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Theorem 4.1. Let V' be a translation invariant matrix of order r X m with entries
in 2, of rank v and complexity one. Then there exists a positive constant C > 0
depending at most on r,m and V such that for any A C P N [1, N]| there ezists

non-trivial solution = to Va' =0 with x € A™ if

|A| > C(loglog N)™ mmm(N). (7)

XV



ments asserting the existence of a non-trivial solution z to V' = 0 with x € A™,
where A is a given subset of N. For instance, let m > 3 be an integer and
let V.= (a;;) be the matrix of order (m — 2) x m be defined by a;; = 0 if
jgé¢{ii+1,i4+2},a,; =11 j € {i,i+ 2} and a;,11 = —2. Then V is translation
invariant and for any x in Z™ with = (21, %s,...,%y), the relation V! = 0 is
the equivalent to the assertion that xq,xs,...,z,, are in arithmetical progression.
Thus Szemerédi’s theorem [35] is equivalent to the statement that for any A C N of
positive upper density, there is a non-trivial solution z to V! = 0 with z € A™ and
the theorem of Roth [29] is the special case when m = 3. Similarly, the celebrated
result of Green and Tao [11] is equivalent to the statement that for any subset A of
the set of primes P with positive relative upper density in P, there is a non-trivial

solution x to Vz!t = 0 with x € A™.

Let V of order » x m with entries in Z be translation invariant matrix such that
the kernel of the associated linear map =z +— Vz from Q™ to Q" has dimension at
least 2. Then it can in turn be deduced from Szemerédi’s theorem that for any
subset A of N of positive upper density there is a non-trivial solution = to Va! = 0
with x € A™. One may naturally ask for quantitative versions of this result, but
these are rather difficult to obtain in general and are tied up with an appropriate
notion of “complexity” of V. The matrix V considered in the preceding paragraph
has complexity one precisely when m = 3, that is, in the setting of Roth’s theorem
on three term arithmetical progressions. For arbitrary V' of complexity one, Kevin

Henriot [15] has obtained the following theorem.
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Ramaré [24] showed that rp(K) < K exp ((3 logligfég)j){logf{> when D is the set of
squares. By a lower bound in [13], the optimal bound in this case is expected to

have a log 2 in place of the 3log2 in the exponential factor.

A classical theorem of L.K. Hua asserts that the set of squares of primes is an
asymptotic basis of finite order. In light of this theorem, F. Hennecart asked if
one may extend Sarkozy’s problems to the case when D is the set of squares of
the prime numbers. Independently of Hennecart, this question was considered by
Guohua Chen [4], who showed that rp(K) <, K?**. The main result of the third
part of this thesis improves on this conclusion of Chen. More precisely, and in

analogy with the result of [24] for the squares, we prove the following theorem.

Theorem 3.1. For any integer K > 2 we have rp(K) < K exp <(31°gligf§g1)f)(logK)

when D is the set of squares of the prime numbers.

We prove Theorem 3.1 by an adaption of the method of Gyan Prakash, Ramana

and Ramaré [24] for the case of the squares.

4 Linear patterns of complexity one in Chen primes

A matrix V of order r x m with entries in Z is said to be translation invariant if
Ve! = 0, where e is the vector (1,1,...,1) in Q™ and e’ its transpose. By a trivial
solution of the system of linear equations V! = 0 for such V we mean = = e, for

some A\ € Q.

A number of celebrated results in additive combinatorics can be recast as a state-

xiii



3 Monochromatic sums of squares of primes

A subset D of the set of natural numbers is said to be an asymptotic basis of finite
order if there exists a positive integer m such that every sufficiently large integer
can be written as a sum of at most m elements of D. The smallest m for which
the above property holds is called the order of the asymptotic basis D. There are
two classical examples of asymptotic bases of finite order. The first of these is the
set of squares of the natural numbers, which by Lagrange’s four squares theorem,
is certainly an asymptotic basis of order four. The second example is the set of
the prime numbers, which is seen to be an asymptotic basis of order at most 4 by
the classical theorem of Vinogradov which asserts that every sufficiently large odd

integer can be written as a sum of three prime numbers.

Given an asymptotic basis D of finite order and an integer K > 1 one may ask
the following question. What is the smallest integer rp(K), if it exists, such that
given any colouring, or partition, of D in K colours, every sufficiently large integer

is expressible as a sum of at most rp(K’) elements of D, all of the same colour 7

When D is either the set of squares or the set of primes the aforementioned question
was posed as Problems 39 and 40 by A. Sérkozy on page 26 of [31]. It is easily
seen that indeed rp(K) is finite for all K > 1 in these cases. In [13] N. Hegyvary
and F. Hennecart showed that rp(K) < (K log K)® when D is the set of squares
and rp(K) < K? when D is the set of primes. Ramana and Ramaré [25] then
obtained rp(K) < Kloglog2K when D is the set of primes, which is the best

possible bound up to the implied constant. Recently, Gyan Prakash, Ramana and
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for N > N(a). The main result of the second part of this thesis is the following

theorem which generalizes and improves on (4).

Theorem 2.1. Let a € (0,1]. Then there is an integer N(«) such that for all
N > N(«) and subsets A of the prime numbers in [1, N| satisfying |A| > am(N) we
have

E(A.B) < (1 + o(a)) % log log - (5)

for any non-empty subset B of the prime numbers in [1, N, where m(B) = mingep b.

We prove this theorem by a refinement of the method of [25], which in turn stems
from the method of O. Ramaré and I. Ruzsa [26]. Our theorem is optimal in the
sense that 1 + o(«) cannot be replaced with ¢ + o(«) for any ¢ < 1. As a corollary

of our theorem we obtain the “main theorem” of K. Matoméki [20].
Corollary 2.1. Let A and B be subsets of the set of prime numbers P with relative
lower densities o and 3 respectively in P. Then

lim inf A+ B)N) > (1—ola+p)) o

N~ 00 e” loglog(+)

(6)

Matomséki proves this result by using the methods of B.J. Green, and B.J. Green
and T. Tao to directly obtain a lower bound for the left hand side of (6), without

recourse to additive energy. Our method via the bound (5) appears to be simpler.
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Ramana and O. Ramaré [25]. This method was originally used to obtain an upper
bound for additive energy of “dense” subsets of primes, the subject of the second

part of the thesis, which we now outline.

2 Additive energy of dense subsets of the primes

The additive energy of subsets A, B of the integers, denoted by F(A, B), is defined
by
E(A B) = \{(xl,x%yl,yg) €cAxAxBxB: 1ty = X2+ y2}| (2)

The additive energy E(A, B) of A and B is an important quantity in additive com-

binatorics. It is related to |A 4+ B, the cardinality of the sumset A + B, by
|A+ B|E(A,B) > |A]|BJ*. (3)

This follows from an application of the Cauchy-Schwarz inequality. Thus, upper
bounds on the additive energy F(A, B) translate to lower bounds on |A + B|. The

converse, however, is not true.

In a paper [25] on a question of A. Sdrkozy, which is described in Section 3 below,
Ramana and Ramaré showed that for any a € (0,1) and A C (N,2N] NP with

|A| > o|P N (N, 2N]|, we have

|A 4
< J L N _
E(AA) < (2 + o(a))e oz log log - (4)



Using the linear sieve they showed that

|Al|B]
Py. R 1
NiaB < log N (1)
where R = —IAI}%BF]?\IG 7. Our contribution to the aforementioned question of Sarkozy

et al., detailed in Chapter 3 of the thesis, begins with observation that the bound
(1) can be obtained by a simple counting argument and the Chebyshev upper
bound. Note that (1) is implied by the trivial estimate Py.4p < |A||B| unless
|A||B| > ﬁ. We then improve (1) under this assumption on |A||B| by proving

the following theorem.

Theorem 1.1. Let A, B be subsets of {1,..., N}, where N > 1 is an integer and

suppose further that |A||B| > ﬁ. Then we have that Py.ap < ﬁ—'f}' log log R.

This upper bound for Py.4 g is optimal, up to the implied constant, in general. In
fact, we have the following proposition, which corrects the conclusion of Example 2,

page 36 of [3].

Proposition 1.1. Let N > 1 and k < loglog N be integers and let my = Hpgkp.
Thenif A={1<a< N:a=0modmy} and B={1<b< N:b=1lmodmy} we
have that

A||B
|10! N| loglog R.

Py.ap >

As we show in Chapter 3 of the thesis, this proposition can be easily deduced from
the Siegel-Walfisz theorem. For the proof of Theorem 1.1, we first reduce to the case

when A and B are “well-distributed” subsets and then apply the method of D.S.

X



1 Primes in sumsets

Let S be an infinite subset of the natural numbers N. An asymptotic additive
decomposition of S is a pair of subsets (A, B) of N with |A[,|B| > 2 such that
all large enough elements of S can be written as a + b for some (a,b) € A x B.
When such an asymptotic decomposition of S exists, S is said to be asymptotically
additively decomposable. A famous conjecture of Ostmann (see page 13 of [23]),
often called the inverse Goldbach conjecture, asserts that the set of prime numbers
P is not asymptotically additively decomposable. The following result of C. Elsholtz

see page 1 of [7]) gives a necessary condition.
(see pag g

Theorem 1.1. Suppose that (A, B) is an asymptotic additive decomposition of P
then we have that

L1/2 y 4

W < A(z), B(z) < z/*(log x)*,

where A(x), B(z) are the counting functions of the sets A, B respectively.
This result reduces Ostmann’s conjecture to the following :

Conjecture 1.1. For any § > 0 and all subsets A, B of {1,2,..., N} with |Al],|B| >
N°, the sumset A+ B contains a composite number when N is a sufficiently large

integer.

In [3, Section 5|, A. Sarkozy, A. Balog and J. Rivat pose a question which goes in
the opposite direction to the above conjecture 1.1. More precisely, given subsets
A,Bof {1,...,N}, where N > 1 is an integer, they ask for optimal upper bounds

for the number Py.4 p of pairs (a,b) in A x B such that a + b is a prime number.
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SYNOPSIS

This thesis contains four principal chapters. The first of these, Chapter 3, deals with
a question of A. Sarkozy, A. Balog and J. Rivat which asks for optimal upper bounds
for the number of pairs (a,b) of integers in A x B whose sum is a prime number,
where A and B are subsets of {1,2,..., N} and N is a large enough integer. Our
contribution to this question is described in Section 1 below. Chapter 4 gives an
asymptotically sharp bound for the additive energy of a pair of “dense” sets of prime
numbers in [1, N]. This bound allows us to recover a theorem of K. Matoméki that
gives an optimal lower bound for the density of the sumset of a pair of subsets of the
primes with given relative lower densities in the set of primes. Matomaki’s uses the
methods of B. Green, B. Green and T. Tao, whereas our method is essentially simpler
and stems from a method of D.S. Ramana and O. Ramaré, which is a variant of the
original method of I. Ruzsa and O. Ramaré [26] . The contents of this part of the
thesis are discussed in Section 2 of this synopsis. In Chapter 5 of this thesis we give
a chromatic version of the well-known theorem of L.K. Hua on the representation of
integers as a sum of squares of prime numbers. A precise statement of our result is
in Section 3 of this synopsis. In the sixth and final chapter of this thesis we obtain
a slightly improved version of a result of K. Henriot on the existence of non-trivial
solutions in the prime numbers to a translation invariant system of linear equations
over Z of “complexity one ”. Further, we generalise this result to cover Chen primes
in particular. Here by a Chen prime is meant a prime number p such that p 4 2 has
at most two prime factors and each of these factors is at least p%. The contents of

this chapter are discussed in Section 4 below.
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method appears to be substantially simpler.

Chapter 5 of this thesis is also based on joint work with Gyan Prakash and D.S.
Ramana. The main result of this chapter is Theorem 5.1.1. This theorem gives
a close to optimal upper bound for the smallest integer r(K) such that given any
colouring (or partition) of the set of squares of primes D in K colours, every suffi-
ciently large integer is expressible as a sum of at most r(K) elements of D, all of
the same colour. Indeed, a pair of problems proposed by A. Sérkézy in [31] ask for
analogous results when D is replaced by the set of integral squares and then by the
set of prime numbers. These problems were given nearly optimal solutions by Gyan
Prakash, Ramana and Ramaré [24] and by Ramana and Ramaré [25] respectively.
The problem for the squares of prime numbers was orally posed to us by F. Hen-
necart and was independently considered by G. Chen in [4]. Our Theorem 5.1.1
improves on Chen’s result, which is r(K) <. K?™ and was hithertofore the best

known bound on r(K).

Chapter 6 is based on the joint work with Gyan Prakash. In [10] Green and Tao
showed that there are infinitely many non-trivial arithmetic progression of length
three in the set of Chen prime numbers. Such arithmetic progressions are a particular
cases of a linear patterns of complexity one. In Chapter 6 we study more generally
linear patterns of “complexity” one in sifted sequences. These sequences include
the Chen prime numbers and many other arithmetically interesting sequences. Our
main result here, Theorem 6.1.2, generalizes the theorem of Green and Tao [10,

Theorem 1.2] and improves on the result of Henriot [15, Theorem 2].



This thesis separates into two parts. In studying the problems of the first part,
carried out in Chapters 3 through 5, we rely a common strategy that goes back
to a work of I. Ruzsa and O. Ramaré [26]. The principle here is to reduce to the
problems considered to what we have called local problems, treated in Chapter 2.
The final Chapter 6 forms the second part of the thesis. Here we expand on the
methods of K. Henriot[15] and Shao [33], stemming from the work of B. J. Green
and T. Tao [10].

Chapter 3 of this thesis is based on our paper [19], in which we have partially
answered the following question of A. Sérkozy, A. Balog and J. Rivat [3]. Given
subsets A, B of {1,..., N}, where N > 1 is an integer, determine optimal upper
bounds for the number Py.a p of pairs (a,b) in A x B such that a + b is a prime
number. Theorem 3.1.3, which is the main result of Chapter 3, gives an essentially
optimal answer to this question under the hypothesis |A||B| > ﬁ. This result

considerably improves on the upper bound for Py.4 p originally obtained in [3],

which is non-trivial only under the aforementioned hypothesis.

Chapter 4 of this thesis is based on joint work with Gyan Prakash and D.S. Ramana.
Here we obtain an essentially optimal upper bound for the additive energy of dense
subsets of primes which is stated as Theorem 4.1.1. Using the classical relation
between the additive energy and the cardinality of the sumsets we then recover from
our theorem the essentially optimal lower bound for the asymptotic lower density of
the sumset of a given pair of subsets of the set primes numbers, originally obtained

by K. Matoméki in Theorem 2.1 of [20], using the methods of Green and Tao. Our



CHAPTER

Introduction

This thesis is centered around certain additive problems on the set of prime numbers,
the set of squares of primes numbers and the set of Chen prime numbers. Here by
a Chen prime number we shall always mean a prime number p such that a p + 2

3/11 Each of these sets is

has at most two prime factors, each of which is at least p
defined by multiplicative conditions and, as has been the experience so far, additive
problems on sets of integers that are easily described from the multiplicative point

of view tend to be difficult to resolve or are, at any rate, interesting.

The purpose of the present chapter is to give a brief description of the problems
considered in Chapters 3 through 6, which are the principal chapters of this thesis.
A more detailed introduction their contents is given in the leading section of each
of these chapters. The reader may also wish to refer to the Synopsis, on pages
vii through xvi, which is essentially a collage of the introductory sections of these

chapters of the thesis.



also an extreme point of Ky, such that f(z*,y*) = f(z*,v) = f(u,v). In particular,
we have f(z,y) < f(u,v) = f(x*,y*) for all (z,y) € K1 x Ks.

