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Summary

This thesis deals with problems on the divisibility of class numbers of quadratic
fields, an application of Dirichlet’s class number formula and the existence of

Euclidean ideal class in certain bi-quadratic fields.

In 2003, Byeon and Koh provided an infinite family of real quadratic fields
with class number divisible by 3. In the first problem, we made use of their
family to find a lower bound for the number of real quadratic fields with class
number divisible by 3 and the discriminant having m distinct prime factors, for

a fixed but arbitrary positive integer m.

In 2018, Tizuka proved the existence of an infinite family of tuples of imag-
inary quadratic fields of the form {Q(v/D),Q(v/D + 1)} with D € Z and the
class numbers being divisible by 3. In the second problem, using the techniques

from class field theory, we have extended Tizuka’s result for triples of imaginary
quadratic fields of the form Q(v/D), Q(v/D + 1) and Q(v'D + k2).

The problem of distribution of quadratic residues and non-residues modulo
an odd prime number p is very interesting. In the third problem, we have used
the Dirichlet’s class number formula for the imaginary quadratic field Q(/—p)
to study the distribution of residues and non-residues in some particular subin-

tervals of [1,p — 1].

In 1979, Lenstra generalized the notion of Euclidean algorithm in number
fields and introduced the Euclidean ideal class. He also proved that if a number
field K has an Euclidean ideal class, then the ideal class group Clk of K is cyclic.
He also proved the converse under the validity of the Extended Riemann Hy-
pothesis (ERH). Recently, Hsu proved the existence of non-principal Euclidean
ideal classes in a family of bi-quadratic fields. We have extended Hsu’s family
and provided a much larger family of number fields of class number 2 having a

non-principal Euclidean ideal class.






CHAPTER

Divisibility of class numbers of

quadratic fields

In this chapter, we define the ideal class group of a number field and give the
fundamental results concerning the divisibility properties of the class numbers
of quadratic fields. Then we give the proof of the main result, which has been

published in [8].

1.1 Definitions and basic results

The results of this section can be found in [13].

Definition 1.1.1 A subfield K of C is said to be an algebraic number field (or
simply, number field) if the degree [K : Q] is finite. The integral closure of Z in

K s called the ring of integers of K and is denoted by Ok.

Remark 1.1.1 Since Q is a field of characteristic 0, the primitive element the-

3



4 §1.1. Definitions and basic results

orem for Q asserts that there exists an element o € K such that K = Q(«).

Let n > 1 be an integer and let K be a number field with [K : Q] =n. It is a
well-known result in algebraic number theory that Ok is a Dedekind domain. In
other words, Ok is Noetherian, integrally closed and every non-zero prime ideal
is maximal. Moreover, every non-zero ideal in O can be uniquely expressed as

a product of prime ideals.

Definition 1.1.2 A set {ay,...,a,} C Ok is said to be an integral basis of

K if every a € Ok can be uniquely expressed as a = chai with ¢; € 7.

=1

Equivalently, O = @Zai as a Z-module.

i=1
Proposition 1.1.1 An integral basis of K always exists. Consequently, O is

a free Z-module of rank n.

Remark 1.1.2 For a square-free integer d, consider the quadratic field K =
Q(Vd). Then it is well-known that

as a Z-module.

Let K = Q(«) for some o € K with minimal polynomial f. Then f is an
irreducible polynomial over QQ of degree n. For a field homomorphism ¢ : K — C,
¢() is also a root of f. Since Q is a field of characteristic 0, K is a separable
extension of Q and hence ¢(a) has precisely n distinct choices. Therefore, there
are n distinct embeddings, say oy, ...,0,_1 and o,, of K into C. We say that K
is a Galois extension of Q if all the roots of f lie in K. In that case, 0;(K) = K

for all ¢ € {1,...,n} and the set G = {oy,...,0,} forms a group under the
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law of composition of functions. We call G the Galois group of K/Q and is
sometimes referred to as Gal(K/Q).

We define the discriminant of K as follows.

Definition 1.1.3 Let {a1,...,a,} be an integral basis of K and let o1, ... 0, 1
and o, be all the distinct embeddings of K into C. Then the discriminant of K,

denoted by d, is defined by dy = det|o;(a;)]?.

Remark 1.1.3 Given two integral bases {aq,...,a,} and {f1,...,06,} of K, it
can be shown that det[o;(a;)]? = det[o:(B;)]>. This makes the definition of d
unambiguous. It is a well-known fact that for any positive real number X, the

number of K/Q of degree n such that di < X is finite.

Remark 1.1.4 For a square-free integer d, consider the quadratic field K =

Q(V/d). Then
4d if d=2,3 (mod 4)

K =

d ifd=1 (mod 4).

Now, we describe the splitting of prime ideals in an extension of number
fields. Let L be a number field containing K and let p be a non-zero prime
ideal in Ok. Then there exist integers g > 1, eq,...,e, > 0 and prime ideals

©1,. ..,y in Of such that

pOL = 1" - 9

The integer e; is called the ramification index of g; over p. The prime ideal p is
said to be unramified in L (or Op) ife; =--- =¢, = L.

Since Ok and Oy, are Dedekind domains, p and @, are maximal ideals in O
and Oy, respectively. Thus Op/g; is a finite field containing the field Ok /p.

The degree [Or/p; : Ok /p] is called the residual degree of p; over p and is often
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g

denoted by f;. Moreover, the relation [L : K| = Z e; f; holds. If, in particular,
i=1

L is a Galois extension over K, then all the ramification indices and residual

degrees are equal.

We define a fractional ideal of K as follows.

Definition 1.1.4 Let K be a number field and let M be an Ok -module contained
in K. Then M is said to be a fractional ideal of K if there exists a non-zero

element ¢ € Ok such that cM = {em :m € M} C Ok.

Equivalently, the set of fractional ideals is the free abelian group generated
by the set of prime ideals of Ok. In this group, the set of principal fractional
ideals forms a subgroup. We denote the group of fractional ideals of K by F(K)

and the subgroup of principal fractional ideals by P(K).

Definition 1.1.5 The quotient group F(K)/P(K) is called the ideal class group

(or, class group) of K and is denoted by Cly.

It is known by Minkowski Theory that for any number field K, the class
group Clg of K is a finite abelian group. The order of this group is known as

the class number of K and is commonly denoted by hg.

Proposition 1.1.2 For a number field K, Ok is a principal ideal domain (in

short, PID) if and only if hi = 1.

Proof. Suppose that Ok is a PID. Let M be a non-zero fractional ideal of K.
Then by definition of a fractional ideal, there exists a non-zero element ¢ € Ok
such that cM C Og. Since M is an Og-module, cM is an ideal in Of. By our
assumption, O is a PID and hence cM = (() for some 5 € Of. Therefore, M =
(¢™18), which is principal. Since M is an arbitrary fractional ideal, we conclude
that all the fractional ideals of K are principal. In other words, F(K) = P(K)

and hence hyx = 1.
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Conversely, suppose that hx = 1 and let I be a non-zero ideal in Og. Then
I is an Og-module and therefore a fractional ideal of K. Now, hx = 1 implies
that I is a principal fractional ideal and hence I = (v) for some v € K. Since
I C Ok, we have v € Ok. As [ is arbitrary, it follows that Ok is a PID. ]

For a number field K, the non-zero prime ideals are usually called finite
primes. A real infinite prime of K is an embedding ¢ : K — R and a complez
infinite prime is a pair of complex conjugate embeddings 7,7 : K — C with
7 # 7. Now, let L be a number field such that K C L. We say that an infinite
prime o of K is ramified in L if o is real but it has an extension to L which
is non-real. Otherwise, o is said to be unramified in L. The extension L/K is
called unramified if all the finite as well as the infinite primes of K are unramified
in L.

Before going to the next section, we define the notion of an abelian as well

as a cyclic extension of K and thereafter we introduce the Hilbert class field.

Definition 1.1.6 Let L/K be an extension of number fields. We say that L is
an abelian extension of K if L/K is Galois and the Galois group Gal(L/K) is
abelian. The extension L/K is said to be a cyclic extension if L/K is Galois

and the Galois group Gal(L/K) is cyclic.

Proposition 1.1.3 Let K be a number field. Then there exists a unique maxi-
mal abelian, unramified extension field H(K) of K. It also satisfies the following
1somorphism of groups

Gal(H(K)/K) ~ Clg.

Definition 1.1.7 The number field H(K) in Proposition 1.1.3 is said to be the
Hilbert class field of K.

From Proposition 1.1.3, the following proposition readily follows.
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Proposition 1.1.4 Let L be a Galois extension over a number field K with
Galois group G. Assume that G is abelian and L/K is unramified. Then [L :
K] | hg.

Proof. Since L is an unramified and abelian extension of K, it is contained
in the Hilbert class field H(K) of K. That is, K C L C H(K). Thus [L :
K] divides [H(K) : K]. Now, by Proposition 1.1.3, we have [H(K) : K] =
|Gal(H(K)/K)| = hk. Hence [L: K| | hg. O

1.2 Recent developments and main result

By Proposition 1.1.2, we know that hx = 1 is equivalent to the fact that O is
a PID. Since it is desirable to work in a ring which is a PID, it is useful to have
information about K for which hx = 1. Gauss raised the question for a complete
characterization of imaginary quadratic fields of class number 1. Heegner [20],

Baker [3] and Stark [48] resolved this problem and proved the following theorem.

Theorem 1.2.1 Let d > 0 be a square-free integer. Then the quadratic field
Q(vV—d) has class number 1 precisely for d =1,2,3,7,11,19,43,67, 163.

In 1934, Heilbronn [21] proved that given any integer m > 1, there exist only
finitely many imaginary quadratic fields, each having class number m. However,
the analogous question for real quadratic fields still remains unsolved. This is

popularly known as the “Gauss class number 1 problem” and is stated as follows.

Conjecture 1.2.2 There exist infinitely many real quadratic fields of class num-

ber 1.

In the light of Conjecture 1.2.2, it is very difficult to characterize number
fields of a given class number. Hence we address the following weaker question

about the divisibility of class numbers of number fields.
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Question 1.2.3 Given an integer n > 1, do there exist infinitely many number

fields having class number divisible by n?

Since, in this chapter, we intend to discuss the class number divisibility prob-
lem only for quadratic fields, we furnish some of the relevant results associated
to quadratic fields. Nagell [42], Ankeny and Chowla |1| and later many others
answered Question 1.2.3 affirmatively for imaginary quadratic fields and proved

the following.

Theorem 1.2.4 (/1] and [42]) Let n > 2 be an integer. Then there exist in-

finitely many imaginary quadratic fields K with n | hg.

Later, Weinberger [50], Yamamoto [52| and several other mathematicians

proved the same divisibility result for real quadratic fields as follows.

Theorem 1.2.5 (/50] and [52]) Let n > 2 be an integer. Then there exist

infinitely many real quadratic fields K with n | hy.

We note that Theorem 1.2.4 and 1.2.5 are of qualitative nature. In the
literature, quantitative questions related to this have also been addressed. For
that, we introduce the following sets. For an integer g > 2 and a large positive

real number X, let

NS (X)=#{K = Q(Vd) : d > 0 is square-free, |dx| < X and g | hg}
and

Ny (X)=#{K = Q(Vd) : d < 0 is square-free, |dx| < X and g | hx}.

Then one can naturally ask about the growth of N, (X) and N, (X) as X — oo.

It is widely believed that for each integer g > 2, there exist positive constants
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C; and C; such that N;()J(r) ~ CfX and N; (X) ~ C;X. Here the symbol
43 b Ng (X) Ng_(X) o C,
=C,.

~ 7 indicates that lim = C7' and lim

X—o0 9 X—o0

We first study the case g = 2 for imaginary quadratic fields. For that, we
need to use the prime number theorem along with the following theorem that

follows from Gauss’s theory of genera. The proofs can be found in [2] and [13].

Theorem 1.2.6 (Prime number theorem) For a positive real number X, let

X)log X
m(X) ={p < X :pis prime}. Then lim M —
X—oo X

1.

Theorem 1.2.7 (Gauss) Let d > 2 be a square-free integer and let py, ... ,pi—1
and p; be the distinct prime divisors of d. Let Ky = Q(v/d) and Ky = Q(v/—d).
Then 2072 | hg, and 271 | h,.

Theorem 1.2.8 Following the same notations defined above, we have Cy = ﬂ%.

Proof. For a natural number n, let w(n) denote the number of distinct prime

divisors of n. Now, for a large positive real number X, let
A(X)={n e N:n <X and n is square-free}

and

Ay(X) ={n e AX) :w(n) > 2}.

Then clearly, A(X) \ A2(X) = {n € N: n < X and n is prime } = 7(X).
Consequently, A(X) = Ay(X)Un(X) and Ay(X) Nw(X) = 0.
A(X)

It is a well-known theorem (cf. [2]) in analytic number theory that )}im '
—00

6 X
exists and equals — . Also, from Theorem 1.2.6, we get lim M = 0. There-
m X—oo X
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fore, we have

A X) |y TE) gy, A 6 (1.1)

X—o00 X X—o00 X X—o00 X—o0o X 7'('2

Now, let d € Ay and let K = Q(v/—d). Then by Theorem 1.2.7, we have
2 | hg. It follows from (1.1) that almost all square-free integers n satisfies

6
w(n) > 2 and therefore we obtain Cy = —. O

T2
The growth results of N, (X) and N, (X) are not so regular for integers
g > 3. In fact, when g is an odd prime number, there is a famous conjecture by

Cohen and Lenstra [12] regarding the values of Cj and C;. We state this as

follows.

Conjecture 1.2.9 (Cohen-Lenstra heuristics) Let p > 3 be an odd prime num-

RN P
Cy = (1 1:[1 (1 pi>> (1.2)
0;:%(1—1@[(1—%)). (1.3)

Even though the precise values of Cf and C, are unknown for any integer

ber. Then

and

g > 3, some lower bounds of N, (X) and N, (X) are known due to the works
of Byeon [5], Murty [44] and Soundararajan [47]. Before providing their results,
we recall the following standard notations.

Notations. Let S C R,y be a non-empty, infinite set and let f and g
be two real-valued functions on S with g(s) > 0 for all s € S. We say that
f < g (respectively, g > f) if there is an absolute constant C' > 0 such that
|f(s)] < Cg(s) (respectively, g(s) > C|f(s)]) for all s € S. Sometimes we use

the notation f = O(g) to mean f < g. We write f =< g if both f < ¢ and
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g < f hold simultaneously. Also, by f = o(g), we mean % — 0 as s — oo.

Now we state the results concerning the lower bounds of N;f(X) and N, (X)

as follows.
Theorem 1.2.10 /5] N (X) > X2 and NF(X) > Xz.

