y) = Φk

(
x, x

1
N

)
+

∑
y<p≤x

1
N

ω
(

log x
log p
− 1
)

p log p
−

∑
y<p≤x

1
N

p

log p

+O

 ∑
y<p≤x

1
N

x

p log2 p

+O
(
x1− 1

N+1

)
.

(3.46)

The assumption leads us to

Φk

(
x, x

1
N

)
=

x

log x
1
N

ω(N)− x
1
N

log x
1
N

+O

(
x

log2 y

)
=

x

log y

log y

log x
N

(
1

N
+

1

N

∫ N−1

1

ω(v)dv

)
− y

log y
+

(
y

log y
− x

1
N

log x
1
N

)
+O

(
x

log2 y

)
=

x

log y

(
1

u
+

1

u

∫ N−1

1

ω(v)dv

)
− y

log y
+O

(
x

log2 y

)
.

The second sum in (3.463.46) is by Chebycheff’s estimate which is estimated as

∑
y<p≤x

1
N

p

log p
� x

1
N

log y

∑
y<p≤x

1
N

1� x
2
N

log2 y
,
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and the third sum in (3.463.46) is estimated as

∑
y<p≤x

1
N

x

p log2 p
� x

log2 y

∑
y<p≤x

1
N

1

p
� x

log2 y
,

by the Merten’s formula (3.413.41). For the first sum in (3.463.46), by (3.413.41) we shall
write

∑
y<p≤x1/N

ω
(

log x
log p
− 1
)

p log p
=

∫ x1/N

y

ω
(

log x
logw
− 1
)

logw
d

(∑
p≤w

1

p

)

=

∫ x
1
N

y

ω
(

log x
logw
− 1
)

logw
d log logw +

∫ x
1
N

y

ω
(

log x
logw
− 1
)

logw
dR(w)

=: C +D (say).

We put v = log x/ logw in C, then we get

C =
1

log y

1

u

∫ u−1

N−1

ω(v)dv.

For D, by integration by parts, we write

D =

ω
(

log x
logw
− 1
)

logw
R(w)

x
1/N

y

+

∫ x
1
N

y

ω′
(

log x
logw
− 1
)

log x

w log3w
R(w)dw

+

∫ x
1
N

y

ω
(

log x
logw
− 1
)

w log2w
R(w)dt

=: D1 +D2 +D3 (say).

Since ω is bounded we have D1 = O(1/ log2w), and

D3 �
1

log3 y

∫ x
1
N

y

1

w
dw � 1

log2 y
.

For D2 we shall remark that ω′ is also bounded and

D2 �
log x

log3 y

∫ x1/N

y

1

w logw
dw � 1

log2 y
.
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By the above argument, we have

Φk(x, y) =
x

log y

(
1

u
+

1

u

∫ N−1

1

ω(v)dv

)
− y

log y

+
x

log y

1

u

∫ u−1

N−1

ω(v)dv +O

(
x

log2 y

)
,

where the above O-constant does not depend on k. Thus the completion of the
proof.

3.8 Proof of theorem 3.5.23.5.2

We shall prove Theorem 3.5.23.5.2. The first assertion of (3.303.30) is trivial. In fact, if
there is a non k-free integer n ≤ x whose prime factor p > y with the condition
x1/k < y ≤ x, then n ≥ pk > x. This is a contradiction. Therefore the assertion
holds for x1/k < y ≤ x.

Next we shall try to prove the second assertion of (3.303.30). For x1/(k+1) ≤ y <

x1/k, we choose z = x1/k in the Buchstab identity (3.363.36) of Lemma 3.6.23.6.2 to get

Dk(x, y) =
∑

y<p≤x
1
k

k−1∑
j=1

Dk

(
x

pj
, p

)
+

∑
y<p≤x1/k

∞∑
j=k

Φ

(
x

pj
, p

)
.

In this situation, we shall remark that the primes p (y < p ≤ x1/k) satisfy

(
x

pj

) 1
k−j+1

≤ p ≤
(
x

pj

) 1
k−j

(j = 1, 2, . . . , k − 1).