(ii) Let us suppose that z* = («F,..., 2% ) be an extreme point of Ky with two of
its co-ordinates x} and r} with respect to the canonical basis {e1,..., ey} of R™
lying in the interval (0, D;). For a small enough § > 0, we consider two points
y=a"—0(e; —e;) and z = 2" + d(e; — ¢;) of R™. Then we have y,z € Ky and
x* = y+ 2/2. Thus we get a contradiction to the fact that z* is an extreme point of
K. Thus, we conclude that if z* is an extreme point of Ky, then, excepting at most
one, all co-ordinates of z* are equal to either 0 or D;. Moreover, if [ is the number
of co-ordinates of z* that are distinct form 0 then we have, from the condition in

the definition of Ky, that [ must satisfy the inequality Dy > P, > (I — 1)D;. O
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Chapters 3 through 5 to the local problems described here.

Suppose that n,m > 1 are integers and let P;, P, D1 and D, be real numbers > 0.

Further let

i=1

and

Ky = {(xlv'-wxn)ERn : Z%=P2, 0<x, <Dy forallz} )
i=1

Let us also assume that IC; and Ky are non-empty sets. Then Iy, Ky are compact

and convex subsets of R™, R" respectively. Then we have :

Lemma 2.4.1. If f : R xR" = R a bilinear form with real coefficients c;; defined

by f(z,y) = > 1<i<m, Ty, then
1<j<n

(1) there are extreme points x* and y* of Ky and Ky respectively so that f(x,y) <

flz*,y*) for all z € Ky, y € Ks.

(12) If o* = (23,25, ..., 2%)) is an extreme point of Ky then, excepting at most one
i, we have either x7 = 0 or ] = Dy for each i. Also, if | is the number of © such
xf # 0 then IDy > Py > (I — 1)D;. A similar result holds for the extreme points of

K.

Proof. (i) suppose that f(x,y) attains its maximum on the compact set K; x Ko
at (u,v). Then the map = +— f(z,v) is linear and thus attains its maximum on the
compact convex set [C; at an extreme point of Iy, say x*. We must necessarily have

f(z*,v) = f(u,v). Arguing similarly with the linear map y — f(z*,y) we obtain y*,
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(E(k,t))t%: pr(k,t) §<L>4/texp 832!

p|U

1
> Ik (2.52)

p§A25

From (3.20) on page 70 of [28] we deduce that Z;DSAE]% < (log50)loglog A, since
A > 4. On combining this remark with (2.52), (2.38) and (2.50) we then conclude

that for any even integer t > 2 we have

U >2|X||y\, (3logA

T(X, V)] < (¢(U) ) P p

+ 8 (log 50) £ 2" log log A> . (2.53)

Let us now set vlog?2 = log (ﬁ) and suppose that Ay > €€ is such that we

have % > 12 and v > 4 for all A > Ay. For such A we take ¢ in (2.53) to be
an even integer satisfying v <t <wv + 2. Also, with w = %‘—ﬁiﬂﬂ we have w < 1

(1—w) log log A  Thus

og o % < 1 < (log 2) (1+2w) and t32t < 321)321; < 32log A

and v = — v —  loglog A (log 2)3(log log A)3

Substituting these inequalities in (2.53) we obtain (2.39) for A > Ay. To obtain

(2.39) for e < A < Ay it suffices to take t = 2 in (2.53).

2.4 An optimization principle

In this section we state and prove an optimization principle, which is a minor variant
on a similar principle from [25], whose proof of this principle we follow. As stated

in Section 2.1 this principle plays a key role in reducing the problems considered in
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this we see that

Z Z Hep(l"’y) < Z Z H Hep(mi,y). (2.48)

yeY \z€X p|U YEG (z1,22,...,x¢)€Xt 1<i<t p|U

Interchanging the summations over G and X! on the right hand side of the above
relation and applying Holder’s inequality again, this time to exponent %, we obtain

that the right hand side of (2.48) does not exceed

[SIEY
LN

x|t > ST I et w) : (2.49)

(z1,22,...,x0)€Xt \yeG 1<i<t p|U

Finally, on expanding the summand in the sum over X" in (2.49) and extending the

summation to all of G' we conclude using (2.48) and (2.47) and a rearrangement of

XYL (DU N (N (
< 5 () € (51) )

terms that

where for any integer &£ with 1 < k <t we have set

8(k:,t)=¢(é)2t 3 S T I elow) (2.51)

(Y1,42,-yt) EG (x1,82,,...,4¢)EGE plU 1<i<t,
1<i<k.

The Chinese Remainder Theorem gives G = [[,;; (G, \ {0}). Moreover, for all
plU and (z,y) in (Z/UZ)* we have ¢,(x,y) = e)(zp,y,). It follows that E(k,t) =
[L Eo(k, 1), where E)(k,t) is as defined by (2.41). Using (2.42) with k = 5, valid

on account of Corollary 2.3.3, and recalling that U = [] . 425 p We then obtain
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2.3.2 Proof of Theorem 2.3.1

We shall write G for the set (Z/UZ)" and continue to use G, for Z/pZ. Also, for any
x in Z/UZ and p|U we denote the canonical image of x in Z/pZ by z, and, to be
consistent with the notation of preceding subsection, write A,(z) for the Legendre

symbol (Z2). Then we have that

T < SII (1 thle +y + C>) | (2.45)

zEX yeY p|U

since 0 < 14 \y(2? +y? + ¢) < 2 for any pair (z,y) in X x Y, with equality in
the upper bound for every prime p|U when z% + y? + ¢ is an invertible square in
Z/UZ. On extending the definitions of ¢, and ¢, from Subsection 2.3.1 by setting
5p(x,y) = Mp(2® + 2+ ¢) and e,(z,y) = 1 + 6,(z,y) for any (z,y) in (Z/UZ)* and

p|U, we may rewrite (2.45) as

TN < = 3 S [T alen). (2.46)

reX ye) plU
Let t > 2 be an even integer. Then an interchange of summations followed by an
application of Holder’s inequality to exponent ¢ to the right hand side of (2.46) gives

1
(AN

|Tc(x,y)|§|f(|U)t SIS ey . (2.47)

yey \zeX p|U

To bound the sum over y € )Y on the right hand side of the inequality above, we

first expand the summand in this sum and extend the summation to all y € G. By
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Ep(k;t) =By s, B g,z H ep(Ti,Yj)- (2.41)

Using this notation we state our corollary as follows.

Corollary 2.3.3. For any even integer t > 2 we have

§,(t)2,1) < (%)Qt exp (4t;2t> . (2.42)

Proof. Since t > 2 is an even integer. By taking k = ¢/2 in (2.7) we get that

Ep(t/Qv t) = Eyl,yz ~~~~~ ytEfL‘Ll‘z ,,,,, Tt H ep(xiv yj)' (2‘43)

1<i<t,
1<5<t/2.

Observing that the summands in the sum are independent of the variables y; for

t/2 < i <t, and allowing the sum over full G, we get

t/2

gp(t/z,t)g(pp_—l)% 3 S I anEi i +e).

/2 (x1,T2,..2¢) G 1<I<t,
(Y1,y25.91/2) €EGp " 1<5<t/2.

(2.44)
Substituting the upper bound on the sum in the right of (2.44) by Lemma 2.3.3, we

conclude the inequality (2.42) holds.
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As stated in Section 2.1, this theorem is only slightly different from Theorem 2.1 of
[24]. For the convenience of the reader we give a full proof, reproducing that in [24]
with minor modifications. The preliminaries required for the proof are covered in

Subsection 2.3.1 below, while the proof itself is presented in Subsection 2.3.1.

2.3.1 A Sum in Z/pZ

We write G, for the ring Z/pZ when p is a prime number. Also, \,(x) shall denote

the Legendre symbol (%), for any = in G,,.

Lemma 2.3.2. Let p be a prime number and ¢ an element of G\. Then for any an

even integer t > 2 we have

Z Z H 1+ A (22 + y] + c)) < P2 exp (415;275) |

t/2 (z1,22,...2¢)EGE  1<i<t,
(y17y27~-~7yt/2)er p ISJSt/Q

(2.40)
PROOF.— See the proof of the Proposition 2.2 of [24].

Before stating a corollary of the above lemma, let us introduce some additional
notation. Let p be a fixed prime number and let ¢ be a given element of GG,,. For any
(z,y) in G2 we set 0,(x,y) = A\p(2® +y° + ¢) and €y(z,y) = 1 + dy(z,y). We endow
G,\{0}, and likewise (G, \ {0})" for any integer ¢ > 1, with their uniform probability

measures and write E, and E,, ., ., respectively in place of e Zmep {0} and

.....

ﬁ le’mthe%\{o}. Finally, we define &,(k,t) for any integer Ewithl<k<t
by

17



We bound the right hand side of (2.35) by using (2.28) as

1X||V| exp (-Z%) exp 2(5(){,3/)21%) +Z]§ : (2.36)

peJ peJ pEJ

where L£(X,Y) = log (%) < 9log R. We obtain (2.33) by noticing that

exp(—zl) < 4(P) exp(i) and Zi < % (2.37)

2.3 Local Problem for squares

Let A > ¢ be real number and U = I1,<,, p, where w = A?. Suppose further that

p<w

X and Y are subsets of (Z/UZ)" of density at least %. That is,

|X|and | Y| > @ : (2.38)

For a given element ¢ of Z/UZ, let T,.(X,Y) denote the set of pairs (z,y) € X x Y

such that 22 + y? + ¢ is an invertible square in Z/UZ.

Theorem 2.3.1. For all A, U, X, Y and ¢ as above, we have

(2.39)

logloglog A
U >2 B N <3logZ—|—O(—ﬁ)gfﬁ)g:g4 ))1ogA

e (5) iy o

loglog A

16



since 3 ¢ ; z% <D nst 5 <2<logT"

O

Remark 2.2.2. Note that the upper bound given by (2.28) for Ry (U, V), s) is uni-

form in s.

Before stating next corollary we fix some notation. Let R > 1000 be a real number
and let U = Hpng, Mg = (Rlog R/ loglog R)* and @ = log Rloglog R. We write
T(X,)Y) for the number of pairs (x,y) in X x ) such that = + y is an invertible

element modulo U for any subsets X,) C Z/UZ.

Corollary 2.2.3. Let X,)Y C Z/UZ with |X|,|Y| > U/Mg. Then we have

o(P) 36 |
1@y < 2 len (g ) (2.3

where P =]

<p<R p

Proof. Let Z = Z/UZ, I be the set of primes dividing U and Z, = Z/pZ for any

p € I. Then the Chinese remainder theorem gives

z=1[2. (2.34)

pel

Let X = X,Y = —) and J be the subset of I consisting of primes p such that

Q? < p < R. Then we have

X)) < {(z,y) e X xY |z, #y, forall pe J}|. (2.35)

15



w="T" and let U be a divisor of W. Let U,V C Z/WZ with [U||V| > (W/TD)?
where D is positive real number satisfying TD < T'. For any s € Z/WZ we then

have

(U 1
RuU,V.s) < % UV exp<8(1ongﬁ)m>, (2.28)
plU

where Ry (U, V,s) = |{(a,b) eU XV :(a—b+s,U) =1}

Proof. Let Z =Z/W'Z, I be the set of primes dividing W and Z, = Z/pZ for any

p € I. Then the Chinese remainder theorem gives

z=][z2- (2.29)

pel

Let X =U,Y =V —s and J C I be the set of primes dividing U. Then we have
that
RuU,V,s)={(x,y) € X xY |z, #y, forall pe J}. (2.30)

Also, L(X,Y) = log (%) = log (%) < 2log(T'D) < 2logT?, since TD <
81 < T?*. We now obtain (2.28) using (2.5) to bound the right hand side of (2.30)

on recalling that w = T* and taking note of the following remarks. We have
1 2 1 U 2 )
exp (— Z —) < exp <E —2> H(l —=) = %exp (Z —2> . (2.31)
peJ p peJ p peJ p peJ p
by the inequality —log(1 — u) < u + 2u? valid for 0 < u < 1/2. Finally,

Z I% < <log T Z %) ’ (2.32)

peJ peJ

14



Then on recalling the definition of £(X,Y") from the statement of Theorem 2.2.1 we

may rewrite (2.23) as

-eu .

Tx.7) < xivies(“E ) bz (2.25)

We give Z the uniform probability measure. The random variables {€};c; on Z x Z
form an independent family, since €;(z,y) depends only on the ¢ th co-ordinates of
x and y. Thus, if for each ¢ € T we write F(Z;,t) for the left hand side of (2.6) with

A = Z; we then see using (2.6) that

D(Z.t) = [[F(Zi.t) < exp (—tQZ%thSZ%) . (2.26)

ieJ ieJ ieJ Y

Since (2.25) is true for any integer t > 1, we conclude using (2.26) that

THX,Y) < |X||Y]exp (-Z%) inf exp(@ +t2%). (2.27)

t>1,
ieJ =V icJ ¢

We obtain (2.5) from (2.27) on remarking that when a,b > 0, inf;>1 (¢ + bt) <
teZ.

2(ab)z + b. Indeed, denoting this infimum by m(a.b) we see that if @ < b then

m(a,b) < a+b < 2(ab)z + b and if a > b we take ¢ty € Z such that (%)% <ty <

1
(%) 2 41 to get m(a,b) < &L+ bty < 2(ab)% + b, as required.

We now derive following two corollaries of this theorem, which will be applied in the

following chapters.

Corollary 2.2.1. Let T' > 4 and | > 2 be real numbers and W = Hpgwp, with

13



TH(X.Y) < | X[~ (Z (Zﬂem,y)) ) . (2.20)

zeX \yeY ieJ
We extend the summation over x € X on the right hand side of (2.20) to x € Z,

then expand the summand and finally interchange summations to get

TH(X,Y) < |X|'" > S T IeEw | - (2.21)

(y1,Y2,--y1) €Yt v€Z 1<k<t icJ
A second application of Holder’s inequality to exponent ¢ now shows that the term

in the brackets on the right hand side of (2.21) does not exceed

Y (ST Tebem) oo

(y1,92,--,yt) €Yt \xcZ 1<k<t icJ

We extend the sum over Y in (2.22) to Z', expand the summand and substitute

the resulting expression into (2.21) to obtain

-
D

TH(X,Y) < |X|'77 |y > > I T T et w)
(Y1,Y2,- Y )EZE (21,22,...,01)EZE 1<I<t 1<k<t i€J]
(2.23)
Note that the expression in the brackets on the right hand side of (2.23) does not

depend on the subsets X and Y. Let us set

D(Z,t) = ﬁ > > IT 11 Ieteeu) - (2.24)

(:I,/hyz,.,.,yt)EZt (z1,22,...,0¢)€Zt 1<I<t 1<k<t icJ

12



We now substitute (2.14) into (2.13) and use (2.15) to get

(2t—1)  3()+ ()
F(t,t) < (1— AT TAp )F(t—l,t—l). (2.16)

for any integer ¢t with 1 < t < |A|. Using 1 4+ u < exp(u), valid for all real u, and

recurrence on t together with F'(1,1) < exp(—ﬁ}l) we get
Z r (2T - ]') 3(t) + 42 T - (T) ¢
F(t, 1) < exp <_ = S|tA| + 2 | AE sl (2.17)

from (2.16) when 1 < ¢ < |A|. We obtain (2.6) for such ¢ from (2.17) since

> 1<p<t(2r — 1) = #* and since for any integer ¢ > 1 we have

3(2) 4y (;) < 37’52+2/0tu(u—1)du < . (2.18)

1<r<t—1

O

Proor or THEOREM 2.2.1.— For cach i € J and (z,y) € X x Y, let ¢;(z,y) =1

if x; # y; and be 0 otherwise. Then we have that

%(va) = ZZHQ(‘%Z/)' (2‘19)

reX yeY ieJ

Let t > 1 be an integer. An application of Holder’s inequality to exponent t to the

right hand side of (2.19) gives

11



Since for any y,vy’ in A we have

1 oy, v ,
E, (3(z) = 7 and  E, (8(x,9)(r.y)) = "LY) (2.10)
Al Al
we then deduce that
m m 1
1= <k, ] o) € 1- S ). (1)
|4 lgm Al 1A 1§§§m
Substituting this into (2.8) we obtain
1— F
(1= 1) Flmn =1 < Pl
(2.12)

F(m,n— 1)+(l)2F(m— I,n—1).
IAI |4

Putting successively m = n =t and m =t —1, n = t for 1 < t in the upper

inequality in (2.12) and using F'(m,n) = F(n,m) in the latter case gives

Ft,t) < (1 _ |7f|> Flt,t—1)+ %F(t t—1),  (213)
Fltt—1) < (1 - %) Flt—1,t—1)+ (|i4|12) Flt—1,t-2).  (2.14)

Also, the lower inequality in (2.12) with m = n =t — 1 implies

t I3
(1—m)F(t—l,t—Z)gF(t—l,t—l). (2.15)

10



A, and likewise A", for an integer n > 1, their uniform probability measures and
write E, and E,, ,, ,, in place of |A| szIAI and |A|n E(m,xz,.‘.,xn)eA" respectively.
Also, we will use these notations in the same sense with other letters in place of x.