Theorem 1.2.11 [//] Let g > 3 be an integer and € > 0 be a real number.

Then we have

N7(X)> X33

9
and
1
X2~ ifgis odd,

NS (X) > X2 ifg=2 (mod4),
X~ ifg=0 (mod 4).

Later, Soundararajan [47| improved the lower bound in Theorem 1.2.11 for

imaginary quadratic fields as follows.

Theorem 1.2.12 [}7] For an even integer g > 4 and any € > 0, we have

1.2 o
N(X) > X2"s ifg=0 (mod 4),
X3tam ifg=2 (mod 4).

For any integer g > 3, since 2g | hx implies g | hx, we get Ny (X) > Ny (X).

Therefore, by Theorem 1.2.12, we obtain the following theorem.

Theorem 1.2.13 [/7] For an odd integer g > 3 and any € > 0, we have

No(X) > Xotam

g
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Now, we state the main result of this chapter.

Theorem 1.2.14 /8] Let ¢ > 1 be an integer and let py,...,pe1 and pero be
distinct prime numbers with p; > 5 for alli € {1,...,0+2}. For a positive real

number X, let

Nso(X) = #{K = Q(/d) : d > 0 is square-free, dx < X,p1...Dess | di
and 3 | hg}.
Then for all sufficiently large real numbers X, we have N3 (X) > X5,

Theorem 1.2.14 and Theorem 1.2.7 immediately give the following corollary.

Corollary 1.2.15 For a positive integer ¢ and for all sufficiently large positive

real numbers X, we have

N (X) > X5,

1.3 Preliminaries

Kishi and Miyake [32] characterized the quadratic fields K with class number

divisible by 3 as follows.

Lemma 1.3.1 [32] Let u and w be integers such that ged(u,w) = 1 and d =
duw® — 27u? is not a perfect square in Z. Let g(T) = T? — uwT — u* € Z[T).

Suppose that one of the following conditions holds:
(i) 31w,
(ii) 3| w,uw #3 (mod 9), and u=w =+ 1 (mod 9),

(11i) 3| w,uw =3 (mod 9), and u =w + 1 (mod 27).
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If g(T) is irreducible over Q, then the roots of the polynomial g(T) generate
an unramified cyclic cubic extension F over K = Q(v/d) (which, in turn, by
Proposition 1.1.3 implies that 3 | hg).

Conversely, suppose K is a quadratic field over Q with 3 | hx. If F is an
unramified cyclic cubic extension over K, then F is obtained by adjoining the

roots of g(T) (as defined above) with K for some suitable choices of u and w.

Using Lemma 1.3.1, Byeon and Koh [6] constructed a family of quadratic
fields, each having class number divisible by 3. More precisely, they proved the

following.

Lemma 1.3.2 /6] Let m and n be two positive integers with ged(m,n) = 1,
m =1 (mod 18) andn =1 (mod 54). Let f(T) =T*-3mT—2n € Z[T). If f is
irreducible over Q, then the class number of the quadratic field Q(1/3(m? — n?))

15 divisible by 3.

We state some results regarding the number of square-free integer solutions

of a Diophantine equation which are proved in [47].

Lemma 1.3.3 [}7] Let X be a large positive real number and let T = X6,

ol

Also, let M = T%QX and N = Tgi%. Let N1(X) stand for the number of triples
(m,n,t) of positive integers satisfying m> —n? = t3d with d < X, T <t <
2I'M <m < 2M,N < n < 2N,ged(m,t) = ged(m,n) = ged(t,6) = 1,m =1
(mod 18) and n = 2 (mod 18) and p* 1 d for all prime numbers p < log X.
Then

_MN

W=

T3).

Lemma 1.3.4 [}7] For a non-zero integer { and for a fized natural number m,
let p,(€) denote the number of solutions to the congruence n* = m3 (mod /).

Then
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(i) pm is a multiplicative function.

(ii) Assume m,M,n,N,t,T and d as in Lemma 1.3.3. Then

> > pm(t’) < MT.

M<m<2M  T<t<2T
m=1 (mod 18) gcd(t,6m)=1
Lemma 1.3.5 Let m and n be integers such that m = 19 (mod 18 - 6) and
n =55 (mod 54 - 6). Then 4 and 243 do not divide m® — n?.

Proof. By m =19 (mod 18-6) and n = 55 (mod 54-6), we conclude that m =3
(mod 4) and n = 3 (mod 4). Hence m® — n?* = 2 (mod 4) which shows that
44 (m3 —n?).

Again, from m = 19 (mod 18 - 6) and n = 55 (mod 54 - 6), we get m = 19
(mod 27) and n = 55 (mod 81). Therefore, m = 27a + 19 (mod 243) and
n = 81b + 55 (mod 243) for some 0 < a < 8and 0 < b < 2. If m® —n? =0

(mod 243), then we have

0=m®—n?> = (27a+19)> — (81b+55)* (mod 243)

189 + 81(361a — 110b) (mod 243)

3%.7+3%(118a — 110b) (mod 243)

which implies that 74 3(118a —110b) = 0 (mod 9). Since the right hand side is
0 (mod 3) but the left hand side is 1 (mod 3), this is impossible for any choice
of integers a and b. This proves the lemma. 0

For a large positive real number X, our aim is to find a lower bound for the
number of real quadratic fields of the form Q(y/3(m? —n?)) and discriminant
< X, where m and n are positive integers belonging to certain arithmetic pro-

gressions. Then by using Lemma 1.3.2, we get a lower bound for the number of
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such real quadratic fields K with dx < X and hx =0 (mod 3). In order to do
that, we first define the quantities Ny(X), N3(X), R'(X), N'(X) and N(X) as
follows.

2 1
For a large positive real number X, let T = X1, M = DX N

1 1 2
2 and Z = Xs(;)—ix)g. Let No(X) (respectively, N3(X)) denote the number
3

of triples (m,n,t) of positive integers such that the equation
m?® —n? = 27t%d (1.4)

holds with d < X, T <t < 2T'M < m < 2M,N < n < 2N,gcd(m,t) =
ged(m,n) = ged(t,6) = 1,m =19 (mod 18-6),n = 55 (mod 54-6) and p? | d for
at least one p with log X < p < Z (respectively, p > Z). Let R'(X) denote the
number of triples (m,n,t) of positive integers satisfying the equation (1.4) with
m, M,n, N,t,T and d as above and p?  d for all prime numbers p < log X. Also,
let N'(X) denote the number of triples (m,n,t) of positive integers in the above
range satisfying equation (1.4) and d is square-free. Lastly, let N(X) denote the
number of positive square-free integers d < X with at least one integer solution
to the equation (1.4) with m, M ,n, N,t,T and d as above. Towards the end of

this section, we prove that N(X) > X.

The next lemma is obtained by a slight modification in the arguments given
by Soundararajan in [47] and was used in [6]. Since the proof is not available as

such, except quoted, we give a proof for the sake of completeness.

Lemma 1.3.6 With No(X) defined as above, we have

MN
T'(log X)?

Wl

Ny(X) < +o(MX3T3).
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Proof. Let m and t be fixed integers in the given range and let

Ny(X)= Y > 1. (1.5)

log X<p<Z N<n<2N
n=55 (mod 54-6)
n?=m3 (mod 27t%p?)

We split the above sum into intervals of size 54 - 6 - £2p? to get

N pn(27t%p%) 9
1= . O(pm (27t%)).
Z 54 -6 #2p2 + O(pm( )
N<n<2N
n=55 (mod 54-6)
n?=m3 (mod 27t2p?)

Using p,,(27p?) = O(1), the equation (1.5) becomes

N(X)< >

log X<p<Z

N - p(27t%p°)
t2p2

+ O(pm(27t2))> : (1.6)

Now, we have p,,(27t*p*) < pp(t?) - pm(27p?). Also, using t > T', the bound for

Nj(X) in (1.6) becomes

N
Ny(X) < = - 2o 4

P (t?) (X%pmm))
T2 (log X )? '

Consequently, using Lemma 1.3.4, we obtain

1 2
NQ(X): E E Né(X)<W+O(MX3T3).
M<m<2M T<t<2T
m=19 (mod 18:6) gcd(t,6m)=1

The proof of the next lemma follows ad verbatim along the same line of argument

given in [47] and thus we omit it.
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Lemma 1.3.7 We have

Lemma 1.3.8 [6] We have

MN
R(X)= """ 4oMX

2 7
Ts X8,
T 3)>> 8

W=

Proof. By the hypotheses, m =1 (mod 18) and hence by Lemma 1.3.4,

> > pm(t®) < MT

M<m<2M T<t<2T
m=1" (mod 18) ged(t,6m)=

holds.

Let m and t be fixed integers in the given range. Then by Lemma 1.3.5, for
any n = 55 (mod 54 - 6), we have 4 { 27t22 and 9 1 ™ 27t2 . Let P = H -

5<p<log X
For a fixed m and ¢ in the given range, let R(X) denote the number of integers

T tQ for all

n with N <n < 2N, n =55 (mod 54 - 6), gcd(m,n) =1 and p* {

prime number p < log X. Then

R(X) = > > u)

N<n<2N 2 m3—n2 po
ged(m,n)=1 1?|ged( 2712 +2)

n=55 (mod 54-6)

n?=m3 (mod 27t?)

I D S
1P N<n<2N
ged(l,m)=1 n=55 (mod 54-6)

n?=m3  (mod 271%t?)

N pn(27821%) 6 -
— ; N(l) (54 -6 . £2]2 + O(X ) (by definition of pm<27l2t2) )

ged(l,m)=1
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Npm (278%) u(l) l .
54612 2 P\ ged(t,0) +O(XY) - (Since

l|P
ged(l,m)=1

l
d (2712, ——— | =1
. ( “ged(t, l)) )

_ Npw(278) 1 (1 B pm(m)> e

.6 12 2
546tp‘P P

ptm
(t*) + O(X).

T2m

Now, using Lemma 1.3.4, if we sum over all m and ¢ satisfying the hypotheses,

then we obtain

N
R(X) =< Tl Sy > () + O(MTXC)
M<m<2M T<t<2T
m=1 (mod 18) ged(t,6m)=1

N €
= o MT + O(MTX)
MN
=t o(MX

2 7
Ts X5,
T ) >

ol

)

O

Remark 1.3.1 The proofs of Lemma 1.5.6 and Lemma 1.5.8 reveal that the

same estimates hold irrespective of the congruence class of n modulo 54 - 6.

Lemma 1.3.9 We have
N'(X)> X+

Proof. We have N'(X) = R'(X) — (N2(X) + N3(X)). Now, by using Lemma
1.3.6, Lemma 1.3.7 and Lemma 1.3.8 and using the bounds for R'(X), Na(X)
and N3(X), we get N'(X) > X5. O

Before we prove the lower bound for N(X), we quote the following lemma,

whose proof follows the exact same line of argument as given in [47].
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Lemma 1.3.10 /7] For a positive square-free integer d < X, let N'(d) be the
number of triples (m,n,t) of positive integers with T < t < 2T, M < m <
2M,N < n < 2N, gcd(m,t) = ged(m,n) = gcd(t,6) = 1,m = 19 (mod 18 -
6),n =55 (mod 54 - 6) and m>® — n? = 27t>d. Then

S TN'(d)(N'(d) - 1) < T5 X3,

d<X

Remark 1.3.2 Note that, in our notations, we have Z N'(d) = N'(X).
d<X

Lemma 1.3.11 We have

N(X)> X5,

Proof. By definition, N(X) denotes the number of square-free positive integers
d < X for which the equation m? — n? = 27t2d admits a solution. We define a
characteristic function as follows.

N(d) 1 if 0 <d < X is square-free and m? — n? = 27t2d has a solution,

0 otherwise.

Clearly, Z N(d) = N(X). Also, for a square-free positive integer d < X, we
d<X

have N(d) = 0 if and only if N'(d) = 0.
Therefore, using the Cauchy-Schwarz inequality, we have

(Z(N%d) - N(d>>>2 < (z N’(d)?) - <Z N(d)2> |

d<X d<X d<X

Since for any square-free d, we have N(d) = 0 or 1, we get Z N(d) = Z N(d)* =

d<X d<X
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N(X) and hence we obtain

(Z N’(d)) < (Z N’(d)?) L(N(X)).

d<X d<X

2 -1
That is, N(X) > (Z N’(d)> : (Z N’(d)2> . Now, from Lemma 1.3.10,

d<X d<X
we get

> N'(d)* = N'(X)+ > N'(d)(N'(d) - 1).

d<X d<X
Therefore, by using Lemma 1.3.9 and Lemma 1.3.10, we get N(X) > X5. O

The next lemma is proved in [7].
Lemma 1.3.12 [7] Let M and N be two positive real numbers. Let

S = {f(T)=T°+mT +neZT) : |m| <M,n| <N, f(T) is irreducible

over Q and D(f) = —(4m® + 27n?) is not a perfect square}

be a subset of Z[T|. Then #S > MN.

1.4 Proof of Theorem 1.2.14

Let ¢ > 1 be an integer and let pi,...,pso be distinct prime numbers with
p; > b for each i. For each i € {1,...,¢+ 2}, we choose integers a; and b; such
that 3a; — 2b; # 0 (mod p;). Now we consider the following set of simultaneous

congruences:

X =19 (mod 18-6)

X=1+ap (modp})
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X =1+ apapeyz  (mod pjy).

Since each p; > 5, the modulii are pairwise relatively prime. Hence by the
042

Chinese remainder theorem, there exists a unique integer m (mod 18 - 6 pr)

=1
satisfying the above set of congruences. In other words, the number of such

142
integers m < X is ((1+4o(1)) X/ (18-6Hp§) as X — oo. We denote by
i=1

M;(X) the set of all such integers m < X.

Similarly, we consider the following set of congruences.

X =55 (mod 54 -6)

X =1+bp; (mod pi)

X =1+ beropers  (mod p7ys).

Again the Chinese remainder theorem implies that the number of integers
0+2
n < X satisfying the above set of congruences is ((1 + o(1)) X/ (54 : 6Hp?>
i=1
integers n < X as X — oo. Let My(X) stand for all such integers n < X.

