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Synopsis

The first part of my thesis is concerned with black holes in string theory. Black
holes are classical solutions of the equations of motion of general theory of relativity.
Each black hole is surrounded by an event horizon that acts as a one way membrane.
Nothing, including light, can escape a black hole horizon. Thus classically the horizon of
a black hole behaves as a perfect black body at zero temperature.

This picture undergoes a dramatic modification in quantum theory. There a black
hole behaves as a thermodynamic system with definite temperature, entropy etc. In
particular, the temperature and the Bekenstein-Hawking entropy of a black hole is given
by the simple formulæ:

T =
κ

2π
, SBH =

A

4GN

,

where κ is the surface gravity – acceleration due to gravity at the horizon of the black
hole (measured by an observer at infinity), A is the area of the event horizon and GN is
the Newton’s gravitational constant. We have set ~ = c = kB = 1.

Now, for ordinary objects, the entropy of a system has a microscopic interpretation.
If we fix the macroscopic parameters and count the number of quantum states (dubbed
microstates), each of which has the same charge, energy etc., then we can define the
microscopic (statistical) entropy as:

Smicro = ln dmicro ,

where dmicro is the number of such microstates. This naturally leads to the question
whether the entropy of a black hole has a similar statistical interpretation.

In order to investigate the statistical origin of black hole entropy, we need a quantum
theory of gravity. Since string theory gives a framework for studying classical and quantum
properties of black holes, we shall carry out our investigation in string theory. Now,
even though there is a unique string (M)-theory, it can exist in many different stable
and metastable phases. However, there are some issues like those involving black hole

xiii



xiv

thermodynamics, which are universal, and hence can be addressed in any phase of string
theory. We shall make use of this freedom to study these issues in a special class of phases
of string theory with a large amount of unbroken supersymmetry.

One of my research projects focusses on the identification of the hair degrees of
freedom for an extremal black hole. Macroscopic entropy of an extremal black hole is
expected to be determined completely by its near horizon geometry. Thus two black holes
with identical near horizon geometries should have identical macroscopic entropy, and the
expected equality between macroscopic and microscopic entropies will then imply that
they have identical degeneracies of microstates. An apparent counterexample is provided
by the 4D-5D lift relating BMPV black hole to a four dimensional black hole. The two
black holes have identical near horizon geometries but different microscopic spectrum.
We suggest that this discrepancy can be accounted for by black hole hair, – degrees of
freedom living outside the horizon and contributing to the degeneracies. We identify these
degrees of freedom for both the four and the five dimensional black holes and show that
after their contributions are removed from the microscopic degeneracies of the respective
systems, the result for the four and five dimensional black holes match exactly.

The second part of my thesis deals with the Galilean Conformal Algebras (GCA),
which correspond to the generators of a non-relativistic conformal symmetry obtained by
a parametric contraction of the relativistic conformal group.

In the paper “Supersymmetric Extension of Galilean Conformal Algebras”, we ex-
tend the analysis to include supersymmetry in four spacetime dimensions. We work at the
level of the co-ordinates in superspace to construct the N = 1 Super Galilean conformal
algebra. One of the interesting outcomes of the analysis is that one is able to naturally
extend the finite algebra to an infinite one. We also comment on the extension of our
construction to cases of higher N .

In a subsequent work, “Supersymmetric Extension of GCA in 2d”, we derive the
infinite dimensional Supersymmetric Galilean Conformal Algebra (SGCA) in the case of
two spacetime dimensions by performing group contraction on 2d superconformal algebra.
We also obtain the representations of the generators in terms of superspace coordinates.
Here we find realisations of the SGCA by considering scaling limits of certain 2d SCFTs
which are non-unitary and have their left and right central charges become large in mag-
nitude and opposite in sign. We focus on the Neveu-Schwarz sector of the parent SCFTs
and develop the representation theory based on SGCA primaries, Ward identities for their
correlation functions and their descendants which are null states.
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Chapter 1

Introduction

1.1 Introduction to black holes

Black holes are classical solutions of the equations of motion of general theory of relativity.
Each black hole is surrounded by an event horizon that acts as a one way membrane.
Nothing, including light, can escape a black hole horizon. Thus classically the horizon of
a black hole behaves as a perfect black body at zero temperature.

This picture undergoes a dramatic modification in quantum theory [1, 2, 3, 4]. There
a black hole behaves as a thermodynamic system with definite temperature, entropy etc.
In particular, the temperature and the Bekenstein-Hawking entropy of a black hole is
given by the simple formulæ:

T =
κ

2π
, SBH =

A

4GN

, (1.1.1)

where κ is the surface gravity – acceleration due to gravity at the horizon of the black
hole (measured by an observer at infinity), A is the area of the event horizon and GN is
the Newton’s gravitational constant. We have set ~ = c = kB = 1.

Now, for ordinary objects, the entropy of a system has a microscopic interpretation.
If we fix the macroscopic parameters (e.g. total electric charge, energy etc.) and count
the number of quantum states (dubbed microstates), each of which has the same charge,
energy etc., then we can define the microscopic (statistical) entropy as:

Smicro = ln dmicro , (1.1.2)

where dmicro is the number of such microstates. This naturally leads to the question
whether the entropy of a black hole has a similar statistical interpretation. As pointed
out by Hawking, answering this question in the affirmative is essential for any consistent
theory of quantum gravity as otherwise it leads to violation of the laws of quantum
mechanics.

3



4 CHAPTER 1. INTRODUCTION

In order to investigate the statistical origin of black hole entropy, we need a quantum
theory of gravity. Since string theory gives a framework for studying classical and quantum
properties of black holes, we shall carry out our investigation in string theory. Now, even
though there is a unique string (M)-theory, it can exist in many different stable and
metastable phases. Without knowing precisely which phase of string theory describes the
part of the universe we live in, we cannot directly compare string theory to experiments.
However, there are some issues like those involving black hole thermodynamics, which
are universal, and hence can be addressed in any phase of string theory. We shall make
use of this freedom to study these issues in a special class of phases of string theory
with a large amount of unbroken supersymmetry. Since these phases have Bose-Fermi
degenerate spectrum of states, they do not describe the observed world. Nevertheless
they contain black hole solutions and hence can be used to study issues involving black
hole thermodynamics.

Many aspects of black hole thermodynamics have been studied in string theory, but
we shall focus our attention on one particular aspect: entropy of the black hole in the
zero temperature limit (ı.e., supersymmetric, extremal black holes). The advantage of
studying such a black hole is that it is a stable state of the theory. The general strategy
is as follows [5, 6]:

1. Identify a supersymmetric black hole carrying a certain set of electric charges
{Qi} and magnetic charges {Pi}, and calculate its entropy SBH(Q,P ) using the
Bekenstein-Hawking formula.1

2. Identify the supersymmetric quantum states in string theory carrying the same
set of charges. These can include not only the fundamental strings but also other
objects in string theory which are required for consistency of the theory (e.g. D-
branes, Kaluza-Klein monopoles). We then calculate the number dmicro(Q,P ) of
these states.

3. Compare Smicro ≡ ln dmicro(Q,P ) with SBH(Q,P ).

For a class of supersymmetric extremal black holes in type IIB string theory on
K3× S1, Strominger and Vafa [6] computed the Bekenstein-Hawking entropy via (1.1.1)
and found agreement with the statistical entropy defined in (1.1.2). This agreement
is quite remarkable since it relates a geometric quantity in black hole space-time to a
counting problem that does not make any direct reference to black holes. At the same
time, one should keep in mind that the Bekenstein-Hawking formula is an approximate
formula that holds in classical general theory of relativity. While string theory gives
a theory of gravity that reduces to Einstein’s theory when gravity is weak, there are

1Since we are considering a generic phase of string theory, it may have more that one Maxwell field
and hence multiple charges.
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corrections.2 Thus the Bekenstein-Hawking formula for the entropy works well only when
gravity at the horizon is weak. Typically this requires the charges to be large. Similarly,
the computation of dmicro in [6] was also carried out in the limit of large charges, so that
instead of having to carry out an exact counting of states, one can use some appropriate
asymptotic formula to compute it. Thus the agreement between SBH and Smicro, seen in
[6], can be regarded as an agreement in the limit of large size.

This leads to the following question: For ordinary systems, thermodynamics provides
an accurate description only in the limit of large volume. Is the situation with black holes
similar, ı.e., do they only capture the information about the system in the limit of large
charge and mass? Or, could it be that the relation A/4GN = ln dmicro is an approximation
to an exact result? The goal of the string theorists to argue for the second possibility by
giving an exact formula to which the above is an approximation.

In order to address this issue, we have to work on two fronts:

1. Count the number of microstates to greater accuracy.

2. Calculate the black hole entropy to greater accuracy.

We can then compare the two to see if they agree beyond the large charge limit.

Let us review a a summary of the progress on both the fronts:3

1. Progress in microscopic counting: In a wide class of phases of string theory
with 16 or more unbroken supercharges, one now has a complete understanding of
the microscopic ‘degeneracies’ of supersymmetric black holes [8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53]. Typically, such
theories have multiple Maxwell fields and the black hole is characterized by multiple
electric and magnetic charges, collectively denoted by (Q,P ). It turns out that for a
wide class of charge vectors (all charge vectors in some cases), dmicro(Q,P ) in these
theories can be explicitly computed and can be expressed as Fourier expansion
coefficients of some functions with remarkable symmetry properties. This provides
us with the ‘experimental data’ to be explained by a ‘theory of black holes’, giving
a powerful tool for checking the internal consistency of string theory. Needless to
say, in the large charge limit, these degeneracies agree with the exponential of the
Bekenstein-Hawking entropy of black holes carrying the same set of charges.

2. Progress in black hole entropy computation: On the macroscopic side, we
would like to ask whether we can find an exact formula for the black hole entropy
that can be compared with ln dmicro(Q,P ). This will require us to take into account

2In string theory, even at classical level, we have higher derivative (α′) corrections. This is because
strings are not point objects. So even at classical level, there will be corrections to the Bekenstein-Hawking
formula. Besides this, there will also be quantum corrections.

3A detailed discussion and review on the above issues can be found in [7].
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(a) stringy (α′) corrections, and

(b) quantum (gs) corrections.

Quantum entropy function is an approach to finding such a general formula for
for the full quantum computation of the black hole entropy from the macroscopic
side, using AdS2/CFT1 correspondence. This is a proposal for computing quantum
corrected entropy in terms of a path integral of string theory in the near horizon
geometry [54, 55].

We find that so far string theory has been successful in providing an explanation of
the entropy of a certain class of supersymmetric extremal black holes in terms of micro-
scopic degrees of freedom. Initial studies focussed on black holes carrying large charges
for which the classical two derivative action, and the associated formula for the entropy
due to Bekenstein and Hawking, is sufficient to compute the entropy. This assumption
can be relaxed to some extent using Wald’s formula for black hole entropy [56, 57, 58, 59]
that takes into account higher derivative corrections to the classical action. However
a complete expression for the entropy of a black hole receives contribution from higher
derivative corrections as well as quantum corrections. In fact, one finds that quantum
entropy function formalism is not sensitive to the nature of the solution away from the
horizon [54]. Wald’s classical formula for the entropy, which coincides with the classical
limit of quantum entropy function, also satisfies this criterion.

This simple assumption has a non-trivial consequence: two different black holes with
identical near horizon geometries have the same macroscopic entropy. The equality of the
macroscopic and the microscopic entropy would then imply that they must have the same
microscopic entropy. There is however a counterexample: a rotating black hole in type
IIB string theory compactified on K3×S1, known as the BMPV black hole [60], placed in
a flat transverse space and in Taub-NUT space [61] have identical near horizon geometries
[62] but different microscopic degeneracies [8, 9, 10, 12, 17, 28, 63]!

In the paper [64], we suggest that this discrepancy can be accounted for by black
hole hair, – degrees of freedom living outside the horizon and contributing to the degenera-
cies. Whereas an appropriate computation in string theory in the near horizon geometry
of the black hole would give the macroscopic entropy associated with the horizon, the
full macroscopic entropy also involves contribution from the hair degrees of freedom. For
a supersymmetric black hole, the latter can be computed by identifying classical super-
symmetry preserving normalizable deformations of the black hole solution with support
outside the horizon, and then carrying out geometric quantization on the space of these
solutions. We identify a class of such deformations both for the BMPV black hole in flat
transverse space and BMPV black hole in Taub-NUT space and found that after remov-
ing the contribution from these hair degrees of freedom from the microscopic degeneracy
formulæ, one obtains identical result for the two black holes. This can then be identified
as the common contribution to the degeneracy coming from the horizon. We will study
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this in detail in §3.

1.2 Introduction to Galilean Conformal Algebras

The non-relativistic versions of the AdS/CFT conjecture [65] have recently received a lot of
attention. The motivation has mainly been studying real-life systems in condensed matter
physics via the gauge-gravity duality4. It was pointed out in [67] that the Schrödinger
symmetry group [68, 69, 70], a non-relativistic version of conformal symmetry, is relevant
to the study of cold atoms. A gravity dual possessing these symmetries was then proposed
in [71, 72].

Recently, the study of the actual non-relativistic limit of the conjecture was initi-
ated in [73], where the authors proposed to study a non-relativistic conformal symmetry
obtained by a parametric contraction of the relativistic conformal group. One of the ad-
ditional motivations for this is that there might be possibly interesting tractable sectors
of the parent conjecture, like the BMN limit [74], which emerge when we look at such
a non-relativistic limit. The process of group contraction of the relativistic conformal
group SO(d+ 1, 2) in d+ 1 space-time dimensions[75], leads in d = 3 to a fifteen param-
eter group (like the parent SO(4, 2) group) which contains the ten parameter Galilean
subgroup. This Galilean conformal group is to be contrasted with the twelve parameter
Schrödinger group (plus central extension) with which it has in common only the non-
centrally extended Galilean subgroup. The Galilean conformal group is different from the
Schrödinger group in some crucial respects. For instance, the dilatation generator D̃ in
the Schrödinger group scales space and time differently xi → λxi, t → λ2t. Whereas the
corresponding generator D in the Galilean Conformal Algebra (GCA) scales space and
time in the same way xi → λxi, t→ λt. Relatedly, the GCA does not admit a mass term
as a central extension. Thus, in some sense, this symmetry describes “massless” or “gap-
less” non-relativistic theories, like the parent relativistic group but unlike the Schrödinger
group.

One of the most interesting feature of the GCA is its natural extension to an infinite
dimensional symmetry algebra, somewhat analogous to the way the finite 2d conformal
algebra of SL(2, C) extends to two copies of the Virasoro algebra5. It is natural to expect
this necessary to be dynamically realized (perhaps partially) in actual systems possesing
the finite dimensional Galilean conformal symmetry. This partial realization is actually
observed in the non-relativistic Navier-Stokes equations [73].

It has been known (see [77] and references therein) that there is a notion of a

4See [66] for a recent review of AdS/Condensed Matter Theory (AdS/CMT) correspondence.
5Closely related infinite dimensional algebras have been studied in the context of statistical mechanical

systems in [76]. It would be interesting to study the precise connection as well as the potential realisations
in statistical mechanics further.
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“Galilean isometry” which encompasses the so-called Coriolis group of arbitrary time
dependent (but spatially homogeneous) rotations and translations. In this language, the
infinite dimensional algebra is that of “Galilean conformal isometries”. It contains one
copy of a Virasoro together with an SO(d) current algebra (on adding the appropriate
central extension). There has been interesting progress in this direction recently in [78].

In a follow-up work [79], we looked at representations and correlation functions of the
GCA. Among other things, it was found that the form of the three point function was fixed
upto a constant by the requirement of GCA invariance, like in the case of relativistic CFTs.
However, in the case of the Schrödinger algebra, the three point function is arbitrary upto
a function of a particular combination of variables. This is another indicator of the fact
that the GCA is a more natural non-relativistic limit of the parent theory. For other
related work on Galilean conformal algebras, see [80, 81].

The analysis in [73] was entirely classical, whereas in [79] (see also [80, 81]) the two
and three point correlation functions (of primary fields) were obtained as solutions of the
Ward identities for the finite part of the GCA (which arises as the contraction of SO(d, 2)).
Finally in [82], the quantum mechanical realisation of the GCA in two dimensions was
studied in great detail, where 2d GCFTs with nonzero central charges were obtained by
considering a somewhat unusual limit of non-unitary 2d CFTs.

A natural and immediate direction of interest is to try and generalize our construc-
tion to the supersymmetric case. The algebra was, as emphasised just above, obtained by
taking a natural parametric limit of the relativistic conformal algebra. We thus expect
that the GCA would be a sub-sector of all relativistic theories. Particularly, in the context
of AdS/CFT, it is natural to first try and extend the analysis of the algebra to include
supersymmetry before we look to understand the details of the full field theory. We would
finally be interested in embedding the GCA in String Theory where we would need to
realize supersymmetric configurations.

So first we study the supersymmetric extension of GCA in 4d. Then we consider
the N = (1, 1) supersymmetric extension of GCFTs in 2d, dubbed “SGCFT”.

1.3 Plan of the report

We shall now give a brief plan of the chapters to follow:

In chapter 2, we will briefly review some of the known results on the counting of
quarter-BPS dyonic black holes in N = 4 supersymmetric string theories. This will lay
the necessary groundwork for understanding the next chapter.

In chapter 3, we will describe the work “Black hole hair removal”, where we identify
the hair degress of freedom both for the BMPV black hole in flat transverse space and
BMPV black hole in Taub-NUT space. We show that after subtracting out the contri-
bution from these hair degrees of freedom from the microscopic degeneracy formulæ, one
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obtains identical result for the two black holes.

In chapter 4, we will review the Galilean Conformal Algebras, describing how to
obtain them by the method of group contraction from relativistic conformal algebras. We
will also discuss their extension to an infinite dimensional symmetry algebra.

In chapter 5, we will perform a contraction on the N = 1 superconformal algebra in
(3 + 1)d to obtain a supersymmetric extension of the GCA in four spacetime dimensions.
We will also see how we can lift the SGCA to an infinite dimensional algebra.

In chapter 6, we will study the N = (1, 1) supersymmetric extension of the GCA in
two spacetime dimensions. We will discuss the representation theory, the Ward identities,
fusion rules etc. for these SGCA in 2d.

Lastly, in chapter 7, we end with some concluding remarks.
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Chapter 2

Microstate counting

In this chapter we shall survey the known results on the counting of quarter-BPS dyons
in N = 4 supersymmetric string theories.

2.1 The role of index

The counting of microstates is always done in a region of the moduli space where gravity
is weak and hence the states do not form a black hole. In order to be able to compare
it with the black hole entropy, we must focus on quantities which do not change as we
change the coupling from small to large value. So we need an appropriate index which
is protected by supersymmetry, and at the same time does not vanish identically when
evaluated on the microstates of interest. The relevant index in D = 4 turns out to be the
helicity trace index [83, 84].

Suppose we have a BPS state that breaks 4n supersymmetries. Then there will be
4n fermion zero modes (goldstinos) on the world-line of the state. Quantization of these
zero modes will produce Bose-Fermi degenerate states. Thus the usual Witten index
Tr(−1)F , which measures the difference between the number of bosonic and fermionic
states, will receive vanishing contribution from these states. To remedy this situation, we
define a new index called the helicity trace index:

B2n =
1

(2n)!
Tr{(−1)F (2h)2n} =

1

(2n)!
Tr{(−1)2h(2h)2n} , (2.1.1)

where h is the third component of the angular momentum in the rest frame. The trace
is taken over states carrying a fixed set of charges. For every pair of fermion zero modes,
Tr{(−1)F (2h)} gives a non-vanishing result i, leading to a non-zero contribution (−1)n

to B2n. On the other hand, any state that breaks more than 4n supersymmetries, will
have more then 2n pairs of fermion zero modes and will give vanishing contribution
to this trace. In particular, non-BPS states will not contribute, and the index will be

13
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protected from corrections as we vary the moduli (except at the walls of marginal stability
[85, 86, 87, 88, 89], which will be discussed in §2.4).

Quarter-BPS black holes in N = 4 supersymmetric string theories preserve four of
the sixteen supersymmetries, and hence break twelve supersymmetries. Thus the relevant
helicity trace index is B6. We shall now describe the microscopic results for B6 in a class
of N = 4 supersymmetric string theories. However, we must keep in mind that, since on
the microscopic side we compute an index, on the black hole side also we must compute
an index. Otherwise we cannot compare the results of microscopic and macroscopic
computations. It is described in [7, 55] how one can use black hole entropy to compute
the index B6 on the black hole side.

2.2 Microstate counting in heterotic string theory on

T 6

The simplest example of an N = 4 supersymmetric string theory is heterotic string theory
on T 6 (or equivalently type IIA or IIB string theory on K3 × T 2, as they are related by
duality transformations). This theory has 28 U(1) gauge fields arising from the Cartan
generators of the E8 × E8 (or SO(32)) gauge group, and the components of the metric
and the 2-form field along the six internal directions. Thus a generic charged state is
characterized by 28 dimensional electric charge vector Q and 28 dimensional magnetic
charge vector P . Under the O(6, 22; ZZ) T-duality symmetry of the theory, the charges Q
and P transform as vectors. This allows us to define T-duality invariant bilinears in the
charges1: Q2, P 2, Q · P .

Our goal is to compute the index B6(Q,P ). The computation is done in the dual

frame: type IIB on K3 × S1 × S̃1, where S1 and S̃1 represent two circles which are not
factored metrically.2 In this frame, we compute B6 for a rotating D1-D5-p system[60] in
Kaluza-Klein (KK) monopole (or equivalently Taub-NUT) background. More specifically,
we take a system containing [10]

1. one KK monopole along S̃1;

2. one D5-brane wrapped on K3× S1;

3. (Q̃1 + 1) D1-branes wrapped on S1;

4. −n units of momentum along S1;

1Note that these bilinears are not positive definite as O(6, 22; ZZ)-invariant matrices have both positive
and negative eigenvalues.

2The problem with carrying out this computation in heterotic frame is that there the system will
contain NS5-branes, and the coupling constant diverges at the core of these branes.
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5. J units of momentum along S̃1.

The momentum along S̃1 appears as an angular momentum at the center of the Taub-
NUT space [62]. Thus, macroscopically, the system describes a rotating BMPV black hole
[105] at the center of the Taub-NUT space [10]. In the weak coupling limit, the dynamics
is given by that of a system of decoupled harmonic oscillators, and an exact computation
of B6 is possible. The result is then expressed in terms of the T-duality invariant bilinears
Q2, P 2, Q · P in the original heterotic frame, using the fact that the system described
above has

Q2 = 2n, P 2 = 2Q̃1, Q · P = J . (2.2.1)

If Q2, P 2 and Q · P were the only T-duality invariants, ı.e., if any two dyons with the
same Q2, P 2 and Q · P had been related to each other by a T-duality transformation,
then the result for B6(Q,P ) for the specific system described above will give the result for
all dyons in the theory. However it turns out that this is not quite correct. Nevertheless,
any charge vector satisfying the condition [22]

gcd{QiPj −QjPi , 1 ≤ i, j ≤ 28} = 1 , (2.2.2)

can be related to the above system by a T-duality transformation [31]. Thus the formula
we quote below is valid only for this special class of charges.

Let us denote by B6(Q̃1, n, J) the sixth helicity trace associated with the system
described above. We define the partition function as:

Z(ρ, σ, v) =
∑

eQ1,n,J

(−1)J B6(Q̃1, n, J) e2πi( eQ1ρ+nσ+Jv) . (2.2.3)

The computation of Z proceeds as follows. In the weakly coupled type IIB description,
the low energy dynamics of the system is described by three weakly interacting pieces:

1. The closed string excitations around the KK monopole.

2. The dynamics of the D1-D5 center of mass coordinate in the KK monopole back-
ground.

3. The motion of the D1 branes along K3.

The dyon partition function is obtained as the product of the partition functions of these
three subsystems [17].3 The analysis can be simplified by taking the size of S1 to be

3A factor of (−1)J+1 in (2.2.3) was missed in [17]. The (−1)J factor arises because in five dimensions,
at the center of the KK monopole, we have (−1)F = (−1)J+2h instead of (−1)2h[13]. An overall factor of
−1, which has been absorbed in the definition of B6 in (2.2.3), arises from the partition function of the
quantum mechanics describing the D1-D5-brane motion in the KK monopole background[28]. A detailed
derivation of many of the results given in this section has been reviewed in [28].
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large compared to other dimensions, so that we can regard each subsystem as a 1+1
dimensional CFT. Since BPS condition forces the modes carrying positive momentum
along S1 (right-moving modes) to be frozen into their ground state, only left-moving
modes can be excited. We shall now describe the contribution to Z from each subsystem.

First consider the fields describing the dynamics of KK monopole. These include

1. 3 left-moving and 3 right-moving bosons arising from its motion in the 3 transverse
directions;

2. 2 left-moving and 2 right-moving bosons arising from the components of 2-form
fields along the harmonic 2-form in Taub-NUT space [120, 121];

3. 19 left-moving and 3 right-moving bosons, arising from the components of the 4-
form field along the wedge product of the harmonic 2-form on Taub-NUT and a
harmonic 2-form on K3;

4. 8 right-moving goldstino fermions associated with the eight supersymmetries which
are broken by the KK monopole.

Since the right-moving modes are frozen into their ground state, the contribution to the
partition function from the KK-monopole dynamics, after separating out the contribution
from fermion zero modes which go into the helicity trace, is equal to that of 24 left-moving
bosons [17]:

ZKK = e−2πiσ

∞∏
n=1

{
(1− e2πinσ)−24

}
. (2.2.4)

The overall factor of e−2πiσ is a reflection of the fact that the ground state of the Kaluza-
Klein monopole carries a net momentum of 1 along S1.

The dynamics of the D1-D5 center of mass motion in the KK monopole background is
described by a supersymmetric sigma model with Taub-NUT space as the target space. By
taking the size of the Taub-NUT space to be large, we can take the oscillator modes to be
those of a free field theory, but the zero mode dynamics is described by a supersymmetric
quantum mechanics problem. The contribution is found to be [17]

ZCM = e−2πiv

∞∏
n=1

{
(1− e2πinσ)4 (1− e2πinσ+2πiv)−2 (1− e2πinσ−2πiv)−2

}
e−2πiv (1−e−2πiv)−2 .