For any integers n, m > 1 we set

F(m,n) = Ey iy, g1, 22,020 H H E(ajlmyj)' (2.7)

and define F(m,0) = F(0,n) = F(0,0) = 0. Thus F(m,n) = F(n,m) for all

integers m,n > 0.

For an integer ¢ > 1, the left hand side of (2.6) is the same as F(t,t), which

we shall bound by recurrence on t. Since (2.6) is trivial when |A] < ¢ and since

_ L
F(l1,1)=1- ¥
1

i < exp(—rg), we shall assume that 1 < ¢ < |A[. Now let m,n be

14] A

integers with |A| > m,n > 1. Then we have

F(m,n) = Ey, ys....ym,a1,22, 001 H e(zr, yj) Eq, H €(Tn, y;) (2.8)

1<j<m, 1<j<m
1<k<n-—1.

To bound the expectation over x,, in (2.8) we let §(x,y) = 1 — €(x,y) and apply the

truncation inequalities

Z 5 xnny] €(xn7yj)

1<j<m 1<j<m (2 9)
Z (S T’rhy] Z (S(Tn7y7)(s(77'm7yl)
1<j<m 1<j<I<m



method of [26] and [25] relies only on one application of Holder’s inequality rather

than the two applications that we use following [24].

2.2 Local Problem for invertible elements

Theorem 2.2.1. Let 7 be the product of a finite family of finite sets {Z;}ie; and

X and Y be non-empty subsets of Z. Given a subset J of I, let

T;(X,Y) = {(z,y) € X XY | #y; foralli € T}, (2.4)

where x; and y; are the i-th of co-ordinates of x and y respectively for each i € I.

Then we have that

T](X,Y)g|X\|Y|exp<—z|zli|>exp 2<£(X,Y)Z|Zli|2> +Z|Zli|2 ;

1cJ

where L(X,Y) = log ( i )

X1y

The proof of the theorem depends on the following lemma, which we take up first.

Lemma 2.2.1. Let A be a finite set and for any (x,y) € A? let us set €(x,y) to be

1 if x #y and to be 0 otherwise. Then for any integer t > 1 we have

t2 3

1 t
VS 2 > 1T I cwnwm) < exp(—m+|A—|2). (2.6)

Y1,Y2,--yt) EAL (x1,@2,...,4) €A 1<I<E 1<k<t

Proof. Tt will be convenient to use probabilistic terminology. Accordingly, we give



~
Sl=

Twva(X, V) < X[y > > I I ewelwnwm) |

(Y1,Y2,-Yt)EZL (T1,22,...,w5) €4 1<I<s 1<k<t

(2.3)
where Z = Z/WZ =[],y Z/pZ, by the Chinese remainder theorem. Note that
the quantity in the brackets in (2.3) is independent of X and ). We estimate this
quantity by exploiting the product structure of Z and using induction on integers ¢

and s, which is then chosen to optimise the resulting estimates.

The technical details of the steps in the above outline are different in the two cases
that interest us, namely, invertible elements and squares. In particular, in the
former case, the details are essentially of a combinatorial nature. That is, one may
ignore the ring structure on Z/WZ, retaining only the fact that it splits into a finite
product of finite sets. This is the reason for the combinatorial formulation of the
local problem for invertible elements expressed by the statement of Theorem 2.2.1

below, from which our results on this local problem are deduced as corollaries.

An inequality essentially equivalent to (2.5) of Theorem 2.2.1 is stated in Theorem 3
of [26], but the proof of this theorem given in [26] is incorrect, as pointed out in

Remark 2.4 on page 965 of [25]. When corrected this proof yields Proposition 2.3

1

of [25]. The method used to obtain these results gives E(X,Y)% (Ziej ﬁ)g 0

place of (L(X Y)Y e ﬁ) * in the second exponential factor on the right hand
side of (2.5), as shown in [25]. While this difference is unimportant to the problem

considered in Chapter 3, it is crucial to the problem in taken up in Chapter 4. The



trivial bound for Tyw.o(X,)). We shall, however, be interested only in the following

two cases :
(i) ¢(x,y) = x — y + c and € is the set of invertible elements of Z/WZ.

(i1) ¢(x,y) = 2% + y? + c and Q is the set of invertible squares in Z/WZ.

Here ¢ is a given element of Z/WZ.

We call (i) the local problem for invertible elements and (ii) the local problem for
squares. Our results in the first case are given by Corollaries 2.2.1 and 2.2.3. These
corollaries will be applied in Chapters 4 and 3 respectively. The local problem for the
squares was treated by Gyan Prakash, Ramana and Ramaré in [24]. We state their
result with minor modifications as Theorem 2.3.1 and apply in it Chapter 5. An
essential role in the reduction of the problems considered in the following chapters
to the local problems studied here is played by the simple optimization principle

described in final section 2.4 of this chapter.

We obtain our results on the local problem for invertible elements by extending the
method of [24] for the squares to this case. Let us summarise this method in general

terms. To bound Ty .o(X,Y) we begin by noting that

TW,Q(Xay) = ZZEWQ(%Q)- (2-2)

reX yey

where ey o(z,y) = 1 if ¢p(z,y) ¢ Q and is 0 otherwise. Two applications of Holder’s

inequality to integer exponents t > 1 and s > 1 yield



‘CHAPTER 2

The Local Problem and an Optimization

Principle

2.1 Introduction

We begin by describing the problem considered in this chapter in fairly abstract
terms. Suppose that W is a square free integer and that X',) and () are subsets
of Z/WZ, endowed with its natural ring structure. Supposing further that ¢ is a
function from Z/WZ x Z/W'Z to Z/W'Z, our problem is to bound

Twal(X,Y) = {(z,y) € X x Y| d(z,y) € Q}]. (2.1)

This is the local problem of the title of this chapter. Typically, the square-free
integer W is the product of all primes numbers not exceeding a certain bound and

X, Y are large subsets of Z/WZ. Of course, in the generality stated, one has only the



N? Al B
Py log log R,
Nid,B > o(my)my log N > log N 0808

which proves the proposition.
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3.6 Optimality

We prove Proposition 3.1.4 here. Indeed, if 74 g(n) is, as before, the number of pairs

(a,b) € A x B such that a + b = n then

Pn.ap > Z ra.5(p). (3.50)

J<p<N
p=1modmy

We observe that for any integer n = 1 mod m; and n > 2my, we have

n n
ra(n) > [m_k] > oy

Using this lower bound for 74 g(p) in (3.50) when N > 4my, we get

1 N
Py > > 1. 3.01
N;A,B = 2 NZ p= Ay, NZ ( )
7SPSN7 ESPSNv
p=1modmy. p=1modmy.

By the Chebyshev bound logm, = Zpgk logp < loglog N. Thus on using the

Siegel-Walfisz theorem (see [17, page 419]), we have

N
Yool ———— (3.52)
N open, ¢(my) log N
p=1modmyg.
Merten’s formula gives the the upper bound ¢(my) < ok . Also, [A] ~

mﬂk, |B| ~ mﬁk and therefore R ~ my, from the definition of R given in the statement

of Theorem 3.1.2. From (3.51) and (3.52) we then get
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and

B 2|B|
D2 S S y
V| =1 Y

where we use |X| > |g—i" > 2 and |Y| > % > 2, valid by condition (i) given at the

end of Section 3.4. These bounds on Dy, D, together with (3.45) and (3.46) give

U_ [As][Bi] .
T(U) < —— b, 3.47
A RTTP PR oA

, - A L
Note that X', ) are subsets of Z/UZ with |X| > |D—31| > MLR and |Y| > % > MLR and
that the sum on the right of above relation is nothing but 7'(&’, ) of the Corollary
2.2.3, which gives

U ¢(P)

" <5

36
Azl |B —_ 3.4
aal il e () (3.48)

where P = []n._,cpp,U =[l,cpp and @ = log R loglog R. By Mertens’s formula

we then get
T(U) < |A||B| loglog R ex _c < |A]|B| loglog R (3.49)

From (3.49), (3.43), (3.36), (3.32) and (3.27) we then conclude that

[Al1BI

Py
Nida, B <K log N

loglog R,

which together with (3.23) yields Theorem 3.1.3.
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Z moa,(a) = |As] with 0 < ma,(a) < Dy,

acAs
and

> mp, (b) = |By| with 0 < mp, (b) < D,.

bEBl
Let us set c(a,b) to be 1 when a + b is invertible modulo in Z/UZ and to be 0
otherwise. Then from (3.44) we get that

U ,
T(U) = i) > cla,b)ma,(a)mp, (b). (3.45)
(a,b)€A3XB1

We estimate above sum with the help of the optimization principle given in Section

2.4 of Chapter 2. From the Lemma 2.4.1, we then have that

>, cabyma(a)ymp(b) < Y clab)aly;, (3.46)
(a,b)eAzx By (a,b)eAzx By

for some 2} and y; with a varying over Ay and b varying over B, , satisfying the
following conditions. All the x are either 0 are Dy, excepting at most one, which
must lie in (0, Dy) and similarly, all y; are either 0 or D,, excepting at most one,
which must lie in (0, Dy) . Moreover, if X and ) denote, respectively, the subsets
of As and B, for which z* # 0 and y; # 0 , then |X| Dy > |As| > (|| —1) Dy and
|Y| Dy > |B1| > (|]Y| —1) Dy . Thus, from this we have the bounds

Ay 2)Ay)
D, < <
A= T
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q > R, the triangle inequality applied to (3.40) shows that

T-TU) < _ Y~ [As(a/9)|Bila/a)l + O (JA]|B) . (3.41)

e @) o

We estimate the sum over ¢ in (3.41) by using m < ¢(q) and the large sieve

inequality (3.8). Since logl% is decreases with ¢ for ¢ > 10, we get that

T - 1(U)] <

loglog R .
—5 N |A|Y/2 | B|V/? (3.42)

< |A]|B| loglog R, (3.43)

1000 N
|A|1/2‘B|1/2 *

since @ =
Now we estimate T'(U). A simple argument using standard properties of Ramanujan
sums, given below (3.23) on page 969 of [25] shows that

v

0= 5o

{(a,b) € A3 x By : (a+b,U)=1}|. (3.44)
As before, we use As to denote the image of A under the natural projection from
the set of all integers Z to Z/UZ and similarly denote by B, the image of B; .
Further, for any residue class a modulo U, let my,(a) be the number of elements
of the set A3 that belongs to this residue class. Similarly, we define mp, (b) for any
residue class b modulo U . Let D, = % Mp and Dy = |—5| Mp . We then have using

condition (ii) given at the end of the preceding section that
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(3.36) follows from(3.37).

We now consider the contribution to the sum on the right-hand side of (3.35) from

q in the range 1 < ¢ < N'/%. We set

T= > wgl) Y. Asa/q)Bila/q). (3.38)

1<q<N1/8 amod* q

and use asymptotic formula for w(q, L) given by (3.14) with , k = 100. The contri-

bution of error term of this asymptotic formula for w(q, L) to T is

v(@) 1o — —
<qmEE X ot Y Al B/l (339

1<q<N1/8 amod* q

since L = N'/2. By the trivial bound 2"(? log 2¢ < ¢ we see that (3.39) is

<<ﬁ S 1&(a/)l [Bila/o)

1<g<N'/8 amod* q
N

WWW |B|'/* < |A|B],

<

by the large sieve inequality (3.8) and |A||B| > ﬁ . Thus we have

r— ¥ EDY /Bl +0AIB).

1<g<N1/8 amod* q

We recall that U = [, p . Then since R = % and |A||B| > %, we see
that U < N8 for all large N. We set T((U) to be the sum over q on the right-hand

side of (3.40) restricted to ¢|U. Since for all other ¢ we have either p(q) = 0 or
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after an interchange of summations. We note that

SIETEED O SEOECIUEED i S SO ]

n=0modd amodd n gld amod*q n
(3.34)

by orthogonality of characters on the group Z/dZ. On combining (3.34) with (3.33),
interchanging summations and recalling definition of w(q, L) from (3.13) together

with (3.30), we deduce that

SN = 3 wla ) Y Aa/a) Bila/e). (3.35)

1<g<L amod™* q

We estimate the contribution to the sum on the right-hand side of (3.35) from ¢

satisfying N'/® < ¢ < L by showing that

> wia ) Y Asa/q)Bila/g) < N5 (log N)* A2 |B|'/?
N1/8<q§L amod™* q (336)

< |A[|B).

Indeed, by (3.15) we have that the absolute value of the left side of (3.36) does not

exceed

(log 2L)* log 2L)%(2N|As|'/2|By|'/?)
TN SN [Asa/g)l1Bi(a/g)] < ! r N1/83| L2 (3.37)

1<g<L amod* q

where we have applied the large sieve inequality in the form (3.7) to left-hand side

of above relation. We see using |Az| < |A], |B;1| < |B| and |A||B] > 1oirv that
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From definition of 7(n) we easily see that

> " r(n) e(—nt) = As(—t)By(—1). (3.30)

n

Thus (3.28) and (3.29) give

S ) N < g [ IRl )

Applying Cauchy-Schwarz inequality to the above integral and using the Parseval

relation together with the fact that |As] < |A| and |B;| < |B| we get that

N
b 1/2 1/2
> rn)N(n) < {log N1 |A|Y2|B|Y2.

n

On recalling our hypothesis that |A||B] > ﬁ we then obtain

> rn)N(n) < % < |A||B]. (3.32)

Now we estimate first term on the right of (3.26). From the definition of A*(n) in

(3.11) we obtain

S )N ()=~ )" ud)logd > r(n), (3.33)

n 1<d<L n=0modd
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3.5 Proof of the Theorem 3.1.3

We shall prove (3.24) here by the method [25] with appropriate alterations. We
assume throughout that N is a sufficiently large integer. We begin by noting that if
(a.b) € A3 x By is such that a+b is a prime number, then by (i7i) above NY/& < a+b
and consequently é log N < A(a+b), where A is the Von Mangoldt function. It then

follows that
Pyoagp logN< 8 Y Ala+b), (3.26)

acAsz,beB;
We set L = Nz and substitute the decomposition (3.12) into the right hand side of

(3.26) to get
Pyagp log N < Y r(n)Af(n) + > r(n) N(n), (3.27)

where 7(n) is the number of pairs (a,b) € A3 x By such that n = a + b.