2 1
Now, let X be a large positive real number and let T = X1, M = X3

1
and N = &5 Let M (X) be the number of square-free positive integers d < X

with at least one solution to the equation
m?® — n? = 27t%d, (1.7)

where T < t < 2T, M < m < 2M, N < n < 2N, ged(m,t) = ged(m,n) =
ged(t,6) =1, m € M;(X) and n € My(X). Therefore, by Lemma 1.3.11, we get
M(X) > X785

Now, for each i € {1,...,¢+ 2}, for integers m € M;(X) and n € My(X),
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we have

m?® —n® = (a;p;+1)* — (bip;+1)* = 3a;pi+1—2b;p; — 1 = pi(3a;—2b;)  (mod p?)
(1.8)
By the choice of the integers a; and b;, we have m*® —n? = 0 (mod p;) but
m3 —n? # 0 (mod p?), for each i € {1,...,¢+ 2}. Therefore, each p; divides
the square-free part of m® — n? = 27t2d, which is 3d. Since p; > 5, we conclude
that p; | d. Hence py ... peo | d for all such d satistying (1.7).
For a square-free integer d satisfying (1.7), let K = Q(+/d). Then by Lemma
1.3.12, the number of polynomials f(T) = T? — 3mT — 2n € Z[T] with (m,n,t)
satisfying (1.7) is > X §. For such a polynomial f, the discriminant D(f) is

—(=3m)? — 27(—2n)* = 2% - 3% - (m3 — n?) and hence
Q(vV/D(f)) = Q(v/3(m* —n?)) = Q(V3 - 27t2d) = Q(Vd).

By Lemma, 1.3.2, the class number of Q(v/d) is divisible by 3. Hence, the number
real quadratic fields K = Q(v/d) with |dx| < X, p1...pee | dg and 3 | hg is

> X%. In other words, N3 ,(X) > X and this completes the proof. Il







CHAPTER

Simultaneous divisibility of class
numbers of triples of imaginary

quadratic fields

For a cube-free integer k > 1 with k = 1 (mod 9) and ged(k,7-571) = 1,
we prove the existence of infinitely many triples of imaginary quadratic fields

Q(Vd), Q(Vd+1) and Q(v/d + k2) with d € Z such that the class number of
each of them is divisible by 3.

2.1 Introduction

In Chapter 1, we dealt with the problem of the divisibility of class numbers
of real quadratic fields. It is equally interesting to consider multiple quadratic
fields and study the divisibility properties of their class numbers.

For a prime number p, we begin with the p-rank of a finite abelian group.

25
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Definition 2.1.1 /28] Let G be a finite abelian group, written additively, and
let p be a prime number. Then G/pG is a finite-dimensional vector space over

the field Z./pZ and the dimension is called the p-rank of G.

Remark 2.1.1 The p-rank of a finite abelian group G is often denoted by rk,(G).

For a given number field K, one of the most important finite abelian groups
associated to K is the ideal class group Cli. Hence it is useful to study the p-
ranks of Clg. From Definition 2.1.1, it immediately follows that if 7k,(Clx) > 1,
then p | hy.

Number theorists have studied rk,(Clk) for some particular prime p. When
p = 3, Scholz [45] proved a reflection principle for the 3-ranks of the class groups

of quadratic fields as follows.

Theorem 2.1.1 /5] Let d > 1 be a square-free integer. Let r and s be the

3-ranks of the ideal class groups of Q(v/d) and Q(v/—3d), respectively. Then

r<s<r+1.

From Theorem 2.1.1, we can see that if 3 divides h@(\/&)a then 3 also divides

ha(v=za)-

Now, for a square-free integer d > 1, let r’ be the 3-rank of the real quadratic
field Q(v/3d) and let s’ be the 3-rank of the imaginary quadratic field Q(v/—3 - 3d)
Q(v/—d). Then from Theorem 2.1.1, we get that ' < s <r’+ 1. In [31], Kishi

characterized all quadratic fields for which s’ = ' + 1 as follows.

Theorem 2.1.2 [31] Let d > 1 be a square-free integer with 3 1 d. Let v’ and
s' be the 3-ranks of the quadratic fields Q(v/3d) and Q(v/=3-3d) = Q(v/—d),

respectively. Then the following statements are equivalent.

(a) s =71+ 1.
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(b) There does not exist a cubic field K satisfying the following three condi-
lions:
(i) K/Q is not Galois.

(ii) The Galois closure K of K contains Q(v/—d) and K/Q(v/—d) is a

cyclic cubic extension which is unramified at all rational primes q # 3.

(i) The discriminant Dy of K is divisible by 3* but not by 3°.
(¢) There exists a cubic field L satisfying the following three conditions:

(i) L is not Galois over Q.

(ii) The Galois closure L of L contains Q(v/3d) and L/Q(v/3d) is a cyclic

cubic extension which is unramified at all rational primes q # 3.
(i) The discriminant Dy, of L is divisible by 3% but not by 3.
(d) There does not exist a triple (u,v,m) € Z* with uvm # 0 satisfying the
following three conditions:
(1) 3vid = u?® — 4m>.
(11) ged(u,m) = 1.
(i) m =1 (mod 3) and u* = 1,7 (mod 9).
(e) There erists a triple (u,v,m) € Z3 with uvm # 0 salisfying the following
three conditions:
(1) —v?d = u?® — 4m?>.
(11) ged(u,m) = 1.
(11i) One of the following siz conditions holds:

(1) 3| m and u* = 4,7 (mod 9).
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(2) 3tm and u= 3,6 (mod 9).

(3) m=2 (mod 3) and u* = 1,4 (mod 9).
(4) m=1 (mod 9) and u? = 13,22 (mod 27).
(5) m =4 (mod 9) and u® = 4,22 (mod 27).

(6) m =T (mod 9) and u? = 4,13 (mod 27).

We observe that, Theorem 1.2.5 and Theorem 2.1.1 imply the following the-

orern.

Theorem 2.1.3 There exist infinitely many pairs of quadratic fields Q(\/E) and
Q(vV—3d) such that

3lhowa  and 3| ho/=3a)
In the light of Theorem 2.1.3, it is natural to ask the following question.

Question 2.1.4 Let n > 2 be an integer. Find all integers m such that there
exist infinitely many pairs of quadratic fields Q(v/d) and Q(v/md) with

nlhowa  and | hgm.

Komatsu addressed Question 2.1.4 for n = 3 in [33] and proved the following

theorem.

Theorem 2.1.5 [33] Let m be a non-zero integer. Then there exist infinitely
many distinct pairs of quadratic fields Q(v/d) and Q(v/md), with d > 0, such

that 3 | hoyay and 3 | hegyma)-

Note that, in Theorem 2.1.5, either both Q(v/d) and Q(v/md) are real or

one is real and the other is imaginary, according as m > 0 or m < 0. Komatsu
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extended Theorem 2.1.5 to the pairs of imaginary quadratic fields with class

numbers divisible by any integer n > 2 and proved the following theorem.

Theorem 2.1.6 [3/] Let m > 2 and n > 2 be integers. Then there exist in-

finitely many pairs of imaginary quadratic fields Q(v/d) and Q(v/md) such that

n | hovay and n | ho/ma)-

Remark 2.1.2 [t is worthwhile to note that Theorem 2.1.6 answers affirma-

tively Question 2.1.4 for imaginary quadratic fields and for all integers m > 2.

Now, we consider a slight variant of Question 2.1.4 as follows.

Question 2.1.7 Let m > 1 and n > 2 be integers. Do there exist infinitely
many pairs of quadratic fields Q(v/d) and Q(v/d + m) such that n | hovay and

n | hoarm) ¢

In |26], lizuka, Konomi and Nakano addressed Question 2.1.7 forn = 3,5 and 7

and proved the following theorem:.

Theorem 2.1.8 [26] Let n € {3,5,7} and let my, ma,ny and ny be rational

numbers with mymo # 0. Then there exist infinitely many pairs of quadratic

fields K1 = Q(vmid+ny) and Ky = Q(v/maod + no) with d € Q such that

n| hg, andn | hg,.

Remark 2.1.3 In Theorem 2.1.8, the crucial hypothesis is d € Q. It is easy
to see that if ny = ny = 0, then we can take d € Z. But if either ny # 0 or
ng # 0, then Theorem 2.1.8 does not necessarily hold for d € Z. However, d can

be chosen to be an integer for some particular values of my, mao, ny, Ny and n.

In [38], Louboutin proved that for an odd integer n > 3 and an integer U > 2,
the class number of the imaginary quadratic field Q(v/1 — 4U") is divisible by

n. Also, by Theorem 1.2.4, it follows that there are infinitely many imaginary
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quadratic fields Q(v/—U) = Q(v/—4U") whose class numbers are divisible by n.
In other words, by taking d = —4U™, we conclude that there are infinitely many
tuples of imaginary quadratic fields {Q(v/d), Q(v/d + 1))} with d € Z such that
n | howa and n | hgygry). Motivated by this, lizuka formulated the following

conjecture in [24].

Conjecture 2.1.9 [2/] Let m > 1 be an integer and let ¢ > 3 be a prime num-
ber. Then there exist infinitely many tuples Q(Vd), Q(vd+1),...,Q(d+m)

of quadratic fields with d € 7 such that { divides the class numbers of all them.

2.2 Statement of main theorem

In this chapter, we address a weaker version of Conjecture 2.1.9 for triples of
imaginary quadratic fields and for ¢ = 3. The precise statement of our main

theorem of this chapter is as follows.

Theorem 2.2.1 [11] Let k > 1 be a cube-free integer such that k =1 (mod 9)
and ged(k,7 - 571) = 1. Then there exist infinitely many triples of imaginary
quadratic fields Q(v/d), Q(vd+ 1) and Q(d + k%) with d € Z such that 3

divides h@(\/a), h@(\/ﬁ) and hQ(m)

2.3 Preliminaries

We recall a few basic definitions and facts from algebraic number theory.

Definition 2.3.1 [28] Let K be a field. A function |-|: K — Rxq is said to be

a valuation on K if the following conditions hold.
1. x| =0 if and only if x = 0.

2. |lxy| = |z| - |y| for all x,y € K.
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3. (Triangle inequality) |z + y| < |z| + |y| for all z,y € K.

A valuation | - | on a field K is called trivial if |x| = 1 holds for all x # 0.
Otherwise, it is called a non-trivial valuation. Two non-trivial valuations | - |;

and | - |2 are said to be equivalent, if the following holds true.

|z|; < 1if and only if |z|y < 1 for all x € K.

Definition 2.3.2 [28] Let K be a field and let | - | be a non-trivial valuation on

K. Then |-| is said to be non-archimedean if

|z + y| < max{|z],|y|} for all x,y € K.

A valuation on K is called archimedean if it is not equivalent to any non-
archimedean valuation on K.

Now, let us take K to be a number field with ring of integers Ok. For a
non-zero element x € K and a non-zero prime ideal p in Ok, let v,(z) denote
the power of p appearing in the factorization of the fractional ideal xOk into

product of prime ideals. Therefore, we have

cOx = [,
p

Proposition 2.3.1 [28] Let K be a number field and let p be a non-zero prime

ideal in Ok . Let c be a real number with 0 < ¢ < 1. Then the map |-|, : K — Rx
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defined by

@ ifx £ 0,
|z, =
0, otherwise .

1s a non-archimedean valuation on K.

Definition 2.3.3 Let K be a number field and let p be a non-zero prime ideal
in Ok. Let ¢ be a real number with 0 < ¢ < 1. Then the valuation | - |, in

Proposition 2.3.1 is called the p-adic valuation on K.

For a number field K of degree n, let 04,...,0,_1 and o, be all the embed-
dings of K into C. Let | - | be the usual absolute value on R. It is a well-known
fact that for each ¢ € {1,...,n}, the map x — |o;(x)| defines an archimedean

valuation on K. Moreover, it is well-known that these valuations on K are
pairwise inequivalent and any archimedean valuation on K is equivalent to the

valuation induced by o; for some i.

Theorem 2.3.2 (Ostrowski’s theorem) [28] Let K be a number field of degree
n and let o1, ...,0,_1 and o, be all the embeddings of K into C. Let || be a
non-trivial valuation on K. Then either |-| is equivalent to the valuation induced
by o; for some i € {1,...,n} or is equivalent to the p-adic valuation for some

non-zero prime ideal p in Ok.

Next, we define the S-integers in a number field as follows.

Definition 2.3.4 [/6] For a number field K, let S be a finite set of valuations

on K, containing all the archimedean valuations. Then

Rs={ae€ K:v(a)>0 forallv ¢S}

is called the set of S-integers.
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Lemma 2.3.3 For K =Q and S = {| - |}, we have Rg = Z.

Proof. By the definition of S-integers, we have

Rs = {ae€e K :v(a)>0forallv¢gS}
= {% €cQ:v (%) > 0 for all prime number p}
= {% € Q: p1b for all prime number p}

= Z.

O
The next theorem is one of the fundamental theorems in the theory of alge-

braic curves.

Proposition 2.3.4 (Siegel’s theorem, [46]) Let K be a number field and let S
be a finite set of valuations on K, containing all the archimedean valuations. Let
f(X) € K[X] be a polynomial of degree d > 3 with distinct roots in the algebraic
closure K of K. Then the equation y? = f(x) has only finitely many solutions

x,y € Rg.

We apply this result to prove that the discriminants of certain irreducible
cubic polynomials are not perfect squares.

We now list some results concerning the ramification of primes in cubic fields.
We begin with the following lemma which is merely stated in [32] without a proof.

For the sake of completeness, we provide a proof here.

Lemma 2.3.5 [32] Let f(X) € Z[X] be a cubic irreducible polynomial and let
E be the splitting field of f over Q. Assume that the discriminant D(f) is not
a perfect square and let F = Q(\/D(f)). For a prime number p, let pr be a
prime ideal in Op lying above p. Let o be a root of f and let K = Q(«). Then

pr 1s ramified in E if and only if p is totally ramified in K.
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Proof. Since D(f) is not a perfect square, we have F' = Q(1/D(f)) is a quadratic
extension of Q and Gal(F/Q) ~ S;. Let pg be a prime ideal in O lying above
pr and let px = pp N K.

Consider the following diagram of number fields.

NN
NS

Fig 1. Diagram showing ramification of primes.

Suppose that pp is ramified in E. That is, the ramification index e(pg|pr) >

1. Since F is a Galois extension of F' of degree 3, we get

3 =elpslpr) - flpslpr) -9, (2.1)

where f(pg|pr) is the inertial degree and g is the number of prime ideals in
Og lying above pp. As e(pp|pr) > 1, from equation (2.1) we conclude that

e(pe|pr) = 3. Using the multiplicativity of the ramification indices, we have

e(pelp) = e(prlpr) - e(prlp) = 3 - e(prlp) = e(prlpk) - e(pxlp).  (2.2)

From equation (2.2), we get that 3 divides e(pg|pk)-e(px|p). Since e(pr|pr) <
[E : K] =2, we have either 3 divides 2 - e(px|p) or 3 divides e(px|p). Thus we
conclude that 3 | e(pk|p) < [K : Q] = 3 and therefore, e(pk|p) = 3. Hence p is

totally ramified in K.
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Conversely, we assume that p is totally ramified in K. We prove that the

ramification index e(pg|pr) > 1. If not, then e(pp|pr) = 1 and

e(pelp) = e(prlpr) - e(prlp) = e(prlp) < [F: Q] = 2. (2.3)

Since p is totally ramified in K, from (2.3), we get

3 =e(pxlp) < e(pelp) <2,

which is a contradiction. Hence g is ramified in £ and this completes the proof
of the lemma. O
In Chapter 1, we defined infinite primes in a number field. We recall the

ramification of an infinite prime in a finite extension of a number field.