By the previous result we know Dk(x/p
j, p) = 0 for j = 1, 2, . . . , k − 1, so we

have

Dk(x, y) =
∑

y<p≤x
1
k

∞∑
j=k

Φ

(
x

pj
, p

)
.

Here if j ≥ k + 1 we observe that x/pj < x/yk+1 ≤ 1 and Φ(x/pj, p) = 0. If
j = k we observe that 1 ≤ x/pk < p. Then we see that

Φ

(
x

pk
, p

)
=

∑
n≤x/pk
q|n⇒q>p

1 = 1.
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Therefore by (3.53.5) we obtain the second assertion in (3.303.30), that is,

Dk(x, y) = 1 +
∑

y<p≤x
1
k

1 =
kx

1
k

log x
− y

log y
+O

(
x

1
k

log2 y

)
.

To show the third assertion in (3.303.30), first we shall considerDk(x, y) for x1/(k+2) ≤
y < x1/(k+1) (the case l = 1). Taking z = x1/(k+1) in (3.363.36) and using the second
assertion in (3.303.30) we get

Dk(x, y) =
∑

y<p≤x
1
k+1

k−1∑
j=1

Dk

(
x

pj
, p

)
+

∑
y<p≤x

1
k+1

∞∑
j=k

Φ

(
x

pj
, p

)
+O

(
x

1
k

log y

)
.

We shall consider the second sum. If j ≥ k+2, then
∑

j≥k+2 Φ(x/pj, p) = 0, since
x/pj < x/yk+2 ≤ 1. In the case of j = k + 1, we observe that 1 ≤ x/pk+1 < p

and Φ(x/pk+1, p) = 1. By the PNT (3.53.5) we have

∑
y<p≤x

1
k+1

Φ

(
x

pk+1
, p

)
� x

1
k+1

log y
.

For
∑

y<p≤x1/(k+1) Φ(x/pk+1, p), we shall remark that (x/pk)1/2 ≤ p ≤ x/pk. Then
by the formula (3.63.6) we get

∑
y<p≤x

1
k+1

Φ

(
x

pk
, p

)
�

∑
y<p≤x

1
k+1

x

pk log p
= x

∫ x
1
k+1

y

dπ(t)

tk log t
.

Using the PNT (3.53.5) and y1−k > x
1−k
k+1 we have an upper bound of the right hand

side.

∫ x
1
k+1

y

dπ(t)

tk log t
=

[
π(t)

tk log t

]x 1
k+1

y

+

∫ x
1
k+1

y

kt−k−1

log t
π(t)dt+

∫ x
1
k+1

y

t−k−1

log2 t
π(t)dt

� y1−k

log2 y
.
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Then we see that

Dk(x, y) =
∑

y<p≤x
1
k+1

k−1∑
j=1

Dk

(
x

pj
, p

)
+O

(
xy1−k

log2 y

)
+O

(
x

1
k

log y

)
.

Here we shall remark that

xy1−k > x · x
1−k
k+1 = x

1
k+1 and

2

k + 1
>

1

k
(k ≥ 2).

Then

Dk(x, y) =
∑

y<p≤x
1
k+1

k−1∑
j=1

Dk

(
x

pj
, p

)
+O

(
xy1−k

log2 y

)
for x

1
k+2 ≤ y < x

1
k+1 .

For the remainder sum we note that the primes p ∈ (y, x1/(k+1)] satisfy the
following inequalities.

(
x

pj

) 1
k+2−j

≤ p ≤
(
x

pj

) 1
k+1−j

(j = 1, 2, . . . , k − 1).

In the cases of j = 2, 3, . . . , k − 1, by the first result in (3.303.30) we learn that

∑
y<p≤x

1
k+1

k−1∑
j=2

Dk

(
x

pj
, p

)
= 0.

In the case of j = 1, by the second result in (3.303.30) we get

∑
y<p≤x

1
k+1

Dk

(
x

p
, p

)
�

∑
y<p≤x

1
k+1

(
x

p

) 1
k 1

log p
= x

1
k

∫ x
1
k+1

y

dπ(t)

t
1
k log t

.