Let us first estimate the second sum on the right of the above inequality. Since

r(n) = 0 for n not in the interval [1,2N] , we have that

> am = [

n 0

(Zr(n)e(—nt)> ( > A%n)e(nt)) dt, (328

n 1<n<2N

by orthogonality of the functions ¢ — e(nt) on [0, 1]. By Lemma 3.3.1, we have that

b N ‘
> Nm)e(nt) < Tlog V)10 (3.29)

1<n<2N
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Therefore, to complete the proof of Theorem 3.1.3 we need to show that

[All B
log N

Proag B, < loglog R. (3.24)

To do this, we may assume that
(i) |As] > 222 0g and | B | > 22 M.

Indeed, if (i) does not hold, say, |As| < %MR, then using (3.5) and recalling the

value of My we have the stronger conclusion that

Lo N [AsRBI M |A|IB|
Ph. | As|2| By 2 R , 3.25
Nida,Br K logN| 3P 1BfF < log N Ul/2 < log N (3.25)
since U > eg, by the Chebyshev bound. A similar argument disposes the case

|B,| < @M r as well. By the definitions of A3 and B; given at the beginning of
this section, we also have

(17) {z € A3 : z = a(modU)}| < |ATZ|MR and [{y € By : y = b(modU)}| <
%]WR for any a € Ag,b € By ,

(4ii) each element of Aj is larger than N'/%.

These remarks bring us to our final section, where we prove (3.24) taking account
of the conditions (i), (ii) and (iii) above, thereby completing the proof of Theorem
3.1.3.
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from which and (3.20) we get

N
P e 2D, M2 A2 B 2
N;Ag,By < S(U) log N [Col 2 Da| 7 As |7 By
Now using |C1| < U, |Dy| < MLR and ¢(U) > —R, which follows from Mertens’s
formula, we get that
N logR
Pr:ag.B, < N\/_l 21 B|'2,

since A3 C A, By C B. Now recalling the definitions R and Mg we get that

[All B
log N

Pning. B, K loglog IR

Similarly, we get the bounds

|A[lB]

log1 :
Tog N oglog R

PN;A47B17 PN;A4,Bz <

Using these bounds in (3.17), we then see that

AllB
PN;AQ,B < PN;A37B1 —+ M loglogR (322)
log N

Thus, from (3.22) and (3.16), we conclude that

Al B
log N

PN;A,B < PN;Ag,Bl + loglog . (323)
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Clearly, we then have

Pyiays, = Y. Prnitg.ba,- (3.18)

aeCq,beDa

The summand on the right of (3.18) can be estimated as

PN§A3,avB2,b < |1/2 |Bz,b|l/2 s (3.19)

o00) Tog N 13

Indeed, if a pair (z,y) € A3, x Byy is such that  + y is a prime p,,, then p,, =

a+ bmodU. Since under the condition |A||B| > (51220]%2 we have R < 2log N and
thus U < N2 from the value of U and the Chebyshev bounds, the Brun-Titchmarsh
inequality (3.3.2) shows that there are at most qS(UZ§—1]\cfrgl\/' such primes p,,. Further,

each such prime can be written in at most min(|As,|,|Bapl) < |Asal'/?|Bay|!/?

many ways as a sum x + y, with « € A ,,y € Byy. These remarks yield (3.19).

Using (3.19) in (3.18) we then get

Pyoagp, < > [Asal? By (3.20)

a€C1,b€D>

N
¢(U) log N

By the Cauchy-Schwarz inequality applied to the sum on the right hand side of
(3.20), we have

1/2

> Aso P [BanP < CPID P YD Az |Bayl (3.21)

a€C17b€D2 aEAg,bEBz
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Let us now define

A3 ={zr € Ay: 2z = a(modU) for some a € C,},

By={y€B:y = b(modU) for some b € D;},
Ay={r € Ay: 2z = a(modU) for some a € Cy},
By={y€ B:y = b(modU) for some b € Dy} .

Then we have

PN;AzyB = PN;A3,B1 + PN;A3,BQ + PN§A47B1 + PN;A4,BQ . (3'17)

We first estimate Pp.4, 5,. To do this, for any a € 1213 = C; we define Az, by

Az, ={r€A3:2 = a(modU)},

and similarly for any b € By = Dy we define B,y by

Bypy={y€ By:y = b(modU)}.

Then we have a partition of A3 and By as follows:

As = Ugee, Aso and By = Upep, Bay .
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3.4 Reduction to well distributed subsets

Let N, A and B be as in Theorem 3.1.3. In what follows we take R = %,

as in Section 3.1, and for this R, we define U = HpSR p, Mp = (Rlog R/ loglog R)?
and @Q = log Rloglog R. Also, for any subset Z of Z, we denote by Z the image of

Z in Z/UZ under the natural projection map from Z.

Let Ay = AN[1, N8, Ay = AN [N NJ]. Then we have

Al|lB
Pyn.ap = Pyn.ayp+ Py, 5 < |A1]l|B| + Py, < % + Pn.a, B, (3.16)

when N is large enough, since [4;| < N5, |B] < N and ﬁ < |A||B.
We now estimate Py.a, 5. To this end, for any a in Z/UZ we define m(a) and n(a)
to be, respectively, [{z € Ay : x = amodU}| and |{y € B :y = amodU}| and

then set

. A
Cl = {(L < Ag . ’TIL(CL) S % A/[R},

~ B
Dlz{bGBn(b)§|—U|MR},

. A
Cy={a € Ay:m(a) > |—U2|MR},

~ B
DQZ{bEBZN(b)>|—(]|MR}.

Since > .im(a) = |A] and >, 5n(b) = |BJ, it follows that [Co| < % and
Dy| < 57

Mg °
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PrOOF.— The lemma follows from Davenport’s classical bound for )}, pu(n)e(nt),
given by Theorem 13.10 on page 348 of [17], by an integration by parts. See [25,

Section 3| for the details.

3.3.5 An arithmetical function

For any integer ¢ > 1 and a positive real number L > 1, let us set

{)logl
wla.ny=— Y MOl (3.13)
1<I<L,
l=0mod q

where p is the Mébius function. We then have the following estimates for w(q, L),

proved in [25, Section 2.1]. Here v(q) denotes the number of prime divisors of g.

Lemma 3.3.2. (i) For1<q< L'Y? | we have the asymptotic formula

B M 2Y(a) Jog 2¢ ‘
”W”‘w@+@<w%m0’ (3.14)

for any k > 1 and

(ii) for any q, L > 1, we have

(log2L)?

w(g,L)| <
|w(g, L) | .

(3.15)
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A(n) = — Z p(d)logd for each integer n > 1.
dln

For a given L > 1 we set

AM(n) ==Y pu(d)logd, N(n)=-> pu(d)logd. (3.11)
dln, din,
d<L d>L

for any integer n > 1. Naturally, both functions defined depend on L; we have
not made this dependence explicit in the notation for brevity. We then evidently
have the following decomposition of A, which is a sieve identity originally due to H.

Iwaniec, to the extent we are aware.
A(n) = A¥(n) + A’(n) for each integer n > 1. (3.12)

3.3.4  An application of Davenport’s bound

Let N > 1 be an integer and set L = N'2. Then for A’(n) as in (3.11), the
following lemma gives a uniform bound for the Fourier transform of the restriction

of n +— A’(n) to the interval [1,2N].
Lemma 3.3.1. We have

N
Z Ab(n) e(nt) < W,

1<n<2N
for all t € 10, 1].
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in [1, N] and A(t) = > nea €(nt) then

> > 14 (g) 2 < 2N|4| (3.7)

P<g<Q amod*q

for any 1 < P < Q and Q < Nz2. Further, if B is also a subset of [1, N] then

S Y A (g) B (%)l < 2N/JA||B], (3.8)

P<¢<Q amod*q

as follows by an application of Cauchy-Schwarz inequality together with (3.7).

3.3.2 The Brun-Titchmarsh inequality

If ¢, a are positive integers with (a,¢) = 1, then for all ¢ < x, we have

2x

< S s (/) (39)

m(x;q,a)

where 7(x; ¢, a) denotes the number of primes not exceeding x and congruent to a

modulo ¢. For a proof see [21, page 121]. In particular, we have

4
(2 q,0) < ——

< m, (3.10)

when ¢ < 3.

3.3.3 A decomposition of the Von Mangoldt function A
The fundamental theorem of arithmetic can be written in the form
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N N o JAIB)
N,A,B<<—10glen(| |B]) < logNl 2B]2 < logN (3:5)

as required.

3.3 Preliminaries

In this section we collect various facts, some standard and the others from [25], in

preparation for the proof Theorem 3.1.3.

3.3.1 The large sieve inequality

The inequality (3.6) is the classical large sieve inequality, proved on [38, page 68],

for example.

Let N > 1 be a integer and ) > 1 be a real number. Then for any sequence of

complex numbers {a, })_; and real number ¢ if we set

S(t) = Z a, e(nt),

1<n<N

we have

Yoo D IS@/a <(N+QY) Y anl (3.6)

1<¢<@ amod* q 1<n<N

We will often use this result in the following forms : if A is a subset of the integers
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3.1.3 is finally completed in Section 3.5.

The method Ramana and Ramaré [25] is a variant of the original method of Ruzsa
and Ramaré [26] and was devised to obtain an upper bound for additive energy of
“dense” subsets of primes, the subject of Chapter 4 of this thesis, where we will

describe an essentially optimal form of this method for that purpose.

3.2 Proof of the Theorem 3.1.2

We give here a simple proof of Theorem 3.1.2. To this end, for any A, B C N and

an integer n we set
rap(n)={(a,b) e AxB:a+b=n}, (3.2)

which for brevity we denote by r(n). Clearly, we have that

r(n) < min(|Al, |B]), (3.3)

and that

Prn.ap = Z r(p). (3.4)

1<p<2N,
P prime

Using the bound (3.3) for 7(n) and the Chebyshev bound for the number of primes

not exceeding z, we then get from (3.4) that
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The upper bound for Py.4 p given by this theorem is optimal, up to the implied
constant, in general. In fact, we have the following proposition, which corrects the

conclusion of Example 2, page 36 of [3].

Proposition 3.1.4. Let N be a positive integer, k < loglog N be an integer and
mig = [[,<;p- Thenif A={1<a<N:a=0modmy} and B={1<b< N:b=
I modmy}, we have that

AllB|
log N

PN;A,B > | loglog R.

This proposition, which is an easy consequence of the Siegel-Walfisz theorem, will

be proved in Section 3.6.

Let us now turn to the proof of Theorem 3.1.3, which is readily seen to amount to

obtaining an upper bound for

> Aa+b). (3.1)

acAbeB

We bound this sum using a method that was suggested by the method of Ramana
and Ramaré [25]. To use this method, however, we will first need to reduce to the
case when A and B are themselves “large sets” that are “well-distributed” with
respect to certain moduli and contain “relatively large elements 7. This reduction is
carried out in Section 3.4, at the end of which the reader will find precise formulations
of the conditions we have just stated on A and B. In addition, we will require a

number of preliminary facts which we record in Section 3.3. The proof of Theorem
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where A(x), B(x) are the counting functions of the sets A, B respectively.

This result shows that Ostmann’s conjecture will easily follow if the conjecture below

is shown to hold.

Conjecture 3.1.1. For any § > 0 and all subsets A, B of {1,2,...,N} with
|A|,|B| > N°, the sumset A+ B contains a composite number when N is a suf-

ficiently large integer.

In [3, Section 5|, A. Sarkozy, A. Balog and J. Rivat pose a question which goes in
the opposite direction to the conjecture stated above. More precisely, given subsets
A,Bof {1,...,N}, where N > 1 is an integer, they ask for optimal upper bounds
for the number Py.4 p of pairs (a,b) in A x B such that a + b is a prime number.

Using the linear sieve it is shown in [3] that

B
I lR where R — —1000N

Theorem 3.1.2. We have Py.ap < llo ~ TATL2|B[TE -

Our contribution to the aforementioned question of Sarkozy et al., described in this
chapter, begins with observation that the bound (1) can be obtained by a simple
counting argument and the Chebyshev upper bound. We show this in Subsection
3.2 below. Also, note that (1) is implied by the trivial estimate Py.ap < |Al|B|
unless [A|[B] > ¢ ) We then improve (1) under this assumption on |A||B| by

proving the following theorem, which is the main result of this Chapter.

Theorem 3.1.3. Let A, B be subsets of {1,..., N}, where N > 1 is an integer and

|AlIB|

. Then we have that Py.ap < Tog N

suppose further that |A||B| > loglog R.

N2
log N)?2
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CHAPTER

Primes in Sumsets

3.1 Introduction

Let S be an infinite subset of the natural numbers N. An asymptotic additive
decomposition of S is a pair of subsets (A, B) of N with |A[,|B| > 2 such that
S N [xg,00) = A+ BN [xg,00) for some xy € N, where A + B is the sumset
of A and B . When such an asymptotic decomposition of S exists, S is said to
be asymptotically additively decomposable. A famous conjecture of Ostmann (see
page 13 of [23]), often called the inverse Goldbach conjecture, asserts that the set
P of prime numbers is not asymptotically additively decomposable. The following

result of C. Elsholtz (see page 1 of [7]) gives a necessary condition.

Theorem 3.1.1. Suppose that (A, B) is an asymptotic additive decomposition of P

then we have that

z'/? 1/2 4
— < A B l
(log 2)° < A(z), B(z) < z/*(log x)*,
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Since ¢ in (4.50) can be arbitrarily small to start with, we see that the conclusion

of the Theorem 4.1.1 is optimal in general.

4.5 Lower Density of Sumset of Sets of Primes

Here we show that the bound (2.49) from Matoméki [20] can be easily recovered

from Theorem 4.1.1 using the inequality
|A+ B|E(A,B) > |A*|B|. (4.51)

Indeed, let €, 6 be real numbers in (0, 1) and for any integer N > 1 set A = AN[1, eN]
and B = BN (N (1 —¢€)N]. Then |B| > B((1 —€)N) — N*=% m(B) > N'7% and

|A| > S7(N), when N is large enough. Since A+ B C [1, N] we have

(B((1 —€)N) — N'=%)1og N*-¢

(A+B)(N) > |[A+B| >
(14 o(a))e” log log(%)

, (4.52)

where the second inequality follows from (4.4) and (4.51). We then conclude that

A+B(N) _ _ (1-0)(1-9F

lim inf > , (4.53)
N=oo N (1 + o(a))e? log 10g<%>
from which (4.5) follows on setting € = a and letting 6 — 0.
O
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invertible residue class modulo M. We set A = SN[1,0R] and B = SN [R,2R].
By appropriately modifying the application of the circle method described in [2] we

then see that
M 1 R?
E(A, B) ~ =2 (1 ) 1.47
4.8~ 5o L 5=17) Terr A

as R — 400, where

0
Coo — 1[_570] * 1[075] * 1[_27_1] *1[12](0) = / (1 — |U|)(5— |u|) du = (1 — 3)52 (4.48)

lul<é

We have log M ~ L and % ~ eloglog M as L — +oo by the Prime Number

16¢(M)

M_ > oy log log(=%—)

B(M)
for all large enough L > L(§), where L(¢) depends only on 4. For a fixed L > L(9),

Theorem and Mertens’s formula respectively and therefore

oR

¢(M)log R and

the Prime Number Theorem for arithmetical progressions gives |A| ~

|B| ~ as R — 400. We then conclude from (4.47) that there is an R(J),

R
#(M)log R

depending only on 4, such that

BEAB) > (1-0]] (1 o _1 1)3> eﬁf; 1|%B| log 1og(%(M)) (4.49)

p>L

whenever R > R(5). We put a = W and N = 2R. Then R > R(9) is large
enough, A and B are sets of prime numbers in [1, N] with |A| > an(N) and m(B) >
R. Moreover, it follows from (4.49) that

E(A B)>(1—-6§)e—————logl — 4.
(4, B) = (1= d)e log m(B) 0808\ 5, ) (1.50)
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for any divisor U of W. We then conclude from (4.8) and (4.39) that

1

w 1 32w
SW) < iv |A]?|Blexp | 8 longﬁ +W (4.45)
¢(7) Pl

for any divisor U of W. We set u = logwloglogw. Then 2 < u < w since w > 16
and we apply (4.45) with U =[], _,,, p. We have }_ 1% <>

(3.16) on page 70 of [28], we easily see that exp(%) < W and that 16w? loglogw <

w' < exp(w) since w > 16. It follows that 322 < —=——_ By (3.30) of [28]
(loglogw)2
and with V' = ¥ we have # < e¥(logu) exp(m). From these remarks and

2
recalling that w = (%) we easily conclude that

(1.46)

S(W) < | A]?|B|log log 4 exp 271og log log w |
@ (loglog w)?