Definition 2.3.5 [13] Let L/K be an extension of number fields and let o be
an infinite prime of K. Then o is said to be ramified in L, if o is real but it
has an extension to L which is complex. If o is not ramified, then it is said to

be unramified in L.

For an extension of number fields L/ K, by the above definition, it follows at
once that a complex infinite prime of K is always unramified in L. Moreover, if

L is a totally real number field, then any infinite prime of K is unramified in L.

Lemma 2.3.6 Let f(X) € Z[X] be a cubic irreducible polynomial and let E be
the splitting field of f over Q. Assume that D(f) is not a perfect square and let
F=Q(\/D(f)). Then any infinite prime of F is unramified in E.

Proof. Since the discriminant D(f) of f is not a perfect square, we have [F :

Q] =2 and Gal(E/Q) ~ S3. Let o be an infinite prime of F.
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Case 1. D(f) < 0. In this case, F' is an imaginary quadratic field. Therefore,
any extension of ¢ to F is complex. Thus ¢ is unramified in F.
Case 2. D(f) > 0. That is, F' is a real quadratic field. Since f is a polynomial
of degree 3, it has a real root, say a. Then the number field K = Q(«) is
contained in R. Since F' C F and K C E, we have FK C E. On the other
hand, since [F': Q] =2 and [K : Q] = 3, we have [FK : Q] =6 = [E : Q]. Thus
EF = FK C R. Since F is a Galois extension of Q with £ C R, we conclude
that FE is totally real. Hence o is unramified in E. This completes the proof of
the lemma. 0J
For a prime number p and a non-zero integer n, let v,(n) stand for the unique
integer m such that p™ | n but p™*! { n. The following lemma is a consequence

of a theorem in [37| and is presented in [32] as follows.

Lemma 2.3.7 [52] Let f(X) = X3—aX —b € Z[X] be an irreducible polynomial
over Q such that for every prime number p, either vy(a) < 2 or v,(b) < 3
holds. Suppose that the discriminant D(f) of f is not a perfect square and let
F=Q(\/D(f)). Let o be a root of f and let K = Q(«). Let E be the splitting
field of f over Q and let q be a prime number. Then the following assertions
hold.

(a) If q # 3, then q is totally ramified in K if and only if 1 < v,(b) < v,(a).

(b) The prime 3 is totally ramified in K if and only if one of the following

conditions holds.
(i) 1 < wvs(a) < vs(b),

(ii) 3| a,a# 3 (mod 9),31b and b* Za+ 1 (mod 9),

(iii) a =3 (mod 9),31b and b* £ a+ 1 (mod 27).
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Proposition 2.3.8 Let t be an integer with t # 0 (mod 3). Then the class

number of the quadratic field Q(\/3t(3888t2 + 108t + 1)) is divisible by 3.

Proof. For an integer t with ¢ # 0 (mod 3), let F' = Q(+/3t(3888t2 + 108t + 1)).
We first prove that I is indeed a quadratic field. For that, we need to prove
that 3t(3888t% + 108t + 1) is not a perfect square. If possible, suppose that
3t(3888t% + 108t + 1) = m? for some integer m. Then 3 | m and hence 9 | m?.
Consequently, 3 | £(3888t% + 108t + 1). Since ged(3,3888t* + 108t + 1) = 1, we
get 3 | t, which contradicts our hypothesis that ¢ # 0 (mod 3). Thus F' is a
quadratic field.

Now, we consider the polynomial f(X) = X3 —3- (108t + 1)X — 2 € Z[X].
Claim. f is irreducible over Q.

If f is reducible over Q, then it must have a linear factor and hence a rational

root, say % with ged(a,b) = 1. From the equation f(}) =0, we get

a® — 3 - (108t + 1)ab* — 2b*> = 0. (2.4)

From equation (2.4), we get a | 2b% and b | . Since ged(a,b) = 1, we have
b—=+1and a = +1, +2. Therefore, % — 41,42,

Case 1. % = 1. Then f(1) = 0 implies 3- (108t +1) = —1, which is not possible
for any t € Z.

Case 2. % = —1. Then f(—1) = 0 implies 3 - (108¢ + 1) = 3. This, in turn,
implies that ¢ = 0, which is impossible since ¢t Z 0 (mod 3).

Case 3. % = 2. Then f(2) = 0 implies 6 - (108t + 1) = 6. This, in turn, implies
that ¢ = 0, which is impossible since ¢t # 0 (mod 3).

Case 4. % = —2. Then f(—2) = 0 implies 6-(108¢+41) = 10 which is impossible
for any t € Z.

Therefore, f is an irreducible polynomial over Q and this proves the claim.
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Let E be the splitting field of f over Q. Then we see that

D(f) = —4-[-3- (108t + 1)]* — 27 - (—=2)* = 2% - 3° - ¢ - (3888¢* + 108t + 1).

Let a be a root of f and let K = Q(«). Then K is a cubic extension of Q.
Also, let p be a prime number. Then by Lemma 2.3.7, we see that p is not totally
ramified in F'. Hence by Lemma 2.3.5, it follows that every non-zero finite prime
of F'is unramified in F. Also, by Lemma 2.3.6, we get the infinite primes of
F' are also unramified in F. Therefore, F is an unramified extension of F' of

degree 3. Thus by Proposition 1.1.3, we get 3 divides the class number of F'. In

other words, the class number of the quadratic field Q(+/3t(3888¢2 + 108t + 1))
is divisible by 3. 0J
In the next proposition, we provide another family of imaginary quadratic

fields with class number divisible by 3.

Proposition 2.3.9 Let t > 1 be an integer. Then the class number of the
imaginary quadratic field Q(v/1 — 2916¢3) is divisible by 3.

Proof. We first prove that F' = Q(v/1 — 29163) is indeed a quadratic field. For
that, we need to prove 1 — 2916t3 is not a perfect square. If 1 — 29163 = —m?
for some integer m, then we have m?> = —1 (mod 3), which is a contradiction
to the fact that any square is congruent to either 0 or 1 (mod 3). Thus, F'is a
quadratic field.

Consider the polynomial f(X) = X3 —27tX — 1 € Z[X]. If f is reducible
over QQ, then it must have a linear factor and hence a rational root, say @ with

b
ged(a,b) = 1. Then f(§) = 0 implies that

a® — 27tab® — b* = 0. (2.5)
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From equation (2.5), we have a | b® and b | a®. Since ged(a,b) = 1, we

conclude that % = 41.

a

Case 1. — = 1. Then f(1) = 0 implies 27t = 0 which is impossible since ¢ > 1.

Sl SRS

Case 2. — = —1. Then f(—1) = 0 implies 27t = 2 which is also impossible for

any positive integer t.

Hence f is an irreducible polynomial over Q.

Now, we consider the discriminant D(f) = —4 - (=27t)% — 27(=1)? = 27 -
(2916t>—1). Therefore, Q(\/D(f)) = Q(/3 - (29163 — 1)). Since ged(3,2916¢>—

1) = 1, the integer 3 - (2916t — 1) is not a perfect square and consequently,

Q(v/D(f)) is a quadratic field.

Let a be a root of f and let K = Q(«a). Let E be the splitting field of

f over Q. Then by Lemma 2.3.5 and Lemma 2.3.6, we get E is a cubic and

unramified extension of the real quadratic field Q(1/3 - (2916t3 — 1)). Thus by

Proposition 1.1.3, it follows that 3 divides the class number of the real quadratic

field Q(+/3 - (2916t — 1)). By using Theorem 2.1.1, we conclude that the class

number of the imaginary quadratic field

F=Q(y/=3-3- (291663 — 1)) = Q(v/1 — 291613

is divisible by 3. O

2.4 Proof of Theorem 2.2.1

Let k > 1 be a cube-free integer such that £ = 1 (mod 9) and ged(k, 7-571) = 1.

For an integer t > 1, we consider the polynomial

fi(X) = X? - 27tX — k € Z[X].
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If for some integer ¢, the polynomial f; is reducible over @, then it must have a
linear factor and hence a rational root, say % with ged(a, b) = 1. Using f,(}) = 0,
we get

a® — 2Ttab® — kb* = 0. (2.6)

From (2.6), we immediately see that a | kb® and b | a3. Using ged(a,b) = 1,
we get that b = =1 and a | k. Therefore, % is an integer and is a divisor of k.
Thus % has at most finitely many choices and thus f; is reducible over Q for
at most finitely many values of ¢ € N. Let ty € Z be an integer such that f; is

irreducible for all integers ¢ > |to].

Next, we consider the discriminant D(f;) = 27 - (2916¢> — k?) of f;. We note
that D(f;) is a polynomial in ¢ and since k # 0, we conclude that D(f;) has
distinct roots in Q. Therefore, by Lemma 2.3.4, we get that D(f,) is a perfect
square for only finitely many integers t. Let ¢, € Z be such that D(f;) is not a

perfect square for all integers ¢ > |t;|. We set T' = max{|to|, |t(|} + 1.

Now, we consider the following simultaneous congruences.

r=2 (mod9); 27
r=1 (mod k).

By our hypothesis, we have £ = 1 (mod 9) and hence ged(k,9) = 1. There-
fore, by the Chinese remainder theorem, there exists a unique solution zy (mod 9k)

of the simultaneous congruence (2.7).

Let
M={neZ:n=zy (mod9k) and n > max{T, k}}.

For n € M, we have

27 -n- (38880 +108n +1)=3*-7-571 #0 (mod k). (2.8)
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Now, forn € M, let t,, = n-(3888n2+108n+1). We consider the polynomial
fi,(X) = X® — 27 -n-(3888n? + 108n + 1)X — k € Z[X]. Since t, > T, we
have that f; is irreducible over @Q and the discriminant D(f; ) is not a perfect
square. Now, using (2.8), Lemma 2.3.5, Lemma 2.3.6 and Lemma 2.3.7, we
conclude that the splitting field £ of f; over QQ is an unramified extension

over Q(v/D(f:,)). Thus by Proposition 1.1.3, it follows that 3 divides the class

number of Q(/D(f:,))-
We note that, Q(\/D(f:,)) = Q(1/27 - (29163 — k2)) = Q(+/3 - (29163 — k?))

is a real quadratic field. Consequently, using Theorem 2.1.1, we get 3 divides

the class number of the imaginary quadratic field Q(v/—3 -3 - (29162 — k2)) =

Q(/k* - 2916%3).

Also, by Proposition 2.3.8, we get that the class number of the real quadratic
field Q(1/3t,) is divisible by 3. Again from Theorem 2.1.1, we obtain that
3 divides the class number of the imaginary quadratic field Q(v/=3-3t,) =
Q(v/—t,). Using the fact that Q(/—2916¢3) = Q(/—*,,) and Proposition 2.3.9,
we conclude that 3 divides the class numbers of Q(1/—2916¢3), Q(y/—2916£3 + 1)
and Q(+/=391678 1 7).

Finally, we only need to prove that

Q={Q(V~tn) :n € M} (2.9)

is infinite. We use the standard argument using the ramification of primes in

quadratic fields.

If possible, suppose that Q is a finite set. Let D be the product of the
discriminants of the quadratic fields in the finite set Q. Therefore, a prime
number /¢ is ramified in some Q(v/—t,) € Q if and only if ¢ | D. By Dirichlet’s

theorem for primes in arithmetic progressions, there exist infinitely many prime
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numbers p = xy (mod 9k). That is, there are infinitely many primes in M.
We choose a prime number ¢ € M such that ¢ t+ D. Then ¢ is unramified in
Q(v/—t,) for every n € M, which contradicts the fact that ¢ is ramified in
Q(v/—q - (3888¢2 + 108¢ + 1)) = Q(y/—1,) € Q. Hence the family Q is infinite.

This completes the proof of Theorem 2.2.1. O




CHAPTER

Distribution of quadratic residues
and non-residues using Dirichlet’s

class number formula

For an odd prime number p > 3, we consider the quadratic residues and
non-residues modulo p in {1,2,...,p — 1} that are divisible by 2, 3 and 4. We

study thewr distribution using Dirichlet’s class number formula for the imaginary

quadratic field Q(/—p).

3.1 Introduction and basic results

Let us fix an odd prime number p. We begin with the definition of a quadratic

residue modulo p.

Definition 3.1.1 [27] An element a € {1,...,p — 1} is said to be a quadratic

43
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residue (mod p) if there is an integer b such that

b2

a (mod p).

In other words, an integer a with p { a is a quadratic residue (mod p) if and
only if the polynomial f(X) = X? — q has a root in the field Z/pZ. If a is not a
quadratic residue (mod p), then it is called a quadratic non-residue. Next, we

introduce the Legendre symbol as follows.

Definition 3.1.2 /27 Let a be an integer. Then the Legendre symbol <—> 18
p
defined by the following.

1, if a is a quadratic residue  (mod p),
a
(5) =9 —1, ifaisa quadratic non-residue  (mod p),
0, if pla.

For an integer m, we denote by m the residue of m (mod p). The next

proposition provides some basic properties of the Legendre symbol.

Proposition 3.1.1 [27] For integers a and b, the following statements hold.

(i) If a =b (mod p), then (%) = (%)

(ii) a'7 = (%) (mod p).

Proof. (i) Suppose a = b (mod p). If p | a, then also p | b and in that case, we
a

SR

Now, we assume that p { ab. If a = ¢ (mod p) for some integer ¢, then

b
b=a=c?* (mod p) and hence <E> =1= (—)
p p

asi|
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Finally, if a is a quadratic non-residue (mod p), then a #Z ¢* (mod p) for

any integer c. Since a (mod p), we have b # ¢* (mod p) for any integer c.

b
b
Therefore, | — —
p

(i) If p | a, then a” B =0= (2) (mod p)
p
We assume that p { a. If YY) =1, thena= ¢ (mod p) for some integer c
p
and hence "z = ()" = #1 =1 (mod p).
Now, suppose that E) = —1. Let g be a generator of the cyclic group
p

(Z/pZ)*. That is, g*"' = 1 (mod p) and ¢g™ # 1 (mod p) for any integer
m < p—1. Since p { a, we have @ € (Z/pZ)* and a = ¢g* (mod p) for some
integer k. Since a is a quadratic non-residue (mod p), the integer k is odd.