(2.2.5)

The third component comprises D1-brane motion along K3. This can be computed
as outlined below [63]:

1. First consider a single D1-brane, wrapped k times along S1 and carrying fixed mo-
menta along S1 and S̃1. The dynamics of this system is described by a supersym-
metric sigma model with target space K3. The number of states of this system can
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be counted by the standard method of going to the orbifold limit. After removing
a trivial degeneracy factor associated with fermion zero mode quantization, the net
number of bosonic minus fermionic states, carrying momentum −l along S1 and j
along S̃1, is given by c(4lk − j2), where c(n) is defined as:

F (τ, z) ≡ 8

[
ϑ2(τ, z)2

ϑ2(τ, 0)2
+
ϑ3(τ, z)2

ϑ3(τ, 0)2
+
ϑ4(τ, z)2

ϑ4(τ, 0)2

]
, (2.2.6)

F (τ, z) =
∑
j∈zz,n

c(4n− j2) e2πinτ+2πizj . (2.2.7)

Physically, c(4n−j2) counts the number of BPS states in the supersymmetric sigma
model with target space K3 with L0 = n and J3 = j/2, where J3 denotes the third
component of the SU(2) R-symmetry current.

2. A generic state contains multiple D1-branes of this type, carrying different amounts
of winding along S1 and different momenta along S1 and S̃1. The total number of
states can be determined from the result of step 1 by simple combinatorics.

The net contribution to the partition function from D1-brane motion along K3 is [63]:

ZD1 = e−2πiρ
∏

l,j,k∈Z
k>0,l≥0

{
1− e2πi(lσ+kρ+jv)

}−c(4lk−j2)

, (2.2.8)

After taking the product of the component partition functions (2.2.4), (2.2.5) and
(2.2.8), we get [17]

Z = e−2πi(ρ+σ+v)
∏

l,j,k∈Z
k≥0,l≥0,j<0 for k=l=0

{
1− e2πi(lσ+kρ+jv)

}−c(4lk−j2)

, (2.2.9)

where we have used the explicit values of c(u) to express the contribution from (2.2.4)
and (2.2.5) in terms of c(n). Indeed these two factors give the k = 0 term in (2.2.9).
Eq.(2.2.9) can be expressed as

Z(ρ, σ, v) = 1/Φ10(ρ, σ, v) . (2.2.10)

Here Φ10 is a well known function, known as the weight 10 Igusa cusp form of Sp(2, ZZ)
[108, 109].4 The formula for Z given above was conjectured in [8].

4Sp(2, ZZ) includes the SL(2, ZZ) S-duality group, but it is a much bigger group than the S-duality
group of string theory. Thus it is not completely understood why Z has Sp(2, ZZ) symmetry (see [12,
20, 43] for some attempts in this direction). In fact, this property of Z comes out at the very end
after combining the results from the individual subsystems. But once we arrive at this final form, these
symmetries can be conveniently used to analyse the asymptotic behaviour of Z.
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Eq.(2.2.3) can be inverted to express B6(Q̃1, n, J) as

−B6(Q̃1, n, J) = (−1)J+1

∫
dρdσdv e−2πi( eQ1ρ+nσ+Jv) Z(ρ, σ, v) . (2.2.11)

We shall express this in a more duality invariant notation using (2.2.1):

−B6(Q,P ) = (−1)Q·P+1

∫
dρdσdv e−πi(P

2ρ+Q2σ+2Q·Pv) Z(ρ, σ, v) . (2.2.12)

2.3 Asymptotic expansion

In order to compare (2.2.12) with the black hole entropy, we need to find its behaviour for
large Q2, P 2, Q.P . It turns out that this is controlled by the behaviour of Z at its poles,
which in turn are at the zeroes of Φ10 [8]. The location of the zeroes of Φ10 as well as
the behaviour of Φ10 around these zeroes can be determined using its modular properties.
We perform one of the three integrals using the residue theorem, picking up contributions
from various poles. The leading contribution comes from the pole at [8]

(ρσ − v2) + v = 0 . (2.3.1)

After picking up the residue at this pole, we are left with a two dimensional integral:

−B6(Q,P ) '
∫
d2τ

τ 2
2

eF (Q2,P 2,Q.P,τ1,τ2) , (2.3.2)

where (τ1, τ2) parametrize the locus of the zeroes of Φ10 at (2.3.1) in the (ρ, σ, v) space
and

F =
π

2τ2

(Q−τP )·(Q−τ̄P )−24 ln η(τ)−24 ln η(−τ̄)−12 ln(2τ2)+ln

[
26 +

π

τ2

(Q− τP ) · (Q− τ̄P )

]
.

(2.3.3)
We evaluate this integral by the saddle point method. We expand F around its extremum
and carry out the integral using perturbation theory. If we consider a limit in which we
scale all the charges by some large parameter Λ, then the perturbation expansion around
the saddle point generates a series in inverse power of Λ2, with the leading semi-classical
result being of order Λ2.

Applying the above procedure, first of all we find that, for large charges, −B6(Q,P )
is positive [28] (ı.e., B6(Q,P ) is negative). Furthermore [9, 110]:

ln |B6(Q,P )| = π
√
Q2P 2 − (Q.P )2− φ

(
Q.P

P 2
,

√
Q2P 2 − (Q.P )2

P 2

)
+O

(
1

Q2, P 2, Q.P

)
,

(2.3.4)
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where
φ(τ1, τ2) ≡ 12 ln τ2 + 24 ln η(τ1 + iτ2) + 24 ln η(−τ1 + iτ2) . (2.3.5)

The first term, π
√
Q2P 2 − (Q · P )2, is indeed the Bekenstein-Hawking entropy of the

black hole [111, 112]. For an explanation of the macroscopic origin of the other terms, see
[7].

2.4 Walls of marginal stability

Our result for the D1-D5-KK monopole system was derived for weakly coupled type IIB
string theory. However, as we move around in the moduli space, we may hit walls of
marginal stability, at which the quarter-BPS dyon under consideration becomes unstable
against decay into a pair of half-BPS dyons. At these walls, the index jumps, and hence
we cannot trust our formula on the other side of the wall. It turns out, however, that with
the help of S-duality, we can always bring the moduli to a domain where the type IIB
theory is in the weakly coupled domain and we can trust our original formula. The net
outcome of this analysis is that, in different domains, the index is given by the formula:

−B6(Q,P ) = (−1)Q.P+1

∫
C

dρdσdv e−πi(P
2ρ+Q2σ+2Q.Pv)/Φ10(ρ, σ, v) , (2.4.1)

where C denotes the choice of ‘contour’ that picks a 3 real dimensional subspace of
integration in the 3 complex dimensional space:

Im(ρ) = M1, Im(σ) = M2, Im(v) = M3, 0 ≤ Re(ρ), Re(σ), Re(v) ≤ 1 . (2.4.2)

The three real numbers (M1,M2,M3), which specify the choice of the contour C, depend
on the domain in the moduli space where we compute the index [21, 22, 25]. For example in
the weak coupling limit of type IIB string theory, for the system we have analyzed, we have
M1,M2 >> 1, 1 << |M3| << M1,M2 and the sign of M3 is positive or negative depending

on whether the angle between S1 and S̃1 is larger or smaller than π/2 [17, 19]. The jumps
in the index, across the walls of marginal stability, are encoded in the residues at the
poles in Z that we encounter while deforming the contour corresponding to one domain
to the contour corresponding to the other domain. There is a precise correspondence
between different walls of marginal stability and different poles of Z. For the decay
(Q,P )⇒ (Q, 0)+(0, P ) , the associated wall is at v = 0[17, 18, 19, 21, 22]. This, together
with the S-duality invariance of the theory, tells us that for the wall associated with the
decay

(Q,P )⇒ (αQ+ βP, γQ+ δP ) + ((1− α)Q− βP,−γQ+ (1− δ)P ) , (2.4.3)

the corresponding pole is at

γρ− βσ + (α− δ)v = 0 . (2.4.4)
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A precise formula giving (M1,M2,M3) in terms of the moduli and charges can be found
in [25]. We should keep in mind, however, that the result is independent of (M1,M2,M3)
as long as changing them does not make the contour cross a pole.

On the black hole (macroscopic) side, these jumps correspond to (dis-)appearance
of two-centered black holes as we cross walls of marginal stability. There is a precise
match between the B6 index of 2-centered black holes carrying charges given on the right
hand side of (2.4.3), and the change in B6(Q,P ) computed from the residues at the poles
(2.4.4) [24, 25].

In this context, we would like to mention that the changes in the index across
the walls of marginal stability are subleading, as these give corrections which grow as
exponentials of single power of the charges. This is related to the fact that only decays
of a 1/4-BPS dyon into half-BPS dyons contribute to the wall crossing in an N = 4
supersymmetric string theory [26, 38, 48]. However the contribution from the multi-
centered solutions can become significant when we study dyons in N = 2 supersymmetric
string theories [89].



Chapter 3

Black hole hair removal

3.1 Introducion and summary

Since the Bekenstein-Hawking entropy of a black hole is proportional to the area of the
event horizon of the black hole[1, 2, 3, 90, 91] one expects that the horizon of the black
hole contains the key to understanding the black hole microstates. Wald’s modification
of the Bekenstein-Hawking formula in higher derivative theories of gravity [56, 57, 58, 59]
deviates from the area law, but nevertheless expresses the black hole entropy in terms
of the horizon data. The situation becomes even better in the extremal limit where
an infinite throat separates the horizon from the rest of the black hole space-time and
the near horizon configuration can be regarded as a fully consistent solution to the field
equations [5, 92, 93, 94, 95]. The classical Wald entropy can be related to the value of
the classical Lagrangian density evaluated in this near horizon geometry [96]. This leads
one to expect that we should be able to define a macroscopic quantity, computed from
quantum string theory in the near horizon geometry, that captures complete information
about the microscopic degeneracies of the corresponding black hole. Quantum entropy
function is such a proposal relating the microscopic degeneracies of extremal black holes
to an appropriate partition function of quantum gravity in the near horizon geometry of
the black hole[54, 46] (see also [97, 98]).

Irrespective of any specific proposal, if the postulate that the microscopic degeneracy
of an extremal black hole can be related to some computation in the near horizon geometry
is correct, then this leads to an immediate consequence: two black holes with identical near
horizon geometries will have identical degeneracies of microstates. There are some trivial
counterexamples with straightforward resolutions. For example the near horizon geometry
of an extremal black hole in flat space-time is independent of the asymptotic values of the
moduli fields due to the attractor mechanism[92, 93, 94, 96, 99, 100], but the microscopic
degeneracy of states, carrying the same quantum numbers as the black hole, jumps across
the walls of marginal stability as we vary the asymptotic moduli[17, 19, 21, 22, 25]. The

21
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resolution of this puzzle is provided by the fact that for a given set of charges there are
typically many classical solutions. One of these is a single centered black hole solution
but the others contain multiple centers[101, 85, 86, 87, 88, 89, 24, 25]. As we cross a
wall of marginal stability some of these multi-centered solutions cease to exist and hence
cause a jump in the total entropy. This precisely accounts for the jump in the total
degeneracy across the walls of marginal stability, thereby showing that the degeneracy
of states associated with a single centered black hole remains unchanged as we cross a
wall of marginal stability. This suggests a natural modification of the original proposal:
string theory in the near horizon geometry captures information about the microscopic
degeneracy of the single centered black holes only. This is clearly natural from a physical
perspective: the near horizon geometry of a given black hole should encode information
only about the particular solution which produces the particular near horizon geometry.
Multi-centered black holes have multiple horizons with multiple near horizon geometry,
and hence the contribution to their degeneracies should involve studying string theory in
the near horizon geometry of each of these black holes.1

In order to make this modified proposal concrete we must independently define
microscopic degeneracy of a single centered black hole. Typically microscopic computa-
tion involves studying degeneracies of various brane configurations and cannot distinguish
whether a given state would correspond to a single centered or a multi-centered configu-
ration in the limit when the state becomes a black hole. However in asymptotically flat
four dimensional space-time there is a simple algorithm for calculating the spectrum of
single centered black holes in the microscopic theory; we simply need to set the asymptotic
values of the moduli to be equal to their attractor values.2 In that case all multi-centered
black hole solutions disappear and the microstate counting only picks up the contribution
from the single centered black holes.

In this thesis, we focus on a different counterexample that cannot be resolved by
invoking the existence of multi-centered black holes. This involves the BMPV black
hole[60], whose microscopic description involves a D1-D5 system of type IIB string theory
on K3 × S1, carrying momentum along S1 and equal angular momentum in two planes
transverse to the D5-brane. The macroscopic description of this is a five dimensional
rotating black hole. By placing this black hole at the center of a Taub-NUT space we get a
four dimensional black hole[61]. Since near the origin the Taub-NUT space appears as flat

1The near horizon AdS2 geometry of a black hole can fragment into multiple throats carrying different
charges[102, 103, 104]. However for such solutions the charges carried by the fragments are mutually
local, ı.e. have (~qi · ~pj − ~qj · ~pi) = 0 where (~qi, ~pi) denote the electric and magnetic charge vectors of the
ith throat. Since such configurations do not contribute to the entropy[87, 89], the conclusion that the
near horizon geometry of a black hole captures the degeneracies of single centered black holes remains
unchanged.

2This is sufficient but not necessary; all we need is that the asymptotic values of the moduli should
be chosen such that we can continuously deform them to the attractor values without crossing any wall
of marginal stability.
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space, the near horizon geometries of the four and five dimensional black holes are exactly
identical[62, 10]. However the microscopic description of the four dimensional black hole
involves D1-D5-brane moving in the background of a Kaluza-Klein monopole and the
degeneracies of this system are different from those of just the D1-D5 system[17]. This
would seem to contradict the claim that the microscopic degeneracies of single centered
black holes are completely encoded in their near horizon geometries.

We suggest the following resolution of this puzzle. Common sense tells us that the
near horizon geometry should capture the degeneracies associated with the dynamics of
the horizon. If the black hole has no hair, that is no degree of freedom living outside
the horizon that could contribute to the degeneracy, then the near horizon geometry
would capture the complete information about the microscopic degeneracy of the black
hole. However if the black hole solution contains degrees of freedom living outside the
horizon then the full degeneracy of the black hole has to be computed by combining
the contribution from the horizon with the contribution from the degrees of freedom
living outside the horizon, and the combined contribution will then have to be compared
with the microscopic degeneracies. Thus two black holes having identical near horizon
geometry can have different microscopic degeneracies if they have different sets of degrees
of freedom living outside the horizon. We expect that at least for extremal black holes
the separation between the contribution from the black hole hair and the contribution
from the horizon degrees of freedom can be done rigorously since the horizon is separated
from the asymptotic space-time by an infinite throat. Thus two such extremal black holes
with identical near horizon geometry will have identical degeneracies of microstates after
we remove the contribution from the degrees of freedom living outside the horizon.3

In the rest of the chapter, we shall identify the degrees of freedom living outside
the horizon for both the BMPV black hole and the four dimensional extremal black hole
obtained by placing the BMPV black hole in a Taub-NUT geometry, and then show that
their microscopic degeneracies agree after we remove the contribution due to the hair.
The organisation of the sections will be as follows. In §3.2 we identify the hair degrees of
freedom of the five dimensional BMPV black hole, and remove their contribution from the
partition function to determine the partition function associated with the horizon degrees
of freedom. The result is given in (3.2.17). In §3.3 we repeat the same analysis for the four
dimensional black hole obtained by placing the BMPV black hole at the center of Taub-
NUT space. The result, given in (3.3.20), is found to agree with (3.2.17). It of course
remains a challenge to reproduce these microscopic results from a macroscopic calculation,
e.g. of the quantum entropy function. In §3.4 we describe explicit construction of the
bosonic modes associated with the hair degrees of freedom.

Before concluding this section we would like to add a word of caution. While we

3This is similar in spirit to the phenomenon that for a stack of N D3-branes, string theory living in
the bulk of the near horizon AdS5 × S5 geometry does not capture the U(1) center of mass degrees of
freedom of the D3-branes[65].
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have identified appropriate hair degrees of freedom for the five and four dimensional black
holes after whose removal the result for the partition function of the two black holes
agree, we have not proved that these are the only hair degrees of freedom. If there are
additional hair degrees of freedom which differ for these two black holes then it could spoil
the agreement. On the other hand if there are additional hair degrees of freedom which
are common to both black holes then the agreement between the partition functions of
the two black holes after hair removal will continue to hold.

3.2 Analysis of the BMPV black hole entropy

We begin with the analysis of microscopic degeneracy of the five dimensional quarter
BPS black hole in type IIB string theory on K3. The microscopic description involves
Q5 number of D5-branes wrapped on K3 × S1 and Q1 number of D1-branes wrapped
on S1 carrying −n units of momentum along S1 (with n > 0) and J units of angular
momentum. For simplicity we shall take Q5 = 1 without any loss of generality since the
result depends on Q1 and Q5 only through the combination Q5(Q1−Q5). Our convention
for angular momentum and supersymmetry generators will be as follows. We denote
the SO(4) rotation group of the five dimensional space-time by SU(2)L × SU(2)R and
identify the angular momentum J with twice the diagonal generator of SU(2)L. We also
denote by h the eigenvalue of the diagonal generator of SU(2)R. Since supersymmetry
transformation parameters of type IIB on K3 are chiral spinors in six dimensions, when
we regard them as representations of the SO(1, 1) × SU(2)L × SU(2)R subgroup of the
Lorentz group, with SO(1, 1) acting on the common direction of the D1-brane and the
D5-brane, the SO(1, 1) quantum numbers will be correlated with the SU(2)L × SU(2)R
quantum numbers. We shall now argue that in order that the configuration described
above describes a quarter BPS state, we must choose the convention that the left-chiral
spinors of SO(1, 1) carry (J = 0, 2h = ±1) and the right-chiral spinors of SO(1, 1) carry
(J = ±1, h = 0). The argument goes as follows. First of all note that since the D1-D5-
brane system carries negative momentum along S1, it must be allowed to carry left-moving
excitations without violating supersymmetry. Thus the left-chiral excitations must be
neutral under the unbroken supersymmetries of the system. This in turn implies that
these supersymmetry transformation parameters must be left-chiral spinors of SO(1, 1), –
since left-chiral supersymmetry transformation parameters act on the right-chiral modes
and vice versa. We shall now argue that the unbroken supersymmetry transformation
parameters must also carry J = 0, – this would force us to choose the convention described
above. In order that the system can carry macroscopic J charge, a large number of internal
modes must carry non-vanishing J charge. Now most of the bosonic degrees of freedom
come from the motion of the D1-brane inside the D5-brane, ı.e. along the K3 direction.
This leads to four bosons for each D1-brane describing its position along K3. These
modes are clearly neutral under the SO(4) rotation along the space transverse to the
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D1-D5-brane system, and hence do not carry any J charge. On the other hand for every
D1-brane we also have eight fermionic modes, – four carrying (J 6= 0, h = 0) and four
carrying (J = 0, h 6= 0).4 The requirement of unbroken supersymmetry freezes the modes
on which supersymmetry acts, ı.e. those which form partners of the bosons. Now since we
want to excite the modes carrying J charge, we must freeze the ones with J = 0. Thus
the latter must be acted upon by supersymmetry and paired with the bosons. Since the
bosons carry J = 0, the supersymmetry transformation parameter must also carry J = 0.
This establishes the desired result.

We denote by d5D(n,Q1, J) the helicity trace −Tr
(
(−1)2h+J (2h)2

)
/2! of five di-

mensional black hole carrying quantum numbers (n,Q1, J), and define

Z5D(ρ, σ, v) =
∑
n,Q1,J

d5D(n,Q1, J) exp [2πi{(Q1 − 1)σ + (n− 1) ρ+ Jv}] . (3.2.1)

The −1 in (Q1 − 1) reflects the fact that a D5-brane wrapped on K3 carries −1 units of
D1-brane charge. On the other hand the −1 in (n−1) has been introduced due to the fact
that this charge measured at ∞ differs from that measured on the horizon[106, 40, 107]
– a Chern-Simons coupling in the action produces −1 unit of this charge from the region
between the horizon and infinity. Thus if −n is the total momentum along S1 carried by
the black hole, the charge measured at the horizon will be −(n−1). Explicit computation
shows that Z5D defined in (3.2.1) has the form

Z5D(ρ, σ, v) = e−2πiρ−2πiσ
∏

k,l,j∈zz
k≥1,l≥0

(
1− e2πi(σk+ρl+vj)

)−c(4lk−j2)

×

{∏
l≥1

(1− e2πi(lρ+v))−2 (1− e2πi(lρ−v))−2 (1− e2πilρ)4

}
(−1) (eπiv − e−πiv)2

+ e−2πiρ−2πiσ
∏

k,j∈zz
k≥1

(
1− e2πi(σk+vj)

)−c(−j2)
(eπiv − e−πiv)2 , (3.2.2)

where the coefficients c(n) are defined via the equation

8

[
ϑ2(τ, z)2

ϑ2(τ, 0)2
+
ϑ3(τ, z)2

ϑ3(τ, 0)2
+
ϑ4(τ, z)2

ϑ4(τ, 0)2

]
=
∑
j,n∈zz

c(4n− j2) e2πinτ+2πijz . (3.2.3)

Eq.(3.2.2) requires some explanation. The first line of (3.2.2) denotes the contribution
from the relative motion of the D1-D5 system and was computed in [63]. The asymp-
totic expansion of the degeneracies of this system has been studied recently in [40, 41].

4These have opposite relation between the SO(1, 1) and SU(2)L×SU(2)R quantum numbers, but we
shall not need to use this information here.
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The second line represents contribution from the ‘center of mass modes’ of the D1-D5
system. This contribution can be calculated as follows. Since the D1-D5 system breaks
the translation symmetries along the four directions transverse to the brane, the (1+1)
dimensional world-volume theory of this system, spanned by the time coordinate and
the coordinate along S1, will contain four goldstone bosons associated with the four
broken translation generators. Furthermore since the ground state of the D1-D5 sys-
tem also breaks eight out of the sixteen supersymmetries of type IIB string theory on
K3, we shall have eight goldstino fermions carrying the same quantum numbers as the
broken supersymmetry transformation parameters. This leads to four left-moving and
four right-moving fermions living on the D1-D5-brane world-volume. In our convention
the left-moving fermions carry (J = 0, 2h = ±1) and the right-moving fermions carry
(J = ±1, 2h = 0). We need to count excitations of this system preserving four super-
symmetries, parametrized by left-chiral spinors on the D1-D5-brane world-volume. Since
these transformations act on the right-moving fermions and bosons, the BPS condition
will freeze all the right-moving excitations except the zero modes. Since the right-moving
fermions carry J = ±1, h = 0, quantization of a pair of right chiral zero modes would
produce a pair of states with J = ±1

2
, h = 0. Thus the net contribution of four right

chiral zero modes to the trace, containing a factor of (−1)Je2πivJ = e2πiJ(v+ 1
2

), is a factor

of (eπi(v+ 1
2

) + e−πi(v+ 1
2

))2 = −(eπiv − e−πiv)2. This accounts for the last two factors in the
second line of (3.2.2). The BPS condition does not restrict the left-moving degrees of
freedom and the terms in the curly bracket in the second line of (3.2.2) represent contri-
bution from these left-moving excitations. In particular the zero modes of the left-moving
fermions, carrying helicities ±1/2, soak up the factors of −(2h)2/2! in the helicity trace so
that if we leave aside these zero modes, contribution to the helicity trace from the rest of
the modes involve computing the Witten index Tr(−1)F . Since the left-moving fermions
have J = 0, their oscillators lead to the last term in the product inside the curly bracket.
On the other hand the left-moving bosons, transforming under (2, 2) representation of
SU(2)L × SU(2)R, carry ±1 units of J quantum numbers and lead to the first two terms
inside the curly bracket. Finally the term in the last line of (3.2.2) removes the contribu-
tion of the n = 0 term5 from eq.(3.2.1), ı.e. it subtracts the term whose ρ dependence is
of the form e−2πiρ. The rationale for subtracting this term is that for n = 0 the D1-D5
system includes contribution from half-BPS states. Thus it is more natural to consider
the partition function of pure quarter BPS states by subtracting the contribution due to
the n = 0 term.

Now we need to analyze the contribution to the partition function from the degrees
of freedom of the black hole living outside the horizon and remove this contribution from
(3.2.2) to determine the expected microscopic degeneracies associated with the horizon.
We begin by writing down the action and the black hole solution. The relevant part of
the action containing the string metric Gµν , dilaton Φ and the Ramond-Ramond 3-form

5Throughout this chapter we shall denote the additive term proportional to e−2πiρ as the n = 0 term.
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field strength F (3) = dC(2) takes the form

1

(2π)7

∫
d10x
√
− detG

[
e−2Φ (R + 4Gµν ∂µΦ∂νΦ)− 1

12
F

(3)
MNPF

(3)MNP

]
, (3.2.4)

in α′ = 1 unit. For simplicity we shall set the asymptotic values of the moduli to their
attractor values for the specific black hole solution we analyze, so that all the moduli fields
including the dilaton are constants. The generalization to more general asymptotic values
is straightforward. In this case the rotating black hole solution describing Q5 D5-branes
along K3 × S1, Q1 D1-branes along S1, −n units of momentum along S1 and angular
momentum J , takes the form6

dS2 =
(

1 +
r0

r

)−1
[
−dt2 + (dx5)2 +

r0

r
(dt+ dx5)2 +

J̃

4r
(dt+ dx5) (dx4 + cos θ dφ)

]
+ĝmn(~u) dumdun +

(
1 +

r0

r

)
ds2

flat ,

ds2
flat = r (dx4 + cos θdφ)2 +

1

r
(dr2 + r2dθ2 + r2 sin2 θ dφ2) ,

(θ, φ, x4) ≡ (2π − θ, φ+ π, x4 + π) ≡ (θ, φ+ 2π, x4 + 2π) ≡ (θ, φ, x4 + 4π) ,

eΦ = λ ,

F (3) ≡ 1

6
F

(3)
MNPdx

M ∧ dxN ∧ dxP

=
r0

λ

(
ε3 + ∗6ε3 +

1

r0

(
1 +

r0

r

)−1

(dx5 + dt) ∧ dζ
)
,

ε3 ≡ sin θ dx4 ∧ dθ ∧ dφ , (3.2.5)

where x5 is the coordinate of the circle S1 with period 2 π R5, um for m = 6, ..., 9 are the
coordinates of K3, ĝmn is the metric on K3, (2π)4 V is the volume of K3 measured in this
metric, λ is the asymptotic value of the string coupling, ∗6 denotes Hodge dual in the six
dimensions spanned by t, x5, x4, r, θ and φ with the convention εt54rθφ = 1, and

r0 =
λ(Q1 −Q5)

4V
=
λQ5

4
=

λ2|n|
4R2

5V
, (3.2.6)

J̃ =
J λ2

2R5 V
, (3.2.7)

ζ = − J̃
8r

(dx4 + cos θdφ) . (3.2.8)

6Conventionally the BMPV black hole as well as the BMPV black hole at the center of Taub-NUT
space is expressed as a solution in five dimensional supergravity theory[60, 61, 62]. Here we express them
as solutions in a ten dimensional theory so that we can study the excitations which propagate along the
internal directions.
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Eq.(3.2.6) determines the asymptotic moduli V and λ/R2
5 in terms of the charges. This

corresponds to setting the asymptotic moduli to their attractor values. ds2
flat describes

flat euclidean space in the Gibbons-Hawking coordinates. Higher derivative corrections
to the entropy of this black hole have been discussed extensively in [113, 114, 115, 106,
116, 40, 107, 117].