By the PNT (3.53.5) we have

∫ x
1
k+1

y

dπ(t)

t
1
k log t

� x
k−1
k(k+1)

log2 y
,
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therefore since y1−k > x(1−k)/(k+1)

∑
y<p≤x

1
k+1

Dk

(
x

p
, p

)
� x

2
k+1

log2 y
=
x

(k+1)+2−(k+1)
k+1

log2 y
=
x1+ 1−k

k+1

log2 y
� xy1−k

log2 y

for x1/(k+2) ≤ y < x1/(k+1).

Collecting these estimates we see that the third assertion of (3.303.30) is true for
l = 1.

Next we shall assume that the assertion is true for l = 1, 2, . . . ,m, and
consider an estimate on Dk(x, y) in the case l = m + 1 i.e., x1/(k+m+2) ≤ y <

x1/(k+m+1). In (3.363.36) we take z = x1/(k+m+1), and use the assumption, then

Dk(x, y) =
∑

y<p≤x
1

m+k+1

k−1∑
j=1

Dk

(
x

pj
, p

)
+

∑
y<p≤x

1
m+k+1

∞∑
j=k

Φ

(
x

pj
, p

)

+O

(
xy1−k

log2 y

)
.

On the second sum, when j ≥ k + m + 2, since x/pj < x/yk+m+2 ≤ 1 then∑
j≥k+m+2 Φ(x/pj, p) = 0. For the case j = k + m + 1, since 1 ≤ x/pk+m+1 < p

we get by the PNT (3.53.5) and y1−k > x(1−k)/(k+m+1)

∑
y<p≤x

1
k+m+1

Φ

(
x

pk+m+1
, p

)
� x

1
k+m+1

log y
� xy1−k

log2 y
.

When k ≤ j ≤ k +m, we shall remark that

(
x

pj

) 1
k+m+2−j

≤ p ≤
(
x

pj

) 1
k+m+1−j

.

We shall use the formula (3.63.6) and the PNT (3.53.5),

∑
y<p≤x

1
k+m+1

k+m∑
j=k

Φ

(
x

pj
, p

)
∑

y<p≤x
1

k+m+1

(
x

pk log p
+

x

pk+1 log p
+ · · ·+ x

pk+m log p

)
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� x
∑

y<p≤x
1

k+m+1

1

pk log p
= x

∫ x
1

k+m+1

y

dπ(t)

tk log t

� xy1−k

log2 y
.

That is, we get

∑
y<p≤x

1
k+m+1

∞∑
j=k

Φ

(
x

pj
, p

)
� xy1−k

log2 y
for x

1
k+m+2 ≤ y < x

1
k+m+1 .

On
∑

y<p≤x1/(k+m+1)

∑k−1
j=1 Dk(x/p

j, p), we remark that

(
x

pj

) 1
k+m+2−j

≤ p ≤
(
x

pj

) 1
k+m+1−j

(1 ≤ j ≤ k − 1).

Hence we can apply the assumption of induction, and by the formula (3.413.41) we
obtain

∑
y<p≤x

1
k+m+2

k−1∑
j=1

Dk

(
x

pj
, p

)

�
∑

y<p≤x
1

k+m+1

(
xp1−k

p log2 p
+

xp1−k

p2 log2 p
+ · · ·+ xp1−k

pk−1 log2 p

)

� xy1−k

log2 y

∑
y<p≤x

1
k+m+1

1

p

=
xy1−k

log2 y

(
log

(
1

k +m+ 1

log x

log y

)
+O

(
1

log y

))
� xy1−k

log2 y
.

From the above arguments we get

Dk(x, y)� xy1−k

log2 y
for x

1
k+m+2 ≤ y < x

1
k+m+1 .