Using ¢! =1 (mod p), we get
gl —-1= (gT - 1) (gT + 1) =0 (mod p).

Since g generates (Z/pZ)*, we conclude that gp%l — 1 # 0 (mod p) and hence

ngfl +1=0 (mod p). Consequently, we get
p—1 k(L—l) . ko
azr =g\ )=(-1)"=-1 (mod p).

Thus in all the above cases, we get a o= <E> (mod p).
D

p—1

(i41) Using a7 = <2> (mod p) for any integer a, we get
p

ab\ 5 s =) é mo
(st ) e

Since for any integer n, we have <E> =0or 1or — 1, we conclude from (3.1)
p
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b b
that (a_) = (E) . <—> This completes the proof of the proposition. [
p p p

Remark 3.1.1 From (iii) of Proposition 3.1.1, it follows that the map <—> :
p

(Z)pZ)* — C* defines a group homomorphism.

Next, we define the Jacobi symbol and the Kronecker symbol, that are gen-

eralizations of the Legendre symbol as follows.

Definition 3.1.3 [15] Let a € Z and let Q be a positive odd integer. Let Q) =
t

Hq;j be the prime factorization of Q. Then the Jacobi symbol is defined by

(5)-11(z)

Definition 3.1.4 [15] Let a € Z and let n = 2™ny be an integer with ny odd.

Then the Kronecker symbol is defined as follows.

0, if 2| a,

<%> =< 1, ifa=+1 (mod 8),
—1, ifa=+3 (mod8).

<a> —1, ifa<0,
-1 1,  ifa>0.

()-) ()

The next proposition provides the number of quadratic residues (mod p).

and

Proposition 3.1.2 [27] Let p be an odd prime number. Then there are exactly

-1
pT quadratic residues (mod p).
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Proof. Let g be a primitive root (mod p). That is, g is a generator of the cyclic
group (Z/pZ)*. Then the 1 elements ¢°,¢*, ..., g7~ are clearly quadratic
residues (mod p). By Proposition 3.1.1, an element a € {1,...,p — 1} is a
quadratic residue (mod p) if and only if a is a root of the polynomial f(X) =
X% —1¢ Z./pZ|X]. Since Z/pZ is a field, the polynomial f can have at most
E-1 yoots in Z/pZ. The elements g% g*,...,g*~! are distinct roots of f and
hence f has precisely ’%1 roots (mod p). Thus there are exactly ’%1 quadratic
residues (mod p). O

Before stating the law of quadratic reciprocity, let us characterize the prime

numbers p for which —1 and 2 are quadratic residues.

Proposition 3.1.3 [27] The integer —1 is a quadratic residue (mod p) if and

only if p=1 (mod 4).

Proof. Suppose that —1 is a quadratic residue (mod p). Then there exists an
integer b such that b> = —1 (mod p). Therefore, b* =1 (mod p) and hence the
element b € (Z/pZ)* has order 4. Thus 4 divides the order of the group (Z/pZ)*.
That is, p =1 (mod 4).

Conversely, assume that p = 1 (mod 4). Then (Z/pZ)* is a cyclic group
of order p — 1 which is divisible by 4. Consequently, there exists an element
b € (Z/pZ)* of order 4. Therefore, b* = 1 (mod 4) but b> # 1 (mod 4). That

is, b* = —1 (mod 4). Hence —1 is a quadratic residue (mod p). O

Proposition 3.1.4 [15] The integer 2 is a quadratic residue (mod p) if and

only if p=1 or 7 (mod 8).

Proof. Let ¢ stand for +/—1. Then for an odd prime number p, we have

(1+i) = i <f>z

r=0
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Since p | (?) for all v € {1,...,p — 1}, we get (1 +i)? =1+ (mod pZ[i]). On

the other hand, we have

(144" = (144)- 1+
= (1+4)-(2)"7

= "7 (144)-2"7.

Therefore, we get

p—1

T (1+i)-2"7 =14+ (mod pZl[i]). (3.2)

Case 1. p=1 (mod 8).

Then i? = i and "7 = 1. Therefore, from the equation (3.2), we get
1+i=(144)-2" (mod pZ[i)). (3.3)

Since p is an odd prime number, we have ged(p, 14¢) = 1 in the ring Z[i]. Thus,
equation (3.3) becomes 2°° =1 (mod pZ[i]). Therefore, there exist integers a
and b such that

p—1

277 —1=p(a+bi).

That is, 2% —1— pa — bi = 0. Since {1,i} is a Q-linearly independent set, we
conclude that 2"2° — 1 = pa and b = 0. Hence 2"z = 1 (mod p) and using (i7)

2

of Proposition 3.1.1, we conclude that <—> = 1.
p

Case 2. p =7 (mod 8).

Then i? = —i and i"= = —i. Then equation (3.2) becomes

1—i=—i-(144)-2"= =(1—4)-2" (mod pZ[i)). (3.4)
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Since p is an odd prime number, we have ged(p, 1 —i) = 1 in Z[i]. Thus, equation

(3.4) becomes 2"z =1 (mod pZ[i]). Hence 2" =1 (mod p) and using (ii) of
2

Proposition 3.1.1, we conclude that <—> = 1.
p

Case 3. p =3 (mod ).

Then i = —i and i"z = 4. Then equation (3.2) becomes
1—i=i-(14+4)-2"7 (mod pZli)). (3.5)

Writing 1 — i as —i(144) and from (3.5), we get 2"2° = —1 (mod pZ[i]). Thus,
equation (3.5) becomes 2 = —1 (mod p). Hence using (ii) of Proposition

3.1.1, we conclude that <g> = —1.
p
Case 4. p =5 (mod 8).

Then # =i and i"z = —1. Then equation (3.2) becomes
p—1
l+i=—-1-(14+4)-22 (mod pZl[i])

and hence 27 = —1 (mod p). Hence using (i7) of Proposition 3.1.1, we con-
2

clude that | — | = —1. O
p

Now, we state one of the most celebrated theorems in number theory, namely,

the law of quadratic reciprocity. This provides a relation between the Legendre

symbols <]—? and g) for two distinct odd prime numbers p and g. The

q p

precise statement is as follows.

Theorem 3.1.5 (Quadratic reciprocity) [27] Let p and q be two distinct odd

prime numbers. Then the following holds.
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3.2 Motivation and history

From Proposition 3.1.2, it follows that

() o o

In other words, the number of quadratic residues in {1,...,p—1} is same as the
number of quadratic non-residues. Equation (3.6) motivated number theorists to
consider the distribution of residues and non-residues over different subintervals

of [1,p — 1]. We list a few results along this direction in the following.

Proposition 3.2.1 [/] Let p be a prime number with p =1 (mod 4). Then

Proof. Since p = 1 (mod 4), by Proposition 3.1.3, we get that —1 is a square
(mod p). That is, —1 = b* (mod p) for some integer b. Therefore, for an integer

a, using Proposition 3.1.1, we get

G616

Thus, equation (3.6) and equation (3.7) together imply

()% (2)

p—1
2
a
Hence Z (—) = 0 and this completes the proof of the proposition. U
p
a=1

Proposition 3.2.2 [/] Let p be a prime number with p = 3 (mod 4). Let q be

an integer such that ged(p,q) = 1.
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} 1) _ en
(i) If (5) =1, th

3
o

[454] n
— | =0.
= m<n< (2m+1)p p
q

2q

As an application of Proposition 3.2.2, we obtain results similar to Proposi-

tion 3.2.1 as follows.

Proposition 3.2.3 [// Let p be an odd prime number.

(i) If p =3 (mod 8), then Z <E> = 0.

O<n<§ p

(ii) If p="7 (mod 8), then Z <ﬁ> _

D
p P
I<n<3%

(iii) If p= 11 (mod 12), then Z (2) _

p
b p
6<N<3

2
Proof. (i) Since p = 3 (mod 8), by Proposition 3.1.4, we have <—> = —1
p

Therefore, by (ii) of Proposition 3.2.2, we have Z <E> =0.
p

P
0<n<3

2
(77) Since p = 7 (mod 8), by Proposition 3.1.4, we have <—> = 1. Therefore,
p

by (7) of Proposition 3.2.2, we have Z <E> =0.

p \ P
p P
1<N<3
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(#7i) Since p = 11 (mod 12), we have p = 2 (mod 3) and p = 3 (mod 4).

Therefore, by Theorem 3.1.5, we get

(-

n
Thus for ¢ = 3 in Proposition 3.2.2, we obtain Z <—) = 0. 0
B<n<k
Proposition 3.2.3 shows that for primes in some particular arithmetic pro-

gressions, the number of quadratic residues and non-residues are equal in certain
sub-intervals of [1,p — 1]. Now, we consider certain arithmetic progressions in

[1,p — 1] and ask the following natural question.

Question 3.2.4 Let p be an odd prime number and let k be an integer with

1<k<p-—1. Let
Se={ae{l,2,...,p—1}:a=0 (mod k)}.

Then how many quadratic residues (respectively, non-residues) belong to Sy ?

In the literature, there are some results addressing Question 3.2.4 (cf. [29],
[30] and [35]). Before we proceed further, we fix some notations as follows.
Let Q(p, Sk) (respectively, N(p,Sy)) stand for the number of quadratic residues
(respectively, quadratic non-residues) (mod p) in the set Sy. In a subsequent
section, using standard techniques in analytic number theory, we prove the fol-
lowing formula for Q(p, Sk) .

Q.81 =T+ O(yplogp). (9

Using standard techniques, we cannot determine whether Q(p, Sg) > N(p, Sk)

or Q(p,Sk) < N(p,Sk) for some primes p. We answer this question for k = 2,3
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and 4 using Dirichlet’s class number formula for the imaginary quadratic field

Q(v/=p)-

3.3 Statements of main theorems

Theorem 3.3.1 [9] Let p be an odd prime number. If p =3 (mod 4), then for

any € with 0 < e < %, we have

p—1 1,
Qp,S2) — o Depr

If p=1 (mod 4), then we have

-1

Q(p> SZ) = pT

Corollary 3.3.2 [9] Let p be an odd prime number and let O be the set of all
odd integers in [1,p — 1]. If R = N(p,S2) or R = Q(p, O), then for any e with

O<€<%, we have

-1 1
pT —R>.p>° ifp=3 (mod4).

If p=1 (mod 4), then we have

Theorem 3.3.3 [9] Let p be an odd prime number. If p =1 or 11 (mod 12),

then for any € with 0 < € < %, we have

1

p—1 1,
Q(p, S3) — g et
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Corollary 3.3.4 [9] Let p be an odd prime number. If p =1 or 11 (mod 12),

1

5, we have

then for any € with 0 < € <

-1 1
£ 6 o N(p, 83) > pgie-

Theorem 3.3.5 [9] Let p be an odd prime. If p =3 (mod 8), then we have

&

Q(p,Ss) =

N | —

Also, for any 0 < e < %, we have

-1 _
Q(p, Ss) — ]DT > p%_e, ifp=1 (mod4),

and
Lip—1 1. .
Q(pa 84) — 5 [T] >>e pz o, pr =7 (mOd 8)

Corollary 3.3.6 [9] Let p be an odd prime number. If p =3 (mod 8), then we

have

N(p,S) = % {1%1} |

Also, for any 0 < e < %, we have

—1
pT — N(p,8i)>cp?™, ifp=1 (mod 4),

and

1[p—1 .
5 {p—4 } — N(p,Ss) >cp2™, if p=T7 (mod 8).

Using Theorems 3.3.1 and 3.3.5, we conclude the following.

Corollary 3.3.7 [9] Let p be an odd prime number with p =3 (mod 8). Then
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for any e with 0 < e < %7 we have

1|p—1
2 4

Q(p,S:\Ss) — = —J > prC

3.4 Preliminaries

We begin with the basic fact concerning Dirichlet’s L-function. For that, we

define the Dirichlet character as follows.

Definition 3.4.1 [28] Let ¢ > 2 be an integer. A group homomorphism x :
(Z/qZ)* — C* is called a Dirichlet character modulo q. The integer q is often

called the modulus of the Dirichlet character.

Remark 3.4.1 If x is the trivial group homomorphism, then it is called the
principal Dirichlet character modulo q. We denote the principal Dirichlet char-
acter by xo. Given a Dirichlet character x, we can think of it as a function from

Z to C defined by

x(k), if ged(k,q) =1,

0, otherwise.

x(k) =

Definition 3.4.2 [28] Let ¢ > 2 be an integer and let x be a Dirichlet character

modulo q. Then the Dirichlet series

L(s,x) = Z Xlil:)’ forseC
k=1

18 called the Dirichlet L-function associated to x.

If x is a non-principal Dirichlet character, then the associated Dirichlet L-

function L(s, x) is analytic in the half plane {s € C : Re(s) > 0}. Moreover, for
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all complex numbers s with Re(s) > 1, the Dirichlet L-function L(s, x) admits

the Fuler product expansion

L(s,x) =] (1 - @) B . (3.9)

S
p p

For the rest of the discussion, we assume that all the Dirichlet characters x are
quadratic. That is, x% = xo.

For a non-trivial character y, by (3.9), we conclude that L(s,x) # 0 for
all complex numbers s with Re(s) > 1. In particular, L(s,x) > 0 for all real
number s with s > 1. Since L(s,x) is a continuous function in the half plane
{s € C: Re(s) > 1}, we get that L(1,x) > 0. Tt is a well-known theorem in
analytic number theory that L(1,x) # 0. Thus we obtain L(1,x) > 0. The
following theorem due to Landau and Siegel provides a lower bound of L(1, )

in terms of the modulus of the Dirichlet character.

Theorem 3.4.1 (¢f. [}/1]) Let ¢ > 2 be an integer and let x be a non-trivial
quadratic character modulo q. Then for each € > 0, there exists a constant

C(e) > 0 such that

L(1,x) > ¢l

€

For an odd prime number p, let , stand for the Legendre symbol - . By
p
Proposition 3.1.1, it follows that x, is a quadratic character. We also define a

character y4 by

(—1)*=D72if k is odd,
Xa(k) =
0; otherwise.

We can also define the Dirichlet character x4, by setting x4,(k) = x4(k) - xp(k).
Again, we define the Dirichlet character xs, by setting xs,(k) = x3(k) - xp(k)-

It immediately follows that both xs, and x4, are non-trivial, real quadratic
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Dirichlet characters.
Now, we state the following important lemma, which will be crucially used

in the proof of our main theorems.

Lemma 3.4.2 (See Page 151, Theorem 7.2 and 7.4 in [51]) Let p > 3 be an

odd prime number. For a real number { > 1, we define

S(LO = > xp(m). (3.10)

1<m</?