Now the black hole solution breaks four translation symmetries and twelve of the
sixteen space-time supersymmetries, and hence we expect to have four bosonic zero modes
and twelve fermionic zero modes living on the black hole, forming part of the black
hole hair.7 Typically the quantization of the bosonic zero modes do not give rise to
additional degeneracies but produces new charge sectors instead, – this was illustrated
in [23] in the context of four dimensional black holes. However the quantization of the
fermion zero modes does affect the partition function. The (J, h) quantum numbers of
the fermion zero modes can be read out by comparison with the microscopic description.
Since the four unbroken supersymmetries are labelled by left-chiral spinors on the D1-
D5 world-volume, eight of the broken supersymmetries are right-chiral and four of the
broken supersymmetries are left-chiral. This leads to eight right-chiral and four left-chiral
zero modes. The left-chiral zero modes carrying (J = 0, h = ±1

2
) soak up the factors of

−(2h)2/2! in the helicity trace, so that for the rest of the degrees of freedom we only need
to calculate the Witten index Tr(−1)2h+J . On the other hand the right-chiral zero modes
carry (J = ±1, h = 0) and their contribution to the partition function is given by

(eπiv − e−πiv)4 . (3.2.9)

This however is not the end of the story. Given a zero mode we can explore whether
it is possible to lift it to a full fledged field in (1+1) dimensions spanned by the coordinates
(t, x5). If we can lift them to such fields then the oscillation modes of these fields would
produce additional contribution to the partition function of the black hole hair. To this
end we note that if the black hole solution had been Lorentz invariant in the (x5, t) plane,
then any broken symmetry would automatically lead to a massless goldstone or goldstino
field on the black hole world volume instead of just the zero modes. In particular the
bosonic zero modes would lift to scalar fields, left-chiral fermion zero modes would lift to
left-moving fermion fields and right-chiral fermion zero modes would lift to right-moving
fermion fields. However the black hole solution (3.2.5) does not have (1 + 1) dimensional
Lorentz invariance, and hence a priori we cannot use results in 1+1 dimensonal quantum
field theory to conclude that associated with a broken symmetry we shall have a massless
field living on the world-volume of the black hole. Nevertheless we shall now argue that
the left-moving modes are not affected by the breaking of Lorentz invariance and continue

7Given that black hole solution outside the horizon changes under these translations and supersym-
metry transformations, it is clear that these modes are non-vanishing outside the horizon. What is not
apparent at this stage is whether they have support entirely outside the horizon. For now we shall proceed
by assuming that this is the case, but will study this issue in detail in §3.4.1.
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to exist. Our argument will be somewhat heuristic, but we compensate for it by giving a
detailed construction of these modes in §3.4.1. First we note that the source of Lorentz
non-invariance in (3.2.5) are the (dt+dx5)2 term and the (dt+dx5) (dx4 + cos θ dφ) terms
in the metric. This structure of the metric shows that only the g++ and g+i components
of the metric violate the Lorentz invariance. Since these lead to g−− and g−i components
of the metric but no g++ or g+i components, we see that the Lorentz violating terms in
the equation of motion of various modes around the solution must involve ∂− derivatives
or −··· components of fields. In particular the left-moving fields ϕ for which ∂−ϕ = 0 do
not couple to the g−− or g−i components of the metric and should continue to describe
solutions to linearized equations of motion around the black hole background. Thus we can
conclude that the world-volume of the black hole will have four left-moving bosonic fields
carrying (J = ±1, 2h = ±1) and four left-moving fermion fields carrying (J = 0, 2h = ±1).
Their contribution to the partition function is given by∏

l≥1

(1− e2πi(lρ+v))−2 (1− e2πi(lρ−v))−2 (1− e2πilρ)4 . (3.2.10)

Multiplying this by the contribution (3.2.9) from the zero modes we get the total contri-
bution to the partition function from the degrees of freedom living outside the horizon

Zhair
5D (ρ, σ, v) = (eπiv − e−πiv)4

∏
l≥1

(1− e2πi(lρ+v))−2 (1− e2πi(lρ−v))−2 (1− e2πilρ)4 . (3.2.11)

Let Zhor
5D (ρ, σ, v) denote the partition function associated with the horizon degrees

of freedom of the five dimensional black hole. Naively we have the relation Z5D = Zhor
5D ×

Zhair
5D . However we shall now argue that there is an extra additive contribution to Z5D,

and the correct relation is

Z5D = Zhor
5D × Zhair

5D + Zextra
5D . (3.2.12)

The extra contribution Zextra
5D comes from starting with a configuration where the black

hole does not carry any momentum along S1, and then exciting its hair degrees of freedom
carrying momentum. As can be seen from (3.2.6), the initial configuration is singular in
the supergravity approximation. Thus it describes a ‘small black hole’ in five dimensions,8

and hence its hair degrees of freedom are different from the ones we analyzed earlier.
In particular since the D1-D5 system without momentum breaks only four left-chiral
and four right chiral supersymmetries, we have only four right chiral zero modes instead
of 8, and hence a factor of −(eπiv − e−πiv)2 will be missing from the hair degrees of
freedom. Furthermore since the D1-D5-brane world-volume theory now has full (1+1)

8Here, as well as in §3.3, we shall denote by ‘small black hole’ any object which is singular in the
supergravity limit, carrying Q1, Q5 and J quantum numbers but no momentum along S1. Thus it
includes small black ring configurations as well[118, 119].
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dimensional Lorentz invariance, the right-chiral modes are now lifted to full right-moving
fields, However the requirement of unbroken supersymmetry still freezes the right-moving
excitations to their ground state. Thus the net contribution from the hair is given by

Zhair
small = −(eπiv − e−πiv)2

∏
l≥1

(1− e2πi(lρ+v))−2 (1− e2πi(lρ−v))−2 (1− e2πilρ)4 . (3.2.13)

Let us denote by Zhor
small the contribution from the horizon degrees of freedom of the

small black hole. Then Zextra
5D will be obtained by taking the product Zhor

small × Zhair
small and

subtracting the n = 0 contribution. On the other hand Zhor
small may be determined by

identifying the n = 0 contribution in Zhor
small × Zhair

small with the partition function of the
D1-D5 system with no momentum along S1. The latter is simply the negative of the last
term in (3.2.2):

−e−2πiρ−2πiσ
∏

k,j∈zz
k≥1

(
1− e2πi(σk+vj)

)−c(−j2)
(eπiv − e−πiv)2 . (3.2.14)

Dividing (3.2.14) by the ρ independent term in the series expansion of (3.2.13) gives

Zhor
small(ρ, σ, v) = e−2πiρ−2πiσ

∏
k,j∈zz

k≥1

(
1− e2πi(σk+vj)

)−c(−j2)
. (3.2.15)

Zextra
5D is now obtained by multiplying (3.2.15) by (3.2.13) and then subtracting the n = 0

term, ı.e. the term proportional to e−2πiρ in the series expansion:

Zextra
5D (ρ, σ, v) = −e−2πiρ−2πiσ (eπiv − e−πiv)2

∏
k,j∈zz

k≥1

(
1− e2πi(σk+vj)

)−c(−j2)

×
∏
l≥1

(1− e2πi(lρ+v))−2 (1− e2πi(lρ−v))−2 (1− e2πilρ)4

+e−2πiρ−2πiσ (eπiv − e−πiv)2
∏

k,j∈zz
k≥1

(
1− e2πi(σk+vj)

)−c(−j2)
.(3.2.16)

Using (3.2.2), (3.2.11), (3.2.12) and (3.2.16) we now get

Zhor
5D (ρ, σ, v) = (Z5D − Zextra

5D )/Zhair
5D

= −e−2πiρ−2πiσ (eπiv − e−πiv)−2
∏

k,l,j∈zz
k≥1,l≥0

(
1− e2πi(σk+ρl+vj)

)−c(4lk−j2)

+e−2πiρ−2πiσ (eπiv − e−πiv)−2
∏

k,j∈zz
k≥1

(
1− e2πi(σk+vj)

)−c(−j2)
. (3.2.17)
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The presence of the (eπiv− e−πiv)−2 factor may lead one to believe that Zhor
5D has a double

pole at v = 0 and hence the index extracted from this partition function will suffer from
the contour prescription ambiguities discussed in [21, 22, 25]. However using the relation∑

j c(4n − j2) = 24 δn,0 and the v → −v symmetry one can show that the sum of the
two terms in (3.2.17) has no singularity at v = 0. Thus (3.2.17) leads to an unambiguous
result for the index of quarter BPS states associated with the horizon degrees of freedom.
We also note that since the factor of −(2h)2/2! in the helicity trace is soaked up by the
fermion zero modes associated with the hair, the partition function Zhor

5D measures the
Witten index Tr(−1)F = Tr(−1)2h+J of the black hole microstates associated with the
horizon in a given (n,Q1, J) sector.

3.3 Analysis of the 4D black hole entropy

Now we turn to the degeneracies of four dimensional black holes obtained by placing
the five dimensional black hole described above at the center of Taub-NUT space. The
corresponding solution is given by[61]

dS2 =
(

1 +
r0

r

)−1 [
−dt2 + (dx5)2 +

r0

r
(dt+ dx5)2

+
J̃

4

(
1

r
+

4

R2
4

)
(dx4 + cos θ dφ) (dt+ dx5)

]
+ĝmn du

mdun +
(

1 +
r0

r

)
ds2

TN ,

eΦ = λ ,

F (3) =
r0

λ

(
ε3 + ∗6ε3 +

1

r0

(
1 +

r0

r

)−1

(dx5 + dt) ∧ dζ̃
)
, (3.3.1)

where

ζ̃ = − J̃
8

(
1

r
+

4

R2
4

)
(dx4 + cos θdφ) , (3.3.2)

ds2
TN =

(
4

R2
4

+
1

r

)−1

(dx4 + cos θdφ)2 +

(
4

R2
4

+
1

r

)
(dr2 + r2dθ2 + r2 sin2 θ dφ2) . (3.3.3)

Here R4 is a constant labelling the asymptotic radius of the x4 circle. Note that for
R2

4 = 4r0 the 44, 45 and 55 components of the metric become constant independent of r.
Thus 4r0 is the attractor value of R2

4. We shall proceed with the solution for general R4.
Using (3.3.3) we can express the solution given in (3.3.1) as

dS2 = −e2
0 + e2

1 + e2
2 + e2

3 + e2
4 + e2

5 + ĝmn du
m dun ,

F (3) =
r0

λ r2

[(
1 +

r0

r

)−3/2
(

1

r
+

4

R2
4

)−1/2

(e2 ∧ e4 ∧ e5 + e0 ∧ e1 ∧ e3)
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+
J̃

8 r0

(
1 +

r0

r

)−2

(−e0 ∧ e2 ∧ e3 + e0 ∧ e4 ∧ e5 − e1 ∧ e2 ∧ e3 + e1 ∧ e4 ∧ e5)

]
,

(3.3.4)

where

e0 =
(

1 +
r0

r

)−1

(dt+ ζ̃),

e1 =

(
dx5 + dt−

(
1 +

r0

r

)−1

(dt+ ζ̃)

)
,

e2 =
(

1 +
r0

r

)1/2
(

1

r
+

4

R2
4

)−1/2

(dx4 + cos θdφ),

e3 =
(

1 +
r0

r

)1/2
(

1

r
+

4

R2
4

)1/2

dr ,

e4 =
(

1 +
r0

r

)1/2
(

1

r
+

4

R2
4

)1/2

r dθ ,

e5 =
(

1 +
r0

r

)1/2
(

1

r
+

4

R2
4

)1/2

r sin θ dφ . (3.3.5)

Since x4 has period 4π, the asymptotic circle parametrized by x4 has finite radius. Thus
asymptotically we have four non-compact space-time dimensions. Also since x4 now
represents a compact coordinate, the quantum number J is interpreted as the momentum
along x4 instead of angular momentum. However for small r the solution approaches that
given in (3.2.5), and both solutions have identical near horizon geometry. To see this
explicitly we take the near horizon limit by first defining new coordinates (ρ, τ, y) via

r = r0 βρ, t = τ/β, x5 = y − t (3.3.6)

and taking the limit β → 0. In this limit both (3.2.5) and (3.3.1) take the form9

dS2 = r0
dρ2

ρ2
+ dy2 + r0(dx4 + cos θdφ)2 +

J̃

4r0

dy(dx4 + cos θdφ)− 2ρdydτ

+r0

(
dθ2 + sin2 θdφ2

)
+ ĝmndu

mdun ,

eΦ = λ ,

F (3) =
r0

λ

[
ε3 + ∗ε3 +

J̃

8 r2
0

dy ∧
(

1

ρ
dρ ∧ (d x4 + cos θ dφ) + sin θ dθ ∧ dφ

)]
.(3.3.7)

9We could take a more careful limit by beginning with a non-extremal black hole and scaling the
non-extremality parameter also by β as reviewed in [54]. However this does not play any role in the
present discussion.
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Thus we expect that the contribution to the degeneracy from the horizon degrees of
freedom will be identical for the four and the five dimensional black holes. In particular
the quantum entropy function will give identical results for the two solutions. We shall
now try to test this at the microscopic level by computing the degeneracies associated
with the four dimensional black hole horizon.

The microscopic degeneracy associated with the four dimensional black hole is dif-
ferent from that of the five dimensional black hole, as it receives additional contribution
from the modes living on the Taub-NUT space as well as the modes associated with the
motion of the D1-D5-brane in the Taub-NUT space[17]. If we denote by d4D(n,Q1, J)
the sixth helicity trace10 −B6 ≡ −Tr((−1)2h+J(2h)6)/6! for the states of the four dimen-
sional black hole carrying quantum numbers (n,Q1, J) then the four dimensional partition
function defined via

Z4D(ρ, σ, v) =
∑
n,Q1,J

d4D(n− 1, Q1, J) exp [2πi{(Q1 − 1)σ + (n− 1) ρ+ Jv}] , (3.3.8)

has the form[8, 9, 10, 12, 17]11

Z4D(ρ, σ, v) = −e−2πiρ−2πiσ−2πiv
∏

k,l,j∈zz
k,l≥0,j<0 for k=l=0

(
1− e2πi(σk+ρl+vj)

)−c(4lk−j2)
. (3.3.9)

Note that we now have (n− 1) in the argument of d4D in (3.3.8), matching the coefficient
of ρ in the exponent. This reflects the fact that for the four dimensional black holes
the charge measured at the horizon agrees with the charge measured by an asymptotic
observer. The e−2πiρ factor in (3.3.9) is a reflection of the fact that the ground state
of the Taub-NUT space carries −1 unit of momentum along S1; however this is visible
only after taking into account the higher derivative term in the action involving the
gravitational Chern-Simons term. Finally we note that there is no need to subtract the
n = 0 contribution from the sum, since in the presence of a Taub-NUT space even the
n = 0 states are quarter BPS. The near horizon geometry of the n = 0 black hole
will however lose the memory of the Taub-NUT background and will have enhanced
supersymmetries.

We now need to remove the contribution to Z4D from the degrees of freedom living
outside the horizon. We begin by counting the fermionic modes living outside the horizon.
First of all, there are 12 broken supersymmetry generators leading to 12 fermion zero
modes. They carry h = ±1

2
and soak up the −(2h)6/6! factor from the helicity trace.

10h now denotes the third component of the angular momentum in the (3+1) dimensional theory. J
represents a U(1) charge in the four dimensional theory and its inclusion in the trace is purely a matter
of convenience.

11The correct sign of the partition function has been determined in [28]. Note that d4D(n,Q1, J) used
here differ from the index used in [28] by a factor of (−1)J due to the insertion of (−1)J in our definition
of B6. However the definition of partition function in [28] has an explicit factor of (−1)J+1 inserted.
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Thus the effect of removing their contribution is to map the helicity trace index to the
Witten index of the remaining system[17, 28]. Had the black hole world-volume theory
been Lorentz invariant in the (x5, t) coordinates, eight of the zero modes would lift to
right-moving fermion fields and four of the zero modes would lift to left-moving fermion
fields on the black hole world-volume. As in the case of five dimensional black holes,
we expect that the breaking of Lorentz invariance does not affect the equations for the
left-moving modes and hence we should be able to lift the four left-chiral fermion zero
modes into full fledged left-moving fermion fields on the black hole world-volume. These
modes produce a contribution to the Witten index of the form

∞∏
l=1

(1− e2πilρ)4 . (3.3.10)

Next we turn to the bosonic modes living on the black hole. As before we shall pro-
ceed by pretending that the black hole world-volume has Lorentz invariance in the (x5, t)
plane, and then take into account the lack of Lorentz invariance by freezing the right-
moving fields. Our arguments will be heuristic, but we give more explicit construction of
some of the modes in §3.4.2. The black hole solution given in (3.3.1) admits a normal-
izable closed 2-form inherited from the normalizable harmonic 2-form of the Taub-NUT
space[120, 121]. It is given by

ω = − r

4r +R2
4

sin θdθ ∧ dφ+
R2

4

(4r +R2
4)2

dr ∧ (dx4 + cos θdφ) . (3.3.11)

Using the metric (3.3.1) one can easily check that this harmonic form is supported outside
the near horizon throat geometry. Thus any 2-form field along this harmonic form will
give rise to a scalar mode living outside the horizon. From the NSNS and RR 2-form fields
of type IIB string theory we get two scalar modes. Furthermore the 4-form field with self-
dual field strength, reduced on the 22 internal cycles of K3, generate 3 right chiral and 19
left chiral 2-form fields in type IIB string theory on K3.12 Picking up the components of
these fields along the 2-form ω we get 19 left-moving scalars and 3 right-moving scalars
on the black hole world-volume. By the logic given earlier we expect the left-moving
modes to survive even after taking into account the breaking of the Lorentz invariance
in the (x5 − t) plane. Besides these there are three goldstone bosons associated with
the three broken translational symmetries. After freezing the right-moving modes we get
three more left-moving modes on the black hole world-volume. Thus we have altogether
2+19+3=24 left-moving scalars living outside the horizon.13 Since they do not carry any
J quantum number (which now corresponds to momentum along x4), their contribution

12In our convention the right-chiral 2-form fields have self-dual 3-form field strength and the left-chiral
2-form fields have anti-self-dual 3-form field strength in six dimensions.

13Explicit form of these deformations can be found in §3.4.2.
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to the black hole partition function is given by

∞∏
l=1

(1− e2πilρ)−24 . (3.3.12)

We shall now argue that the four dimensonal solution carries four more left-moving
bosonic excitations living outside the horizon and carrying J-charge ±1. Explicit con-
struction of these modes have been discussed in §3.4.2. Physically these modes represent
the motion of the D1-D5 system relative to the Taub-NUT space. Normally if in a com-
posite system we try to displace one component relative to the other there will be a
drastic change in the near horizon geometry and we would not expect such deformations
to be described by modes living outside the horizon. However since the Taub-NUT space
is non-singular everywhere, the near horizon geometry of a D1-D5-Taub-NUT system is
described by that of the D1-D5 system, and hence moving the Taub-NUT space relative
to the D1-D5 system should not alter the near horizon geometry. Thus such deforma-
tions should be described by modes living outside the horizon. Furthermore since the
coordinates labelling the transverse position of the D1-D5 system transform in the vector
representation of SO(4), these modes should carry J = ±1. By the standard argument
based on the lack of Lorentz invariance in the x5 − t plane, we expect the right-moving
modes to be frozen but the left-moving modes should be freely excitable. The contribution
from these modes to the partition function is given by

∞∏
l=1

[(
1− e2πi(lρ+v)

)−2 (
1− e2πi(lρ−v)

)−2
]
. (3.3.13)

Can there be additional zero modes associated with the motion of the D1-D5-system
relative to the Taub-NUT space? The five dimensional black hole world volume in flat
transverse space has four left-chiral fermion zero modes with (J, 2h) = (0,±1) and eight
right-chiral fermion zero modes with (J, 2h) = (±1, 0), – all living outside the horizon.
By an argument similar to the one in the previous paragraph, we expect them to be
approximate zero modes even when we place the five dimensional black hole in the Taub-
NUT background. The four left-chiral fermion zero modes form part of the 12 goldstino
zero modes of the combined system and have already been counted before. Four of the
eight right chiral fermion zero modes must form superpartners of the bosonic zero modes
describing the motion of the D1-D5-brane system in transverse space. This gives rise to
a factor of −e−2πiv(1− e−2πiv)−2 from summing over bound states in the supersymmetric
quantum mechanics describing the zero mode dynamics[121, 122, 17, 28]. The other four
right-chiral fermion zero modes which are not paired with the bosons under supersymme-
try would give a factor of −(eπiv−e−πiv)2 since they carry J = ±1. Thus these two factors
cancel exactly and we do not get any additional contribution to the hair from these zero
modes.
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Combining (3.3.10), (3.3.12) and (3.3.13) we get the net contribution to the four
dimensional black hole partition function from the hair:

Zhair
4D (ρ, σ, v) =

∞∏
l=1

[(
1− e2πilρ

)−20 (
1− e2πi(lρ+v)

)−2 (
1− e2πi(lρ−v)

)−2
]
.(3.3.14)

Let Zhor
4D denote the partition function of the horizon degrees of freedom of the four

dimensional black hole. Then naively we have the relation Z4D = Zhor
4D × Zhair

4D , but as
in the case of five dimensional black holes, Z4D receives an extra contribution from the
configuration where a small five dimensional black hole carrying no momentum along S1

is placed at the center of the Taub-NUT space and the momentum along S1 is carried by
the hair degrees of freedom. Denoting the extra contribution by Zextra

4D we have

Z4D = Zhor
4D × Zhair

4D + Zextra
4D . (3.3.15)

Zextra
4D is given by the product of horizon partition function of the small black hole as given

in (3.2.15) and the contribution from the hair degrees of freedom. The latter now consists
of four bosons and four left- and four right-moving fermions associated with the motion
of the small black hole in Taub-NUT space, and eight right-moving fermions, eight right-
movimg bosons and twenty four left-moving bosons associated with the fluctuations in
Taub-NUT space. Instead of going through a detailed analysis of these modes we simply
note that the number and dynamics of these modes is identical to those describing the
dynamics of the Taub-NUT space and the overall motion of the D1-D5 system in Taub-
NUT space as discussed in [17, 28]. Thus the partition function associated with the hair
degrees of freedom can be read out from [17, 28]. In particular the contribution from the
degrees of freedom associated with the overall motion of the D1-D5 system can be read
out from eq.(5.2.22) of [28] for N = 1:14

−e−2πiv (1− e−2πiv)−2
∏
l≥1

(1− e2πi(lρ+v))−2 (1− e2πi(lρ−v))−2 (1− e2πilρ)4 . (3.3.16)

On the other hand the degrees of freedom of the Taub-NUT space contributes∏
l≥1

(1− e2πilρ)−24 . (3.3.17)

Taking the product of (3.2.15), (3.3.16) and (3.3.17) gives

Zextra
4D (ρ, σ, v) = −e−2πi(v+ρ+σ)

(
1− e−2πiv

)−2
∏

k,j∈zz
k≥1

(
1− e2πi(σk+vj)

)−c(−j2)

14The factor of −e−2πiv (1 − e−2πiv)−2 arises from the sum over bound states of the quantum me-
chanics describing the motion of the D1-D5-system in Taub-NUT space. The main difference from the
computation of Zhair4D is that when the core of the black hole describing the D1-D5 system carries zero
momentum, we have only eight fermion zero modes living on the D1-D5 system instead of twelve. Thus
an extra factor of −(eπiv − e−πiv)2 is missing here.
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∞∏
l=1

[(
1− e2πilρ

)−20 (
1− e2πi(lρ+v)

)−2 (
1− e2πi(lρ−v)

)−2
]
. (3.3.18)

Using (3.3.9), (3.3.14), (3.3.15) and (3.3.18), and the relations

c(0) = 20, c(−1) = 2, c(u) = 0 for u ≤ −2 , (3.3.19)

we get

Zhor
4D (ρ, σ, v) = (Z4D − Zextra)/Zhair

4D

= −e−2πiρ−2πiσ (eπiv − e−πiv)−2
∏

k,l,j∈zz
k≥1,l≥0

(
1− e2πi(σk+ρl+vj)

)−c(4lk−j2)

+e−2πiρ−2πiσ (eπiv − e−πiv)−2
∏

k,j∈zz
k≥1

(
1− e2πi(σk+vj)

)−c(−j2)
. (3.3.20)

This is identical to Zhor
5D given in (3.2.17). We also note that since the −(2h)6/6! term in

the trace has been absorbed by the fermion zero modes living outside the horizon, Zhor
4D

measures the Witten index Tr(−1)F of the microstates associated with the horizon in a
given (n,Q1, J) sector. The equality of Zhor

4D and Zhor
5D now shows that the Witten indices

associated with the near horizon degrees of freedom of the four and the five dimensional
black holes are exactly identical.