It completes the proof of Theorem 3.5.23.5.2.
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Remark 3.8.1 We shall deduce a simple lower bound for Dk(x, y). Let x and
y be satisfied x1/(k+l+1) ≤ y < x1/(k+l) where l = 1, 2, . . .. We take z = x1/(k+l)

in (3.363.36), then by PNT (3.53.5) we have

Dk(x, y) ≥
∑

y<p≤x
1
k+l

∞∑
j=k

Φ

(
x

pj
, p

)
=

∑
y<p≤x

1
k+l

k+l∑
j=k

Φ

(
x

pj
, p

)
≥ (l + 1)

∑
y<p≤x

1
k+l

1

=
(l + 1)(k + l)x

1
k+l

log x
− (l + 1)y

log y
+O

(
(l + 1)x

1
k+l

log2 y

)
.

3.9 Proof of theorem 3.5.33.5.3

Finally, we shall prove Theorem 3.5.33.5.3. To prove this, we shall use the PNT of
the form (3.313.31). When y is finite, the assertion (3.323.32) is trivial. From here let
y0 ≥ 2 be sufficiently large and y ≥ y0. We shall define two functions ∆(x, y)

and ∆m(x, y) by

Dk(x, y) =
xy1−k

log2 y
∆(x, y),

∆m := sup{|∆(x, y)| | y ≥ y0, k + 1 < u ≤ m},

where u = log x/ log y and x1/(k+1) ≥ y ≥ y0.
We shall try to show ∆m(x, y) < +∞ for any integerm ≥ k+2. Form = k+2

we observe that ∆k+2 is finite by Theorem 3.5.23.5.2. Now assume that ∆m is finite
for m = k + 2, k + 3, . . . ,M . We shall consider ∆M+1 (i.e. k + 1 < u ≤M + 1).
In Lemma 3.6.23.6.2 we shall take z = x1/(k+1), then

Dk(x, y) =
∑

y<p≤x
1
k+1

k−1∑
j=1

Dk

(
x

pj
, p

)
+

∑
y<p≤x

1
k+1

∑
j≥k

Φ

(
x

pj
, p

)
+O

(
xy1−k

log2 y

)
.

Since Φ(x/pj, p)� x/pj we have

∑
y<p≤x

1
k+1

∑
j≥k+1

Φ

(
x

pj
, p

)
� x

∑
y<p≤x

1
k+1

1

pk+1
� x

yk
� xy1−k

log2 y
.
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On the other hand, by the PNT (3.313.31) since Φ(x/pk, p) � x/(pk log p), hence
we get

∑
y<p≤x

1
k+1

∑
j≥k

Φ

(
x

pj
, p

)
� xy1−k

log2 y
.

On
∑

y<p≤x1/(k+1)

∑k−1
j=1 Dk

(
x
pj
, p
)
, we observe that

log (x/pk−1)

log p
≤ · · · ≤ log (x/p2)

log p
≤ log (x/p)

log p
< u− 1 ≤M.

Then, by the assumption of induction we see that

∑
y<p≤x

1
k+1

k−1∑
j=2

Dk

(
x

pj
, p

)
≤ xy1−k

log2 y

∑
y<p≤x

1
k+1

1

p2
� xy1−k

log2 y
,

where the O-constant is independent on k, and by also (3.413.41)

∑
y<p≤x

1
k+1

Dk

(
x

p
, p

)
≤ xy1−k∆M

∑
y<p≤x

1
k+1

1

p log2 p
≤ 3

4

xy1−k

log2 y
∆M .

From the above arguments we get ∆M+1 ≤ 3
4
∆M + C (C > 0 is a constant).

This implies that ∆M+1 ≤ 4C. It completes the proof of Theorem 3.5.33.5.3.
By Theorems 3.5.13.5.1 and 3.5.33.5.3 we have a corollary.

Corollary 3.9.1 By the PNT (3.313.31) we have

Φk(x, y) =
xω(u)− y

log y
+O

(
x

log2 y

)
for x ≥ y ≥ 2 uniformly.

Proof. By the grace of the PNT (3.313.31), it is known that the formula (3.63.6) is
valid for x ≥ y ≥ 2 uniformly. Since Φk(x, y) = Φ(x, y) + Dk(x, y), we get the
assertion for x ≥ y ≥ 2.
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