Then the following hold.

(i) For a prime number p with p =3 (mod 4), we have

5(1.5) =2 @) L0,

where L(1, x,) is the Dirichlet L-function; Also, we have

5 (12) = Y23 - 3201, x)

(ii) For a prime number p with p =1 (mod 4), we have

5 (1Y) = Y211, v,

Also, we have

5 (1, 73) - \/7]3L(1,X4p).

Remark 3.4.2 To prove Lemma 5.4.2, the main tool is to use the Dirichlet’s
class number formula for imaginary quadratic fields which states that for an

imaginary quadratic field K with discriminant dx and class number hy, we
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have

d
where w is the number of roots of unity in K and x(-) = <—K> is the Kronecker

symbol.

Now, we state the famous Pélya- Vinogradov inequality as follows.

Theorem 3.4.3 [2] Let p be an odd prime number and let x be a non-principal
Dirichlet character modulo p. Then, for any integers M and N with 0 < M <

N <p—1, we have
N

> x(m)

m=M

< V/plogp.

The next lemma provides the characteristic functions for quadratic residues

and non-residues.

Lemma 3.4.4 [9] Let p be an odd prime number and let

o) = % (1 + (g)) for all € (Z/pL)" (3.11)

and
x

o(z) = % (1 _ (5)) for all T € (Z/pZ)" (3.12)

1; if x is a quadratic residue (mod p),

0; otherwise.

and

1; if z is a quadratic nonresidue (mod p),

0; otherwise.
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Proof. If x is a quadratic residue (mod p), then E) = 1 and hence f(z) = 1.
p

Otherwise, if z is a quadratic non-residue (mod p), then % = —1 and hence
f(z) = 0. Therefore, f is indeed a characteristic function for the quadratic
residues (mod p). Similarly, we can show that g is a characteristic function for
the quadratic non-residues (mod p). O

Now, we give a proof of the formula (3.8) in the following proposition.

Proposition 3.4.5 [9] Let k > 1 be an integer and let p be an odd prime
number. Let S, = kI, where I = {1,2,...,[E2]}. Then

Q(p, S) = % []%1] +% (g) [mzkij <%) (3.13)
and hence
Q(p, Si) = % lp%l] + O(y/plogp).

Moreover, the same expression holds for N(p,Sy).

Proof. We define a function 1, by setting

1, ifmesS,
Ye(m) =
0; ifm¢& Sy.

Now, by Lemma 3.4.4, we have

Q.S = Y flm)=) wu(m)f(m)
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(2]
This proves (3.13). By Theorem 3.4.3, we have Z (ﬂ) = O(y/plogp). Con-
p
m=1

sequently, using (3.13), we conclude that

Qs = || + oo

N | —

Similarly, working with the characteristic function g for quadratic non-residues

(mod p) in place of f, we get the same formula for N(p, Sg). O

3.5 Proof of Theorem 3.3.1

Let p be a given odd prime. We want to estimate the quantity Q(p,S2). There-

fore, by (3.13), we get

Qp.S:) = % [p%l} +% (g) (pi/Q (g) . (3.14)

n=1

Case 1. p=1 (mod 4).

(p—1)/2
Then by Lemma 3.2.3, we have Z (E) = 0 and therefore, equation (3.14)
p
n=1
boils down to
p—1
Q(pa 82) = Ta

which is as desired.
Case 2. p =3 (mod 8).

By Lemma 3.4.2 and by (3.14), we get

Q.5 =5 | "5 |+ L e @) L),

Since p = 3 (mod 8), by Proposition 3.1.4, we have (%) = —1. Therefore, we
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obtain

Qp, Ss) = % {7%1} n 3§L(1,X},>.

Let € be any real number such that 0 < e < % Then by Theorem 3.4.1, we get
1 P — 1 \/]_? 1_.
Q(p, S2) — 5 {T} = 37L(17Xp) >ep?
as required.

Case 3. p=7 (mod 8).

2
Since p = 7 (mod 8), we know by Proposition 3.1.4 that (—) = 1. Therefore,
p

by Lemma 3.4.2 and by (3.14), we get

Qs =3 |25 + L)

Let € be a real number with 0 < € < % Then by Theorem 3.4.1, we get

-1

1 P 1_.
Q(p732)—§ [—2 }>>Ep .

This completes the proof of the theorem. O

3.6 Proof of Theorem 3.3.3

For a given prime number p, we want to estimate Q(p,Ss). By equation (3.13),

we get

Qp, ) = % P%l} + (g) (pi:/g (%) . (3.15)

n=1

Case 1. p=1 (mod 12).
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3
In this case, we have (—) = 1. By (3.15) and by Lemma 3.4.2, we get
p

Q(p,Sg)—%(p%l) = %\g—?L(l,szp)

V3p C(e) 1

471' (3p)6 € p Y

for any given 0 < € < % in Theorem 3.4.1.
Case 2. p=11 (mod 12).

3
In this case, we have, <—> = 1. By (3.15) and by Lemma 3.4.2, we get
p

p—1], 1v/3p
. 3 | 227
(p—1], 1v/3p
i 1 2 2n
(p—1]  V3p

3 + WL(LXM

Qp, S3) = (3— Xp(?’))L(la Xp)

(3 = 1)L(L, xp)

N = N = N =
w

Hence for any € with 0 < e < %, using Theorem 3.4.1, we get

1{p—1 V/3p 1
_ = - L(1 cpz e
This completes the proof of the theorem. [l

3.7 Proof of theorem 3.3.5

Let p be a given odd prime number. We want to estimate Q(p,S;). Using

equation (3.13), we note that

(p—1)/4
_Lip-—1 1 /4 m\ 1ip—1
Q@’&)—E{TH(;) (5)‘%7%

(p—1)/4
m
(p)'

" (B

N | —
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Case 1. p=1 (mod 4).

Now, by applying Lemma 3.4.2 in (3.16), we get

sy = 5 (") + 5L,

Hence for a real number € with 0 < e < %, by Theorem 3.4.1, we get

p—1 1.
Q(p, Ss) — g et

Case 2. p =3 (mod 8).
In this case, by applying (i) of Lemma 3.2.3, we get

&

C?(])aé;4) =

N —

Case 3. p=7 (mod 8).

We observe that by (i7) of Lemma 3.2.3, we have

= ()

p—1 p—1
T <m<4

Therefore, we can rewrite equation (3.16) as follows.

N —
N

wsy = 37 = (D) v (%)

- 1<m<(p—-1)/4 (p—1)/4<m<(p—1)/2
p—1] 1<
bl 52( )

Now, by using Lemma 3.4.2, we get

N | —
I

62(1% é;4) =
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Hence for a real number € with 0 < € < %, from Theorem 3.4.1, we get

1 p—l 1_.
Q(P,S4)—§{—4 ]>>p .

This completes the proof of the theorem. O




CHAPTER

FEuclhidean 1deal class 1in certain

bi-quadratic fields

In this chapter, following [36], we define the notion of an Euclidean ideal class in
a number field K and prove the existence of a non-principal Euclidean ideal class
in a family (possibly infinite) of bi-quadratic number fields. The main results of

this chapter have been published in [10].

4.1 Introduction

Let R be an integral domain. A function ¢ : R\ {0} — NU {0} is said to be an
FEuclidean function if for any two elements a and b in R with b # 0, there exist

q and 7 in R such that

a = bg + r, with either r =0 or ¢(r) < ¢(b).

65
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Definition 4.1.1 An integral domain R is called an Fuclidean domain if there

exists an Fuclidean function on R.

Example 4.1.1 The ring Z is a familiar example of an Euclidean domain, where
the usual absolute value | - | plays the role of an Euclidean function. Also, the
ring Z[i] = {a+ bi € C: a,b € Z} is an Euclidean domain with respect to the

Euclidean function ¢(a + bi) = a? + b* = |a + ib).

Proposition 4.1.1 [27] Let R be an Fuclidean domain with respect to an Eu-
clidean function ¢. Then R is a PID.

Proof. Let I be a non-zero ideal in R. Since N is well-ordered, there exists b €
such that ¢(b) < ¢(V) for all & € I. Let a be a non-zero element of I. Since
R is an Euclidean domain with respect to ¢, there exist ¢ and r in R such that
a=0bq+r. Now if r # 0, then ¢(r) = ¢(a — bqg) < ¢(b). Since I is an ideal and
a and b in I, we conclude that » = a — bq € I. This contradicts the fact that
o(b) < o(b') for all b € I as ¢(r) < ¢(b). Consequently, » = 0 and thus a = bqg.
Since a is an arbitrary element of I, we conclude that I C (b). The inclusion
(b) C I is evident because b € I. Hence I = (b). Since I is an arbitrary ideal in

R, we conclude that every ideal in R is principal and thus R is a PID. U

Remark 4.1.1 Suppose that for a number field K, the ring of integers Ok 1is
an Fuclidean domain. Then by Proposition 4.1.1, we conclude that the class

number hg of K is 1.

Let K be a number field of degree n > 1 and let Ok be its ring of integers.
Let 01,...,0,_1 and o, be all the embeddings of K into C. Then for an element

a € Ok, we define its norm by the equation
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It is clear that norm is a multiplicative function, that is, N(af) = N(«a) - N(5).

Proposition 4.1.2 [27] Let K be a number field and let « € Ok. Then N(a) €
Z.

Proof. If a = 0, then N(a) = 0 € Z. We assume that o # 0 € Ok and let
f(X)=X%4ay 1 X +.. . +ay € Z[X] be the minimal polynomial of a over Q.
Then « is of degree d over Q and therefore, d divides n. Moreover, f(o;(a)) =0

for alli € {1,...,n}. Thus we have

which is an integer. O

Remark 4.1.2 By Proposition 4.1.2, we see that N is a map from Ok to Z.
Since K is the field of fraction of Ok, we can extend the norm map from K to

_ N(a)
Q by the formula N (B) = N3

Having defined the norm map, it is interesting to investigate when the ring O

(0%

for o and B € Ok with B # 0.

is an Euclidean domain with respect to the absolute value of the norm map. For

the sake of convenience, we denote |N(x)| by Nm(x) for all z € K.

Definition 4.1.2 [/0] A number field K is said to be norm-Euclidean if the

ring of integers Ok is an Fuclidean domain with respect to the function Nm.

The following basic proposition (cf. [27]) provides an equivalent criterion for K

to be norm-Euclidean.

Proposition 4.1.3 Let K be a number field and let Ok be its ring of integers.
Then K is norm-FEuclidean if and only if for any v € K \ {0}, there ezists

a € Ok such that Nm(x — a) < 1.
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Proof. Suppose that K is norm-Euclidean and let x be a non-zero element in
K. Let z = % with @ and b € Ok \ {0}. Since K is norm-Euclidean, there exist
q and r € Ok such that a = bg + r and either r = 0 or Nm(r) < Nm(b). If
r = 0, then we have z = 4 q € Ok and hence we can take o = ¢ so that

b
Nm(z — o) = 0 < 1. Otherwise,

Nm(w—q):Nm(g—q):Nm(G_bq) :Nm<f):Nm<T) <1

and hence we can take o = q.

Conversely, suppose that for any x € K \ {0}, there exists a € O such
that Nm(x — «) < 1. Let a and b be two non-zero elements of Ok. Then, by
hypothesis, there exist ¢ € Ok such that Nm (% — q) < 1. By setting r = a — bq
and using the multiplicativity of Nm, we obtain a = bq + r with either » = 0 or

Nm(r) < Nm(b). In other words, K is norm-Euclidean. O

4.2 Euclidean ideal class

In 1979, H. W. Lenstra [36] extended the notion of a norm-Euclidean number
field to ideals. Since Nm(Og) = 1, he replaced 1 by Nm(/) = N(I) and defined

the norm-FEuclidean ideal as follows.

Definition 4.2.1 [36] Let K be a number field and let O be its ring of integers.
A non-zero ideal I in Ok is said to be norm-FEuclidean if for any x € K \ {0},
there exists o € I such that Nm(z — o) < N(I), where N(I) stands for the

cardinality of the finite set Ok /1.

Remark 4.2.1 Note that, if we take I = Ok, then Definition /.1.2 and Defi-

nition 4.2.1 coincide.
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Lenstra [36] generalized Definition 4.2.1 further for any Dedekind domain and

coined the notion of an Fuclidean ideal as follows.

Definition 4.2.2 [36] Let R be a Dedekind domain. Let I be the set of all
fractional ideals containing R and let W be a well-ordered set. A fractional ideal
C of R is said to be an Euclidean ideal if there exists a function ¢ : 1 — W such

that for any J € I and any x € JC \ C, there exists some y € C satisfying

U((x—y) 1 JC) <P(J). (4.1)

Remark 4.2.2 Note that, if we take R = O, C =1, ¢ = Nm™' and J any

fractional ideal containing R, then JC = JI = K and equation (4.1) becomes

Nm(z — y) < Nm(7),

which implies that I is a norm-Euclidean ideal. Hence Definition 4.2.2 is indeed

a generalization of Definition /.2.1.

Proposition 4.2.1 [36] Let K be a number field and let C' be a non-zero frac-
tional ideal of K. If C is an Euclidean ideal, then C' is also an Euclidean ideal

for any C' in the ideal class [C] in Clk.

Proof. Since C" € [C], there exists § € K \ {0} such that C" = § - C. Let J
be a fractional ideal containing O and let 2’ be an element of JC"\ C’. Then
¥’ = §-x for some x € JC \ C. Since C is an Euclidean ideal, there exists a
function ¢ : T — W and an element y € C satisfying ¢((z — y) 1 JC) < ¢(J).

Since C"'=0-C and y € C, we have yy =6 -y € §- C = C’'. Hence

U((@' =) IC) = (0w —6-y) T T8 C) = ((z —y) T IC) < w(J).
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Thus, C” is also an Euclidean ideal. Since C” is an arbitrary element in [C], we
conclude that every fractional ideal in the ideal class [C] is Euclidean. O
Proposition 4.2.1 enables us to unambiguously define an Fuclidean ideal class

as follows.

Definition 4.2.3 An ideal class [C] in Clk is said to be an Fuclidean ideal

class, if C' 1s an Fuclidean ideal.

One of the important consequences of the existence of an Euclidean ideal
class in a number field K is that Clk is a cyclic group. More precisely, Lenstra

|36] proved the following theorem.

Theorem 4.2.2 [36] Let K be a number field and let C' be a non-zero fractional
ideal. Assume that [C] is an Fuclidean ideal class. Then the class group Cly is

cyclic. Moreover, [C] generates Cly.