It has been shown in [123] that the hair modes describing the transverse oscillations
of the five dimensional black hole, and the oscillations of the BMPV black hole relative to
the Taub-NUT space for the four dimensional black hole, develop curvature singularities
at the future horizon. Thus they should not be included among the hair degrees of
freedom. Since they contributed the same amount to the respective partition functions,
the agreement between the partition functions of four and five dimensional black holes
after hair removal continue to hold.

3.4 Appendix

3.4.1 Left-moving bosonic modes on the BMPV black hole

Since our argument leading to the existence of left-moving modes on the BMPV black
hole has been somewhat abstract we shall now explicitly demonstrate the existence of such
modes. For simplicity we shall focus on the left-moving bosonic zero modes associated
with the transverse oscillations. If we introduce new coordinates

w1 = 2
√
r cos

θ

2
cos

x4 + φ

2
, w2 = 2

√
r cos

θ

2
sin

x4 + φ

2
,

w3 = 2
√
r sin

θ

2
cos

x4 − φ
2

, w4 = 2
√
r sin

θ

2
sin

x4 − φ
2

, (3.4.1)
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then the solution given in (3.2.5) takes the form

dS2 = ψ(r)−1
[
dx+dx− + (ψ(r)− 1)(dx+)2

]
+ χi(~w) dx+ dwi + ĝmn du

mdun + ψ(r) ~dw
2
,

x± ≡ x5 ± t , r ≡ 1

4
~w2, ψ(r) ≡

(
1 +

r0

r

)
, χi(~w) dwi = ψ(r)−1 J̃

4r
(dx4 + cos θ dφ)

C(2) =
1

2
Cij(~w)dwi ∧ dwj + C+i(~w)dx+ ∧ dwi + C+−(~w)dx+ ∧ dx− , (3.4.2)

where C(2) denotes the RR 2-form field and Cij, C+i and C+− are some fixed functions
of ~w. We can now use the following algorithm to generate the deformations describing
left-moving transverse oscillations of the black hole:

1. We first consider a deformation of the solution generated by the diffeomorphism

wi → wi + ai (x+ + c) f + (x+ + c)~a · ~wwi g,
x− → x− − 2~a · ~w ψ2 f − (x+ + c)ψ (~a · ~χ f + ~a · ~w ~w · ~χ g) ,

x+ → x+ , (3.4.3)

where ~a denotes an arbitrary constant four dimensional vector, ~a · ~w ≡ aiwi, c is an
arbitrary constant and f and g are functions of r satisfying

g =
1

2
ψ−2 (ψ2f)′ . (3.4.4)

Here ′ denotes derivative with respect to r. The diffeomorphism has been chosen
such that all the terms in δ(dS2) to first order in ai are proportional to (x+ + c)
without any derivative acting on it. By accompanying this diffeomorphism by a
suitable gauge transformation of C(2) we can ensure that δC(2) also is proportional
to (x+ + c) without any derivative acting on it.

2. We now replace the overall factor of x++c by an arbitrary function ε(x+) everywhere
in the deformed solution. Thus the deformed configuration is proportional to ε(x+).
Furthermore, by construction it is guaranteed to be a solution to the equations of
motion for ε(x+) = x+ + c. This in turn shows that if we substitute the deformed
configuration into the equations of motion then the terms proportional to ε(x+) and
∂+ε(x

+) must vanish automatically.

3. Our goal is to ensure that the deformed configuration is a solution to the equations of
motion to linear order in ε for arbitrary function ε(x+). Since the field equations are
second order in derivatives, and terms involving ε(x+) and ∂+ε(x

+) are guaranteed
to vanish, it only remains to ensure that the terms involving ∂2

+ε vanish. Such terms
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can arise in the ++ component of the metric equation, and the vanishing of the term
proportional to ∂2

+ε can be shown to require15

GijδGij = 0 , (3.4.5)

where i, j run over the four transverse spatial coordinates, Gij is the background
metric and δGij denotes the first order deformation of the metric. This imposes one
additional constraint on the functions f and g. Once this condition is satisfied we
have a set of deformations parametrized by four arbitrary function aiε(x+).16

At the end of the second step this procedure gives

δ
(
dS2
)

= −1

2
ε(x+)ψ−2ψ′~a · ~w (f + 4rg)

(
dx+ dx− − (dx+)2

)
+

1

2
ε(x+)ψ′~a · ~w (f + 4rg) ~dw

2
+ ε(x+)ψ f ′~a · ~dw ~w · ~dw

+2 ε(x+)ψ g~a · ~dw ~w · ~dw + 2 ε(x+)ψ g~a · ~w ~dw
2

+ ε(x+)ψ g′~a · ~w ~w · ~dw ~w · ~dw
−ε(x+)ψ−1 dx+ d (ψ(~a · ~χ f + ~a · ~w ~w · ~χ g))

+ε(x+)χi dx
+ d
(
ai f + ~a · ~wwi g

)
+ ε(x+) ∂kχ

i (ak f + ~a · ~wwk g) dx+dwi ,

δ C(2) =
1

2
ε(x+) (∂k Cij + ∂iCjk + ∂j Cki) (akf + ~a · ~wwk g) dwi ∧ dwj

+ε(x+) ∂kC+− (akf + ~a · ~wwk g) dx+ ∧ dx−

+ε(x+) ∂kC+− dw
k ∧ (2ψ2 f ~a · ~dw + ~a · ~w (ψ2f)′ ~w · ~dw)

−ε(x+) ∂k C+− (~a · ~χ f + ~a · ~w ~w · ~χ g) ψ dwk ∧ dx+

+ε(x+) (∂lC+k − ∂kC+l) (al f + ~a · ~wwl g) dx+ ∧ dwk . (3.4.6)

Substituting this into (3.4.5) gives

2ψ′ (f + 4rg) + ψ f ′ + 10ψ g + 4 r ψ g′ = 0 . (3.4.7)

Using eq.(3.4.4) we can regard (3.4.7) as a second order linear differential equation for f .
Thus it has two independent solutions. It is easy to verify that the general solution to
(3.4.4), (3.4.7) is

f = (A0 r
−2 +B0)ψ−2, g = −A0 r

−3 ψ−2 , (3.4.8)

where A0 and B0 are two arbitrary constants. Requiring that the solution gives a nor-
malizable deformation of the metric and the 2-form field near r = 0 we get A0 = 0. Thus
we have

f = B0 ψ
−2 , g = 0 . (3.4.9)

15Note that since the three form field strengths contain at most a single derivative of ε, they do not
directly contribute any term proportional to ∂2

+ε in the equations of motion.
16This analysis is similar in spirit, although much simpler than, the one carried out in [124].
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It is easy to verify that the deformations of the metric and the 2-form field associated with
this choice of f is normalizable both at r = 0 and at r =∞. Thus we have normalizable
deformation of the solution parametrized by four indendent functions ai ε(x+). This shows
the existence of four left-moving modes on the black hole world-volume. Furthermore the
contribution to the norm of the deformation from the throat region r << r0 vanishes,
showing that these modes are located outside the horizon.

We expect that a similar argument can be used to construct the four left-moving
fermionic modes on the black hole world-volume. In this case we shall need to use the
broken supersymmetry generators to generate the fermionic deformation of the solution.
However we shall not carry out this analysis explicitly.

3.4.2 Left-moving bosonic modes on the 4D black hole

In this subsection, we shall give explicit construction of the bosonic zero modes living on
the four dimensional black hole. We begin with the left-moving zero modes associated
with the harmonic two form ω in the Taub-NUT space given in (3.3.11). For any 2-form
field B – either the NSNS or RR sector 2-form field of the ten dimensional type IIB string
theory or a four form field with two legs along an internal 2-cycle of K3 – we consider a
deformation of the form

δB = ε(x+)ω , (3.4.10)

for any function ε(x+) of x+ = x5 + t. This gives

d(δ B) = ε′(x+) dx+ ∧ ω

= −ε′(x+)
1

r2R2
4

(
1

r
+

4

R2
4

)−2 (
1 +

r0

r

)−1

(e0 ∧ e2 ∧ e3 + e0 ∧ e4 ∧ e5 + e1 ∧ e2 ∧ e3 + e1 ∧ e4 ∧ e5) , (3.4.11)

where the 1-forms ei’s have been defined in (3.3.5). d(δB) given in (3.4.11) can be shown
to be anti-self-dual. Hence d(δB) is both closed and co-closed and δB given in (3.4.10)
provides a solution to the linearized equations of motion of Bµν around the background
(3.3.1). For the 3-form field strength deformation given in (3.4.11) one also finds that there
is no contribution to the stress tensor from the interference term between the deformation
and the leading order field strength given in (3.3.4). As a result the deformation (3.4.10)
also satisfies the metric equation of motion at the linearized level. However in order that
(3.4.10) corresponds to a valid configuration in string theory, B must correspond to a
left-chiral 2-form (which has anti-self-dual field strength in our convention). Since type
IIB on K3 has 2+19=21 left-chiral 2-form fields we get 21 left-moving bosonic modes
from this construction. Finally this deformation is normalizable with the metric given in
(3.3.1) and the norm is supported outside the throat, ı.e. outside the r << r0, R

2
4 region.

Thus these modes should be counted as part of the black hole hair.
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Next we shall describe the left-moving modes associated with the 3 transverse motion
of the black hole. For this we introduce new coordinates (y1, y2, y3) via

y1 = r cos θ cosφ, y2 = r cos θ sinφ, y3 = r cos θ . (3.4.12)

In this coordinate system the metric given in eq.(3.3.1) takes the form

dS2 = ψ(r)−1
{
dx+dx− + (ψ(r)− 1) (dx+)2

}
+
J̃

4
χ(r)ψ(r)−1 (dx4 + Aα(~y) dyα) dx+

+ψ(r)χ(r)−1
(
dx4 + Aα(~y) dyα

)2
+ ψ(r)χ(r) ~dy

2
+ ĝmn du

mdun , (3.4.13)

where

ψ(r) = 1 +
r0

r
, χ(r) =

1

r
+

4

R2
4

, Aα(~y) dyα = cos θ dφ . (3.4.14)

We can now generate an x+ dependent deformation of this solution by first considering a
diffeomorphism

yα → yα + (x+ + c) (bα f̃ +~b · ~y yα g̃) ,

x− → x− − 2~b · ~y χψ2 f̃ ,

x4 → x4 − (x+ + c)Aα (bα f̃ +~b · ~y yα g̃) , (3.4.15)

and then replacing (x++c) by ε(x+) in the deformed solution. Here c, b1, b2, b3 are arbitrary

parameters, ~b · ~y ≡ bα yα, and f̃ and g̃ are functions satisfying

g̃ =
1

r
ψ−2 χ−1(ψ2 χ f̃)′ . (3.4.16)

This gives

δ(dS2) = −ε(x+)ψ−2 ψ′
~b · ~y
r

(f̃ + r2g̃)
(
dx+dx− − (dx+)2

)
+
J̃

4
ε(x+) (ψ−1χ)′

~b · ~y
r

(f̃ + r2g̃) dx+ (dx4 + ~A · ~dy)

+
J̃

4
ε(x+)ψ−1 χ (∂αAβ − ∂βAα) (bα f̃ +~b · ~y yα g̃) dyβ dx+

+ε(x+) (ψ χ−1)′
~b · ~y
r

(f̃ + r2g̃) (dx4 + ~A · ~dy)2

+2 ε(x+)ψ χ−1 (∂αAβ − ∂βAα) (bα f̃ +~b · ~y yα g̃) dyβ (dx4 + ~A · ~dy)

+ε(x+) (ψ χ)′
~b · ~y
r

(f̃ + r2g̃) ~dy2 + 2 ε(x+)ψ χdyα d
(
bα f̃ +~b · ~y yα g̃

)
.

(3.4.17)
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One can construct the deformation of the 2-form field in a straightforward manner but
we shall not do this here.17 Our construction guarantees that when we substitute the
deformation (3.4.17) (and the corresponding deformation of the 2-form field) into the
linearized equations of motion in the black hole background, all terms up to first derivative
of ε(x+) vanish. Requiring the coefficient of the ∂2

+ε term to vanish gives us the equation:

ψ−1 χ (ψ χ−1)′(f̃ + r2 g̃) + 3ψ−1 χ−1 (ψ χ)′(f̃ + r2 g̃) + 2 (f̃ ′ + 4 r g̃ + r2 g̃′) = 0 . (3.4.18)

Using eq.(3.4.16) we can regard (3.4.18) as a second order linear differential equation for

f̃ . Thus it has two independent solutions. It is easy to verify that the general solution to
(3.4.16), (3.4.18) is

f̃ = (Ã0 r
−3 + B̃0)ψ−2 χ−1, g̃ = −3 Ã0 r

−5 ψ−2 χ−1 , (3.4.19)

where Ã0 and B̃0 are two arbitrary constants. Requiring that the solution gives a nor-
malizable deformation of the metric and the 2-form field near r = 0 we get Ã0 = 0. Thus
we have

f̃ = B̃0 ψ
−2 χ−1, g̃ = 0 . (3.4.20)

It is easy to verify that the deformations of the metric and the 2-form field associated
with this choice of f̃ is normalizable both at r = 0 and at r = ∞. Thus we have nor-
malizable deformation of the solution parametrized by three indendent functions bα ε(x+).
This shows the existence of three left-moving modes on the black hole world-volume de-
scribing the left-moving transverse oscillation modes of the black hole. Furthermore the
contribution to the norm of the deformation from the throat region r << r0, R

2
4 vanishes,

showing that these modes are located outside the horizon.

Finally we turn to the zero modes describing the motion of the D1-D5 system relative
to the Taub-NUT space. We shall not carry out the construction in detail but describe
these deformations in the limit R2

4 >> r0. To leading order in this limit, the deformations
associated with these left-moving modes are in fact given by the ones described in (3.4.6).
Indeed the arguments of §3.4.1 show that for r << R2

4 when the Taub-NUT metric can be
replaced by flat metric, the deformations given in (3.4.6) satisfy the linearized equations
of motion. On the other hand since the function f in (3.4.6) approaches a constant for
r >> r0, the metric fluctuations fall off as 1/r2 and the contribution to the norm of the
deformation from this region is small. Thus the deformation given in (3.4.6) is supported
in the region r ∼ r0, and for r ∼ R2

4 >> r0, where the deviation of the Taub-NUT
metric from the flat metric becomes significant, the deformation is close to zero. Thus

17For this one needs to accompany the diffeomorphism (3.4.15) by an appropriate gauge transformation
of the 2-form field such that every term in the deformation has an explicit factor of (x+ + c) without any
derivative acting on it. We then replace (x+ + c) by ε(x+).
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we conclude that in the region where the deformation (3.4.6) is supported it remains an
approximate solution to the equations of motion.18

Our analysis also allows us to determine the J quantum numbers of various de-
formations. Since in the region r << R2

4 the parameters ~a labelling the deformation
in (3.4.6) transform in the vector representation of the SO(4) rotation group acting on
the coordinates ~w, they carry J = ±1. This may also be seen by noting that under a
translation x4 → x4 + β, these modes transform with a phase e±iβ/2. Since x4 has period
4π, this shows that these modes carry ±1 quantum of x4 momentum. On the other hand
the deformations describing the overall transverse motion of the black hole, described by
the parameters bα, are neutral under x4 translation, and hence has J = 0. The different
transformation properties of the modes labelled by ~a and ~b help demonstrate that they
are distinct deformations of the solution.

18While this argument has been somewhat heuristic, we note that even in the microscopic counting
the transverse oscillation modes of the D1-D5 system in Taub-NUT space was accounted for by assuming
that for large R4 we can regard the non-zero mode oscillations of the D1-D5 system as free oscillators[17].
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Galilean Conformal Algebras

45





Chapter 4

Galilean Conformal Algebras

In this chapter, we review the bosonic non-relativistic conformal symmetry. In the next
section, we first review the Schrödinger symmetry algebra in order to set the notation, and
to contrast it with the Galilean Conformal Algebra obtained by a parametric contraction
of the relativistic conformal group [73]. The GCA is studied in great detail in the following
sections.

4.1 Schrödinger symmetry

The Schrödinger symmetry group in (d+ 1) dimensional spacetime (which we will denote
as Sch(d, 1)) has been studied as a non-relativistic analogue of conformal symmetry. It’s
name arises from being the group of symmetries of the free Schrödinger wave operator in
(d+1) dimensions. In other words, it is generated by those transformations that commute
with the operator S = i∂t + 1

2m
∂2
i . However, this symmetry is also believed to be realised

in interacting systems, most recently in cold atoms at criticality.

The symmetry group contains the usual Galilean group (denoted as G(d, 1)) with
its central extension.

[Jij, Jrs] = so(d)
[Jij, Br] = −(Biδjr −Bjδir)
[Jij, Pr] = −(Piδjr − Pjδir), [Jij, H] = 0
[Bi, Bj] = 0, [Pi, Pj] = 0, [Bi, Pj] = mδij
[H,Pi] = 0, [H,Bi] = −Pi. (4.1.1)

Here Jij (i, j = 1 . . . d) are the usual SO(d) generators of spatial rotations. Pr are the
d generators of spatial translations and Bj those of boosts in these directions. Finally
H is the generator of time translations. The parameter m is the central extension and
has the interpretation as the non-relativistic mass (which also appears in the Schrödinger
operator S).
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As vector fields on the Galilean spacetime Rd,1, they have the realisation (in the
absence of the central term)

Jij = −(xi∂j − xj∂i) H = −∂t
Pi = ∂i Bi = t∂i (4.1.2)

In addition to these Galilean generators there are two more generators which we will
denote by K̃, D̃. D̃ is a dilatation operator, which unlike the relativistic case, scales time
and space differently. As a vector field D̃ = −(2t∂t + xi∂i) so that

xi → λxi, t→ λ2t. (4.1.3)

K̃ acts something like the time component of special conformal transformations. It has
the form K̃ = −(txi∂i + t2∂t) and generates the finite transformations (parametrised by
µ)

xi →
xi

(1 + µt)
, t→ t

(1 + µt)
. (4.1.4)

These two additional generators have non-zero commutators

[K̃, Pi] = Bi, [K̃, Bi] = 0, [D̃, Bi] = −Bi

[D̃, K̃] = −2K̃, [K̃,H] = −D̃, [D̃,H] = 2H. (4.1.5)

The generators K̃, D̃ are invariant under the spatial rotations Jij. We also see from the
last line that H, K̃, D̃ together form an SL(2, R) algebra. The central extension term of
the Galilean algebra is compatible with all the extra commutation relations.

Note that there is no analogue in the Schrödinger algebra of the spatial components
Ki of special conformal transformations. Thus we have a smaller group compared to
the relativistic conformal group. In (3 + 1) dimensions, the Schrödinger algebra has
twelve generators (ten being those of the Galilean algebra) and the additional central
term. In contrast, the relativistic conformal group has fifteen generators. In the next
subsection we will discuss how to get a nonrelativistic conformal group through group
contraction. In the process of group contraction one does not lose any generators and
hence the Galilean Conformal Algebra we find will have the same number of generators
as the group SO(d+ 1, 2).

4.2 Contraction of the Relativistic Conformal Group

First let us study a simple example of the Inonu-Wigner Contraction: We know that the
SO(3) is the isometry group of S2 and maps the surface of the sphere to itself. Now the
equation for a sphere of radius R (embedded in R3) in cartesian coordinates is given by
x2

1 + x2
2 + x2

3 = R2. The infinitesimal generators of rotation are given by:

Jij = xi∂j − xj∂i , (4.2.1)
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with commutation relations

[Jij, Jrs] = Jisδjr + Jjrδis − Jirδjs − Jjsδir . (4.2.2)

Now let us take the limit R → ∞, which physically means we are considering the
limit of a two-dimensional plane (R2). Let us look at the north pole: (x1 = 0, x2 = 0, x3 =
R). Next we redefine the generators as

Y12 = lim
R→∞

X12 = x1∂2 − x2∂1 ,

Pi = lim
R→∞

1

R
Xi3 = lim

R→∞

1

R
(xi∂3 − x3∂i)→ −∂i ,

which now satisfy the algebra

[Y12, Pi] = P1δ2i − P2δ1i, [P1, P2] = 0 . (4.2.3)

This is the algebra of the ISO(2) group. This is what we expected, because at North
Pole, with R → ∞, S2 looks like R2. We will use this technique to investigate the
non-relativistic limit of the conformal algebra.

We know that the Galilean algebra G(d, 1) arises as a contraction of the Poincare
algebra ISO(d, 1). Physically this comes from taking the non-relativistic scaling

t→ εrt xi → εr+1xi (4.2.4)

with ε → 0 .1 This is equivalent to taking the velocities vi ∼ ε to zero (in units where
c = 1). We will use (4.2.4) to scale and redefine the generators, as motivated in the
example considered at the beginning of the section, so that the leading term scales as
unity.

Starting with the expressions for the Poincare generators (µ, ν = 0, 1 . . . d)

Jµν = −(xµ∂ν − xν∂µ) Pµ = ∂µ, (4.2.5)

the above scaling gives us the Galilean vector field generators of (4.1.2)

Jij = −(xi∂j − xj∂i) P0 = H = −∂t
Pi = ∂i J0i = Bi = t∂i. (4.2.6)

They obey the commutation relations (without central extension) of (4.1.1). This
should be contrasted with the Poincare commutators

[Jij, Jrs] = so(d) ,

1We have allowed for a certain freedom of scaling through the parameter r, since we might have other
scales in the theory with respect to which we would have to take the above nonrelativistic limit. However,
for the process of group contraction, the parameter r will play no role apart from modifying an over all
factor which is unimportant. Hence we will simply take r = 0.
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[Jij, Br] = −(Biδjr −Bjδir) ,
[Jij, Pr] = −(Piδjr − Pjδir) , [Jij, H] = 0
[Bi, Bj] = −Jij, [Pi, Pj] = 0 , [Bi, Pj] = δijH
[H,Pi] = 0 , [H,Bi] = −Pi (4.2.7)

To obtain the Galilean Conformal Algebra, we simply extend the scaling (4.2.4) to
the rest of the generators of the conformal group SO(d+ 1, 2). Namely to

D = −(x · ∂) Kµ = −(2xµ(x · ∂)− (x · x)∂µ) (4.2.8)

where D is the relativistic dilatation generator and Kµ are those of special conformal
transformations. The non-relativistic scaling in (4.2.4) now gives (see also [75])

D = −(xi∂i + t∂t)
K = K0 = −(2txi∂i + t2∂t)
Ki = t2∂i. (4.2.9)

Note that the dilatation generator D = −(xi∂i+t∂t) is the same as in the relativistic
theory. It scales space and time in the same way xi → λxi, t→ λt. Therefore it is different
from the dilatation generator D̃ = −(2t∂t +xi∂i) of the Schrödinger group. Similarly, the
temporal special conformal generator K in (4.2.9) is different from K̃ = −(txi∂i + t2∂t).
Finally, we now have spatial special conformal transformations Ki which were not present
in the Schrödinger algebra. Thus the generators of the Galilean Conformal Algebra are
(Jij, Pi, H,Bi, D,K,Ki).

Since the usual Galilean algebra G(d, 1) for the generators (Jij, Pi, H,Bi) is a sub-
algebra of the GCA, we will not write down their commutators. The other non-trivial
commutators of the GCA are [75]

[K,Ki] = 0, [K,Bi] = Ki, [K,Pi] = 2Bi

[Jij, Kr] = −(Kiδjr −Kjδir), [Jij, K] = 0, [Jij, D] = 0
[Ki, Kj] = 0, [Ki, Bj] = 0, [Ki, Pj] = 0, [H,Ki] = −2Bi,
[D,Ki] = −Ki, [D,Bi] = 0, [D,Pi] = Pi,
[D,H] = H, [H,K] = −2D, [D,K] = −K. (4.2.10)

This can again be contrasted with commutators of the corresponding relativistic
generators

[K,Ki] = 0, [K,Bi] = Ki, [K,Pi] = 2Bi

[Jij, Kr] = −(Kiδjr −Kjδir), [Jij, K] = 0, [Jij, D] = 0
[Ki, Kj] = 0, [Ki, Bj] = δijK, [Ki, Pj] = 2Jij + 2δijD
[H,Ki] = −2Bi, [D,Ki] = −Ki, [D,Bi] = 0, [D,Pi] = Pi,
[D,H] = H, [H,K] = −2D, [D,K] = −K. (4.2.11)
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We can also compare the relevant commutators in (4.2.10) with those of (4.1.5) and
we notice that they too are different. Thus the Schrödinger algebra and the GCA only
share a common Galilean subgroup and are otherwise different. In fact, one can verify
using the Jacobi identities for (D,Bi, Pj) that the Galilean central extension in [Bi, Pj]
is not admissible in the GCA. This is another difference from the Schrödinger algebra,
which as mentioned above, does allow for the central extension. Thus in some sense, the
GCA is the symmetry of a ”massless” (or gapless) nonrelativistic system. We will discuss
some possible realisations in the next section. It should be pointed out that the GCA
does admit a different central extension of the form

[Ki, Pj] = Nδij (4.2.12)

where N commutes with all the other generators of the GCA. The exact interpretation of
this term in general is not clear. It will, in fact, turn out to be absent when one considers
the infinite dimensional extension of the GCA in the next section.

4.3 The Infinite Dimensional Extended GCA

The most interesting feature of the GCA is that it admits a very natural extension to an
infinite dimensional algebra of the Virasoro-Kac-Moody type2. To see this we denote

L(−1) = H, L(0) = D, L(+1) = K,
M

(−1)
i = Pi, M

(0)
i = Bi, M

(+1)
i = Ki. (4.3.1)

The finite dimensional GCA which we had in the previous section can now be recast as

[Jij, L
(n)] = 0, [L(m),M

(n)
i ] = (m− n)M

(m+n)
i

[Jij,M
(m)
k ] = −(M

(m)
i δjk −M (m)

j δik), [M
(m)
i ,M

(n)
j ] = 0,

[L(m), L(n)] = (m− n)L(m+n). (4.3.2)

The indices m,n = 0,±1 We have made manifest the SL(2, R) subalgebra with the
generators L(0), L(±1). In fact, we can define the vector fields

L(n) = −(n+ 1)tnxi∂i − tn+1∂t
M

(n)
i = tn+1∂i (4.3.3)

with n = 0,±1. These (together with Jij) are then exactly the vector fields in (4.1.2) and
(4.2.9) which generate the GCA (without central extension).