Substituting this into (4.11) and combining with (4.9) we obtain (4.4) for all integers
N such that N > W? and N > Cexp(w). Since we certainly have exp(4w) > W2
by (3.15) on page 70 of [28], these conditions on N are met when N > Cexp(4w),

2
where w = (%) as before. This completes the proof of Theorem 4.1.1. (I

4.4 Optimality

We show here that conclusion of Theorem 4.1.1 is essentially the best possible in
general. Thus let 2 > 1 and ¢ in (0,1) be real numbers. Also, let M = [[ ., p

for an integer L > 1 and let S be the set of all prime numbers lying in a fixed
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Substituting (4.41) into (4.40) and combining the resulting inequality with (4.37),
(4.36), (4.33), (4.32), (4.31) and finally (4.27) we conclude that

Cu(log 2w)?N|A||B|  CsN|A||B|

<
S, B) = SIW)+ ——70% (log N)?

(4.42)

2
when N > Cy and (logN)* > w = (%) , for some real numbers Cy,C5 > 0 and

Cy > 1. Thus if N > Cyexp(w), then log N > w and it follows from (4.42) that we

have (4.11) with o(«a) = W, since |A] > an(N) > k‘fngN by (3.5) on page
69 of [28].
We now estimate S(W) using Theorem 4.1.2. We suppose that N > W? and begin

by noting that

__ 4N
~ (W) log N’

|A| > and |[{z € Alx = amod W}| (4.43)

Tlog N

where the second inequality is trivial when (a, W) # 1 since A is a set of prime

numbers and follows from the Brun-Titchmarsh Theorem (see paragraph 3.3.2) when

(a,W) = 1 since log N > 2logW. Thus on setting X = A, M = h;lgNN > 1 and

D = %W) > 0 we see from (4.43) that the condition (4.6) is satisfied. Also, (3.30)

on page 70 of [28] gives D < 2¢7logw from which we see that 81 > T'D holds. We
set S = B and ¢(b) = b for all b € B. From (4.7) we evidently have

|{(.’L‘1,(L'2,y1) € A2 X B | ($1 — T9 +y1,W) = 1}‘ S RU(A, B), (—144)
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when N is sufficiently large. We are now left with the sum

Qe

which is the crux of the matter. We set 1" = % > 4 and ¢ = 2. Then with w = T*

_ 1(q)
§= 2 cb(Q)Z

1<g¢<(log N)4 amod* ¢q

and W =[] ., p we suppose that (log N)* > w and write S(W) for the sub sum of
S over all g|WW. Reasoning as in the justification of (3.23) on page 969 of [25] using

standard properties of Ramanujan sums that
SW)=——+ |{(:)31,x2,y1) € A2 X B|(z) — a9 +y, W) = 1}‘ ) (4.39)

Since for any integer ¢ > 1 that does not divide W we have either p(q) = 0 or ¢ > w,

we conclude from (4.38) and the triangle inequality that

s<swy+28 Y = %

w<q<(log N)*

We set E(u) = 21§q§u zamod*q A (g)

tells us that F(u) < lj(v)!g—?\‘] log 2u when u < 2(log N)*, since 2(log N)* < Nz when N

(4.40)

2
for any w > 1. Then Proposition 4.3.1

is sufficiently large. By partial integration, as in the justification of (3.20) on page
969 of [25], we deduce that

2
~(a (log 2w)? N |A|
Al - - 4.41

(q)‘ < wlog N ( )

1
2 G

w<q<(log N)* ) amod* q
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This is easily seen, as in the previous chapter, by inserting

Z r(n)= = Z Z e(an/d)

n=0modd amodd n

=22 X Erimelansa).

gld amod*q n

(4.35)

which is a consequence of orthogonality of characters on the group Z/dZ, into the

left hand side of (4.34), interchanging summations, using (3.13) and (4.30).

By (3.15) we have w(q, L) < (log 21.)* < —1— when (log N)* < ¢. This together
y q (log N)

with the trivial bound |B(a/q)| < | B| and the large sieve inequality (3.7) gives

2
~(a\|" s (a 2N|A||B|
S owleD) Y|4 (-)‘ B (—)‘ < 222 (4.36)
(log N)*<q<L amod* q q q (lOg N)
When 1 < ¢ < Lz, (3.14) gives the asymptotic formula w(q, L) = % + E(q, L)
with E(q, L) <, ?;(iz;%’f, for any x > 1. This applies when 1 < ¢ < (log N)* if N is

large enough. Taking x = 2 and using the trivial inequality 2¥(9 log ¢ < 4q for each
qg>1weget E(q, L) < m. As above, the large sieve inequality and the trivial
bound |B(a/q)| < |B| give

2 7‘71 B
¢ bl L 4.
B(q)‘ < g V) (4.37)

> ElgL) )

1<q<(log N)* amod* ¢

()
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for all ¢ in (0,1]. The trivial bound |B(t)| < |B| together with the Parseval relation

gives fol |A(t)|2B(t)dt < |A||B|. Combining these remarks with (4.28) and (4.29)

we get
NIA[|B|
A — 4.31
D> N (n) < Qg V)2’ (4.31)
neZ,
n#0.

We now estimate the second term on the right hand side of (4.27). Using the
definition of A* in (4.26), interchanging summations and removing the condition

n # 0 in the sum over n by rearranging terms, we get

> rmAf(n) = = > p(d)logd > r(n)

nez, 1<d<L n=0modd,
n#0. n#0. (4.32)
== Y uld)logd > r(n) + r(0) > p(d)logd.
1<d<L n=0mod d 1<d<L

It follows from the definition of r(n) that r(n) < |A||B| for all integers n. Using

this bound for r(0) together with a trivial estimate we get

N1AJ B
d)logd| < |A||B|LlogL < —. 4.
PO Y p(d)logd| < |A||B|LlogL < (log V)2 (4.33)
1<d<L
when N is large enough, since L = N2. With w(g, L) as defined in (3.13) we then

note that

— Z wu(d)logd Z r(n) = Z w(q, L) Z

1<d<L n=0mod d 1<¢<L amod™* g
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A(n) = — Z p(d)logd and A’(n) = — Z w(d)logd , (4.26)
1S, e

for any integer n # 0, with L = N'3. Then by the definition of S(A, B) as the sum

on the right hand side of (4.10) and using (4.12) we have

S(A,B) = E r(n)A*(n) + E r(n)A°(n) | (4.27)
neZ, neZ,
n#0. n#0.

where, we recall, 7(n) for any integer n is the number of triples (1, z9,¥;) € A*> X B

such that n = x; — xy + 1.

We first estimate the last term in (4.27). Since 7(n) = 0 when |n| > 2N, the Parseval

relation gives

> rn)N(n) = /O <Zr(n)e(—nt)> > Nn)e(nt) | dt.  (4.28)

nez, neZ 1<|n|<2N
n#0.

Note that A’(n) = A’(—n) for any n # 0. Thus on using Lemma 3.3.1 we obtain

b N /
> N(ne(nt) < Tlog N0 ° (4.29)

1<|n|<2N

for all ¢ in (0, 1]. Further, from the definition of r(n) we have
> r(n)e(nt) = |A(t)|*B(t) (4.30)
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Indeed, otherwise we have distinct (z,y) and (2',y") with z +y = 2’ + ¢/ so that
z=ux—12 =y —1 is a non-zero element of T whose order divides the co-prime
integers ord(z)ord(2’) and ord(y)ord(y’), which is absurd. Since the order of any
element of X +Y does not exceed N %, X +Y is a 0-spaced set of points in T with

0= % and the large sieve inequality gives

YD Ayl = Y AP <2N|A. (4.23)

reX yey teX+Y

On the other hand, since A; consists of integers co-prime to [] the arithmeti-

p<N3 P,
cal form of the large sieve inequality (see Section 10.4 on page 105 and Exercise 1
on page 108 of [32] as also [37]) applied to the translate ¢ — A, (z+t) of A; together

1
with (1.5), page 211 of [39] and % > N1 gives

- > ey [Aile +y)P 4R .

(@) < gY 7 S SR loa N S Az +y))? (4.24)
1<a< N2 9) yey
(d,R)=1.

for each € X. Summing over all z € X in (4.24) and combining the result with

(4.23) and - < 4e”log @Q when @ > 2, obtained from (3.30) on page 70 of [28],

#(R)
we conclude that
Ak log(2Q)
Ay (2)| <3205 22N Ay 1.2
> | A )] < 320070 SENIA (4.25)
reX
Since |A| = |Ag| 4+ |A1], we obtain (4.20) from (4.25), (4.22) and (4.21). O

PrOOF OF THEOREM 4.1.1.— We shall first prove (4.11). We begin by extending

the definitions introduced in (3.11) by setting
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Proposition 4.3.1. Let N > 2 be an integer and A be a subset of the primes in
[1,N]. Then if 1 < Q < N2 we have that

2
T (a log(2Q)

— < T . 4.
A <q>‘ 96e Tog N NJ|A| (4.20)

2. 2

1<¢<Q amod*q

Proof. For completeness we give a short proof, tailored from Tao [37], where a more
general inequality is proved. First note that by the usual large sieve inequality (see
Theorem 7.7 on page 175 of [17]) the left hand side does not exceed 2N|A| since

Q< N3. Tt thus suffices to prove (4.20) assuming, as we will, that 1 < @ < Ni.

With Ay = AN[1,N2] and A; = (N2, N] we have [A()[2 < 2(|Ao(t)[2 + | A1(1)]2).
For any t in the additive group T = R/Z, let ord(t) denote its order. Let X be
the set of points z in T with ord(z) < . Then the left hand side of (4.20) is

Y eex |IZ(:E)|2 and we have

3 ‘E(I)f <23 |4, (a:)‘z-l—QZ‘jl @) (4.21)

zeX reX rzeX

Since Ay C [1, N %] and Q < N i, the large sieve inequality shows that the first term
on the right hand side of (4.21) is at most 4Nz |Ag|. Since 2N > (log N)? for N > 1

we certainly have

~ 2 log(2
3 ‘AO (:13)‘ <16 1§( ]C\?)N|A0|. (4.22)
rzeX B

1
»<qP and Y Dbe the set of points in T with ord(y) < % and

(ord(y), R) = 1. Then the map (z,y) — x + y is bijection from X x Y onto X + Y.

Now let R = []
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(0, H). Let U and V be, respectively, the subsets of X for which xp # 0 and y; # 0.
Then (4i) of Lemma 2.4.1 gives [U|H > |X| > (|U| — 1)H. Combining this with

(4.6) we get |U| > %' > % > 2, on noting that W > 307* since 7% > 16 and

and 87% > T'D. This gives H < % < ||Z|| exp(lul) since 1= < exp(2u) when

0 < wu < 5. Since the same inequalities hold with |I/| replaced by [V, we obtain

xp (22 B ATD
H? < | — 1< Em— 417
S ™ (|u| * |V|> S v "\ w (417)

Since a;(a,b) > 0 and 0 < z%,y; < H for all (a,b) and T'D < 8T*, we then deduce

that

2 ¢
Z as(a,b) xiy; < |Z|/l/1|/||V| Z as(a,b) | exp <3;7;> : (4.18)

(a,b)ex? (a,b)eUXV

Using Corollary 2.2.3, we get an upper bound for right hand side of (4.18) as

U 32
% |X|? exp( long 1/2 w>‘ (4.19)

pIU
Then the conclusion (4.8) of the Theorem 4.1.2 follows from (4.19), (4.18), (4.16)
and (4.14).

4.3 Proof of the main theorem

We first record the following proposition which is a variant of Theorem 5.3 of [27].
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of (4.11). For the close relation between Ramaré’s large sieve inequality and the

restriction theorem for primes in the sense of Green, Green-Tao, we refer to Tao [37].

4.2 The finite problem

We prove Theorem 4.1.2 here. With notation as in the statement of this theorem,
let U be a given divisor of W. For any a,b in Z/WZ and s in S we set as(a,b) =1
if a — b+ ¢(s) is invertible modulo U and 0 otherwise. Further, we let m(a) be the
number of z in X’ such that z = ¢ mod W. Then on writing X for image of X in

Z/W'Z, we sce that

Ru(X,c)=Y " > aila,b)mla)m(d). (1.14)
s€S (a7b)€é\~.’2
Also, we have

Zm(a) — |X| and 0 < m(a) < H, (4.15)

aceX
with [ = %, from the second condition in (4.6). For a given s in S we now bound
the inner sum on the right hand side of (4.14). Using Lemma 2.4.1 of Chapter 2

and (4.15) we obtain

Z as(a,b)m(a)m(b) < Z as(a,b) ziyp (4.16)

(a,b)€ 22 (a,b)e 22

for some z? and y;, with a and b varying over X, such that the x. and similarly

all the y;, are either equal to 0 or to H excepting at most one, which must lie in
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we show that

o

SA-B) < 5y

[{(z1,22,51) € A> x Bl (21 — 20+ 41, W) = 1}| + o(a)|A]?| B|
(4.11)

for all sufficiently large N, where W =[] ., p with w = (%)2. The proof of (4.4)

is completed from (4.11) on using Theorem 4.1.2 to estimate the first term on the

right hand side of (4.11) and combining the result with (4.10). To prove (4.11) we

begin by analogy with (3.12) and introduce the decomposition

A(|n|) = Z,u )logd = — Z u(d)logd — Z w(d)logd , (4.12)

dln, din, dln,
1<d. 1<d<L. d>L.

valid for any L > 1 and all integers n # 0, not necessarily positive. We then
set L = N'/2, for the given N which is eventually taken to be suitably large, and
insert (4.12) into the sum on the right hand side of (4.10). By various steps that
run essentially parallel to those following (3.27) in Section 3.5, we reduce to the

estimation of the sum

3 1) Z 3 e<a(“_w2+yl)>. (4.13)
modq

1<g<(log N)* ( (z1,72,y1)€EA2X B q

The contribution to the above sum from ¢|WW is easily seen to be equal to the first
term on the right hand side of (4.11). The contribution to (4.13) from the remaining
q is estimated using a variant, given here as Proposition 4.3.1, of an improved large

sieve inequality for the primes due to Ramaré [27], thereby completing the proof
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Theorem 2.2.1 bears fruit. More precisely, the treatment of this local problem in

[25] only yields a version of the above theorem with the (logw >l #)5 replaced
1

by ((log w)? pr #) % in the exponential factor on the right hand side of (4.8). This

in turn is responsible for the factor 2 + o(«) in (4) of [25], in place of the 1 + o(«)

that given by our Theorem 4.1.1.