However, the converse of Theorem 4.2.2 is false. Indeed, Lenstra [36] proved
that even though the class group of the quadratic field Q(v/—d) for d = 19,
23, 31, 35, 39, 43, 47 is cyclic, it has no Euclidean ideal class. Therefore, it is
natural to ask for the classification of the number fields for which the converse
of Theorem 4.2.2 holds. Lenstra [36] proved the converse of Theorem 4.2.2 for
a large class of number fields, under the assumption of the Eztended Riemann
hypothesis (abbreviated as ERH). Before stating his result, we briefly recall ERH
and Dirichlet unit theorem as follows.

For a number field K, we consider the following Dirichlet series

aCOgk

where the sum runs over all the ideals in Og. Then (x(s) defines an analytic

function in the region {s € C : Re(s) > 1} and is called the Dedekind zeta
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function of K. It can be analytically continued to a meromorphic function with

a simple pole at s = 1.

Conjecture 4.2.3 (Extended Riemann hypothesis) Let K be a number
field with the associated Dedekind zeta function (x. Let s = o 4+ it € C with

1
o >0 be such that (x(s) = 0. Then o = 3"

Theorem 4.2.4 (Dirichlet unit theorem) (see [15]) Let K be a number field
of degree n > 1 with ry real and ro pairs of complex embeddings. Then the
multiplicative group O3 is a finitely generated abelian group of rank r = ry +

7“2—1.

Now, we state the result of Lenstra as follows.

Theorem 4.2.5 [36] Let K be a number field with rank(Oj) > 1. Then, the
wdeal class group Clg is cyclic if and only if K has an Fuclidean ideal class,

provided ERH 1is true.

In other words, under ERH, the converse of Theorem 4.2.2 holds for all

number fields other than Q and the imaginary quadratic fields.

4.3 Recent developments

Quantitative results related to Euclidean ideal class are of special interest to
number theorists. In [17], Graves proved a growth result for certain number
fields without the assumption of ERH. More precisely, she proved the following

theorem.

Theorem 4.3.1 [17] Let K be a number field with |O%| = oo and let C' be a
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non-zero ideal in Ok. Suppose that the ideal class [C] generates Cli and

[{prime ideal p C O : N(p) <z, [p] = [C], 7, is onto }| > (10;6%)2’

where m, : O — (O /p)* is the canonical map. Then [C] is an Euclidean ideal

class.

Using Theorem 4.3.1, Graves and Murty |[18] unconditionally proved the

converse of Theorem 4.2.2 for a large family of number fields.

Theorem 4.3.2 [18] Let K be a number field with K/Q Galois and Cly cyclic.
Let H(K) be the Hilbert class field of K. Assume that H(K) is Galois over Q
with the Galois group Gal(H(K)/Q) abelian. If rank (O}) > 4, then

Clix = ([C)) if and only if [C] is an Euclidean ideal class .

We observe that one of the most crucial hypotheses in Theorem 4.3.2 is
rank(Oj) > 4. In [16], Graves gave the first example of a number field K with

rank(Oj;) = 3 such that K has a non-principal Euclidean ideal class.

Theorem 4.3.3 [16] The number field Q(\/2,v/35) has a non-principal Bu-

clidean ideal class.

Later, Hsu [23| provided a family of quartic number fields, each having a
non-principal Euclidean ideal class. More precisely, she proved the following

theorems.

Theorem 4.3.4 [23] Let q,k and r > 29 be distinct prime numbers with ¢ =
k=r=1 (mod4). Let K = Q(/q,Vkr) and assume that hg = 2. Then K

has a non-principal Euclidean ideal class.
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Theorem 4.3.5 [23] Let q,k > 17 be distinct prime numbers with ¢ = k = 1
(mod 4). Let b > 0 be an inleger such that b =0 (mod 4) and k —b* > 0 is a
perfect square. Consider the number field K = Q ( q(k + b\/%)) If hg = 2,

then K has a non-principal Euclidean ideal class.

Remark 4.3.1 hyx = 2 is equivalent to the fact that Clx ~ Z/27Z. In other
words, Clg is cyclic. Thus Theorem 4.3.4 and Theorem 4.3.5 affirmatively an-
swers the converse of Theorem 4.2.2 for a certain family of quartic fields. In
[23], Hsu also conjectured that the families considered in Theorem 4.8.4 and

Theorem 4.3.5 are both infinite.

4.4 Statements of our main theorems

Our results extend the family of number fields considered in Theorem 4.3.3 and
Theorem 4.3.4. More precisely, the statements of our main theorems are as

follows.

Theorem 4.4.1 [10] Let ¢ > 3,k > 5 and r > 5 be distinct prime numbers
with ¢ = 3 (mod 4) and k = r = 1 (mod 4). Consider the bi-quadratic field
K, = Q(/q,Vkr). If hg, = 2, then K| has a non-principal Euclidean ideal

class.

Theorem 4.4.2 [10] Let p > 5 and q > 5 be two distinct prime numbers with
p = q =1 (mod4). Consider the bi-quadratic field Ky = Q(V/2, N

hi, = 2, then Ky has a non-principal Euclidean ideal class.

By combining Theorem 4.3.4 and Theorem 4.4.1, we have a larger family of

bi-quadratic fields with an Euclidean ideal class as follows.

Theorem 4.4.3 [10] Let p > 2,q > 5 and r > 5 be distinct prime numbers
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with ¢ = r = 1 (mod 4). Consider the bi-quadratic field K = Q(\/p,/qr). If

hx = 2, then K has a non-principal Euclidean ideal class.

In the end of this chapter, we provide a list of bi-quadratic fields with class

number 2 which have an Euclidean ideal class.

4.5 Preliminaries

To prove Theorem 4.4.1 and Theorem 4.4.2, we need to compute the conductor
and the Hilbert class field of K; and K5. To define the conductor, we start with

the Kronecker- Weber theorem.

Theorem 4.5.1 [13] Let K be a finite abelian extension of Q with Galois group
Gal(K/Q). Then K C Q((n) for some integer m > 1, where (,, is a primitive

m™ root of unity.

Definition 4.5.1 [13] Let K be a finite abelian extension of Q. Then the least

positive integer m such that K C Q((,,) is called the conductor of K.

For the rest of this chapter, we denote the conductor of a number field K by
f(K). The following well-known proposition provides us the conductor of certain

quadratic fields and can be found in [40].

Proposition 4.5.2 [/0] Let p be an odd prime number and let K = Q(\/p).

Then
p sifp=1 (mod4),
dp ;ifp=3 (mod 4).

fK) =

Also, the conductor of Q(v/2) is 8.

Now, we recall some standard results from algebraic number theory.
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Lemma 4.5.3 [13] Let K; and Ko be number fields and let L = K,K; be the
compositum. Let p be a prime number. If p is unramified in both K, and Ks,

then p is unramified in L.

Earlier, we had defined the Hilbert class field of a number field K as the
maximal, abelian, unramfied extension of K. We provide another equivalent

formulation of H(K) as follows.

Proposition 4.5.4 [13] Let K be a number field. Then the Hilbert class field
H(K) of K is the unique mazimal, abelian extension of K such that precisely

the principal prime ideals of Ok split completely in Op (k).

Proposition 4.5.5 [13] Let K C L be number fields such that L/ K Galois with
Galois group G. Let p be a non-zero prime ideal in O which is unramified in L
and let *B be a prime ideal in Op lying above p. Then there is a unique element

o € G such that for all o € Op, we have
o(a) = a9« (mod P).

Proposition 4.5.5 enables us to define the Artin symbol.

Definition 4.5.2 [13] The unique element o in Proposition /.5.5 is called the

Artin symbol and is usually denoted by <L/TK>

Suppose B, P, ..., P, are all the prime ideals in Oy, lying above p. For any

T € G, it is easy to see that

(TL({Bff)) :T(%) ! foralli € {1,...,g}.

Also, it is a well-known fact that G acts transitively on {,,B2,...,B,} and

hence the set {(%K> tl= 1,2,...,9} is a conjugacy class in G. Thus by
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L/K
(/T), we unambiguously denote this conjugacy class.

Now, we define the Dirichlet density of a set of prime ideals in O as follows.

Definition 4.5.3 [13] Let K be a number field and let S be a set of prime ideals
in Og. The Dirichlet density of the set S is defined to be

> N(p)

— peS
o) oLk — log(s — 1)’

provided the limit exists.

Remark 4.5.1 From Definition /.5.8, we immediately see that if §(S) > 0,

then S is an infinite set.

Next, we state one of the most important theorems in number theory, namely,

the Chebotarev density theorem.

Theorem 4.5.6 (Chebotarev density theorem) [13] Let L/K be a finite
Galois extension of number fields with Galois group G and let C be a conjugacy

class in G. Then the Dirichlet density of the set
L/K
{ prime ideal p in Ok 1 p is unramified in L and (/T) = C}

€]
IL: K]

exists and equals

In order to compute the conductors of the required bi-quadratic fields, we

need the following basic lemmas.

Lemma 4.5.7 [10] Let L/ K be a finite extension of number fields. Assume that
L is an abelian extension of Q. Then §f(K) divides f(L).
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Proof. Since L is an abelian extension of Q and K C L, using the fundamental
theorem of Galois theory, we see that K is also a Galois extension of Q with
Gal(K/Q) ~ Gal(L/Q)/Gal(L/K). Therefore, K is an abelian extension of
Q and hence both f(K) and §(L) are well-defined. Now, since K C L, using
Theorem 4.5.1, we have K C L C Q((jz)). Also, by Definition 4.5.1, f(K) is the

smallest positive integer such that K C Q((jk)). Thus we get

K C Q) € QGwy)-

Since both 5y and (jzy are primitive roots of unity and Q((sx)) € Q(Gry),
we conclude that f(K') divides f(L). O

Lemma 4.5.8 Let L be a finite abelian extension of Q. Suppose that K and Ky

are two subfields of L such that L = K1 Ks. Then §(L) = lem {f(K3)), f(K>2))}.

Proof. We consider the following tower of number fields.

Q(Giry)
]~
Q(Gixr)) L Q(Gx)
N SN S

Kl K2
NS

Q

(Fig. 1)

Since L/Q is abelian and K; and K, are subfields of L, we see that f(K;), f(K?2)
and f(L) are well-defined. By Lemma 4.5.7, f(K) divides f(L) and f(K>) divides
f(L). Consequently, lem {f(K7),f(K2)} divides f(L).

On the other hand, using the fact L = K; K5, we obtain

L = Ki1K> € Q(Gua)) QUGra) = QUC 1emiany siny)-
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By the definition of the conductor, we have L C Q((jr)) € Q(¢ lem(i(x,) f(Kz)).

Therefore, f(L) divides lem(f(Ky, f(K>)) and hence f(L) = lem {f(K7), f(K2)}.
U

Now, we compute the conductors of a certain family of bi-quadratic fields.

Lemma 4.5.9 Let ¢,k and r be prime numbers such that ¢ = 3 (mod 4) and
k=r=1 (mod 4). Then the conductor f(K) of K = Q(\/q, Vkr) is 4qkr.

Proof. Let Ky = Q(,/7), K2 = Q(Vkr), K5 = Q(Wk) and K; = Q(y/7). By
Proposition 4.5.2, we have f(K;) = 4q, f(K3) = k and f(K4) = r. Since Ky C
K3Ky € Q(¢)Q(¢) = Q(Ckr), using Lemma 4.5.7, we get f(K3) | kr. This
implies that f(Ks) = korror kr. As k =1 (mod 4) and r = 1 (mod 4) are
distinct prime numbers, the only quadratic subfields of Q((x) and Q((,) are

Q(vk) and Q(y/7), respectively. Hence f(K5) = kr.
Now, since K = Q(/q, Vkr) = K, K, , using Lemma 4.5.8, we conclude that

f(K) = lem{f(K4),§(Ks)} = lem{dq, kr} = 4qkr.

O

Lemma 4.5.10 Let p and q be two prime numbers with p = ¢ = 1 (mod 4).
Then the conductor §(K) of K = Q(v/2,/pq) is 8pq.

Proof. Let K1 = Q(v/2) and K, = Q(\/pg). By Proposition 4.5.2, we have
f(K1) = 8. Also, by similar arguments used in the proof of Lemma 4.5.9, we

obtain f(K3) = pg. Thus we get

f(K) = lem{f(K1),f(K2)} = lem{8,pq} = 8pq.
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Remark 4.5.2 [t is worthwhile to note that the map 7, in Theorem 4.3.1 is not
always surjective for any number field K. For instance, if K = Q and p = 5Z,

the map ©, : Z* — (Z/5Z)* is not onto. We denote an onto map by the symbol

[43 7
—» .

In view of Remark 4.5.2, it is useful to have conditions on the number field
K for which 7, is onto. The following theorem, mentioned in [16], deals with

this property.

Theorem 4.5.11 [16] Let K be a totally real number field with conductor §(K)
and let {ey,es,e3} be a multiplicatively independent set contained in OF. If

[ =1em{16,§(K)}, and if ged(u,l) = ged(*5+,1) = 1 for some integer u, then

rimes — * v
{57 depee e - N () = u (mod 1), N(p) < @, (=L,ei) = (O /0)"}| > g0,

for some i € {1,2,3}.

Remark 4.5.3 We immediately see that, whenever the canonical map (—1,e;) —
(Ok/p)* is surjective, the map 7, is also surjective. Using this observation, we

make use of the growth result in Theorem 4.5.11 to prove our main theorems.

Next, we compute the Hilbert class fields of bi-quadratic fields of our interest.

Lemma 4.5.12 Let ¢ > 3,k > 5 and r > 5 be prime numbers with ¢ = 3
(mod 4) and k = r =1 (mod 4). Let K = Q(,/q, VEr). If hi = 2, then the
Hilbert class field H(K) of K is Q(\/g, Vk, /7).

Proof. Let K' = Q(y7,Vk,v/7), Ki = Q(va), K> = QWk), K5 = Q(V7)
and L, = Q(vk,/r). Since L; = K,Ks, using Lemma 4.5.8, we get (L) =
lem{§(K>),f(K3)} = lem{k,r} = kr. Again, using K’ = K;L; and Lemma
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4.5.8, we have f(K') = lem{f(K1),f(L1)} = 4qgkr. Thus K and K’ have the
same conductor.

By our hypothesis, hx = 2 and therefore, H(K) is a quadratic extension of
K. Since K’ is also a quadratic extension of K, we conclude that H(K) = K’,
provided K'/K is unramified. Since Q C K C K’ C Q((4gxr), the prime ideals
in Ok lying above 2,¢, k and r may ramify in K’. We first prove that 2 is

unramified in K’/K. For that, we consider the following diagram.