2A similar Virasoro extension of the Schrödinger group can be found in ref. [70]. The actual algebra
is different from the one described here.
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If we now consider the vector fields of (4.3.3) for arbitrary integer n, and also define

J (n)
a ≡ J

(n)
ij = −tn(xi∂j − xj∂i) (4.3.4)

then we find that this collection obeys the current algebra

[L(m), L(n)] = (m− n)L(m+n) [L(m), J (n)
a ] = −nJ (m+n)

a

[J (n)
a , J

(m)
b ] = fabcJ

(n+m)
c [L(m),M

(n)
i ] = (m− n)M

(m+n)
i . (4.3.5)

The index a labels the generators of the spatial rotation group SO(d) and fabc are the
corresponding structure constants. We see that the vector fields generate a SO(d) Kac-
Moody algebra without any central terms. In addition to the Virasoro and current gen-
erators we also have the commuting generators M

(n)
i which function like generators of a

global symmetry. We can, for instance, consistently set these generators to zero. The
presence of these generators therefore do not spoil the ability of the Virasoro-Kac-Moody
generators to admit the usual central terms in their commutators.

What is the meaning of this infinite dimensional extension? Do these additional
vector fields generate symmetries?

There is a relatively simple interpretation for the generators M
(n)
i , L(n), J

(n)
a . We

know that Pi = M
(−1)
i , Bi = M

(0)
i , Ki = M

(1)
i generate uniform spatial translations,

velocity boosts and accelerations respectively. In fact, it is simple to see from (4.3.3) that

the M
(n)
i generate arbitrary time dependent (but spatially independent) accelerations.

xi → xi + bi(t). (4.3.6)

Similarly the J
(n)
ij in (4.3.4) generate arbitrary time dependent rotations (once again space

independent)
xi → Rij(t)xj (4.3.7)

These two set of generators together generate what is sometimes called the Coriolis group:
the biggest group of ”isometries” of ”flat” Galilean spacetime [77].

Recall that in the absence of gravity Galilean spacetime is characterised by a de-
generate metric. The time intervals are much larger than any space-like intervals in the
nonrelativistic scaling limit (4.2.4). We thus have an absolute time t and spatial sections
with a flat Euclidean metric. We can, in a precise sense, describe the analogue of the
isometries in this Galilean spacetime. The Coriolis group by virtue of preserving the spa-
tial slices (at any given time) are the maximal set of isometries. This realisation of the
current algebra in our context is a bit like the occurence of a loop group.

The generators L(n) have a more interesting action in acting both on time as well as
space. We can read this off from (4.3.3)

t→ f(t), xi →
df

dt
xi. (4.3.8)
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Thus it amounts to a reparametrisation of the absolute time t. Under this reparametri-
sation the spatial coordinates xi act as vectors (on the worldline t). It seems as if this
is some kind of ”conformal isometry” of the Galilean spacetime, rescaling coordinates by
the arbitrary time dependent factor df

dt
.

With this interpretation of the infinite extension of the GCA, one might expect that
it ought to be partially or fully dynamically realised in physical systems where the finite
GCA is (partially or fully) realised. We will see below an example which lends support
to this idea. We will also see in Sec. 5 that the bulk geometry which we propose as
the dual has the extended GCA among its asymptotic isometries. An analogy might be
two dimensional conformal invariance where the Virasoro algebra is often a symmetry
when the finite conformal symmetry of SL(2, C) is realised. And the (two copies of the)
Virasoro generators are reflected in the bulk AdS3 as asymptotic isometries.

Given that the Galilean limit can be obtained by taking a definite scaling limit
within a relativistic theory, we expect to see the GCA (and perhaps its extension) as a
symmetry of some subsector within every relativistic conformal field theory. For instance,
in the best studied case of N = 4 Yang-Mills theory, we ought to be able to isolate a sector
with this symmetry. One clue is the presence of the SL(2, R) symmetry together with the
preservation of spatial rotational invariance. One might naively think this should be via
some kind of conformal quantum mechanics obtained by considering only the spatially
independent modes of the field theory. But this is probably not totally correct for the
indirect reasons explained in the next paragraph.

Recently, the nonrelativistic limit of the relativistic conformal hydrodynamics, which
describes the small fluctuations from thermal equilibrium, have been studied [125, 126,
127]. One recovers the non-relativistic incompressible Navier-Stokes equation in this limit.
The symmetries of this equation were then studied by [126] (see also [127]). One finds
that all the generators of the finite GCA are indeed symmetries3 except for the dilatation
operator D 4. In particular it has the Ki as symmetries. It is not surprising that the
choice of a temperature should break the scaling symmetry of D 5. The interesting point is
that the arbitrary accelerations M

(n)
i are also actually a symmetry [128] (generating what

is sometimes called the Milne group [77]). Thus we have a part of the extended GCA
as a symmetry of the non-relativistic Navier-stokes equation which should presumably
describe the hydrodynamics in every nonrelativistic field theory. In particular, the closed
non-relativistic subsector within every relativistic conformal field theory should have a
hydrodynamic description governed by the Navier-Stokes equation. This might seem to
suggest that this sector ought to have more than just the degrees of freedom of a conformal
quantum mechanics.

3For a realisation of the Schrödinger symmetry in the context of the Navier-Stokes equation see
[129, 130].

4The generator K acts trivially.
5However, one can define an action of the D̃ as in (4.1.3) to be a symmetry.
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Coming back to the Navier-Stokes equation, if the viscosity is set to zero, one gets
the incompressible Euler equations

∂tvi(x, t) + vj∂jvi(x, t) = −∂ip(x, t) (4.3.9)

In this case one has the entire finite dimensional GCA being a symmetry since D is now
also a symmetry. It is the viscous term which breaks the symmetry under equal scaling of
space and time. This shows that one can readily realise “gapless” non-relativistic systems
in which space and time scale in the same way! 6

6Inonu and Wigner [131] have considered representations of the Galilean group without the mass
extension and concluded that a particle interpretation of states of the irreducible representations is
subtle. In particular such states are not localisable. Just as in the case of relativistic conformal group it
is likely that observables such as the S-matrix are ill-defined.



Chapter 5

SGCA in 4d

In this chapter, we discuss a systematic construction of the N = 1 supersymmetric
extension of the GCA in (3 + 1)d, which we will refer to as SGCA. To that end, we would
first look to perform a contraction on the simplest N = 1 case. As in the bosonic case, we
would look to implement the contraction at the level of the co-ordinates. We write down
the superspace representations of the relativistic algebra and perform the contraction on
the ordinary as well as the grassmann co-ordinates. In §5.4, we also lift the SGCA to an
infinite dimensional algebra. Lastly, in §5.5, we comment on the generalisation to higher
N .

5.1 Non-relativistic contraction in superspace

We have seen that for the bosonic case, the non relativistic limit arises from (4.2.4). Now,
we also need to take into account the grassmann co-ordinates θ. We know that square of
θ acts like an ordinary co-ordinate. Hence we expect the scaling of θ to go like

√
ε. The

various linear combinations of the components of θ that scale differently should scale like√
ε and 1√

ε
respectively. Naive choices of the components would lead to incorrect answers

like the vanishing of {Q,Q}. So, one needs to be careful while choosing the appropriate
linear combinations of the components of the grassmann variable which would scale in
the way mentioned above.

Along with (4.2.4), we choose to scale

θ+ →
1√
ε
θ+ , θ− →

√
εθ− , (5.1.1)

where θ± are projections defined below:

θ± =
1

2
(1± γ0)θ =

1

2

(
12×2 ± σ0

±σ0 12×2

)(
θα
θ
α̇

)
. (5.1.2)
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We list the conventions used for the spinor algebra in §5.7.1. To make the process of
contraction explicit, let us define variables with the different scaling behaviours as follows:

ψ1 =
1

2
(θ1 − θ2̇), ψ2 =

1

2
(θ2 + θ1̇) ⇒ ψ1,2 →

1√
ε
ψ1,2

χ1 =
1

2
(θ1 + θ2̇), χ2 =

1

2
(θ2 − θ1̇) ⇒ χ1,2 →

√
εχ1,2 (5.1.3)

Let us briefly comment on the choice of this particular scaling. From the bosonic
case, we know that the space part should scale in a way which is different from the time
part in the non-relativistic limit. We would have a rotational symmetry present in the
spatial part of the non-relativistic quantities of interest. Incorporating this feature in the
supersymmetric case, it is necessary to look at spinors of SO(3). The spinors we have
described above are indeed spinors of SO(3). Some more details can be found in §5.7.1.
There is another hint at what we want if we look at the non-relativistic limit of the Dirac
equation. This is precisely the projection that gets rid of the negative energy states and
projects onto the Pauli equation in the limit where we take the speed of light to infinity.

5.2 Fermionic generators

We would implement the above described scaling on the fermionic generators1. We would
look at particular combinations of the generators and perform the contraction in a way
similar to the bosonic case.

We look at the supersymmetry generators first. They are

Qα = i
∂

∂θα
+ σµαα̇θ

α̇
∂µ , Qα̇ = −i ∂

∂θ
α̇

+ θασµαα̇∂µ . (5.2.1)

where α, α̇ = 1, 2.

More explicitly:

Q1 = i
∂

∂θ2

− θ2̇∂t + θ2̇∂3 − θ1̇∂1 + iθ1̇∂2 , Q2 = −i ∂
∂θ1

+ θ1̇∂t + θ1̇∂3 + θ2̇∂1 + iθ2̇∂2 ,

Q2̇ = i
∂

∂θ1̇

− θ1∂t − θ1∂3 − θ2∂1 + iθ2∂2 , Q1̇ = −i ∂
∂θ2̇

+ θ2∂t − θ2∂3 − θ1∂1 + iθ1∂2 .

In order to perform the contraction, we would need to take linear combinations of
the above equations as shown below :

Q̃+
1 = Q1 −Q2̇ , Q̃+

2 = Q2 +Q1̇ ,

Q̃−1 = Q1 +Q2̇ , Q̃−2 = Q2 −Q1̇ . (5.2.2)

1Here we would be keeping track of factors of ±i which we had not taken into account in the purely
bosonic subalgebra.
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Expressing them in the variables ψa and χa defined before, we find

Q̃+
a = iεab∂χb

+ 2ψa∂t + 2χbσ
j
ab∂j ,

Q̃−a = iεab∂ψb
− 2χa∂t − 2ψbσ

j
ab∂j ,

where a = 1, 2.

We now perform the contraction by scaling t, xi, ψa and χa and choosing redefined
generators in the way below :

Q+
a = lim

ε→0
ε1/2Q̃+

a = iεab∂χb
+ 2ψa∂t + 2χbσ

j
ab∂j ,

Q−a = lim
ε→0

ε3/2Q̃−a = −2ψbσ
j
ab∂j . (5.2.3)

The anticommutators of the algebra involving Q−1,2 are all zero. The non-zero anti-
commutators are given by

{Q+
1 ,Q+

2 } = −4i∂3, {Q+
1 ,Q+

1 } = 4i(∂1 − i∂2), {Q+
2 ,Q+

2 } = −4i(∂1 + i∂2). (5.2.4)

Now we turn our attention to the other fermionic generators of the relativistic super-
conformal group,- the super-conformal transformations S.

The S-supersymmetry generators are

Sα = −iεβ̇γ̇(σµ)αγ̇x
µ
(+)θ

βσν
ββ̇
∂ν + 2i(θθ)∂α + εβ̇γ̇(σµ)αγ̇x

µ
(−)∂β̇ ,

Sα̇ = −iεβγ(σµ)γα̇x
µ
(−)θ

β̇
σν
ββ̇
∂ν − 2i(θθ)∂α̇ + εβγ(σµ)γα̇x

µ
(+)∂β ,

where we have defined xµ(±) = xµ ± iθσµθ.
As in the case of the Q-generators, we take linear combinations of the above equa-

tions as follows:

S̃+
1 = S1 − S 2̇ , S̃+

2 = S2 + S 1̇ ,

S̃−1 = S1 + S 2̇ , S̃−2 = S2 − S 1̇ . (5.2.5)

We now perform the contraction by scaling t, xi, ψa and χa and choosing redefined
generators in the way below :

S+
a = lim

ε→0
ε1/2S̃+

a = (2itχb − 8χ1χ2ψb)σ
j
ab∂j + 2iσjabσ

k
bcψcx

j∂k + ψa(2it− 8εbcψbχc)∂t

−2iψaψb∂ψb
+ 4iψaχb∂χb

− 6iεabεcdψcχd∂χb
− tεab∂χb

,
S−a = lim

ε→0
ε3/2S̃−a = 2itψbσ

j
ab∂j + 8ψ1ψ2χbσ

j
ab∂j − 6iψ1ψ2ε

ab∂χb
, (5.2.6)

where a = 1, 2.
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Again, the only non-zero anticommutators involve the S+
a generators as shown be-

low:

{S+
1 ,S+

2 } = 4K3, {S+
1 ,S+

1 } = −4(K1 − iK2), {S+
2 ,S+

2 } = 4(K1 + iK2). (5.2.7)

We should mention that the bosonic generators now also have fermionic pieces. The details
can be found in §5.7.2. The algebra of the bosonic generators, as expected, remains the
same with these additional pieces. Along with all the usual bosonic generators, there
are also the extra R-symmetry generators which rotate the fermionic generators. For the
N = 1 case at hand, this is just a single generator, representing the U(1) R-symmetry.
(Again, more details are provided in §5.7.2.)

5.3 Algebra

We list the algebra here but omitting the purely bosonic subalgebra. One should also
note that the commutator of A with any bosonic generator is zero.

The non-zero anticommutators of the fermionic generators are given by

{Q+
1 ,Q+

1 } = −4(P1 − iP2), {Q+
2 ,Q+

2 } = 4(P1 + iP2), {Q+
1 ,Q+

2 } = 4P3,
{S+

1 ,S+
1 } = −4(K1 − iK2), {S+

2 ,S+
2 } = 4(K1 + iK2), {S+

1 ,S+
2 } = 4K3,

{S+
1 ,Q+

1 } = 4i(B1 − iB2), {S+
1 ,Q+

2 } = −4iB3 − 12A,
{S+

2 ,Q+
1 } = −4iB3 + 12A, {S+

2 ,Q+
2 } = −4i(B1 + iB2). (5.3.1)

The commutators of Q±a ,S±a with Pi,Ki, Bi are as follows:

[Pi,Q±a ] = 0, [Pi,S+
a ] = −σiabQ−b , [Pi,S−a ] = 0,

[Ki,Q+
a ] = −σiabS−b , [Ki,Q−a ] = 0, [Ki,S±a ] = 0,

[Bi,Q+
a ] =

i

2
σiabQ−b , [Bi,Q−a ] = 0,

[Bi,S+
a ] =

i

2
σiabS−b , [Bi,S−a ] = 0. (5.3.2)

The commutators of Q±a ,S±a with the angular momentum generators Ji are given
by

[Ji,Q±a ] = −1

2
σiabQ±b , [Ji,S±a ] = −1

2
σiabS±b , (5.3.3)

which tell us that the fermionic generators transform as spinors of SO(3), the three-
dimensional rotation group.

Finally, the commutators of Q±a ,S±a with H,K, D,A are as follows:

[H,Q±a ] = 0, [H,S+
a ] = Q+

a , [H,S−a ] = −Q−a ,
[K,Q+

a ] = −S+
a , [K,Q−a ] = S−a , [K,S±a ] = 0,
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[D,Q±a ] = − i
2
Q±a , [D,S±a ] =

i

2
S±a ,

[A,Q+
a ] = −1

2
Q−a , [A,Q−a ] = 0,

[A,S+
a ] =

1

2
S−a , [A,S−a ] = 0. (5.3.4)

5.4 Infinitely extended SGCA

We have seen in §4.3 that the bosonic GCA admitted an infinite dimensional extension.
This was one of the very interesting aspects of the GCA. As we have systematically
employed an analogous non-relativistic limit on the supersymmetric version of the bosonic
conformal algebra, we would expect that similar infinite dimensional extensions are valid
even in this case. To that end, we would now re-write the finite dimensional contracted
algebra in a suggestive form.
We define:

G−1/2 =

(
G+a
−1/2

G−a−1/2

)
=

(
iQ+

a

−iQ−a

)
, G1/2 =

(
G+a

1/2

G−a1/2

)
=

(
S+
a

S−a

)
. (5.4.1)

Remembering the definitions of Ln,M
i
n, Jij from §4.2, we can re-write the finite dimen-

sional superconformal algebra in the following way: 2

[Lm, Ln] = (m− n)Lm+n, [M i
n,M

j
m] = 0, [Lm,M

i
n] = (m− n)M i

m+n,

[Ln, G
±a
r ] = (

n

2
− r)G±an+r, [M i

n, G
+a
r ] = (r − n

2
)σiabG

−b
n+r, [M i

n, G
−a
r ] = 0,

{G+a
r , G+b

s } = 4i(σiε)abM
i
r+s − 12if1(r, s)εabAr+s, {G−ar , G±bs } = 0, (5.4.2)

for n = 0,±1 and r = ±1
2
.

At the level of the algebra, we can continue (5.4.2) for all integral values of n,m and
all half integral values of r, s. The commutators of the supercharges of the finite algebra
with the Ln,M

i
n for arbitrary n generate the higher supercharges. We see that to fit with

the Jacobi identity we need to promote A to have a Virasoro index. Let us try and derive
a consistent infinite lift for A so that the above algebra closes. The first thing to note
is that the symmetry of the total fermionic anticommutator and the antisymmetry of εab

forces the function f1(r, s) to be antisymmetric in r, s. Let us take the simplest function
and try and build a consistent infinite dimensional extension of the contracted algebra,
which is

f1(r, s) = r − s . (5.4.3)

2Here we return to a convention devoid of i for the purely bosonic subalgebra to compare with the
results in the infinite bosonic algebra. More explicitly, the H,Bi,K,Ki, Jij used here can be obtained
from those defined in §5.7.2 and used in §5.3, by multiplying with (−i), whereas the D,Pi used here can
be obtained by multiplying with i.



60 CHAPTER 5. SGCA IN 4D

To generate the rest of the An algebra, let us look at the Jacobi identity involving
G+a
r , G+b

s ,An :

[{G+a
r , G+b

s },An]− {[G+b
s ,An], G+a

r }+ {[An, G+a
r ], G+b

s } = 0 , (5.4.4)

⇒ 4i(σiε)ab[M
i
r+s,A]− 12iεab(r − s)[Ar+s,An] = 0 ,

where we have used [An, G+
r ] = f2(n, r)G−n+r .

We find that
[M i

m,An] = 0, [Am,An] = 0 (5.4.5)

is a consistent choice. The first commutator can be further motivated by the fact that
the vector index on the RHS must come from M i

n′ and not σiabAn′ as An′ does not have
any a or b index to contract with the indices coming from σiab. Then the RHS would at
most have factors of M i

m+n. Any natural definition of [Am,An] would not generate M i
n′

on the RHS. And hence, to satisfy (5.4.4), both must be given by (5.4.5).

We can now look at the Jacobi identity of Lm, Ln,Am′ to arrive at a choice for
[Ln,Am] which fits with the finite algebra. The simplest choice is

[Ln,Am] = −mAm+n . (5.4.6)

The rest of the algebra of An, and indeed the full contracted finite case, also follows from
various Jacobi identities. We list a simple consistent choice for the infinite lift of the rest
of the algebra:

[An, G+a
r ] =

1

2
G−an+r, [An, G−ar ] = 0, [J i, G±ar ] =

i

2
σiabG

±b
r , [J i,An] = 0. (5.4.7)

Together with (5.4.2), (5.4.5), and (5.4.6), (5.4.7) constitutes the infinite dimensional
extension of the non-relativistic superconformal algebra3.

The interesting thing to note here is that the supercharge anticommutators generate
the M i

n and not the Ln as would be the usual expectation from the bosonic algebra. The
reason for this counter-intuitive behaviour can be traced back to the fact that we chose
to scale the fermionic generators in a way which meant that the SL(2, R) part always
dropped out of the fermionic anti-commutators. The above algebra looks structurally like
the usual superconformal algebra in 2 dimensions. This is an infinitely extended N = 1
Super Galilean conformal algebra.

There might be a possible way to extract the usual supeconformal algebra in 2
dimensions by choosing to contract the fermionic generators in a different way. One has
to make sure that the SL(2, R) part is the one that remains after scaling and not the

3Here we cannot give the rotation generators J i’s an infinite lift as discussed in §5.7.3. The OPE anal-
ysis of §5.7.3 also suggests that this simple choice is the unique infinite dimensional extension consistent
with the finite part for this particular contraction.
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part with the vector indices. This would be a different non-relativistic limit of the parent
super-conformal algebra and hence an inequivalent Super-Galilean conformal algebra. It
might be interesting to explore this in more detail. The classification of the possible
supersymmetric GCAs is also something worth pondering about.

5.5 Generalization to higher N
The generalization to extended SUSY is immediate. For N > 1 superconformal algebras,
the difference with the N = 1 case is that the number of fermionic generators increases.
(With each of the Q and S, a label ‘p’ will now be attached.) This, in turn, implies that the
R-symmetry will be enhanced for these algebras. We can use constructions very similar to
what we have described above to arrive at the non-relativistic extended superconformal
algebras. The linear combinations used earlier would just need to be augmented by
the extra internal index ‘p’ and the R-symmetry generator A gets promoted to Apq (for
example, SO(6) symmetry for N = 4).

There is a point to note here. Unlike in the case of extended supersymmetry alge-
bras, extended superconformal algebras don’t allow for central extensions in the fermionic
generators. This is clear if one looks at the Jacobi identities. For example, if we want
to put a central term in the {Q,Q} anticommutator, then we can check using the Jacobi
identity of {P, S,Q} that this cannot be consistent. So, in the extended superconformal
algebras, we would not have to worry about additional central terms coming from the
relativistic algebra when we are looking to perform the non-relativistic contraction. The
process of contraction and the contracted algebra are just the same as in the N = 1 with
extra indices fitted wherever required.

The infinite dimensional lift can also be implemented along the lines mentioned in
§5.4. Except for extra indices, the rest of the construction remains the same.

5.6 Summary

In this chapter, we have systematically derived a non-relativistic limit for superconformal
algebras. We used a simple representation of the N = 1 superconformal algebra and
took a limit on that by demanding that the linear combinations of the spinors we look at
would be spinors of SO(3). We also found a way to embed this finite dimensional algebra
in an infinitely extended algebra, along the lines similar to the bosonic construction.
The suprise there was that instead of the appearance of the expected infinite N = 1
superconformal algebra in d = 2, we found a close cousin of that algebra. The extension
to extended superconformal algebras was immediate. These are supersymmetric versions
of the bosonic Galilean Conformal Algebra studied in [73, 79] and reviewed in §4. It is
interesting that one has a simple framework in which all types of superconformal algebras
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can be handled in the non-relativistic limit. We also mentioned the fact that there might
be other contractions of the superconformal algebra, which realise different types of super-
extended GCAs. In this context, we would like to mention that in [132], the authors looked
at similar contractions of the relativistic super-conformal group PSU(2, 2|4) while looking
at non-relativistic limits of AdS/CFT correspondence from the world-sheet point of view.
The linear combination of spinors used there is motivated by kappa-symmetry of the
relativistic string action and seem to be different to our limit4.

5.7 Appendix

5.7.1 Spinors: convention and choice

In this subsection, we provide some details of first the conventions and then why we choose
to scale the spinors in the way we have done while performing group contraction.

Convention

For the calculations in this chapter, we have followed the notation of Wess-Bagger.

σµ = (σ0, σi), σµ = (σ0,−σi)

σ0 =

(
−1 0
0 −1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(σµν) β

α = −1

4
(σµσν − σνσµ) β

α , (σ̃µν)α̇
β̇

= −1

4
(σµσν − σνσµ)α̇

β̇

ε12 = −ε21 = ε1̇2̇ = −ε2̇1̇ = 1

ε12 = −ε21 = ε1̇2̇ = −ε2̇1̇ = −1

We have used the a, b indices running over 1, 2, when we have dealt with the com-
ponents of the non-relativistic SO(3) spinors, and it does not matter whether they have
been written as subscripts or superscripts. More explicitly,

εab = εab , (σi)ab = (σi)ab = (σi)ab = (σi) b
a . (5.7.1)

Choice of spinors

In the non-relativistic limit there is a sharp distinction between time and space which
was not present in the relativistic theory. So, as we have already stressed, when we look
at the symmetries of quantities of interest in a non-relativistic setting, we would expect

4Ref. [133] seems more in this direction.
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a rotational invariance in the spatial part only. In d = 3 + 1, when we consider fermions,
we would thus choose to work with spinors of SO(3).

From the commutators of the Q’s with the Jij generators, it is clear that under
spatial rotations, they have the transformation properties of the spinors of SO(3).

More explicitly, let us look at how the combinations mentioned in the paper form
the two components of an SU(2) or an SO(3) spinor.
Under SO(3) transformations:

δθα = (σij)
β
α θβw

ij, δθβ̇ = −θα̇(σ̃ij)
α̇
β̇
wij. (5.7.2)

Now,

σij =
i

2
εijkσ

k ⇒ wijσij =

(
c a− ib

a+ ib −c

)
. (5.7.3)

So, we get

δθ1 = cθ1 + (a− ib)θ2, δθ2 = (a+ ib)θ1 − cθ2

δθ1̇ = −(a+ ib)θ2̇ − cθ1̇, δθ2̇ = cθ2̇ − (a− ib)θ1̇. (5.7.4)

Hence,

δ(θ1 − θ2̇) = c(θ1 − θ2̇) + (a− ib)(θ2 + θ1̇) ,
δ(θ2 + θ1̇) = (a+ ib)(θ1 − θ2̇)− c(θ2 + θ1̇) . (5.7.5)

Or more compactly,

θ+ =

(
θ1 − θ2̇

θ2 + θ1̇

)
⇒ δθ+ = (n̂.−→σ )θ+ . (5.7.6)

This shows that the linear combinations that we work with are indeed SO(3) spinors.