With Theorem 4.1.2 in hand, it is once again a matter of putting into effect the
method of [25], with some modifications, to arrive at Theorem 4.1.1. We conclude
this introduction with an outline of the method, deferring the details to Section 4.3.
Thus with notation as in the statement of Theorem 4.1.1, let us set r(n) for any
integer n to be the number of triples (x1, x2,%1) € A% X B such that n = 2, — 2y +;.

Then we have from (4.1) that

E(A,B) = > r(n). (4.9)

neB

This implies the following inequality, which is our point of departure :

E(A,B)logm(B) < > r(n)A(ln]) (4.10)

nez,
n#0.

where m(B), we recall, is minye g b and A is the Von Mangoldt function. Indeed, all
terms on the right hand side of (4.10) are > 0 and for n € B we have logm(B) <
A(n) = A(|n|), since B is a set of prime numbers. The sum on the right hand side of

(1.10) is finite, since r(n) = 0 when |n| > 2N. Let S(A, B) denote this sum. Then
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the advantage of being technically simpler as well.

The proof of the Theorem 4.1.1 goes via the following theorem, which may be viewed

as a sieve bound.

Theorem 4.1.2. Let T > 4 and £ > 2 be real numbers and let W = Hpgw p, with
w =T Also, let ¢ = {c(s)}ses be a finite sequence of integers and X be a subset
of the integers for which there exist real numbers M > 1 and D > 0 with 81 > TD

such that

M DM
\X|Z? and |{x€X|anmodW}\§W (4.6)

for all a € Z/W'Z. Finally, for any divisor U of W let
Ru(X,c) = |{(x1,22,8) € X X X X S| (17 — 22+ ¢(5),U) = 1}]. (4.7)
Then for each divisor U of W we have

o) | 412 1,12 32w
Ry(X,c) < o | X715 exp<8(longﬁ) + W) (4.8)

plU
Note that @ |X|%|S| is the “expected ” upper bound for Ry (X, c) from a naive

probabilistic point of view.

We prove Theorem 4.1.2 in Section 4.2 by combining the Corollary 2.2.1 with the
optimization principle of Lemma 2.4.1 in the manner we put together Corollary
2.2.3 and Lemma 2.4.1 at the end of Section 3.5. It is in this theorem that the full

strength of our finer result on the local problem for invertible elements given by
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stated except in the dependencies of o(«) and N(a) on . In particular, the 1 + o(«)
on the right hand side of (4.4) cannot be replaced with ¢ + o(«) for any ¢ < 1. We

shall verify this in Section 4.4.

To place Theorem 4.1.1 in context, we recall that Matomaéki [20] gives an optimal
lower bound for the relative lower density in the integers of the sum A + B of
subsets A and B of the prime numbers P in terms of their relative lower densities in

AN .. B(N
% > o and liminfy_, o #Ng > 0,

P. More precisely, suppose that liminfy
where N +— A(N) and N — B(N) are the respective counting functions. Then

Theorem 1.1 of [20], which is the main theorem of that work, tells us that

p

(A+B)(N)
e7log log(é)

lim inf
N——+o0

> (1= 0a+g10(1)) » (4.5)
where 0,44,0(1) means that the quantity which tends to 0 as a + 8 tends to 0, and
that (4.5) is the best possible in general. This result improves upon the theorem of
Chipeniuk and Hamel [5]. As noted in [20], a general result of Ramaré and Ruzsa
(Theorem 1 of [26]) when applied to the primes yields a similar conclusion but with
(1 —o(a+ B)) replaced with (¢ — o(a + §)), for an unspecified c. We shall show in

Section 4.5 that (2.49) may be easily deduced from Theorem 4.1.1 and (4.2).

Matoméki obtains (2.49) via a lower bound for |A + B| given by Theorem 2.1 of
[20], without recourse to additive energy. This theorem is proved in [20] by the
methods of Green and Green-Tao. We shall, however, obtain Theorem 4.1.1 by a

refinement of the method of Ramana and Ramaré [25]. Our method appears to have
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This follows from an application of the Cauchy-Schwarz inequality. Thus, upper
bounds on the additive energy F(A, B) translate to lower bounds on |A + B|. The

converse, however, is not true (see Sec. 2.3 of [36], for example).

In [25], Ramana and Ramaré showed that for any o € (0,1) and A C (N,2N] NP
with |[A] > o|P N (N, 2N]|, we have
E(AA) < (2 + o(a))evmlo lo 4 (4.3)
T log N 898 ’
for N > N(a). Here, as before, P denotes the set of prime numbers. The main
result of the present chapter of this thesis is the following theorem which generalizes

and improves on (4.3).

Theorem 4.1.1. Let a be in (0,1]. Then there is an N(«) depending only on o
such that for all N > N(«) and A C [1, N)N'P satisfying |A| > am(N) we have

E(A,B) < (1 +o(a))e” % log 1og(§) (4.4)

for any non-empty B C [1, N| NP, where m(B) = minyepg b.

In particular, we replace the 2 + o(«) in (4.3) with 1 + o(«). In (4.4), o(«) denotes
a function of « that tends to 0 with o, N + 7(N) is the counting function of the
primes and e,y are the usual numerical constants.

The trivial bound E(A, B) < min(|A|*|B], |B|*|A]) shows that (4.4) is non-trivial
only if most elements of B are large enough. On the other hand, natural examples

show that the conclusion of the above theorem cannot be improved in the generality
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‘CHAPTER4

Additive energy of dense subsets of the

primes

4.1 Introduction

When A and B are subsets the integers, the additive energy of A and B is the

quantity E(A, B) defined by
E(A7B) = |{(I17.’L’2,y1,y2) cAx Ax B x lel‘i‘yl :$2—|—y2}| (41)

The additive energy E(A, B) of A and B is an important quantity in additive com-
binatorics and additive number theory. It is related to |A + B, the cardinality of

the sumset A + B, by the classical inequality
A+ B| E(A,B) > |APBJ (4.2)
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primes Q

Q= {pi}U...U{p}} Uer {p*: p* = lmod M,}

note that this is a K,-partition of £, where

p‘_l ])7«—1
KTZT-'_(pl_l)' 22 ..... 2 .

Now we claim that r(K,) > M,. To prove this, Let us take n to be a large square
free number which is a multiple of M,.. Since n is square free number, it can not be
a multiple of p? for any prime p. So n can not be of the form hp? for 1 < i < r.
And suppose, we express n as a sum of h elements of the set {p? : p? = Imod M, }
for some invertible square [ modulo M,. This implies, n is of the form n = hl +
(g1 + ...+ qn) M,. Since n is a multiple of M,, we have M,|h which implies that
h > M,. Thus our claim follows.

Note that the sequence of integers (K, )52, is strictly increasing. Therefore, any
K > 2isin the interval K, < K < K, for some r. And noting that r(K) is a non
decreasing sequence of K, we get r(K) > r(K,) > M,, where the second inequality
follows from the above claim. Writing M, in terms of K, and using known estimates

on primes we get that

r(K) > K exp ((10g2+o(1))10gK> '

log log K
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such that £; N (IV,4N] contains at least W@ elements of 9. For such i we set

S =9, N (N,4N]. Then S is set of square of primes in (N,4N]| with |[S| > K@N

and no integer in S is divisible by a prime p < K?*. It now follows from (5.70)

that (5.71) holds with D < K exp <(3 logligfégl)[)(logf(). Since elements of S does not

divisible by any prime p < [6D] when N is large enough, we may apply Lemma
5.4.1 to S to deduce that every integer n > (288D + 72)N is a sum of no more

than % elements of S. In particular, there is a C; > 0 such that every integer in

2z

I(N) = ((288D + 72)N, (288D + 73)N] is a sum of at most C D squares of primes
all belonging to S and therefore to £;. Thus for all large enough N, every integer
in the interval I(N) can be expressed as a sum of no more than CyD squares of
primes all of the same colour. On remarking that the interval I(N) meets (N + 1)

for all large enough N, we obtain that r(K) < CyD. This yields the conclusion of

Theorem 5.1.1 since C1D < K exp <(3 bgligfégl)]){logl{> .

5.5 Optimality

The bound on 7(K) < K exp <(3 logli;o(fgl_)fyogK) given by Theorem 5.1.1 is the best
possible up to a constant. Indeed, we expect that 3log2 can be replaced by log 2 in
the exponent of the exponential because of the following example of a partition of
squares of primes.

Let » > 1 be an integer. Let M, = p;..... pr and let R be the invertible squares

modulo M,.. We now consider the following partition of the set of all squares of
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5.4 Monochromatic representation

Here we deduce Theorem 5.1.1 from Theorem 5.1.2. Before this deduction we give a
lemma with the following notation. For any subset S of the integers, we write eg(.S)
for the number of tuples (z1, o, . . ., T12) in S'? satisfying =, +. . .+ = 7+. . .+T12.
We observe that if S C [N, 4N] satisfying the hypothesis of Theorem 5.1.2, then we

can conclude from (5.2) that

es(S) < ﬂex ((310g2+0(1))10g/1> |

Nzlog N loglog A
Now we state the lemma as follows.

Lemma 5.4.1. Let N be positive integer and let D > 1 be a real number satisfying

the condition N > 72D + 12. If S be a subset of the interval (N,4N] such that

|S|12D

6(S) <
(%) < 35

(5.71)

and if S contains an integer that is not divisible by any prime p < [6D] then every

integer n > 30N (2[6D] + 1) is a sum of no more than & elements of S.

PROOF.— See [24, Lemma 1.2].

We now give the proof of Theorem 5.1.1. Since r(K) is increasing with K, it suffices
to prove Theorem 5.1.1 for all K sufficiently large. For such a K, let Uj<;<xQ; be

a partition of the set of square of primes £ into K disjoint subsets.
We set Ny = 2K®°. Let N be an integer > Ny. There is an i,1 < i < K,
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integral in (5.10), we get

1
Es(9) < 2WT(Z()‘EI1/O)g ) [{z € " | f() an invertible square mod 21V }|
1 1
+0 (M) (5.68)

5.3.4 Proof of Theorem 5.1.2 completed

It remains only to bound the cardinality of the set

{z € S"| f(z) an invertible square mod 2W}.

We find an upper bound the cardinality of this set using Theorem 5.2.1. Let Z be
the set of integers n > 0 such that n? € S. The set Z is contained in [\/N, 2\/N) and

satisfies |Z| > AQN and [{z € Z|z=amodU}| < %, when N is sufficiently
large depending on A. Finally, let I = S? and for any = = (21, s, ...,79) € S we
set c(x) =z + ...+ 24— x5 — ... — xg. Then with Ry(Z,c) as in Theorem 5.2.1

we have that
[{z € S"'| f(z) an invertible square modulo 2W}| < |Ry(Z,c)l, (5.69)

since U|2W. On combining the bound for |Ry(Z, c)| given by Theorem 5.2.1 with
(5.69) and (5.68) and after noticing that %(%)2 < (log A)? we finally obtain

(5.2), as required.
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that The value of T(WW) is

>‘H

DS z/ S [[logsie (¢ e (=)

0<r<2W, q|2W 0<a<q xES” i=1
(r 2W)=1. (a,0)=

(5.64)

Finally, on interchanging summations and remarking that

5 Z N ( 7“2)) _ 2114/ e (a(f(»;)y— 7"2)) (5.65)

q|2VV 0<a<gq, 0<a<2W
(a,q)=1.

we conclude that the right hand side of (5.64) is the same as the left hand side of

Z Z log x1 log xs . . . log w1y A? Bt)e(tf(x))dt

<r<2W g;esll M
( W)=L. f(z)=r2mod 2W (566)
1()gN
< POEEED DR
0<r<2W, xeS“

(r2W)=1. f(x)=r’mod 2W

where we have used | [ Bt)e(tf(z)) dt] < [ga(t)dt = 1, since |g(t)] = a(t)
M

for all £ € R. For each invertible square b in Z/2WZ, the number of 7 in [0, 21V)

co-prime to 2W and such that r? = b modulo 2W is 27(U). Then it follows from

(5.66) and (5.64) that

2Wr(U)(log N)!
TV ===

|{ € S| f(x) an invertible square mod 2W}| .
(5.67)
On combining (5.67) with (5.62), (5.33) and recalling that (5.18) is the same as the
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then by (éi) of Lemma 5.3.3 combined with the triangle inequality and (5.22) we get

AOO 9Noo N)PA3 A31819(loe NN
o 1Bl 0 N 43 _ 495 (log )

w97/200 w97/200 ’ (

T, — T(W)

5.61)

since ||B]|s = supteR|B(t)| < 2V From (5.61), (5.59) and on recalling that |S| >

VN

Tox ¥ and w = A% we conclude that

T=T(W)+0 ('Sf) : (5.62)

when N is sufficiently large, depending only on A. Let us now estimate T'(W). When
q|2W we have ¢(¢W) = q¢p(W) and (r +mW)? = r? modulo ¢ for all integers m and
the condition (r +mWW) = 1 holds always. Therefore we have V,(a,r) = ge (—%)

when ¢|2W, for all 0 < a < ¢. Furthermore, since r — r + W is a bijection from the

integers co-prime to 2W in [0, W) to those in (W, 2W] co-prime to 2W, we obtain

1 1 ar
Z Vi(—a,r) = Z e (——) (5.63)

$(qW) 0<r<w, 26(W) 0<r<2w, q

(r,W)=1. (r2W)=L1.
for any ¢|2W and all 0 < a < ¢q. Also, we have
S(t)°5(—t)° = Z logzilogxy ... logzyy e (f(x)t)
zeSH

where f(r) denotes ¥y +zy+...+x6— 27 —...—x for any x = (z1,...,21;) € S

By means of the change of variable t — % — ¢ in the integrals in (5.60) we then see
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1 loglog V'

Taking € = 1/200 and using the bound loglog V < V1/1% in (5.57) we conclude (44).

5.3.3 The major arc contribution

In this subsection we reduce the problem of bounding E4(S) to a finite problem.
Let us first dispose of the first term in (5.18), which we denote here by 7. Then on

writing 77 for

1 R 0\ cedr o 5
2 2 G 2 e /m(z)ﬁ(t—5> SrS(-tpd (559)

0<r<W, 1<¢<Q 0<a<g,
(r,W)=L1. (a,q)=1.

we deduce by substituting the complex conjugate of right hand side of (5.34) for

Y(—t) = ¥(t) in T and using the triangle inequality together with (5.22) that

1
T —T) < ¢(W)Nexp(—c+/log N) / 15(t)| M dt
Jo

< (W) Nexp (—c+/log N)|S|” (log N)? A®. (5.59)

If we now set

= ¥ 5 sy E visan [ 3(e-5) Serscora

0<r<W, q|2W 0<a<g,
(rW)=L. (a,q)=1.
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—ar? W?2m2 + 2a, W
(“yVan)=U Y e <“2 my 2 ”"2) . (5.53)
q 14
0<ma<V,
(r+maW,V)=1
Multiplying by a function e(%ﬂz) both side of above equation and change the

variable r + myW +— z in the summation on right of (5.53) and using the fact that

(VW) =1, we get

e ((—=r*(as/V +a/q)) Vyla,r)=U Z e <a273:2) : (5.54)
R

We have a following bound on the summation on right of (5.54)

o1
2 6( % )<<f Vit (5.55)
0<z<V,
(x,V)=1

see [16, Lemma 8.5|, for example.