Q(C4qk7‘) P4
| |
K’ P3\
RN |\
K Ll Po P1
|/ Va
Q 2

(Fig. 2)

Let py, po, p3 and py be primes in Or,, Ok, O and Z[(4qr] respectively, all
lying above 2. Since k = r =1 (mod 4), the prime 2 is unramified in Q(v/k) and
Q(4/r) and hence in the compositum field L;. In other words, the ramification
index e(p;|2) = 1. Since ¢ = 3 (mod 4), the prime 2 is ramified in Q(\/q).
As Q(/q) € K C K', we have e(p,|2) > 1 and e(p3|2) > 1. Thus from the

multiplicativity of the ramification indices, we get,

1 < e(ps|2) = e(pslpr)e(p|2) < 2- 1.

Thus, e(p3]2) = 2 and e(py]2) = 2. Consequently, e(ps|p2) = Egzzg; = 1. That

is, p3 is unramified over p,.

We immediately see that by replacing the prime 2 by the prime ¢, the same
argument given above yields that ¢ is unramified for K'/K. Similarly, by re-
placing L; with Ly = Q(,/q,+/r) and Ls = Q(Wk, V/4), we obtain the unram-
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ifiedness of the primes k and r, respectively. Therefore, all the prime ideals
in O lying above the rational primes 2, ¢, k and r are unramified in K’. Since

q, k and r are all positive integers, the infinite primes are also unramified. Hence,

H(K) = K' = Q(/g,Vk, /7). O

Lemma 4.5.13 Let p > 5 and q > 5 be two prime numbers with p = q = 1
(mod 4). Consider K = Q(v/2,/pq). If hi = 2, then the Hilbert class field

H(K) of K is Q(v/2, /P, /1)

Proof. Let K" = Q(v2, /B, @), K1 = Q(v2), K> = Q(y/F), K5 = Q(,/g) and
Ly = Q(\/p,/q). Since Ly = K,Kj3, by using Lemma 4.5.8, we have f(L;) =
lem{f(K>),f(K3)} = lem{p,q} = pg. Since f(K;) = 8 and K" = K, L, using
Lemma 4.5.8, we conclude that f(K") = lem{f(K1),f(L1)} = lem{8,pq} = 8pq.
Thus the conductors of K and K" are equal.
Claim. K” is an unramified extension of K.

Since Q € K € K" C Q((spq), it is enough to prove that the primes ly-
ing above 2,p and ¢ in K are unramified in K”. In the following, we provide
a detailed proof of the fact that 2 is unramified in K”/K. The argument is
essentially same for the primes p and ¢ and therefore we omit it.

Consider the following diagram.

Q(Cepq) P4
| |
K// pg\
RN RN
K L P2 M
|/ |/
Q 2

(Fig. 3)

Let py, po, p3 and py be primes in Op,, Ok, Ok» and Z[(gp,| respectively,

all lying above 2. Since p = ¢ = 1 (mod 4), the prime 2 is unramified in K,
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and K3. By Lemma 4.5.3, the prime 2 is unramified in L;. In other words, the
ramification index e(p;]|2) = 1. On the other hand, since 2 is ramified in Q(v/2),

it is also ramified in K. That is, e(p2|2) = 2. Hence we get

2 = e(p2]2) < e(ps]2) = e(pslp1) - e(p12) = e(ps|pr) < [K": L] =2, (4.2)

Therefore, equality holds throughout in (4.2) and consequently, e(ps]2) = 2.

Hence e(ps|ps) = Zgzlgg = 1. Thus 2 is unramified in K" /K.
Since p and ¢ are positive integers, the infinite primes of K are also unramified
in K”. This proves the claim.
Since K" is a quadratic, unramified extension of K, we have K" C H(K).

As hxg = 2, we have [H(K) : K| = 2 and therefore, we can conclude that

K" = H(K). Thus the Hilbert class field H(K) of K is Q(v2,/p,/q). O

4.6 Proof of Theorem 4.4.1

For prime numbers ¢ > 3, k > 5and r > 5 with ¢ =3 (mod 4) and k =r =1
(mod 4), let K1 = Q(,/q, Vkr) be the bi-quadratic field. By Lemma 4.5.9 and
Lemma 4.5.12, we have §(K;) = 4¢kr and H(K;) = Q(\/q, Vk,\/r). Also,
since ¢, k and r are all positive, the number field K is totally real with 4 real
embeddings. Therefore, rank(Oj ) = 3 and hence there exist 3 multiplicatively
independent elements in (O ).

For a prime number p, let p and  be the prime ideals in Ok, and Og k),
respectively, lying above p.
Claim 1. There exists an integer u such that for all prime numbers p with
p =u (mod 4gkr), we have f(p|p) =1 and f(p|p) = 2.

To prove the claim, let (L) and (L) be the Artin symbols of
K1/Q

H(K,)/Q
the prime p in the number field K; and H(K;), respectively. We consider the
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following two sets of prime numbers in Z.

. . p
Xk, = cpisprimeand | —= | =1,,
" {p rep (Kl/@) }

and

Xk = {p : p is prime and (W) = 1} .

In other words, Xk, (respectively, Xp(x,)) consists of all the prime numbers
that split completely in K; (respectively, H(K;)). Since K; C H(K;) and
the ramification indices and residual degrees are multiplicative, it immediately
follows that if a prime p splits completely in H(K7), then it splits completely in
K. That is, Xy k,) € Xk,.

Now, since both Gal(K;/Q) and Gal(H(K,)/Q) are abelian, every conjugacy
class is singleton. In particular, the identity element constitutes a conjugacy

class. Therefore, by Theorem 4.5.6, the Dirichlet densities of the sets X, and

1

1
Xn(K,) are 7 and g,

respectively. Since Xp(x,) € X, the Dirichlet density of

the set Xg, \ Xu(k,) is

T —+ =1 In other words, Xg, \ Xu(k,) is an infinite
set. We choose a prime number v € Xg, \ Xu(k,). Then any prime lying above
u has residual degree 1 in K7 and 2 in H(K;). Since both K; and H(K,) are
abelian extensions of Q with conductor 4¢kr, we conclude that for any prime
number p with p = u (mod 4gkr), we have f(p|p) = 1 and f(p|p) = 2. This
proves the claim.

Now, we study the set Xg, \ Xg(x,) more closely as follows.

Claim 2. Xx \Xpk,) = {p : p is prime and <g> =1 and (E) = <t> = —1},
p p p

where ( — ] is the Legendre symbol.
p

To prove the claim, let p € Xg, \ Xpg(k,). Then p splits completely in K
but not in H(K;). We note that, p splits completely in K; = Q( /g, Vkr) if
and only if p splits completely in both Q(,/¢) and in Q(v/kr). In other words, p
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k
splits completely in K; = Q(,/q, Vkr) if and only if (%) =1 and (f) =1
On the other hand, p does not split completely in H(K;) = Q(,/q, VT if

and only if p does not split completely in one of the fields Q(,/q) or Q(WkE) or
Q(+/r). Thus, we get

k
Conversely, let p be a prime number such that (—) =1, <—> —1 and
p

Ly
p
have that p also splits completely in Q(v/kr). Thus p splits completely in K; =

Q(y/g, Vkr) but not in H(K) = Q(\/q, Vk, /7). That is p € X, \ Xp(x,) and

=1, we

<i> = —1. Then p splits completely in Q(,/g). Also, since

this proves the claim.
Let [ = lem{16,§(K;)} = lem{16,4gkr} = 16gkr. To apply Theorem

4.5.11, we need to find an integer u satisfying the properties in Claim 1 along

with
(1) ged(u, 16gkr) =1, (4.3)
and
(1) ged (T 16qkr) =1 (4.4)
We note that the condition (i) above is equivalent to the following simultaneous
congruences.
(u#1 (mod g)
w1 (mod r),
u#1 (mod k),
| u# 1 (mod 4).

In other words, it is enough to find an element w € X, \ Xy (x,) satisfying (4.3)
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and (4.4). For that, we choose prime numbers p; < ¢, p2 < k and p3 < r such

() (5)-1o2)--

Next, we consider the following set of congruence.

that

( uz1 (mod gq);
u#1 (mod r);
u#z1 (mod k);

| uF1 (mod 4).

Since ¢,k and r are distinct odd prime numbers, the modulii in the above set
of congruences are pairwise relatively prime. Therefore, by the Chinese re-
mainder theorem, there exist a unique solution xy modulo 4¢kr. Also, since
ged(xg, 4gkr) = 1, by Dirichlet’s theorem for primes in arithmetic progressions,
there exists infinitely many prime numbers w = xy (mod 4¢gkr). We pick one
such prime w. Then it follows that w satisfies (4.3) and (4.4). It only remains to

prove that w € Xk, \ Xp(x,). For that, using the law of quadratic reciprocity,

(2) ()=o) (2)
()= ()= (5) - (2) -

(9-6)er=-(9-2)--

Thus, by using Claim 2, we get that w € X, \ Xu k).

we get

and

Let p and o be prime ideals in Ok, and Opk,), respectively, lying above

w. Since w € Xg, \ Xp(k,), we conclude that p does not split completely in
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H(K;). Consequently, using Proposition 4.5.4, we get that p is not a principal
ideal. Since hg, = 2 and p is non-principal, we get that ([p]) = Clk,. Hence by

Theorem 4.3.1, we conclude that [p] is a non-principal Euclidean ideal class. [

4.7 Proof of Theorem 4.4.2

For prime numbers p > 5 and ¢ > 5 with p = ¢ = 1 (mod 4), let Ky =
Q(v2,,/pg) be the bi-quadratic field. By Lemma 4.5.10 and Lemma 4.5.13,
we have f(K,) = 8pq and H(K,) = Q(V/2, VP, 1/q)- Also, since p and ¢ are
positive, the number field K, is totally real with 4 real embeddings. Therefore,
rank(O%,) = 3 and hence there exist 3 multiplicatively independent elements in
(Ot

Let us define the following sets.

l
Xk, =/ : 0 is prime and =17,
e G O R
and

XH(Ky) = {E : £ is prime and (m) = 1} )

2
Claim 3. Xy,\ Xy (x,) = {z . £ is prime and (Z) — 1 and (%) - (%) - —1}.
To see this, let ¢ € Xg, \ Xu(k,)- Then ¢ splits completely in K, but not

in H(K,). Now, ¢ splits completely in Ky = Q(v/2, V/Pq) if and only if ¢ splits

2
completely in both Q(v/2) and in Q(,/pg). That is, (Z) =1 and (%) = 1.
On the other hand, ¢ does not split completely in H(K,) = Q(v/2, VP, 1/Q) if

and only if ¢ does not split completely in one of the fields Q(v/2) or Q(,/p) or

Q(\/q). Thus we have

()1 ()91
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2
Conversely, let ¢ be a prime number such that (—) =1 and <‘2—)> = (Q) =

1 14 14
—1. Then we have <Z%> — 1. Consequently, ¢ splits completely in Q(y/2) and
in Q(y/pq) and hence in K,. But since (%) = (%) = —1, we get that ¢ does

not split completely in H(K3). Therefore, ¢ € Xk, \ Xp(k,). This completes
the proof of Claim 3.
Now, let [ = lem{16,f(K2)} = lem{16,8pq} = 16pq. We need to find an

integer u such that the following two conditions hold.
ged(u, 16pg) = 1 (4.5)

and

—1
ged (UT, 16pq) = 1. (4.6)

We note that equation (4.6) is equivalent to the following equivalent conditions.

u#1l (mod p);
w1 (mod g)
w1 (mod 4).

Now, we choose prime numbers p; and ps such that

p1 < p,p2 < q and <&) = <@) =1
P q

and consider the following set of congruence.

r=p; (mod p);
r=py (mod q); (4.7)

r=7 (mod8).

Since p and ¢ are distinct odd prime numbers, the modulii in (4.7) are pair-
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wise relatively prime. Therefore, by the Chinese remainder theorem, there exists
a unique solution xy modulo 8pg. Since ged(xg,8pq) = 1, by Dirichlet’s theorem
for primes in arithmetic progressions, there exist infinitely many prime numbers
w = xo (mod 8pq). For such a prime number w, using the law of quadratic

reciprocity and the fact that p=¢ =1 (mod 4), we get

B () =(2)-(3)- ()
0= -()-(3)-(2) -

Let p and p be prime ideals in Ok, and Opk,), respectively, lying above

and

w. Since w € Xk, \ Xp(k,), we conclude that p does not split completely in
H(K,). Consequently, using Proposition 4.5.4, we get that p is not a principal
ideal. Since hg, = 2 and p is non-principal, we get that ([p]) = Clk,. Hence
by Theorem 4.3.1, we conclude that [p] is a non-principal Euclidean ideal class.
This completes the proof of Theorem 4.4.2. (]

In the statements of Theorem 4.4.1 and Theorem 4.4.2, the crucial hypotheses

were hg, = hg, = 2. It is therefore natural to ask the following question.

Question 4.7.1 Are there any bi-quadratic fields of the form K = Q(\/q, V'kr),
where ¢ = 2 or a prime number with ¢ = 3 (mod 4) and k and r are prime

numbers with k =r =1 (mod 4) such that hx = 27

Our computation provides an affirmative answer to Question 4.7.1 as there
are plenty of quartic fields of the form K = Q(,/q, vV kr) with class number 2.
We list some of them of our interest together with their class numbers. We have

computed the class numbers of the fields using Sage program.
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H (q,k,r) hg (q,k,r) hi (q,k,r) hx (q,k,r) hg H
3,5, 13) 2 (3,510 2 (3,537 2 (5 113) 2
(3,13,5) 2 (3,13,80) 2 (3,13,137) 2 (3,13,197) 2
(3,17,5) 2 (3,17,29) 2 (3,17,37) 2 (3,17,61) 2

(3,17,109) 2 (3,17,181) 2 (3,17,197) 2 (3,29,17) 2
(3,29,37) 2 (3,20,41) 2 (3,29,61) 2 (3,29,113) 2

H (2,]€,7’) hK (2, /{Z,T’) hK (2,]€,T> hK (2,]€,T> hK H

2,5, 17) 2 (2,5,37) 2 (2,5,61) 2 (2,5,97) 2
(2,5,149) 2 (2,5,173) 2 (2,5,193) 2 (2,13,29) 2
(2,13,37) 2 (2,13,73) 2 (2,13,89) 2 (2,13,97) 2
(2,13,109) 2 (2,13,157) 2 (2,13,193) 2 (2, 13,197) 2
(2,17,5) 2 (2,17,29) 2 (2,17,37) 2 (2,17,61) 2
(2,17,181) 2 (2,17,197) 2 (2,29,13) 2 (2,29,17) 2
(2,29,53) 2 (2,29,61) 2 (2,29,73) 2 (2,29,89) 2
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