5.7.2 Bosonic generators

As already mentioned in §5.2, the bosonic generators in the supersymmetric case will
get contributions from the fermionic coordinates. In this subsection, we list the various
bosonic generators that have extra pieces and note how the generators need to be rescaled
in the non-relativistic limit. As expected, the scaling behaviour is the same as in the case
of the purely bosonic algebra.

We first derive explicit expressions for the angular momentum and boost generators,
which are obtained from the Jij and the J0i components respectively, of the Lorentz
generators Jµν given by

Jµν = i(xν∂µ − xµ∂ν + σαβµν θα∂β − σ̃α̇β̇µν θα̇θβ̇) . (5.7.7)
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We now perform contraction by scaling xi, t, ψa and χa. The Jij generators are invariant
under this scaling and are explicitly given by

Jij = i(xj∂i − xi∂j) +
1

2
εijk
{
ψa(σ

k)Tab∂ψb
+ χa(σ

k)Tab∂χb

}
. (5.7.8)

For notational convenience, we define

Ji =
1

2
εijkJjk . (5.7.9)

For the J0i generators, however, we have to choose redefined operators as shown below:

Bi = lim
ε→0

εJ0i = it∂i +
i

2
ψa(σ

i)Tab∂χb
. (5.7.10)

The dilatation generator is given by the expression

D = ixµ∂µ +
i

2
(θα∂α + θ

α̇
∂α̇)

= it∂t + ixj∂j +
i

2
(ψa∂ψa + χa∂χa) . (5.7.11)

We can see clearly that D does not scale when we perform contraction by scaling xi, t,
ψa and χa. Hence we need not redefine it.

The remaining bosonic generators are given by the temporal and spatial special
conformal transformation generators, obtained from the K0 and the Ki components, re-
spectively, of the relativistic special conformal transformation generator Kµ given by

Kµ = −4i
{
xµx

ν + (θσµθ)(θσ
νθ)
}
∂ν + 2i

{
xνxν + 2(θθ)(θθ)

}
∂µ

+4iεβγ(σνσµ)γ
αθαxν∂β . (5.7.12)

We perform contraction by scaling xi, t, ψa and χa. For these generators we have
to choose redefined operators as shown below :

Ki = lim
ε→0

εKi = i(t2 + 16ψ1ψ2χ1χ2)∂i + itψa(σ
i)Tab∂χb

+ 4ψ1ψ2χa(σ
i)Tab∂χb

,

K = lim
ε→0

K0 = −i(t2 − 16ψ1ψ2χ1χ2)∂t − 2itxj∂j − it(ψa∂ψa + χa∂χa)

+4ψ1ψ2χa∂ψa − 4χ1χ2ψa∂χa − ixjψa(σj)Tab∂χb
. (5.7.13)

The R-symmetry generator is given by the expression

A =
1

2
(θα∂α − θ

α̇
∂α̇)
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=
1

2
(ψa∂χa + χa∂ψa) . (5.7.14)

Performing the contraction by scaling xi, t, ψa and χa, we find that we need to redefine
it as

A = lim
ε→0

εA =
1

2
ψa∂χa . (5.7.15)

Just for the sake of completeness, we give here the expressions used in Sec(3.3)
for the Hamiltonian H and the momentum generators Pi, which do not have any piece
contributed by the fermionic coordinates. They are:

H = −i∂t , Pi = −i∂i . (5.7.16)

5.7.3 OPE analysis

We consider the holomorphic currents T (z),M i(z),A(z), G±a(z), where z denotes the
two-dimensional complex plane. Now we regard the generators Ln,M

i
n,An, G±ar of our

infinite-dimensional algebra as the Laurent coefficients or mode operators of the Laurent
expansion of the above holomorphic currents respectively. Then the (anti)commutators
of the mode operators can be found by the standard Operator Product Expansion (OPE)
and contour integral method.

If we could give J i also an infinite lift, it would have to be promoted to a holomorphic
current like the others. However, for the choice [J in,Am] = 0, the Jacobi identity for
J in, G

+a
r , G+b

s is not satisfied for n 6= 0, which tells us that J i cannot be given an infinite
lift in this framework.

However, let us adopt an OPE analysis to see if we could have modified our infinite
algebra, assuming J i can be promoted to a holomorphic current J i(z) in this modified
framework. We will then find all the (anti)commutators and fix the infinite algebra by
requiring that all the Jacobi identities should be satisfied, and the finite part should
coincide with (5.4.2) and have the commutators of A0 with L0, L±1,M

i
0,M

i
±1, J

i
0 equal to

zero.

The OPEs are given by

T (z1)T (z2) ∼ 2T (z2)

(z1 − z2)2
+
∂z2T (z2)

(z1 − z2)
,

T (z1)M i(z2) ∼ a1J
i(z2)

(z1 − z2)3
+
a2∂z2J

i(z2)

(z1 − z2)2
+

2M i(z2)

(z1 − z2)2
+
∂z2M

i(z2)

(z1 − z2)
,

T (z1)J i(z2) ∼ J i(z2)

(z1 − z2)2
+
∂z2J

i(z2)

(z1 − z2)
+
a3M

i(z2)

(z1 − z2)
,
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T (z1)A(z2) ∼ a4

(z1 − z2)3
+
A(z2)

(z1 − z2)2
+
∂z2A(z2)

(z1 − z2)
+

a5T (z2)

(z1 − z2)
,

T (z1)G±a(z2) ∼
3
2
G±a(z2)

(z1 − z2)2
+
∂z2G

±a(z2)

(z1 − z2)
,

M i(z1)G+a(z2) ∼ −
3
2
σiabG

+b(z2)

(z1 − z2)2
− ∂z2σ

i
abG

+b(z2)

(z1 − z2)
,

M i(z1)G−a(z2) , M i(z1)M i(z2), A(z1)A(z2) ∼ non-singular ,

G+a(z1)G+b(z2) ∼ −2× 12iεabA(z2)

(z1 − z2)2
+

4i(σiε)abM
i(z2)− 12iεab∂z2A(z2)

(z1 − z2)
,

M i(z1)A(z2) ∼ non-singular , J i(z1)A(z2) ∼ a6

(z1 − z2)
J i(z2) ,

A(z1)G+a(z2) ∼ G−a(z2)

2(z1 − z2)
+ a7

G+a(z2)

(z1 − z2)
, A(z1)G−a(z2) ∼ a8

G−a(z2)

(z1 − z2)
+ a9

G+a(z2)

(z1 − z2)
,

where al = 0 (1 ≤ l ≤ 9) for our algebra of §5.3.

Now let us see if we can allow for non-zero values of the al’s. One can check that
we have allowed for all possible terms in the OPEs when one considers the weights of the
various holomorphic fields and the index structure involving i and a.

With the above consideration, we have the following modified commutators:

[Lm,M
i
n] = (m− n)M i

m+n +
a1

2
m(m+ 1)J im+n − a2(m+ 1)(m+ n+ 1)J im+n ,

[Lm, J
i
n] = −nJ im+n + a3M

i
m+n ,

[Lm,An] = −nAm+n +
a4

2
m(m+ 1)δm+n,0 + a5Lm+n ,

[J in,Am] = a6J
i
m+n , [An, G+a

r ] =
1

2
G−an+r + a7G

+a
n+r , [An, G−ar ] = a8G

−a
n+r + a9G

+a
n+r .

But now one can easily check that consistency with the finite part of the algebra sets
a1, a2, a3, a6, a7, a8, a9 to zero, while the Jacobi identity for {Lm, Ln,Ap} sets a4 and a5 to
zero. The above analysis suggests that we cannot give the J i’s an infinite lift.



Chapter 6

SGCA in 2d

In the present chapter, we study the N = (1, 1) supersymmetric extension of GCFTs
in 2d, dubbed “SGCFT”. “Two spacetime dimensions” is special because the relativistic
conformal algebra there is infinite dimensional. Now the ineteresting question to ask is
whether there exists a map between the relativistic and non-relativistic infinite algebras.
We will see that the answer is in the affirmative and one can obtain the non-relativistic
infinite algebra from the parent (infinite dimensional) relativistic algebra by the usual
group contraction. Hence the infinite GCA, which was first written by observation, can
be derived as a simple limit of the algebra of 2D CFTs. Most of the algebraic structures
of the 2d CFTs can be extended to their supersymmetric extensions, and the associated
representation theory can also be developed along similar lines. The superconformal
symmetries are also relevant for the superstring theory and the Tricritical Ising Model.
We refer the reader to [134]-[140] (and references therein) for an extensive study of the
2d superconformal theories.

As in [82], the families of 2d SCFTs we will need to consider are rather unusual in
that their left and right central charges, c and c̄, are scaled (as we take the non-relativistic
limit) such that their magnitudes go to infinity but are opposite in sign. The parent
theories are thus necessarily non-unitary and, not unsurprisingly, this non-unitariness
is inherited by the daughter GCFTs. Since non-unitary 2d CFTs arise in a number of
contexts in statistical mechanics (e.g. the Yang-Lee model with central charge c = −22/5)
as well as string theory, one might expect that the 2d GCFTs realised here would also be
interesting objects to study.

In this chapter, we focus our attention on the Neveu-Schwarz (NS) sector. Our study
of 2d SGCAs in this paper proceeds along two parallel lines. The first line of development
is as described above and consists of taking carefully the non-relativistic scaling limit
of the parent 2d SCFT. We find that this limit, while unusual, appears to give sensible
answers. Specifically, we will study in this way, the representation theory (including
null vectors), the Ward identities, fusion rules, and finally the equations for correlation

67
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functions following from the existence of level 3
2

null states. In all these cases we find that
a non-trivial scaling limit of the 2d SCFTs exists. This is not a priori obvious, since the
limit involves keeping terms both of O(1

ε
) and of O(1) (where ε is the scaling parameter

which is taken to zero). The second line of development obtains many of these same
results by carrying out an autonomous analysis of the SGCA, i.e., independent of the
above limiting procedure. It is also an important consistency check of our investigation
that these two strands of development agree.

6.1 2d SGCA from group contraction

In this section, we derive the supersymmetric extension of the GCA in 2d, by performing
group contraction on the 2d superconformal algebra studied in [134]-[140].

6.1.1 SGCA from SuperVirasoro in 2d

The finite dimensional subalgebra of the GCA, which consists of taking n = 0,±1 for the
L(n),M

(n)
i together with J

(0)
a , is obtained by considering the non-relativistic contraction

of the usual (finite dimensional) global conformal algebra SO(d, 2) (in d > 2 spacetime
dimensions).

However, in two spacetime dimensions, as is well known, the situation is special.
The relativistic conformal algebra is infinite dimensional and consists of two copies of the
Virasoro algebra. In [82], GCA with central charges was realised by taking a special limit
of a non-unitary relativistic 2d CFT.

Here we take a similar limit on the 2d relativistic superconformal algebra, which is
also infinite dimensional and consists of two copies of the SuperVirasoro algebra.

The two copies of the SuperVirasoro algebra are given by:

[Lm,Ln] = (m− n)Lm+n +
c

8
m(m2 − 1)δm+n,0 ,

[Lm,Gr] = (
1

2
m− r)Gm+r

{Gr,Gs} = 2Lr+s +
c

2
(r2 − 1

4
)δr+s,0 ,

[L̄m, L̄n] = (m− n)L̄m+n +
c̄

8
m(m2 − 1)δm+n,0 ,

[L̄m, Ḡr] = (
1

2
m− r)Ḡm+r ,

{Ḡr, Ḡs} = 2L̄r+s +
c̄

2
(r2 − 1

4
)δr+s,0 , (6.1.1)

where m,n ∈ Z and either r, s ∈ Z [Ramond case] or r, s ∈ Z + 1
2

[Neveu-Schwarz
case].
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We now perform group contraction with the new generators defined as:

Ln = lim
ε→0

(L̄n + Ln) , Mn = lim
ε→0

ε (L̄n − Ln) ,

Gn = lim
ε→0

(Ḡn + Gn) , Hn = lim
ε→0

ε (Ḡn − Gn) , (6.1.2)

where for the bosonic part we have followed [82], and for the fermionic part we have
chosen a limit so as to get all the bosonic generators as anticommutators of the fermionic
ones (here we have followed the scaling used in [133]).

The above generators define the SGCA and obey the algebra:

[Lm, Ln] = (m− n)Lm+n + C1m(m2 − 1)δm+n,0 ,
[Lm,Mn] = (m− n)Mm+n + C2m(m2 − 1)δm+n,0 ,

[Mm,Mn] = 0 ,

{Gr, Gs} = 2Lr+s + 4C1(r2 − 1

4
)δr+s,0 ,

{Hr, Hs} = 0 ,

{Gr, Hs} = 2Mr+s + 4C2(r2 − 1

4
)δr+s,0 ,

[Lm, Gr] = (
1

2
m− r)Gm+r , [Lm, Hr] = (

1

2
m− r)Hm+r ,

[Mm, Gr] = (
1

2
m− r)Hm+r , [Mm, Hr] = 0 , (6.1.3)

where the central charges are given by:

C1 = lim
ε→0

c̄+ c

8
, C2 = lim

ε→0
ε
c̄− c

8
. (6.1.4)

Thus, for a non-zero C2 in the limit ε→ 0, we see that we need c̄−c ∝ O(1
ε
). At the same

time, requiring C1 to be finite, we find that c+ c̄ should be O(1). As in [82], we will make
the slightly stronger assumption that c̄ − c = O(1

ε
) + O(ε).) Actually this is motivated

by the fact that L̄n − Ln and Ḡr − Gr have vanishing O(1) pieces, when we write their
transformation-actions on supercoordinates and take the appropriate scalings (see (6.1.7)
and (6.1.9)). Thus (6.1.4) can hold only if c and c̄ are large and opposite in sign (in the
limit ε→ 0). This immediately implies that the original 2d SCFT, on which we take the
non-relativistic limit, cannot be unitary. This is of course not a problem, since there are
many statistical mechanical models which are described at a fixed point by non-unitary
CFTs.
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6.1.2 Non-relativistic superconformal transformations in the su-
perspace

In the superspace formalism, for N = (1, 1) supersymmetry, we introduce the fermionic
coordinates θ, θ̄ for the holomorphic and the antiholomorphic sectors respectively1. A
superfield is a function defined on superspace, and can be expanded as a power series in
θ, θ̄:

Φ(Z, �Z) = φ(z, z̄) + θψ(z, z̄) + θ̄ψ̄(z, z̄) + θθ̄F (z, z̄) , (6.1.5)

where
Z ≡ (z, θ) , �Z ≡ (z̄, θ̄) . (6.1.6)

The superfields correspond to irreducible representations of the Neveu-Schwarz algebra.
The irreducible representations of the Ramond algebra correspond to conformal fields
distinct from the superfields, which are in fact non-local (i.e., double-valued) with respect
to the fermionic parts of the superfields. These are called spin fields and they intertwine
the two sectors (see, e.g., [136]).

As in conformal transformations, in superconformal transformations too the un-
barred and the barred parts are independent. In superspace, the superconformal trans-
formations corresponding to the holomorphic sector are given by:

(z , θ)→ δ′Ln(z − δ′ zn+1 , θ − δ′ n+ 1

2
zn θ)

(z , θ)→ η Gr(z + η θ zr+
1
2 , θ − η zr+

1
2 ) , (6.1.7)

where η is an anticommuting parameter. Similarly, one can write down transformations
for the antiholomorphic sector.

In terms of spacetime coordinates, z = t+ x, z̄ = t− x. Analogously, we take linear
combinations of θ, θ̄ and define the new anticommuting variables:

α =
θ + θ̄

2
, β =

θ − θ̄
2

. (6.1.8)

The non-relativistic contraction corresponding to (6.1.2) consists of taking the scal-
ings:

t→ t , x→ εx , α→ α , β → εβ , (6.1.9)

which immediately gives the coordinates in the non-relativistic superspace transforming
as:

δ δ′Ln{t, x, α, β} = −δ′ {tn+1 , (n+ 1) tn x ,
1

2
(n+ 1) tn α ,

1

2
(n+ 1)( tn β + n tn−1 xα)} ,

δ δ′Mn{t, x, α, β} = δ′ {0 , tn+1 , 0 ,
1

2
(n+ 1) tn α} ,

1More details can be found in [137].
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δ ηGr{t, x, α, β} = η {tr+
1
2 α , tr+

1
2 β + (r +

1

2
) tr−

1
2 xα ,−tr+

1
2 ,−(r +

1

2
) tr−

1
2 x} ,

δ ηHr{t, x, α, β} = η {0 ,−tr+
1
2 α , 0 , tr+

1
2} . (6.1.10)

6.2 Representations of the 2d SGCA

We now turn to the representations of the 2d SGCA. In all our subsequent discussions, we
consider the NS sector and hence r, s ∈ Z + 1

2
in all formulae and equations that follow.

We will be guided in this by the representation theory of the SuperVirasoro algebra.

6.2.1 Primary states and descendants

We will construct the representations by considering states having definite scaling dimen-
sions:

L0|∆〉 = ∆|∆〉 . (6.2.1)

Using the commutation relations (6.1.3), we obtain

L0Ln|∆〉 = (∆− n)Ln|∆〉, L0Mn|∆〉 = (∆− n)Mn|∆〉. (6.2.2)

Then the Ln,Mn with n > 0 lower the value of the scaling dimension, while those with
n < 0 raise it. If we demand that the dimensions of the states be bounded from below,
then we are led to defining primary states in the theory with the properties:

Ln|∆〉p = 0 , Mn|∆〉p = 0 , Gr|∆〉p = 0 , Hr|∆〉p = 0 (for all n > 0 and r > 0) .
(6.2.3)

Since the conditions (6.2.3) are compatible with M0 in the sense

LnM0|∆〉p = 0 , MnM0|∆〉p = 0 , (6.2.4)

and also since L0 and M0 commute, we may introduce an additional label, which we will
call “rapidity” ξ:

M0|∆, ξ〉p = ξ|∆, ξ〉p . (6.2.5)

Starting with a primary state |∆, ξ〉p , one can build up a tower of operators by
the action of L−n , M−n , G−r , H−r with n, r > 0. These will be called the SGCA de-
scendants of the primary. The primary state together with its SGCA descendants form a
representation of SGCA. As in the SuperVirasoro case, we have to be careful about the
presence of null states. We will look at these in some detail later in Sec. 6.4.
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The above construction is quite analogous to that of the relativistic 2d SCFT. In
fact, from the viewpoint of the limit (6.1.2), we see that the two labels ∆ and ξ are related
to the conformal weights in the 2d SCFT as

∆ = lim
ε→0

(h+ h̄) , ξ = lim
ε→0

ε(h̄− h) , (6.2.6)

where h and h̄ are the eigenvalues of L0 and L̄0, respectively. We will proceed to assume
that such a scaling limit (as ε→ 0) of the 2d SCFT exists. In particular, we will assume
that the operator-state correspondence in the 2d SCFT gives a similar correspondence
between the states and the operators in the SGCA2:

O(t, x)↔ O(0, 0) |0〉 , (6.2.7)

where |0〉 would be the vacuum state which is invariant under the generators L0, L±1,
M0,M±1. Indeed in the rest of the paper, we will offer several pieces of evidence that the
scaling limit gives a consistent quantum mechanical system.

6.2.2 Transformation laws of superprimary fields

We consider the transformation laws of SGCA primary superfields arising from the trans-
formation laws of primary superfields in 2d SCFT, which are given by ( following [137]
):

[Ln,Φ(z, z̄, θ, θ̄) ] = [ zn+1∂z +
1

2
(n+ 1)znθ∂θ + h(n+ 1)zn ]Φ(z, z̄, θ, θ̄) ,

[ η Gr,Φ(z, z̄, θ, θ̄) ] = η [ zr+
1
2 (∂θ − θ∂z)− 2h(r +

1

2
)zr−

1
2 θ ]Φ(z, z̄, θ, θ̄) ; (6.2.8)

the transformations corresponding to L̄n , Ḡr are given by replacing z → z̄, θ → θ̄ and
h → h̄. We should note here that (h, h̄) corresponds to the conformal weights of the
lowest component φ of the superfield Φ in (6.1.5).

Motivated from the relation (6.1.2), we may define the transformations generated
by Ln,Mn, Gn, Hn as:

[Ln,Φ] = lim
ε→0

[ L̄n + Ln , Φ] , [Mn,Φ] = lim
ε→0

ε [ L̄n − Ln , Φ] ,

[Gr,Φ] = lim
ε→0

[ Ḡr + Gr , Φ] , [Hr,Φ] = lim
ε→0

ε [ Ḡr − Gr , Φ] , (6.2.9)

where the superfield Φ is now a function of {t, x, α, β} and is expanded as:

Φ(t, x, α, β) = φ1(t, x) + αψ1(t, x) + β ψ2(t, x) + αβ φ2(t, x) . (6.2.10)

2We emphasize that this is an assumption we are making (without any justification). Our approach
here is to go ahead with this assumption and examine whether this leads to interesting structures and
whether the various algebraic considerations lead to a consistent picture.
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Then by taking the limits on the superspace coordinates, we obtain:

[Ln ,Φ] = [ tn+1 ∂t + (n+ 1) tn x ∂x + (n+ 1) (∆ tn − n ξ tn−1 x)

+
1

2
(n+ 1) { tn (α ∂α + β ∂β) + n tn−1 xα ∂β} ] Φ ,

[Mn ,Φ] = [−tn+1 ∂x + (n+ 1) ξ tn − 1

2
(n+ 1) tn α ∂β] Φ ,

[ηGGr ,Φ] = ηG [ tr+
1
2 (−α∂t − β∂x + ∂α) + ( r +

1

2
) tr−

1
2 x (−α∂x + ∂β)

+ 2 ( r +
1

2
) tr−

1
2 (ξ β −∆α) + 2 ( r2 − 1

4
) ξ tr−

3
2 xα ]Φ ,

[ηH Hr ,Φ] = ηH [ tr+
1
2 (α∂x − ∂β)− 2 ( r +

1

2
) ξ tr−

1
2 α ] Φ . (6.2.11)

where ηG, ηH are anticommuting parameters. Note that the part of the transformation
laws independent of ∆ and ξ , involving superspace derivatives, encodes the change due
to superspace coordinate dependence of Φ, and is in perfect agreement with (6.1.10).

Introducing the vacuum state |0〉 satisfying

Ln|0〉 = 0 , Mn|0〉 = 0 , (for n ≥ −1)
Gr|0〉 = 0 , Hr|0〉 = 0 , (for r ≥ −1

2
) , (6.2.12)

one immediately finds from (6.2.11) that

G 1
2
|φ1〉 = 0 , G− 1

2
|φ1〉 = |ψ1〉 ,

H 1
2
|φ1〉 = 0 , H− 1

2
|φ1〉 = −|ψ2〉 ,

G− 1
2
G− 1

2
|φ1〉 = L−1|φ1〉 , H− 1

2
H− 1

2
|φ1〉 = 0 ,

H− 1
2
G− 1

2
|φ1〉 = M−1|φ1〉 − |φ2〉 , G− 1

2
H− 1

2
|φ1〉 = M−1|φ1〉+ |φ2〉 , (6.2.13)

where the state |φ1〉 = φ1(0, 0) |0〉 satisfies the conditions (6.2.3) for a primary state.

6.3 Non-relativistic Ward identities and correlation

functions

In [137], the two and three point functions for the 2d SCFT were found using the super-
space formalism. Here we take the appropriate limits of the those correlation functions to
get the SGCA correlation functions and check that these obey the Ward identities com-
ing from the global part comprising {L0, L±1, M0, M±1, G± 1

2
, H± 1

2
}. One can solve the

differential equations coming from the Ward identities to find the correlation functions
directly using (6.2.11). However, the calculation becomes cumbersome because here one



74 CHAPTER 6. SGCA IN 2D

cannot use the nice property of the independence of holomorphic and antiholomorphic sec-
tors of the SCFT. We solve the differential equations for the two point functions directly
with the SGCA operators, whereas, for the three point function, we find the expression
only by taking the limit of the SCFT answer.

For the sake of completeness, we state here the differential equations that an n-point
function,

G
(n)
2d SGCA({ti, xi, αi, βi}) = 〈Φ1(t1, x1, α1, β1) Φ2(t2, x2, α2, β2) · · ·Φn(tn, xn, αn, βn)〉 ,

(6.3.1)
should satisfy:

[ n∑
i=1

∂ti

]
G

(n)
2d SGCA = 0 ,

[ n∑
i=1

∂xi

]
G

(n)
2d SGCA = 0 ,

[ n∑
i=1

{ti∂ti + xi∂xi
+ ∆i +

1

2
(αi∂αi

+ βi∂βi
)}
]
G

(n)
2d SGCA = 0 ,

[ n∑
i=1

{−ti∂xi
+ ξi −

1

2
αi∂βi

}
]
G

(n)
2d SGCA = 0 ,

[ n∑
i=1

{t2i∂ti + 2tixi∂xi
+ 2(∆iti − ξixi) + ti(αi∂αi

+ βi∂βi
) + xiαi∂βi

}
]
G

(n)
2d SGCA = 0 ,

[ n∑
i=1

{−t2i∂xi
+ 2ξiti − tiαi∂βi

}
]
G

(n)
2d SGCA = 0 ,

[ n∑
i=1

{−αi∂ti − βi∂xi
+ ∂αi

}
]
G

(n)
2d SGCA = 0 ,

[ n∑
i=1

{αi∂xi
− ∂βi

}
]
G

(n)
2d SGCA = 0 ,

[ n∑
i=1

{ti(−αi∂ti − βi∂xi
+ ∂αi

) + xi(−αi∂xi
+ ∂βi

) + 2(ξiβi −∆iαi)}
]
G

(n)
2d SGCA = 0 ,

[ n∑
i=1

{ti(αi∂xi
− ∂βi

)− 2ξiαi}
]
G

(n)
2d SGCA = 0 . (6.3.2)

The above constraints follow from invariance under the generators L−1, M−1, L0, M0,
L1, M1, G− 1

2
, H− 1

2
, G 1

2
and H 1

2
respectively.