From (5.55) and (5.54), it follows that

1 UViate UViate
_— V € == 9 r‘
olqm Ve <€ SaT = Se W (5.56)

here we use the fact that (V,1W) = 1 in the equality on the right of the above
equation. Since U|2W, we have ¢(UW) = Up(WW) and we have the lower bound on

d(V'), namely ¢(V') > V/loglog V. From this and (5.56) we get
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applying the Lemma 5.3.4, we get that

Z . aW?m? 4 20, Wrm'\ Z . aW?m? + 2a,Wrmy y
U B U

0<m<U 0<m1<U;
2a,. W
( 5 (Tm)) (550
0<ma<Us 2

We can conclude from (5.51),(5.50) and (5.49) that V,(a,r) = 0 unless Us|2a,Wr.
That is, unless (U, W?)[2a;Wr we haveV,(a,r) = 0.

Since (a1,U) =1 and (r, W) = 1, it follows that V,(a,r) = 0 unless (U, W?)|2IW. We
note that (U, W?) = (¢, W?) and that (¢, W?)|2W is equivalent to inf(v,(q), 2v,(W)) <
v,(2W) for all primes p|2WW. From the definition of W we have 2v,(W) > v,(2W)
for all primes p|2W. Consequently, V,(a,r) = 0 unless v,(q) < v,(2WW) for all primes

p|2W, which is the same as (7).

To prove (ii), we may assume that (g, W?2)|2WW and (¢, W?)|2W and V > 1. We can
conclude from (q, W?) = (U, W?) and (q, W?)|2W that U[|2W, in particular U|W?2.
Thus, we have (U, W?) = U. It follows that

W?2m?2 + 2a, W
Z 6(a1 mi + 2a; rml)zU7 (5.52)
U
0<my<U,
(r+miW,U)=1

again using the same fact that (r+m;W,U) = 1 is always holds, as U is a w-smooth

number. On combining (5.49) and (5.52) we get that
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PROOF.— See [24, page 26], for example.

We now give a proof of the above Proposition with the aid of this lemma. Since
(r,W) = 1, the condition (r + mW,qW) = 1 in the definition of V,(a,r) can be

replaced by the condition (r +mW, q) = 1, thus we have

Viar = ¥ e(M> (5.48)

0<m<gq, q
(r+mW,q)=1

Let ¢ = UV, where U is w-smooth and (V, W) = 1 and let a = ayU+a,V, (a1,U) =1
and (ag, V') = 1. Then from (5.48) follows that

. (—arz) V(ar) = . (aQWng - 2a2W7’m2> y
(@, T) = E
q 0<ma <V, 4
(r+maW,V)=1
W2m?2 + 2a, W
Yoo (C“ m1+U “ rml) . (5.49)
0<my<U,
(T+T§11[/1‘/,<U)=1

Now we analyze the second term in the product of right of the above equation. Since

U is w-smooth and (r, W) = 1, the condition (r+m;W,U) = 1 is always holds, thus

we get
ayW?m? + 2a, Wrm ayW?m? 4+ 2a, Wrm
> e . -y . . - (550)
0<m<U, 0<m<U
(r+mW,U)=1

We write U = U,U,, where U, = ﬁ, U, = (U, W?). Note that Uy| a;W?, thus
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and so

EX:/”: i}:);nz da = ./Q.X 2z B(2?) e(02*)dx + O (\/N(log N)QB“) . (5.45)

n=3

Note that the integral on right of above is nothing but E(G) Thus, we have an

asymptotic formula for the inner sum on right of (5.35) as follows

oy ooy Vala, ) % "
Z 1p(n)n2n lognf(n)e(nt) = o) B(0)+ O <Nexp (—cy/log N)) ,

n=rmod W

(5.46)
for large enough N depends on only on A. Substituting this into (5.35) we get an

asymptotic formula for ¢ (t) as in (5.34).

We need the following proposition, which provides information about V,(a, ).

Proposition 5.3.3. Let a and q be integers satisfying (5.16) and r any integer

co-prime to W. Then we have

(i) Vy(a,r) =0 unless q|2W or there is a prime p > w such that plq.

(ii) ==V, (a,7)| < ngmoo when q does not divide 2W .

We prove this Proposition with the help of following lemma.

Lemma 5.3.4. Let P(z) = co2® + ¢12 + ¢o be a polynomial with integer coefficients

and let d be a positive integer with d = dydy and dy divides cq. Then

£ 58 2%

0<m<d 0<mi<d; 0<mao<ds
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Using the functions f(u) and S,,, we have

> Ip(n)n2nlognB(n’e(n’t) =  (Su— Su-1) f(n) (5.39)
n=rmod W n=2
= Sx F(X+ 1)+ Su(f(n) = f(n+1)).
(5.40)

As 6] < W, the Mean-Value theorem implies that
f(n) = f(n+1) < (log N)*P*. (5.41)

Hence the sum on left of (5.39) becomes

Li(X)f(X + 1)+ ) _ Li(n) (f(n) = f(n+1))

n=2

Vi(a,7)
d(gW)

+0 (Nexp (—cy/log N)) .

As Li(2) = 0, we then rewrite (5.42) as

Vi(a,r) X f(n) - L
o S [ oot i)

When n — 1 < z < n, the Mean-value theorem reveals that

f(n) = f(x) + O ((log N)***1) | (5.44)
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on recalling expression of (t), noticing the fact that all primes more than U are
co-prime to W, and trivially estimating contribution to the sum over the interval

[0, U] using an upper bound 34" on U.

We now find an asymptotic formula for the inner sum on right of (5.35). To this

end, we let X = [V5N], and for n € [1, X] let

So= Y lp(n)e(—). (5.36)

m<n,
m =rmod W

Using the fact that ¢ < @, we get

Si= Y e(M> 3 1+ 0Q).  (5.37)

0<m<q, a d,
(r+mW,gW)=1 (r+mW)+dgW<1,
(r+mW)+dgW is a prime

As n < V5N and ¢gW < (log N)P*! for large values of N, by appealing to the

SiegelWalfisz theorem, we get the asymptotic expression

S, = Li(”W) > 6<M) + o(m exp(—c\/@)) . (5.38)

oaw) L= q
(r+mW,gW)=1
where Li(n) = 2” loi, and c is a positive absolute constant.
gt
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on A, we have

[isan oo a < 5[50 a
m 5.32
< N|S| (log N)? |S|11(logN) (5:82)

A3 A '

since |S| > N2 /A log N. An application of the triangle inequality now allows us to
conclude that

/ S)8S(—t)Pw(—t) dt < w. (5.33)

5.3.2 The function @) on a major arc

Let us set W = 2U, where U is as defined staring of Section 5.3. For any integers

a, ¢ and r, with ¢ > 0, we set V(a,7) =) o<m<q, € (M)
(r+mW,gW)=1 1

Proposition 5.3.2. Let a and q be any integers satisfying (5.16). Then for all t in

the major arc im(g) we have

W»(t) Z Vi(a,r) E (t — 5) +0 <¢(W)Nexp(—c\/@)) . (5.34)
(r Wt

Proor.— Let § =t — & and f(u) = 2uloguB(u®)e(u’d) for any real u. we have

Z Z 1p(n)n2n lognB(n?)e(n’t) + O <9Al) , (5.35)
0<r<W, n=rmodW
(r,W)=1.
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Again using the fact that the right of (5.27) is increasing function and recalling the

values of @), M; we get that

1 1 1 8
T VN (log N)e+! . (5.2
0;5?%' (u)] < VN (log ) ((logN)BA48 Tyt (logN)QB) (5:28)

For large values of N depends on A, large absolute value of B depends on ¢, we then

get

VN
max |T'(u)| € —, 5.29
\ | (W < 5 (5.29)

this proves the lemma.

Now we return to bound (¢) on minor the arcs. By the Properties of Riemann-

Stieltjes integral we have
VBN
W(t) = / 2u (u?) dT(u), (5.30)
0

where T'(u) defined as in Lemma 5.3.1. Thus, on integrating by parts and using the

inequality (5.25), we have

N
) < VN T =~ 5.31
wlt) < VN max [T(u)] < 7 (5:31)

on remarking that 2u 3(u?) is piecewise monotonic in the interval [0, v/5N].

From (5.23) and (5.19) it now follows that for all N large enough, depending only
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9, we must then have ) < ¢ on account (5.16). We then conclude using ¢* < gM
that for each ¢ in m there are integers a and ¢ # 0 with (a,q) = 1 satisfying

1
a2

and @ <qg< M. (5.24)
q

a
[t =~ <
q

To get a bound on ¥ (t) when t € m, we appeal to the following lemma.

Lemma 5.3.1. Let « be a real number such that

1
TEN (@) =1 N<=, Q<qg< M

o= - ,
b q?

and let T'(u) = Yoo p<, 1p(n) logne(n®a). Then we have

VN
T)| < ~— . 5.25
Ogglsaxwl (u)| VG (5.25)

Proof. On the assumption on «, we have

, (1 1 M\*®
Z 1p(n) logne(n“a) < x (logx)* —+m+— , (5.26)

2
r<n<2r Q X

for some absolute constant ¢ > 0; see [4, Lemma 2.1], for example. From this it

follows that

1
1 1 M\ #
— 2 c+1
T(x) = O<En<x 1p(n) logne(n’a) < z (logx)“* (@ + -7 + F) i

by dividing the interval [0, z] into dyadic intervals (5%, 5;]; 7 = 0,1,...,logz and

using the fact that the right of (5.26) is increasing function of x.
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from |S| > N2 /A (log N) and

E5(S) = Z log p1logps ... logpio (5.20)
P+p3 4 +PE=pi+pE+...+piy,
p2eS.
< (logN)"® 3" R¥n) < Ni(logN)’|S|’, (5.21)
1<n<20N

where Rs(n) denotes the number of representations of an integer n as a sum of
five elements of S. To verify (5.21) we note that Rs(n) = 0 when n > 20N and
R5(n) < r5(n), the number of representations of n as a sum of five squares of prime
numbers, and we have that 75(n) < n? /(logn)? [16, Theorem 11 ], by an application

of the circle method. As a consequence of (5.19) we have

-
3 Z/ |”dt</ S()[1dt < |S° (log N) A%, (5.22)

1<q¢<@ 0<a<q M
(a,q)=

5.3.1 The minor arc contribution

Here we bound the second term in (5.18). Let us first verify that for all ¢ € m we
have

(1) < (5.23)

F )
when N is large enough, depending only on A. Indeed, for any real ¢ Dirichlet’s
approximation theorem gives a rational number ¢ satlsfymg |t — —| < M together
with 1 < ¢ < M and (a,q) = 1. When t is in m we see that 2 ¢ isin [0, 1] since

m C [%, 1-— ﬁ) Consequently, we also have 0 < a < ¢. Since, however, t is not in
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we call the interval [% -5 rin L) the major arc DJT(%) It is easily checked that
distinct major arcs are in fact disjoint when M > 2Q?, which holds when N is
sufficiently large depending only on A. We denote by 99t the union of the family of
major arcs M(%). Each interval in the complement of 901 in [0, 1) is called a minor
arc. We denote the union of the minor arcs by m.

We have

/0 S(6)°8(=t)Pb(—t) dt — /_ 5008 (=t (b dt (5.17)

by the periodicity of the integrand. From the definitions given above it is easily
seen that the interval [—+-,1— +) is the union of m and 9\ [1 — &>, 1+ 5-). Since
distinct major arcs are disjoint, it then follows that the right hand side of (5.17) is

the same as

oy / ., )%(—t)dt-l—/n; S()°5(—t)50(—t) dt. (5.18)

1<¢<Q 0<a<q
(a,9)=

We shall presently estimate each of the two terms in (5.18). We begin by observing
that
1
/ |S(t)|" dt < |S|°(log N)?A? . (5.19)
0

In effect, the integral in (5.19) does not exceed |S| log N E5(S). Thus (5.19) follows
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Indeed,

Es(S) = Z log p1logps ... log p1a (5.11)
p2+pi+.. +pi=p2+pi+..+pi,,
p2es.
< > logpi logps ... log pii log g (5.12)

iP5t AP=pi+pi . pi +dP,
p?ES; g? is a prime square in(N,4N].

<1/2V'N Z log py logps ... logpi1 2q logq  (5.13)

PPyt P =pF+pi+.+pi +a?,
prS; q? is a prime square in(NV,4N].

< 5/4VN > logp1logpy . .. log 11 2q log q B(q°)

Py +p3 . Apg=pipg+ 0T+,
prS ;¢? is a prime square.

< 5/4VN / 1 S()°S(—t)>y(—t) dt, (5.15)

in above inequalities: from (5.13) to (5.14) we use the lower bound 2/5 on B(t?)
in the interval (N,4N] and from (5.14) to (5.15) we use the orthogonality of the

functions t — e(nt) on [0, 1].

We apply the circle method to estimate the integral on the right hand side of (5.10).

To this end, we set Q = (log N)? A% M = ( where B is a large absolute

N ___
log N) 2B

constant and, for any integers a and ¢ satisfying

0<a<¢<@ and (a,q) =1, (5.16)
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) 2
therefore that the right hand side of (5.8) does not exceed W

in (5.6) together with the bound supplied by (2.39) for |1, (X, )|, applicable since

. Using this

34 > e, we then conclude that (5.5) holds.

5.3 An application of the Circle method

We prove Theorem 5.1.2 in this section. As stated in Section 5.1, we will first reduce
the problem of bounding Fg(S) to Theorem 5.2.1. This is carried out in Subsections
5.3.1 through 5.3.3 starting with the preliminaries given below. We then complete
the proof of Theorem 5.1.2 in Subsection 5.3.4 by applying Theorem 5.2.1.

We suppose that A > ¢ are real number and assume that N is a sufficiently large
integer depending only on A, its actual size varying to suit our requirements at
various stages of the argument. We set a(t) = 1 — | 2| when [¢| < 3¥ and 0 for all
other t € R and set 8(t) = a(t — ). Thus 5(t) > 0 for all ¢ in R and S(t) > 2

when t € [N,4N]. Finally, we set
P(t) = Z 1p(n) 2n logn B(n?) e(n’t) (5.9)

and write S (t) =D peeglogp e(p*t) for any t € R for a given subset S of the squares

in (N, 4N] satisfying the hypotheses of Theorem 5.1.2. We observe that

~

%mgﬁ(s) < /1 S()85(—t)5y(—t) dt . (5.10)
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a® + b*> + ¢(7) is an invertible square in Z/UZ and 0 otherwise. Further, we write
m(a) for the number of z in Z such that z = ¢ mod U. Then if Z denotes the image

of Z in Z/UZ we have

Moreover, on account of the second assumption in (5.4) we have that

> “m(a) =|2| and 0 < m(a) < D, (5.7)
a€Z
where D = —3YN __ For large values of N, depending on A; Z is contained in

S Ilog N *

(Z/UZ)". Let us bound the inner sum on the right hand side of (5.6) for a fixed i

in I. By means of Lemma 2.4.1 and (5.7) we obtain

Z a;(a,b) m(a)m(b) < Z a;(a,b) xly; (5.8)

(a,b)c 22 (ab)€Z2
for some z} and y;, with a and b varying over Z, satisfying the following conditions.
All the z}, and similarly all the y;, are either 0 or D excepting at most one, which
must lie in (0, D). Moreover, if X and ) are, respectively, the subsets of Z for which
zk # 0 and y; # 0 then |X|D > |Z] > (|X]| — 1)D. From the first condition in (5.4)
we then get |X| > %l > % > 2. Consequently, we also have D < |)|(|i_‘1 < %

The same inequalities hold with |X| replaced by |Y|. Then with T, (X,Y) as in

the Section 2.3 of the Chapter 2 we have that }, »ycvyy @i(a,b) = [Too) (X, V)| and
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in the form of the finite addition theorem of Sarkézy [30]. We give details of this

deduction, whose principle goes back to [13], in Section 5.4.