6.3. NON-RELATIVISTIC WARD IDENTITIES AND CORRELATION FUNCTIONS75

6.3.1 SGCA two point functions

We derive the two point functions between all components of two superfields

Φi(ti, xi, αi, βi) = φi1(ti, xi) + αi ψi1(ti, xi) + βi ψi2(ti, xi) + αiβi φi2(ti, xi) , (6.3.3)

with i = 1, 2. Here the lowest component fields φi1 are the primary fields (see the
definition (6.2.3)) and are labelled by the eigenvalues (∆i, ξi).

Here we consider the transformation rules for each component by comparing the
coefficients of αm βn ( where m,n = 0, 1 ) on both sides of (6.2.11).

One immediately finds that the field φ1(t, x) in (6.2.11) has the same transformation
properties under the bosonic SGCA generators as the primary fields of GCA (see eq. (4.5)
and eq. (4.6) of [82]). Hence the φi1 two point function will have the same form as derived
in [79], i.e.,

〈φ11(t1, x1)φ21(t2, x2)〉 = C12 δ∆1,∆2 δξ1,xi2 t
−2∆1
12 exp(

2ξ1x12

t12

) , (6.3.4)

where
tij = ti − tj , xij = xi − xj , (6.3.5)

and C12 is an arbitrary constant. We can take C12 = 1 by choosing the normalization of
the operators.

Starting from this expression, we apply the constraints coming from the fermionic
generatorsG± 1

2
, H± 1

2
of the global part of the SGCA to obtain all other two point functions

of the superfield components, as indicated below.

Using the fact that the two point function should be a function of products of the
fermionic coordinates which are Grassmann even, we immediately infer:

〈φ1a ψ2b〉 = 0 , 〈ψ1a φ2b〉 = 0 (where a, b = 1, 2) . (6.3.6)

Evaluating the trivial constraint δG− 1
2

〈φ11 ψ21〉 = 0 , one gets the expression:

〈ψ11 ψ21〉 = ∂t12〈φ11 φ21〉 = − 2

t12

( ∆1 +
ξ1x12

t12

)〈φ11 φ21〉 . (6.3.7)

The trivial constraint δH− 1
2

〈φ11 ψ22〉 = 0 gives:

〈ψ12 ψ22〉 = 0 (6.3.8)

The trivial constraints δG− 1
2

〈φ11 ψ22〉 = 0 and δG 1
2

〈ψ12 φ21〉 = 0, on using (6.3.8), give

the results:

〈φ12 φ21〉 = 0 , (6.3.9)

〈ψ11 ψ22〉 = ∂x12〈φ11 φ21〉 =
2ξ1

t12

〈φ11 φ21〉 . (6.3.10)
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Using δG− 1
2

〈ψ12 φ21〉 = 0 , we get:

〈ψ12 ψ21〉 = ∂x12〈φ11 φ21〉 =
2ξ1

t12

〈φ11 φ21〉 . (6.3.11)

Using δG 1
2

〈ψ12 φ21〉 = 0 along with (6.3.10) and (6.3.11), we get:

〈φ12 φ21〉 = 0 . (6.3.12)

Lastly, δG 1
2

〈ψ11 φ22〉 = 0 , on using (6.3.9), (6.3.10) and (6.3.11), gives:

〈φ12 φ22〉 =
4ξ2

1

t212

〈φ11 φ21〉 . (6.3.13)

Hence we find that all non-vanishing two point functions of the components of
the two superfields are determined in terms of the two point function of their lowest
components.

6.3.2 SGCA higher point functions

Using the fact that the lowest components φi1’s obey the same transformation rules as
the GCA primaries under the bosonic generators of the SGCA, we conclude that all
correlation functions involving these fields have the same form as one gets in the GCA
case. In particular, the result derived for three point function in [79] is applicable here
for 〈φ11φ21φ31〉. For the four point function of the φi1’s, we can apply the same analysis
as discussed in [82], where one of the φi1’s have a descendant null state at some level3.
Then, as in the case of the two point function, the fermionic generators of the global part
will relate the n-point function 〈φi1 φi+11 · · · φi+n1〉 to the n-point functions involving
arbitrary component fields of the relevant superfields {Φi,Φi+1, · · · ,Φi+n}.

We remind the reader that the above property follows from the fact that, in 2d
CFTs and GCAs, the descendant field correlators can be derived from the primary field
correlators. Here the component fields ψi1, ψi2, φi2 are descendants of the primary φi1, as
shown in (6.2.13). The global part of the SGCA, which closes by itself and hence forms
a subgroup, allows us to group these four fields into the superfield Φi (supermultiplet),
which is nothing but an irreducible representation of the global subalgebra.

3Note that here we can have half-integer level null states. In particular, we show in Sec. 5 that the
first non-trivial null state is obtained at level 3

2 and one can derive the four point function with a primary
having such a descendant null state.
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6.3.3 SGCA correlation functions from 2d SCFT

We now show that the above expressions for the SGCA two point functions can also
be obtained by taking an appropriate scaling limit of the 2d SCFT answers. This limit
requires scaling the quantum numbers of the operators as (6.2.6), along with the non-
relativistic limit (6.1.9) for the coordinates.

Let us first study the scaling limit of the two point correlator of two superfields (
see [137] ) given by the expression

G
(2)
2d SCFT = 〈Φ1(Z1,

�Z1) Φ2(Z2,
�Z2) 〉 = δh1, h2 δh̄1, h̄2

z̃−2h1
12

¯̃z
−2h̄1

12 , (6.3.14)

where

zij = zi − zj , z̄ij = z̄i − z̄j ,
z̃ij = zij − θi θj , ¯̃zij = z̄ij − θ̄i θ̄j . (6.3.15)

On scaling the above expression according to (6.1.9) and taking the limit using (6.2.6),
it reduces to:

G
(2)
2d SGCA = lim

ε→0
δh1, h2 δh̄1, h̄2

{t12 − α1α2 + ε (x12 − α1β2 + α2β1) + ε2 β1β2}−2h1

×{t12 − α1α2 + ε (x12 − α1β2 + α2β1) + ε2 β1β2}−2h̄1

= lim
ε→0

δh1, h2 δh̄1, h̄2
(t12 − α1α2)−2(h1+h̄1)

× exp{−2(h1 − h̄1)(ε
(x12 − α1β2 + α2β1)

(t12 − α1α2)
+O(ε2) )}

= δ∆1,∆2 δξ1, ξ2 t̃
−2∆1
12 exp

(2ξ1x̃12

t̃12

)
, (6.3.16)

where
t̃ij = tij − αiαj , x̃ij = xij − αiβj + αjβi . (6.3.17)

Now expanding the LHS G
(2)
2d SGCA ≡ 〈Φ1Φ2〉 using (6.2.10), and comparing the

coefficients of αk1β
l
1α

m
2 β

n
2 (for k, l,m, n = 0, 1) on both sides of (6.3.16), we get the values

of all possible two point functions of the component fields. One can check that these
answers exactly match with those obtained in (6.3.9)-(6.3.13). Also, working in superfield
formalism, one can check that (6.3.16) satisfies the constraints coming from the global
part of the SGCA using directly (6.3.2) (i.e., without considering the transformations of
the component fields separately).

Another interesting point to note is the following: Transforming the non-relativistic
superspace coordinates {t1, x1, α1, β1} (using (6.1.10)) successively by t2 L−1, −x2M−1,
α2G− 1

2
and −β2H− 1

2
, we move to the point in the superspace labelled by {t̃12 , x̃12 , α1−
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α2 , β1 − β2}. The vacuum being invariant under these global transformations, one can
easily see that the two-point function should be a function of these combinations of the
six coordinates {ti, xi, αi, βi}.

A similar analysis yields the three point function of the SGCA from the relativistic
three point function. The relativistic three point function is written as:

G
(3)
2d CFT = 〈Φ1(Z1,

�Z1) Φ2(Z2,
�Z2) Φ3(Z3,

�Z3) 〉
= [ z̃ h3−h1−h2

12 z̃ h1−h2−h3
23 z̃ h2−h3−h1

31 × (antiholomorphic) ]

× [C123 +
C̃123

|z̃12 z̃23 z̃31|
{(θ1 z̃23 + θ2 z̃31 + θ3 z̃12 + θ1 θ2 θ3) × (antiholomorphic)} ] .

(6.3.18)

One should note that there are two arbitrary constants C123 , C̃123 in G
(3)
2d CFT.

Taking the non-relativistic limit, we obtain the SGCA three point function as:

G
(3)
2d SGCA = C123 t̃

∆3−∆1−∆2
12 t̃ ∆1−∆2−∆3

23 t̃ ∆2−∆3−∆1
31

× exp{(ξ1 + ξ2 − ξ3) x̃12

t̃12

+
(ξ2 + ξ3 − ξ1) x̃23

t̃23

+
(ξ1 + ξ3 − ξ2) x̃31

t̃31

} .

(6.3.19)

Again, one can check that (6.3.19) satisfies the differential equations (6.3.2). Comparing
the coefficients of the parts involving no fermionic coordinates {αi, βi} on both sides, we
find that 〈φ11φ21φ31〉 is exactly what was derived in [79], and this is what one should get
following the discussion in Sec. 4.2.

Here we note that the contribution from the part multiplying C̃123 in (6.3.18) is zero
in the non-relativistic limit. However, it may so happen that C̃123 scales in a manner
so as to give a finite contribution in combination with the O(ε) terms. This cannot be
ascertained just from the relativistic answer. We need to examine whether the second part
survives in the non-relativistic limit by verifying whether it is possible to satisfy (6.3.2) by
keeping the O(ε) terms. Examining the three point functions of the various component
fields with the extra terms, we find that (6.3.2) is not satisfied. Hence we conclude that

G
(3)
2d SGCA is completely specified by (6.3.19).

6.4 SGCA null vectors

Just as in the representation of the SuperVirasoro algebra, we will find that there are null
states in the SGCA tower built on a primary |∆, ξ〉 for special values of (∆, ξ). These are
states which are orthogonal to all states in the tower including itself.

We can find the null states at a given level by writing the most general state at that
level as a combination of the L−m,M−n, G− r

2
, H− s

2
’s and their products (for m,n, r, s > 0)
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acting on the SGCA primary, and then imposing the condition that all the positive modes
Lm,Mn, G r

2
, H s

2
(with m,n, r, s > 0) annihilate this state. This will give conditions that

fix the relative coefficients in the linear combination as well as give a relation between
∆, ξ and the central charges C1 , C2. This procedure will give us null states which are
primaries and descendants at the same time. These are called “singular vectors”.

In this context, we would like to mention that for C2 = 0 , since the vacuum state
satisfies (6.2.12), all states of the form M−n|0〉 and H−s|0〉 (for n, s > 0) are null states,
as their correlation functions with other primaries and secondaries will vanish. Similarly,
for C1 = C2 = 0 , L−m|0〉 and G−r|0〉 (for m, r > 0) will also be null states.4 Hence,
for these special cases, the correlation functions will satisfy much stronger constraints as
stated below:

(a) For C2 = 0, the correlators are invariant under the generators M−n and H−s ,
resulting in the equations:

[ k∑
i=1

{
− 1

tn−1
i

∂xi
− (n− 1) ξi

tni
+

(n− 1)αi
2 tni

∂βi

}]
G

(k)
2d SGCA = 0 , (6.4.1)

[ k∑
i=1

{ 1

t
s− 1

2
i

(αi∂xi
− ∂βi

) + 2 (s− 1

2
)
ξi αi

t
s+ 1

2
i

}]
G

(k)
2d SGCA = 0 . (6.4.2)

Acting on the two point function G
(2)
2d SGCA, these constraints give the condition ξ = 0 ,

which removes the spatial and β dependence of the correlators5.

(b) For C1 = C2 = 0, the correlators are invariant under the generators L−m , G−r ,
M−n and H−s , resulting in the equations:

[ k∑
i=1

{ 1

tm−1
i

∂ti −
(m− 1)xi

tmi
∂xi
− m− 1

tmi

(
∆i +

mξi xi
ti

)
−m− 1

2 tmi

(
αi ∂αi

+ βi ∂βi
− mxi αi

ti
∂βi

)}]
G

(k)
2d SGCA = 0 , (6.4.3)

[ k∑
i=1

{ 1

t
r− 1

2
i

(−αi∂ti − βi∂xi
+ ∂αi

)− (r − 1

2
)
xi

t
r+ 1

2
i

(−αi∂xi
+ ∂βi

)

−2 (r − 1

2
)

1

t
r+ 1

2
i

(ξi βi −∆i αi) + 2 (r2 − 1

4
)
ξi xi αi

t
r+ 3

2
i

}]
G

(k)
2d SGCA = 0 ,

(6.4.4)

4Note that these null states are not highest-weight states, and hence not singular vectors. We thank
the referee for emphasizing this point.

5This follows from the fact that all x and β dependence arises in combination with the ξ dependence
so as to survive the non-relativistic limit.
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in addition to (6.4.1) and (6.4.2). Acting on the two point function G
(2)
2d SGCA, these

constraints give the condition ξ = ∆ = 0 , which simply means that there is no primary
in the theory except the vacuum state.

Hence, these sectors are quite trivial, and in all discussions that follow, we will
assume that at least C2 6= 0 .

6.4.1 The intrinsic SGCA analysis

At level 1
2
, we can consider a general state (aG− 1

2
+ bH− 1

2
) |∆, ξ〉. One can check that we

get two linearly independent null states: G− 1
2
|∆ = 0, ξ = 0〉 and H− 1

2
|∆, ξ = 0〉 .

At level one, we have the general state (aL−1 + bM−1 + cG− 1
2
H− 1

2
) |∆, ξ〉 (note that

this is the most general linear combination of the lowering operators at this level, remem-
bering the relation {G− 1

2
, H− 1

2
} = 2M−1 ). It is easy to check that one has three linearly in-

dependent null states given by L−1|∆ = 0, ξ = 0〉 , M−1|∆, ξ = 0〉 and G− 1
2
H− 1

2
|∆, ξ = 0〉.

At level 3
2
, things are a little more non-trivial. Let us consider the most general level

3
2

state of the form

|χ〉 = (aG− 3
2
+ b L−1G− 1

2
+ cM−1G− 1

2
+ dH− 3

2
+ eL−1H− 1

2
+ f M−1H− 1

2
) |∆, ξ〉 . (6.4.5)

We now impose the conditions thatG 1
2
, 3
2
, H 1

2
, 3
2
, L1,M1 annihilate this state6, using (6.1.3).

This gives us the following set of conditions:

ξ [ 2a+ (1 + 2∆)b+ 2ξe ] = 0 ,
∆ [ 2a+ (1 + 2∆)b+ 2ξe ] + ξ [ (1 + 2∆)c+ 2d+ e+ 2ξf ] = 0 ,
ξ2 b = 0 ,
(2∆ + 1)ξb+ 2ξ(a+ ξc) = 0 ,
(∆ + 4C1)a+ 2∆b+ (ξ + 4C2)d+ 2(c+ e)ξ = 0 ,
(ξ + 4C2)a+ 2ξb = 0 ,
ξ [ 2a+ (1 + 2∆)b+ 2ξc ] = 0 ,
∆ [ 2a+ (1 + 2∆)b+ 2ξc ] + ξ [ c+ 2d+ (1 + 2∆)e+ 2ξf ] = 0 (6.4.6)

We will now separately consider the two cases where ξ 6= 0 and ξ = 0.

For the case ξ 6= 0, we get the conditions: b = 0 , c = e = −a
ξ

, and f = (∆+1)a
ξ2
− d

ξ
.

Now we have two further options: either a = 0 or a 6= 0 .

For a = 0 , to get a non-trivial solution, we must have ξ = −4C2 , and the null state
is of the form:

|χ(1)〉 = (H− 3
2
− 1

ξ
M−1H− 1

2
) |∆, ξ〉 . (6.4.7)

6This is sufficient as the annihilation condition for all the other higher level positive modes are then
automatically satisfied.
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For a 6= 0 , we are led to the following consistency conditions: ξ = −4C2 and
∆ = 4(1 − C1) . In this case, both a and d can be arbitrary and all other coefficients
are determined in terms of these. However, by taking a suitable linear combination with
|χ(1)〉 , we can choose d = 0, and then we get another null state of the form:

|χ(2)〉 = [G− 3
2
− 1

ξ
M−1G− 1

2
− 1

ξ
L−1H− 1

2
+

(∆ + 1)

ξ2
M−1H− 1

2
] |∆, ξ〉 . (6.4.8)

For the case ξ = 0, since C2 6= 0, we must have a = 0 , ∆(2∆ + 1)b = 0, d = − ∆ b
2C2

,

and c , e , f are undetermined. For ∆ 6= −1
2
, 0 in general, we therefore get three null

states: G− 1
2
M−1 |∆, ξ = 0〉 , L−1H− 1

2
|∆, ξ = 0〉 and M−1H− 1

2
|∆, ξ = 0〉 . For ∆ = 0 ,

we also obtain d = 0 , and in this case b is also undetermined. Hence, by taking suitable
linear combinations with the three null states for b = 0 , we get a new null state of the
form L−1H− 1

2
|∆ = 0, ξ = 0〉. For ∆ = −1

2
, we also have d = b

4C2
, and again b is also

undetermined. Taking appropriate linear combinations with the three states for b = 0 ,
we get a new null state of the form:

|χ(3)〉 = (L−1G− 1
2

+
1

4C2

H− 3
2
) |∆ = −1

2
, ξ = 0〉 . (6.4.9)

Crucially, we note that all the above null states for ξ = 0, except |χ(3)〉 , are descen-
dants of the level 1

2
and level 1 null states.

6.4.2 SGCA null vectors from 2d SCFT

If we want to examine the SGCA null states at a general level, we would have to perform
an analysis similar to that in the SuperVirasoro representation theory. A cornerstone of
this analysis is the Kac determinant which gives the values of the weights of the SuperVi-
rasoro Primaries h (h̄) for which the matrix of inner products at a given level has a zero
eigenvalue. For the NS algebra, this determinant is given by (found by Kac [139]):

detM(l) = const.
∏

(h− hp,q(c))PNS(l− p q
2

) , (6.4.10)

where the product runs over positive integers p, q with p q
2
≤ l and |p − q| even. Here

PNS(k) is the number of states, arising from a ground state, at level k:

∞∑
k=0

1 + tk−
1
2

1 − tk
. (6.4.11)
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The functions hp,q(c) can be expressed in a variety of ways. One convenient repre-
sentation is:

hp,q(c) = h0 +
1

4
(pα+ + q α−)2 , (6.4.12)

h0 =
1

16
(c− 1) , (6.4.13)

α± =

√
1− c±

√
9− c

4
. (6.4.14)

One can write a similar expression for the antiholomorphic sector. The values hp,q are
the ones for which we have zeroes of the determinant and hence null vectors (and their
descendants).

One could presumably generalise our analysis for SGCA null vectors at level 3
2

and
directly obtain the SGCA determinant at a general level. This would give us a relation
for ∆ and ξ in terms of C1, C2 for which there are null states, generalising the results
obtained at level 3

2
. However, instead of a direct analysis, here we will simply take the

non-relativistic limit of the Kac formula and see whether one obtains sensible expressions
for the ∆ and ξ on the SGCA side.

In taking the non-relativistic limit, C2 is chosen to be positive. Therefore (from
(6.1.4)) we need to take c� −1 and c̄� 1 as ε→ 0 . We then find

hp,q =
C2

4ε
(p2 − 1) +

1

16
[−1 + 5p2 − 4pq − 4C1(p2 − 1) ] +O(ε) , (6.4.15)

h̄p′,q′ = −C2

4ε
(p′

2 − 1) +
1

16
[−1 + 5p′2 − 4p′q′ − 4C1(p′2 − 1) ] +O(ε) . (6.4.16)

Using (6.2.6) and taking p = p′ 7

∆p(q,q′) = lim
ε→0

(hp,q + h̄p,q′) = −1

2
C1 (p2 − 1) +

1

8
[ 5p2 − 2p(q + q′)− 1 ] , (6.4.17)

ξp(q,q′) = − lim
ε→0

ε (hp,q − h̄p,q′) = −1

2
C2 (p2 − 1) . (6.4.18)

However, we would like to caution the reader that this non-relativistic limit of the
Kac formula does not give us all the null states of the SGCA (see the following subsection).

In the following discussion, we will focus on the null vectors at level 3
2
. The null

vector at level 3
2

in a SuperVirasoro tower is given by (see [137])

|χL〉 = (G− 3
2

+ ηL−1G− 1
2

) |h〉 ⊗ |h̄〉 , (6.4.19)

with

η = − 2

2h+ 1
, (6.4.20)

7Requiring that ∆ should not have a 1
ε piece immediately implies that p = p′.
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h =
1

4

{
3− c±

√
(1− c)(9− c)

}
, (6.4.21)

where the positive and negative signs before the square root correspond to the primaries
of conformal weights h3,1 and h1,3 , respectively (see (6.4.12)). One has a similar null state
for the antiholomorphic SuperVirasoro obtained by replacing Ln → L̄n , Gr → Ḡr , h→ h̄
and c→ c̄ .

For h = h3,1 and h̄ = h̄3,1, we get

ξ = −4C2 , ∆ = 4(1− C1) . (6.4.22)

These are precisely the relations we obtained in the previous section if we require the
existence of both the SGCA null states |χ(1)〉, |χ(2)〉 at level 3

2
.

These states themselves can be obtained by taking the non-relativistic limit on
appropriate combinations of the relativistic null vectors |χL〉 and its antiholomorphic
counterpart |χR〉. Consider

|χ(1)〉 = lim
ε→0

ε (−|χL〉+ |χR〉 ) , |χ(2)〉 = lim
ε→0

( |χL〉+ |χR〉 ). (6.4.23)

From the expressions (6.2.6), we obtain η = 2ε
ξ

(1 + (∆+1) ε
ξ

) and η̄ = −2ε
ξ

(1− (∆+1) ε
ξ

) upto

terms of order ε2 . Substituting this into (6.4.23) and using the relations (6.1.2), we obtain

|χ(1)〉 = (H− 3
2
− 1

ξ
M−1H− 1

2
) |∆, ξ〉 ,

|χ(2)〉 =
{
G− 3

2
− 1

ξ
M−1G− 1

2
− 1

ξ
L−1H− 1

2
+

(∆ + 1)

ξ2
M−1H− 1

2

}
|∆, ξ〉 ,(6.4.24)

which are exactly what we found from the intrinsic SGCA analysis in (6.4.7) and (6.4.8).

For the case h = h1,3 and h̄ = h̄1,3 , we find that ∆1(3,3) = −1 and ξ1(3,3) = 0 . This
is also easily seen to correspond to the null states constructed in §6.4.1 for ξ = 0 and
∆ 6= −1

2
, 0 (which we have seen are descendants of level one null states).

A point to observe here is that the expansion of relativistic null state expressions
(such as (6.4.19)) in powers of ε gives us non-relativistic null states when we consider only
the coefficients of the first two lowest powers of ε.8 Also, one should consistently expand
h and h̄ only upto O(1) (and not beyond) while considering any such expression, because
of the definition of the non-relativistic generators in (6.1.2).

8In fact this is true for any expression/result of the relativistic theory, from which we want to extract
the corresponding non-relativistic analogue. This directly follows from the fact that we have obtained
the non-relativistic algebra by retaining only the O( 1

ε ) and O(1) terms of the relativistic algebra.
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6.4.3 Discussion on SGCA null states not obtained from SCFT
null states

We would like to point out that though we find the limiting process gives answers con-
sistent with the intrinsic SGCA analysis, working purely within SGCA, we get some null
states which are not obtained in the SCFT case. These extra null states are not initally
null in SCFT, but become null in the non-relativistic scaling limit. We list such null states
obtained at level 3

2
:

(i) |χ(1)〉 in (6.4.7) has ξ = −4C2 but no restriction on ∆. On the other hand, |χ(1)〉
obtained in (6.4.24) from SCFT null states, has ∆ = 4(1− C1) in addition to ξ = −4C2.
This clearly shows that we have more null states for ξ = −4C2 from the intrinsic SGCA
analysis.

(ii) |χ(3)〉 in (6.4.9) descends from a state{
Ḡ−3/2 − G− 3

2
+

1

2
(c̄−c) ( L̄−1Ḡ− 1

2
+ L−1G− 1

2
+ L̄−1G− 1

2
+ L−1Ḡ−1/2 )

}
|h = −1

4
, h̄ = −1

4
〉

(6.4.25)
on the SCFT side, which is not null. This is because, while analysing null state conditions,
we never take linear combinations of descendants having different L0 and L̄0 eigenvalues.
On the other hand, descendant states in SGCA are eigenstates of L0 , but not necessarily
of M0 . Hence we get a valid null state from the above state in SCFT, after the limiting
process.

Hence we conclude that within the SGCA framework, we get more constraints aris-
ing from the differential equations involving the extra null states, over and above those
resulting from SCFT. This means we get new fusion rules involving the primaries corre-
sponding to these null states.9

6.5 Differential equations for SGCA correlators from

null states

The presence of the null states gives additional relations between correlation functions
which is at the heart of the solvability of relativistic (rational) (super)conformal field
theories. To obtain these relations one starts with the differential operator realisations
L̂−n and Ĝ−r of L−n and G−r respectively (with n, r > 0). Thus one has

〈Φk(Zk, Z̄k) · · · Φ2(Z2, Z̄2){L−n Φ1(0, 0)}〉 = L̂−n〈Φk(Zk, Z̄k) · · · Φ2(Z2, Z̄2)Φ1(0, 0)〉,
〈Φk(Zk, Z̄k) · · · Φ2(Z2, Z̄2){G−r Φ1(0, 0)}〉 = Ĝ−r〈Φk(Zk, Z̄k) · · · Φ2(Z2, Z̄2)Φ1(0, 0)〉,

9We discuss these issues a bit more elaborately in the concluding remarks, where we also mention the
future directions we would like to follow to get a better understanding.
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where

L̂−n =
k∑
i=2

{
(n− 1)hi

zni
+
n− 1

2

θi
zni
∂θi
− 1

zn−1
i

∂zi

}
, (6.5.1)

Ĝ−r =
k∑
i=2

signi

{
(2r − 1)hi

z
r+ 1

2
i

+
1

z
r− 1

2
i

( ∂θi
− θi ∂zi

)

}
, (6.5.2)

where signi is +1 and −1 for bosonic and fermionic superfields respectively. One can
write analogous expressions for the antiholomorphic sector.

For the SGCA also we can construct such operators. Firstly, we derive the expres-
sions entirely from the SGCA side.

Let us assume that we have a null state at a level l, which is a descendant of (the low-
est component of) the primary superfield Φ1(t1, x1, α1, β1), represented as f({L−n,M−m, G−r, H−s}) Φ1(0, 0, 0, 0) |0〉10,
where f is the appropriate linear combination of the products of the SGCA generators
(with n,m, r, s > 0 and the level adding up to l) such that the null state conditions are
satisfied. Since the null states are orthogonal to all states, we have the condition:

〈0|Φk(tk, xk, αk, βk) · · · Φ2(t2, x2, α2, β2) [ f({L−n,M−m, G−r, H−s}) Φ1(0, 0, 0, 0) ] |0〉 = 0 .
(6.5.3)

Using (6.2.11) and the fact that L−n , M−m , G−r , H−s annihilate 〈0|, we commute f
past all the Φi’s and obtain the expression:

f({L̂−n, M̂−m, Ĝ−r, Ĥ−s}) 〈0|Φk(tk, xk, αk, βk) · · · Φ2(t2, x2, α2, β2) Φ1(0, 0, 0, 0) |0〉 = 0 ,
(6.5.4)

where the differential operators acting on the correlation function are given by:

L̂−n = −
k∑
i=2

{ 1

tn−1
i

∂ti −
(n− 1)xi

tni
∂xi
− n− 1

tni

(
∆i +

n ξi xi
ti

)
−n− 1

2 tni

(
αi ∂αi

+ βi ∂βi
− nxi αi

ti
∂βi

)}
,

M̂−m = −
k∑
i=2

{
− 1

tm−1
i

∂xi
− (m− 1) ξi

tmi
+

(m− 1)αi
2 tmi

∂βi

}
,

Ĝ−r = −
k∑
i=2

signi

{ 1

t
r− 1

2
i

(−αi∂ti − βi∂xi
+ ∂αi

)− (r − 1

2
)
xi

t
r+ 1

2
i

(−αi∂xi
+ ∂βi

)

−2 (r − 1

2
)

1

t
r+ 1

2
i

(ξi βi −∆i αi) + 2 (r2 − 1

4
)
ξi xi αi

t
r+ 3

2
i

}
,

Ĥ−s = −
k∑
i=2

signi

{ 1

t
s− 1

2
i

(αi∂xi
− ∂βi

) + 2 (s− 1

2
)
ξi αi

t
s+ 1

2
i

}
, (6.5.5)

10Note that Φ1(0, 0, 0, 0) |0〉 = φ11(0, 0) |0〉 .
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where once again we note that the factor signi is necessary to account for the minus sign
when commuting f through a fermionic superfield11.

It follows directly from (6.1.2) that expanding the operators L̂−n and Ĝ−r as

L̂−n = ε−1L̂(−1)
−n + L̂(0)

−n +O(ε) ,

Ĝ−r = ε−1Ĝ(−1)
−r + Ĝ(0)

−r +O(ε) ,

(and similarly for the antiholomorphic part), we get expressions for the differential op-
erators M̂−n , L̂−n , Ĥ−r and Ĝ−r which match exactly with (6.5.5).

Therefore, correlation functions involving an SGCA descendant of a primary field
are given in terms of the correlators of the primaries by the action of the corresponding
differential operators M̂−n , L̂−n , Ĥ−r and Ĝ−r.

Now we will study the consequences of having null states at level 3
2
. We will con-

sider the two null states |χ(1)〉 , |χ(2)〉 of Sec. 5.1, or rather correlators involving the cor-
responding fields χ(1,2)(t1, x1). Setting the null state and thus its correlators to zero
gives rise to differential equations for the correlators involving the primary superfield
Φ∆1,ξ1(t1, x1, α1, β1)12 with other fields. Using the forms (6.4.7) and (6.4.8), we find that
the differential equations take the form

(Ĥ− 3
2
− 1

ξ
M̂−1Ĥ− 1

2
) 〈Φk(tk, xk, αk, βk) · · · Φ2(t2, x2, α2, β2) Φ1(0, 0, 0, 0) 〉 = 0 ,

(6.5.6)[
Ĝ− 3

2
− 1

ξ1

M̂−1Ĝ− 1
2
− 1

ξ1

L̂−1Ĥ− 1
2

+
(∆1 + 1)

ξ2
1

M̂−1Ĥ− 1
2

]
〈Φk(tk, xk, αk, βk) · · · Φ2(t2, x2, α2, β2) Φ1(0, 0, 0, 0) 〉 = 0 ,

(6.5.7)

with M̂−n , L̂−n , Ĥ−r and Ĝ−r as given in (6.5.5).

6.6 SGCA fusion rules

Analogous to the relativistic case (see [135] and [138]), we can derive “Fusion rules”,

[Φ1]× [Φ2] '
∑
f

[Φf ] , (6.6.1)

for the SGCA superconformal families, that determine which families [Φf ] have their
primaries and descendants occurring in an OPE of any two members of the families [Φ1]
and [Φ2]. Here we have denoted a family [Φi] by the corresponding primary superfield Φi.

11However, the reader should note that, though not stated explicitly, we have assumed correlation
functions of bosonic superfields everywhere in this paper.

12Note that χ(1,2)(t1, x1) is the descendant of the lowest component of Φ∆1,ξ1 .
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We illustrate how the fusion rules can be obtained for the families [Φ∆1,ξ1 ] and
[Φ∆2,ξ2 ], where both fields are members of the the non-relativistic limit of the Kac table
as specified by (6.4.15) and (6.4.16). As mentioned in footnote 7, we need to take p = p′.
The resulting (∆, ξ) are thus labelled by a triple {p(q, q′)}. In particular, we will consider
below the case of ∆1 = ∆3(1,1) and ξ1 = ξ3(1,1).

The fusion rules are derived from applying the condition that Φ∆1,ξ1 has a null
descendant at level 3

2
. For (∆2, ξ2), we will consider a general member Φp(q,q′).

13 Thus we
have from (6.4.22), (6.4.17) and (6.4.18):

∆1 = ∆3(1,1) = 4(1− C1) , ξ1 = ξ3(1,1) = −4C2 ; (6.6.2)

∆2 = ∆p(q,q′) = −1

2
C1 (p2 − 1) +

1

8
[ 5p2 − 2p(q + q′)− 1 ] , (6.6.3)

ξ2 = ξp(q,q′) = −1

2
C2 (p2 − 1) . (6.6.4)

We need to consider the conditions (6.5.6) and (6.5.7) for the case of the three point
function. With

G
(3)
2d SGCA({ti, xi, αi, βi}) = 〈Φ∆3,ξ3(t3, x3, α1, β1) Φ∆2,ξ2(t2, x2, α2, β2) Φ∆1,ξ1(0, 0, 0, 0) 〉 ,

(6.6.5)
these give the constraints:

[
−

3∑
i=2

{ 1

ti
(αi∂xi

− ∂βi
) +

2ξi
t2i
αi

}
+

1

ξ1

3∑
i=2

∂xi

3∑
j=2

(αj∂xj
− ∂βj

)
]
G

(3)
2d SGCA = 0 , (6.6.6)

[
−

3∑
i=2

{ 1

ti
(−αi∂ti − βi∂xi

+ ∂αi
)− ξi

t2i
(−αi∂xi

+ ∂βi
)− 2

t2i
(ξiβi −∆iαi) +

2ξi
t3i
xiαi

}
+

1

ξ1

3∑
i=2

∂xi

3∑
j=2

(−αi∂ti − βi∂xi
+ ∂αi

)− 1

ξ1

3∑
i=2

∂ti

3∑
j=2

(αi∂xj
− ∂βj

)

− ∆1 + 1

ξ2
1

3∑
i=2

∂xi

3∑
j=2

(αj∂xj
− ∂βj

)
]
G

(3)
2d SGCA = 0 ,

respectively. Now by using (6.3.19), these translate into

ξ1 (ξ2 + ξ3)− (ξ2 − ξ3)2 = 0 ,
(∆2 + ∆3 − 1) ξ2

1 − 2 (∆2 −∆3) (ξ2 − ξ3) ξ1 + (∆1 + 1) (ξ2 − ξ3)2 = 0 .

13Here we assume that Φp(q,q′) has no extra null descendant other than those obtained from the non-
relativistic limit of the (hp,q, h̄p,q′) null states. While this is seen to be true for the level 3

2 , one needs to
construct a formalism to verify this for any arbitrary level in the Kac table.
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Solving the above equations, we get two simple sets of solutions:

ξ3 = −1

2
C2 {(p± 2)2−1} , ∆3 = −1

2
C1 {(p± 2)2−1}+1

8
{5 (p± 2)2−2(p± 2) (q+ q′)−1} .

(6.6.7)
Comparing with (6.6.3) and (6.6.4), we see that

∆3 = ∆p± 2 (q,q′) , ξ3 = ξp± 2 (q,q′) , (6.6.8)

which is exactly what the relativistic fusion rules imply, namely

[Φ3(1,1)]× [Φp(q,q′)] = [Φp+2 (q,q′)] + [Φp−2 (q,q′)] . (6.6.9)

Thus once again we see evidence for the consistency of the SGCA limit of the 2d SCFT.
However, we would like to remind the reader that in the SCFT case, two independent
fusion rules (dubbed “even” and “odd”) arise (for each of the holomorphic and antiholo-
morphic sectors), as shown in [138], and their composition gives the full fusion rule. This
is due to the presence of two independent constants for the SCFT three point function
in each sector. But we have seen in (6.3.19) that when we multiply the results for the
two sectors and take the limit, the contributions coming from the Grassmann odd terms
of the corresponding sectors do not survive. So in the context of SGCA, only the even
fusion rules of SCFT are relevant.

6.7 Summary

This concludes our present study of the supersymmetric extension of the GCA in two
dimensions. We found that 2d SGCFTs, with non-zero central charges C1 and C2 , can
be readily obtained by considering a somewhat unusual limit of a non-unitary 2d SCFT.
While the resulting Hilbert space of the SGCFT is again non-unitary, the theory seems
to be otherwise well-defined. We found that many of the structures are parallel to those
in the SuperVirasoro algebra and indeed arise from them when we realise the SGCA by
means of the scaling limit. But in most cases we could also obtain many of the same results
autonomously from the definition of the SGCA itself, showing that these are features of
any realisation of this symmetry.

6.8 Appendix

6.8.1 SGCA Descendants

By means of the differential operators M̂−m , L̂−n , Ĥ−r and Ĝ−s (with m,n, r, s > 0) in
(6.5.5), we may express the correlation function including a general SGCA descendant in



6.8. APPENDIX 89

terms of the correlation function of the corresponding primary superfield Φ∆ξ(t, x, α, β).
We have in fact already used this in Sec. 6 as (6.5.6) and (6.5.7), for the simple cases of
these descendants corresponding to null states. The general expression can be written as

〈Φk(tk, xk, αk, βk) · · · Φ2(t2, x2, α2, β2) Φ
{~l,~q,~u,~v}
1 (0, 0, 0, 0) 〉

= L̂−li · · · L̂−l1 M̂−qj · · · M̂−q1 Ĝ−ui′
· · · Ĝ−u1

Ĥ−vj′
· · · Ĥ−v1 〈Φk(tk, xk, αk, βk) · · · Φ2(t2, x2, α2, β2) Φ1(0, 0, 0, 0) 〉 ,

for Φ
{~l,~q,~u,~v}
1 (0, 0, 0, 0) |0〉

= L−li · · ·L−l1 M−qj · · ·M−q1 G−ui′
· · ·G−u1 H−vj′

· · ·H−v1 Φ1(0, 0, 0, 0) |0〉 ,

where

~l = (l1, l2, · · · , li) , ~q = (q1, q2, · · · , qj) ,
~u = (u1, u2, · · · , ui′) and ~v = (v1, v2, · · · , vj′)

are sequences of positive integers such that l1 ≤ l2 · · · ≤ li and similarly for the q, u and
v’s. Also note that Φ

{0,0,0,0}
1 (t1, x1, α1, β1) denotes the primary Φ1(t1, x1, α1, β1) itself.

6.8.2 The OPE and SGCA blocks

Just as in the relativistic case, the OPE of two SGCA primary superfields can be expressed
in terms of the SGCA primary superfields and their descendants as

Φ1(t, x, α, β) Φ2(0, 0, 0, 0) =
∑
p

∑
{~l,~q,~u,~v}

C
p{~l,~q,~u,~v}
12 (t, x, α, β) Φ{

~l,~q,~u,~v}
p (0, 0, 0, 0) . (6.8.1)

We should mention that, unlike in the case of a 2d SCFT, such an expansion is not analytic
(see (6.8.6) below), as was also true for GCA in [82]. The form of the two and three point
functions clearly exhibit essential singularities. Nevertheless we will go ahead with the
expansion assuming it makes sense in individual segments such as x, t > 0. One can find

the first few coefficients C
p{~k,~q,~u,~v}
12 (t, x, α, β) by considering the three point function of the

primary superfields 〈Φ3Φ1Φ2〉. In such a situation one can replace Φ1Φ2 in the three point
function with the RHS of (6.8.1), and obtain

〈Φ3(t′, x′, α′, β′) Φ1(t, x, α, β) Φ2(0, 0, 0, 0) 〉
=

∑
p,{~l,~q,~u,~v}

C
p{~l,~q,~u,~v}
12 (t, x, α, β) 〈Φ3(t′, x′, α′, β′) Φ{

~l,~q,~u,~v}
p (0, 0, 0, 0) 〉 . (6.8.2)

We can find C
p{0,0,0,0}
12 , C

p{0,0,1,0}
12 , C

p{0,0,0,1}
12 , C

p{1,0,0,0}
12 , C

p{0,1,0,0}
12 and C

p{0,0,1,1}
12 by

expanding the LHS of (6.8.2) in powers of the parameter t
t′

with x′

t′
, x
t
, α′α

t′
, α′β

t′
and αβ′

t′
as
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coefficients, and comparing the {t′, x′, α′, β′}-dependence of both the sides. To make the
final formulae simple, we concentrate on the case with ∆1 = ∆2 = ∆ and ξ1 = ξ2 = ξ.

The expansion of the LHS is given as:

〈Φ3(t′, x′, α′, β′) Φ1(t, x, α, β) Φ2(0, 0, 0, 0) 〉

= C312 (t′ − t− α′α)−∆3 t∆3−2∆ (−t′)−∆3 exp
{
ξ3
x′ − x− α′β + αβ′

t′ − t− α′α
+ (2ξ − ξ3)

x

t
+ ξ3

x′

t′

}
= C ′312 t

′−2∆3 e2ξ3
x′
t′ · t∆3−2∆ e(2ξ−ξ3) x

t

[
1 + ∆3

α′α

t′
+ ξ3 (

αβ′

t′
− α′β

t′
+
α′α

t′
x′

t′
)

+
{

∆3 + ξ3 (
x′

t′
− x

t
) + ∆3

α′α

t′
+ ξ3 (

αβ′

t′
− α′β

t′
+ 2

α′α

t′
x′

t′
− α′α

t′
x

t
)
} t

t′

+
{

∆3
α′α

t′
+ ξ3 (

αβ′

t′
− α′β

t′
+
α′α

t′
x′

t′
)
}{

∆3 + ξ3 (
x′

t′
− x

t
) + ξ3 (

αβ′

t′
− α′β

t′
)
} t

t′
+O((t/t′)2)

]
,

(6.8.3)

where C ′312 = (−1)∆3 C312 .

The RHS is given by∑
p,{~l,~q,~u,~v}

C
p{~l,~q,~u,~v}
12 (t, x, α, β) 〈Φ3(t′, x′, α′, β′) Φ{

~l,~q,~u,~v}
p (0, 0, 0, 0) 〉

=
[
C

3{0,0,0,0}
12 (t, x, α, β) + C

3{0,0,1,0}
12 (t, x, α, β) Ĝ− 1

2
+ C

3{0,0,0,1}
12 (t, x, α, β) Ĥ− 1

2

+ C
3{1,0,0,0}
12 (t, x, α, β) L̂−1 + C

3{0,1,0,0}
12 (t, x, α, β) M̂−1

+ C
3{0,0,1,1}
12 (t, x, α, β) Ĝ− 1

2
Ĥ− 1

2
+ . . .

]
t′
−2∆3 e2ξ3

x′
t′

= t′
−2∆3 e2ξ3

x′
t′
[
C

3{0,0,0,0}
12 + 2C

3{0,0,1,0}
12 (−∆3α

′ − ξ3
x′α′

t′
+ ξ3β

′)
1

t′
− 2ξ3C

3{0,0,0,1}
12

α′

t′

+ 2C
3{1,0,0,0}
12 (∆3 + ξ3

x′

t′
)
1

t′
+ 2ξ3C

3{0,1,0,0}
12

1

t′
+ 2 ξ3C

3{0,0,1,1}
12 (1 + 2ξ3

α′β′

t′
)

1

t′
+ · · ·

]
.

(6.8.4)

One can easily read off the coefficients by comparing (6.8.3) and (6.8.4)14:

C
3{0,0,0,0}
12 = C ′312 t

∆3−2∆ e(2ξ−ξ3) x
t ,

C
3{0,0,1,0}
12 =

1

2
C ′312 t

∆3−2∆ e(2ξ−ξ3) x
t α ,

C
3{0,0,0,1}
12 = −1

2
C ′312 t

∆3−2∆ e(2ξ−ξ3) x
t β ,

C
3{1,0,0,0}
12 =

1

2
C ′312 t

∆3−2∆+1 e(2ξ−ξ3) x
t , (6.8.5)

14The reader should note that we have compared the full functional dependence on the coordinates
{t, x, α, β, t′, x′, α′, β′} on both sides, though the LHS has been shown upto a certain order in t

t′ (which

is just a convenient trick to extract out the expression for the Cp{
~l,~q,~u,~v}

12 ’s).
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C
3{0,1,0,0}
12 = −1

2
C ′312 x t

∆3−2∆ e(2ξ−ξ3) x
t ,

C
3{0,0,1,1}
12 = 0 .

So in this case, the SGCA OPE is

Φ1(t, x, α, β) Φ2(0, 0, 0, 0)

=
∑
p

C ′p12 t
∆p−2∆ e(2ξ−ξp) x

t

(
Φp(0, 0, 0, 0) +

α

2
Φ{0,0,1,0}p (0, 0, 0, 0)− β

2
Φ{0,0,0,1}p (0, 0, 0, 0)

+
t

2
Φ{1,0,0,0}p (0, 0, 0, 0)− x

2
Φ{0,1,0,0}p (0, 0, 0, 0) + . . .

)
.

(6.8.6)
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Chapter 7

Concluding remarks

In the first part of this thesis, we studied “Black hole hair removal”. We noted that BMPV
black holes in flat transverse space and in Taub-NUT space have identical near horizon
geometries but different microscopic degeneracies. We showed that this difference can be
accounted for by different contribution to the degeneracies of these black holes from hair
modes, – degrees of freedom living outside the horizon. After removing the contribution
due to the hair degrees of freedom from the microscopic partition function, the partition
functions of the two black holes agree. We constructed the bosonic hair modes, but only
by a linear analysis.

Ref. [123] filled some of the gaps in the analysis outlined in §3. These are of three
types:

1. We identified the bosonic deformations of the black hole solution by working with
the linearized equations of motion. Ref. [123] extended them to the solutions to full
non-linear equations of motion.

2. We gave a general argument for the existence of a certain set of fermionic deforma-
tions but did not construct them explicitly. Ref. [123] constructed these fermionic
modes by solving the equations of motion of the fermions around the BMPV black
hole background.

3. We did not study supersymmetry properties of the deformations explicitly. Ref. [123]
demonstrated that the deformations preserve the same number of supersymmetries
as the original BMPV black hole background.

The authors also found that one set of deformations for each black hole have mild curvature
singularities in the future horizon, when viewed as ten-dimensional geometries [141, 142].
Hence one must remove these modes from the counting of the hair degrees of freedom.
However, fortunately they give identical contributions to the partition functions for the
two black holes. Consequently, even after removing their contribution from the hair
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partition function, one continues to get agreement between the partition functions of the
two black holes after hair removal.

In the remaining part of the thesis, we concentrated on supersymmetric extention
of the Galilean Conformal Algebras in 4 and 2 dimensions respectively. For d = 4, we
could find an infinite lift of the SGCA, though the relativistic superconformal algebra
has finite number of generators. However, we saw that d=2 is special → because the
relativistic superconformal algebra is infinite dimensional. The usual group contraction
of the parent relativistic algebra then provided a map between the relativistic and non-
relativistic infinite algebras. Our study of 2d SGCFTs proceeds along two parallel lines:
One involved carrying out an autonomous analysis of the SGCA, and the other consisted
of taking carefully the non-relativistic scaling limit of the parent 2d SCFTs.

For the 4d case, there exists a large literature on the supersymmetric extensions of
the Schrödinger algebra; some of the recent works include [143]–[150]. Among these, [145,
146] rely on clever re-writings of the relativistic algebras to get at the super-schrodinger
algebra which exists as a subgroup inside the relativistic one. In our construction of
SGCA, the supercharge anticommutators generate the M i

n and not the Ln as would be
the usual expectation from the bosonic algebra. The reason is: we chose to scale the
fermionic generators in a way which meant that the SL(2, R) part always dropped out of
the fermionic anti-commutators. There are other possible ways [133, 151] to obtain SGCA
by choosing to contract the fermionic generators such that the SL(2, R) part is the one
that remains after scaling and not the part with the vector indices. This is a different
non-relativistic limit of the parent super-conformal algebra and hence an inequivalent
Super-Galilean conformal algebra.

There are numerous avenues left to explore in the context of SGCA in 4d. Construc-
tion of representations and correlation functions for the supersymmetric case, along the
lines of [79] is an immediate step. Now that we understand the non-relativistic scaling in a
super-conformal setting, we are better equipped to deal with the main subject of interest,
viz. N = 4 SYM. The primary objective of the supersymmetric extension of the GCA
that we have looked at in this paper is to build a platform from which we can understand
the symmetries of the N = 4 SYM. Once we understand how to take this systematic
non-relativistic limit of N = 4 SYM, we might be able to isolate some interesting and
tractable sector of the theory, somewhat analogous to the plane wave sector in the BMN
limit.

The bulk dual of the GCA proposed in [73] was a novel Newton-Cartan like limit of
AdSd+2 with a base AdS2 and Rd fibres. The GCA emerges as the asymptotic isometry
of this Newton-Cartan structure. A better understanding of the boundary theory is also
a step in understanding the bulk. Taking the non-relativistic limit on the N = 4 SYM
would be a first step in trying to understand the novel bulk-boundary dictionary in this
case. Now that we understand how to extend the GCA to SGCA, using the contraction
on the N = 4 SYM should become clearer.
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There are numerous avenues to explore in the study of non-relativistic 2d theories,
whose algebra can be obtained by group contraction of the well-studied relativistic theo-
ries. One of the immediate things one needs to understand better are the extra constraints
arising purely within the non-relativistic sector (as we have explained in §6.4.3), whose
analogues do not not exist in the parent relativistic theory. Our present understanding of
the above issue is the following: This means that what was an irreducible representation
(“irrep”) of the (Super)Virasoro algebra (i.e. modulo the original null states) is no longer
an irrep after taking the limit. This in itself is not surprising or unusual. The irreps of the
original group need not to go over into irreps of the contracted group. It is therefore not
too surprising that if we further choose to restrict to the irreps formed by modding out by
the additional null states, there would be additional relations. The physical translation
of these statements is that, if we choose to set the additional null states to zero, then the
correlation functions have some further selection properties. Another way to put it is that
the correlation functions of operators, which lie in the smaller vector space, may satisfy
additional relations which would not be true of the full vector space. This is because
we are choosing to work with a subclass of operators (states) which can close amongst
themselves consistently rather than the full set of operators (states). The main thing to
check is that the additional conditions are not incompatible. For all the specific cases we
have dealt with in the present work, we have not found any inconsistency. Similar checks
must be done for the higher levels, but at the moment we do not have a general way.

It is clear from the above discussion that it is not obvious to conclude that the
(S)GCA arises as a limit of the (S)CFT without further analysis. We would like to stress
that, in the present work as well as in [82], we have not established in any strong way
the existence of our limit of the (S)CFT. We have just performed a series of consistency
checks. But one can look at the possibility whether one can construct a consistent (S)GCA
where the extra relations do not play a role. The fusion rules found in GCA and SGCA
indicate that one can truncate to the states in the usual Kac table. In other words, can
the primaries (with the special values of ξ and ∆ corresponding to the extra null states)
appear in the RHS of fusion rules of the other null state primaries? If they do not appear,
then we think that we can consider a truncation where these kinds of null states do not
have to be considered. We can then consider the family of primaries which have only
the values in the non-relativistic limit of the usual Kac table and the OPEs will close in
this sector. We have found this to be true for the lowest level(s) where we get non-trivial
null states. However, we have not proven this for states at any arbitrary level and we
would like to explore whether it is possible to give a general proof that the fusion rules in
the non-relativistic theory always give other members of the original Kac table (and not
anything else).

We would like to emphasize that we have not been able to provide any strong
evidence of the presence of (S)GCA in possible field theories. This will also require
proving our assumption of the state-operator correspondence.
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Here we have focussed on the Neveu-Schwarz sector of the N = (1, 1) supersymmet-
ric extension of GCFTs in 2d. One can try to work on the Ramond sector and find the
analogous results there, where one cannot use the superfield formalism. Also, one can try
to find out the consequences when we increase the number of supersymmetries. All these
studies can be easily done along the framework presented in this work.
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