5.2 The finite problem

The main result of this section is Theorem 5.2.1, which is a slightly modification
of Theorem 2.1 of [24]. For the sake of completeness, we will provide a full proof
of Theorem 5.2.1, which as the reader may expect, runs in parallel with that of
Theorem 4.1.2. We begin with some notation. We shall suppose that A > e¢* and
let U = Hpgw p, where w = A%. In addition, we let Z be a set of primes in the
interval (v/N,2v/N| with

and |{z € Z|z=amodU}| < 3 VN

(U)log N’ (54)

N
Z| >
| l_AlogN

for all classes a in Z/UZ. Also, we denote by ¢ = {c(i)}icr a given finite sequence
of integers and let Ry (Z, c) denote the set of triples (z,y,4) in Z x Z x I such that
2% + y? + (i) is an invertible square modulo U. Finally, let 7(U) = 27 be the

number of divisors of U. Now we can state the theorem as follows.

Theorem 5.2.1. We have

U >2 |Z|2|1| ((310g2 +0(1)) log 3A> |

[Ru(2.¢)] < <¢(U) 7(U) P loglog 3A

(5-5)

(logloglog 3A)

where 0 K Tog log 34

Proof. Let a,b be any elements of Z/UZ. For any ¢ in I we set a;(a,b) = 1 if
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where

U(t) = 3 1e(n) 21 logn B(1?) e(n’t)

and §(t) =2 s logp e(p*t) for any t € R, which is given by (5.10) in the Section
5.3. We then split the integral into minor and major arcs whose definitions are given

in the Section 5.3. First we note the inequality
1 -~
/ S()™ dt < |S|°(log N)A° | (5.3)
0

which follows from the bound r5(n) < n%2/log® n, where r5(n) is the number of
ways n can be written as sum of 5 prime squares. For the minor arcs contribution
we use the estimates on the exponential sums over prime squares and (5.3), details
are given in the subsection 5.3.1. And major arcs analysis lead us to estimate of
certain cardinalities, details are given in the Subsections 5.3.2 and 5.3.3. Finally on

combining minor and major arcs estimates we get

2 log N)!
Es(S) <« WT(Z()IEVO)g ) [{z € S"'| f(z) an invertible square mod 2WW}|
[SI" (log N)M
o) I - S
w0 (FHEERDY,
where W = 2Hp§A25p and f(x) = o1+ 29+ ...+ 26 — 27 — ... — x1;. We then

complete the proof of Theorem 5.1.2 in the Subsection 5.3.4, by giving estimation
on the above cardinality.
Finally, Theorem 5.1.1 is deduced from Theorem 5.1.2 by means of a classical ap-

plication of the Cauchy-Schwarz inequality and the use of additive combinatorics
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Theorem 5.1.1. For any integer K > 2 we have rp(K) < K exp ((3101112?()(;)[‘),10’%]{)

when D 1is the set of squares of the prime numbers.

We will prove Theorem 5.1.1 via the theorem below, which we state with the help of
following notation. For any subset S of the squares of primes in the interval (N, 4N],

we shall write

Fs(S) = Z log p1logps ... log pia. (5.1)

pI+p3+...+p=p+pi+... 403,
pZeS,1<i<12

Theorem 5.1.2. Let A > ¢ be real number. Then for all sufficiently large integers
N, depending only on A, and any subset S of the squares of primes in the interval

(N,4N] with |S| > AﬁgQN we have

1 1
E6(S)<<|S| (10%]\[) exp (3log2+o0(1))log A |
log log A

2

og log log A
where o(1) < _u;_g_loglog/l .

Our proofs of Theorems 5.1.1 and 5.1.2 are an adaptation of the method of Gyan
Prakash, Ramana and Ramaré [24] to the case of the squares of the prime numbers.
Now we sketch the proof of Theorem 5.1.2. To prove this theorem we apply the

circle method, suggested by [6]. Our starting point is the following inequality

_\/—E6 / e Sp(—t) di
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the following question. What is the smallest integer rp(K), if it exists, such that
given any colouring, or partition, of D in K colours, every sufficiently large integer

is expressible as a sum of at most rp(K') elements of D, all of the same colour ?

When D is either the set of squares or the set of primes the aforementioned question
was posed as Problems 39 and 40 by A. Sarkézy on page 26 of [31]. It is easily
seen that indeed rp(K) is finite for all K > 1 in these cases. In [13] N. Hegyvary
and F. Hennecart showed that rp(K) < (K log K)” when D is the set of squares
and rp(K) < K® when D is the set of primes. Ramana and Ramaré [25] then
obtained rp(K) <« Kloglog2K when D is the set of primes, which is the best

possible bound up to the implied constant. Recently, Gyan Prakash, Ramana and

Ramaré [24] showed that rp(K) < K exp ((310gligf§g)}(bg K) when D is the set of
squares. By a lower bound in [13], the optimal bound in this case is expected to

have a log 2 in place of the 31log?2 in the exponential factor.

A classical theorem of L.K. Hua implies that the set of squares of primes is an
asymptotic basis of finite order. Indeed, Hua’s theorem tells that every sufficiently
large integer n which is congruent to 5 modulo 24 can be written as sum of at most
5 prime squares and hence any large integer is a sum of at most 9 prime squares. F.
Hennecart asked (orally) if one may extend Sarkozy’s problems to the case when D is
the set of squares of the prime numbers. Independently of Hennecart, this question
was considered by Guohua Chen [4], who showed that rp(K) <. K*™. The main
result of this chapter improves on this conclusion of Chen. More precisely, and in

analogy with the result of [24] for the squares, we prove the following theorem.
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CHAPTER

Monochromatic sums of squares of primes

5.1 Introduction

A subset D of the set of natural numbers is said to be an asymptotic basis of finite
order if there exists a positive integer m such that every sufficiently large integer
can be written as a sum of at most m elements of D. The smallest m for which
the above property holds is called the order of the asymptotic basis D. There are
two classical examples of asymptotic bases of finite order. The first of these is the
set of squares of the natural numbers, which by Lagrange’s four squares theorem,
is certainly an asymptotic basis of order four. The second example is the set of
the prime numbers, which is seen to be an asymptotic basis of order at most 4 by
the classical theorem of Vinogradov which asserts that every sufficiently large odd

integer can be written as a sum of three prime numbers.

Given an asymptotic basis D of finite order and an integer K > 1 one may ask
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Then we get a lower bound

A()\A, . ,)\A) Z exp ( — C(‘/, \117 F’ m, /‘i) a—Sm—n)

By Lemma 6.4.3 and since Ay < (IOgN)k 14, we have

log w

log N\ —mk

[{y €A™ V' =0} > exp (=e(V. W, Fom, 5) 72" %) N0 (10

Note that the number of y € [N]™ with two identical coordinates and such that
Vy =01is < N™ "L Let us take kK = m, then we see that the above cardinality
is > C N™ 1 for any large constant C. Thus we see that there exists at least one

y € A™ with distinct coordinates such that V' = 0.
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a D-pseudorandom weight v : Zy; — R* of level (log N)'~°") such that
OS)\A<<>\b7W<<V-

Let v' = 3(v+v*pug), so that |N,| < v and [As — \;| < v". By Proposition 6.5.2,
V' is also D-pseudorandom of level (log N)'~°(1).

We recall now that W is in exact 1-normal form at ig. Applying Proposition 6.5.3 to
the functions f1, ..., fm, and inserting the estimate on [[A4 —\;||» from Proposition

6.5.6, we obtain the desired result. O

6.5.5 End of the proof of Theorem 6.5.1

By recalling the expression of A(f,..., f) from (6.5.1), we see that

Ay A) = ANy N+ D A ),

where the above sum varies over f; € {\;, A4 — A\,} and at least one of which is

Ag — XA. By Lemma 6.5.10 and Proposition 6.5.8 we see that for any x > 0

A(Aa, ..., Aa) > exp ( —c(V, W, F,m, k) a‘gm_“) — 0(61/4 + 04 + (log N)_T1+0(1)),

whenever 6 *loge™! < clog N. We choose € = 6 = exp(—c (V, ¥, F,m, k) a~ ")

for a some large constant cI(V, U, F.m, k), and assume that

a>c(V, U, F,m, k) (loglog N)%J”‘.
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therefore in [—2N,2N]. Since Ay > 21/, we have

’ ’ O\ m .
ANy, Xy > (5) ALy, 1), (6.128)

By the above Proposition 6.5.7, we know that A has density SV Fk o't in

[-2N, 2N] for any £ > 0. By Lemma 6.4.3 and Theorem 6.1.3 we obtain

ALy, .. ly) = M™

{y €AY Vy= 0}‘
1
> exp ( — coIFREM g —)
a
1
> exp ( —ca ¥7F Jog —),
a

where ¢ depends at most on V, ¥, F,m and x. Thus writing this lower bound in

(6.128), we get the assertion of the proposition.

Now we compare A(A4, ..., A4) with AN, ..., \),).

Lemma 6.5.10. Suppose that fi,..., fm are functions all equals to XA or Ay — /\i4

with at least one of them equals to Ay — )\:4. Then we have
Afree o fn) < €4 6Y4 4 (1og N) T+, (6.129)

Proof. Let us consider iy € [m] such that fo = Ay — \,. Let Q = ||d|| and let

D = Dgm.,q be a constant from Proposition 6.5.3. By Proposition 6.5.5 there exists
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. . .
Moreover, X\, is “large” on the integers. More precisely, we have

Proposition 6.5.7. For any k > 0, the level set A" = {\, > a/2} has density

> 061+K m ij.

Proof. Having bound on the L*-norm of \;, we can get a lower bound on the density

of A" in Z,;. In fact we have
a = Epez, Aa(2) + Epez, Ay (2)1 4 (2).
By an application of Holder’s inequality we get
/2 < || Lyl [Xalls
where %—i—% = 1. Note that if s approaches infinity then r approaches 1 form the right.

Thus the proof of the proposition follows by noting the bound ||\ ||l < 1*. O

We have a lower bound on the average of XA over the W-configuration.

Proposition 6.5.8. Suppose 6 *loge™ < clog N, then we have
! ! —8m—k 1 .
A(/\A,...,)\A)Zexp(—ca log—), (6.127)
Q

where the constant ¢ = ¢(V, W, F,m, k) depends at most on V, W, F,m, k.
Proof. Consider the level set A" = {\); > «/2} contained in the support of A’y and
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and get

q/2
R q 1 —nm
Z >\A(m)‘ = Z i Z Aa(n)e( Vi )
meZyy meZns neZy
1 N (n)\a/2
<4 (H Z B(n) )
neZs
1 q/2
neZny
Kpg L

where we use the lower bound on 3(n) whenever n € A and the fact that E,cz,, Aa(n) =

a < 1. O

We now see that )\14 approximates A4 in a Fourier [* sense. In fact we have that
A — Nylloe < €% + 6Y4 To see this, by the above Lemma 6.5.9, we have

S Aa(r)|9 <gg 1 for any g > 2. Therefore,

A = Xallde = D [Ralr)*|L = ()]

<€ Z Aa(r)[* 46 Z Aa(r)®

ri|Aa(r)| 29 rAa(r)|<0

<Le+d

where we used the fact that [1 — fip(r)| = |Egez,, 1 — e(F#)| < eforall 7 € T
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for any complex sequence (b,), where §(n) is an enveloping sieve function with
R = M'*c0/80k+20 "This means that 3 : ZT — R is a non-negative function satisfying
the majorant property

B(n) > G7' log" R1x,,(n) (6.126)

with Gr =], %, where

1 1—Fk/p ifp>w
v(p) = ]—9|{n €Z,:(p,F(n)) =1} =
1 if p<w

and Xp ={n € Z:(F(n),d) =1, Vd < R}. In particular, for any integer n € A,

we have n € Xp and

1—1/p)k S <logR)k'

B(n) > log" R H ( ) g o

We apply (6.125) to the sequence (b,) defined by

0 otherwise
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which implies that

1
, 1 log N (1=a)k
k 9 | 1/21 .
[Aallar < (k)™ (KD + |B[1/2 \ logw

From this, (6.110) follows by recalling the trivial bound n! < n™ on the factorial of
n.
Note that |B| > N'/? by the condition on ¢ and 6. Thus we get the bound || \y||or <4

I¥ for large integers .

STEP 3: We see that /\i4 is close to A4 in a Fourier [* sense. To see this we need

the following restriction estimate of Green and Tao.
Lemma 6.5.9. We have

D Al < 1 (6.124)

for any q > 2.

Proof. We apply the Proposition 4.2 of [10] with
k .
F(n)= H(a,-Wn+aib+b,~) and R = Mwrin < MY,

i=1

Then we get, for any ¢ > 2,

1 & —mn ! 1 X /2
D |37 2o b e(— )| < (MZIanﬁ(n)) (6.125)
meZy n=1 n=1
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Now we estimate the product in (6.121). We have

H (1 M) (1- 1)—2“ w)2H H (1- 1)—21@1.

» P P pow p
Since Hp>w ( — QT’fl) (1 — %)_Zkl = 1, the contribution to the above product comes

from those p > w which divide y; — y; for some @ # j.

Since |y; — yj| < M, and any integer y < M can have at most log M/logw prime

log M

factors greater than w, we see that there are at most 412 — primes greater than w
which could divide some difference y; — y;. For each p that divides y; — y; for some
i # j, we take the smallest possible value k for p(p). Thus, by noticing the bound

(1—1/p) ' < %5 for p > w, we have

412 (2k1—1) e
H (1 _ @) (1- 1)%1 < (L) o (6.122)
e P P w—1
plyi—y;

By our assumption of on the bound [ < 2—10 logl/ ®w, we see that the right hand side

of (6.122) is at most 5¢°®). Thus, we get an upper bound

M

A1, .- ya)| < (k) (2/<l)!(10g—N)2m-

(6.123)

From (6.123), (6.120), (6.117), (6.119) and (6.118), we see that

l
2kl 2 | v
INAIBE < ek (k)1 + 7

log N\ (21-Dk
10gw>
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we see that the term, given by (6.117), is

20-1

log N\ 2tk—Fk 1 |
Sk ( ) ) el > uslp) - nsy) (6.119)
r=1

log w
(Y15 y20) ELr

Each term in the sum over r may be bounded by IBI%' We can assume that

|B| > 2. Thus the quantity given in (6.119) is

< (10gN)2lk—k:L
" \logw |B|

Now we bound the term given in (6.117). We observe that this quantity is at most

1 log N
M2+1 <

)zlk S ws(y) - ps(ya) Al y2)l- (6.120)

log w
(Y1,--5Y21) € oy

So to bound this, we first need to estimate the cardinality |[A(yi,...,y)|, when
(Y1,---,Y2) € Jo. This can be done by applying Klimov’s lemma. Note that the

hypotheses of the Klimov’s lemma are satisfied by our parameters. Thus we get

—2kl
Al o) € el 00 T (1 - %) (1 - %) (6.121)

The function p which appears on the right hand side of (6.121) takes the values as

follows: p(p) =0 if p < w, p(p) =2kl if p > w and p fy; — y; for all i # j.
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Applying Klimov’s lemma, we get

log w\*
M 5.11
|A(y17 7y2l)| < <10g v ) (b 5)
1 k
< (k) M (1;’5;)[) . (6.116)

Actually, we can apply Klimov’s lemma in the case of k > 2. However (6.116) is
true even if k = 1, by the Brun-Titchmarsh inequality.
Let

I, = {(yl, oY) sy < M/2 with at most s distinet coordinates yz}
and
Js = {(yl, cooy) sy < MJ/2 0 with exactly s distinet coordinates yz}

for any 1 < s < 2{. Thus, (6.113) can be at most

21—-1

ﬁ Z Z 1 (Y1) - s (ya) Z M@ —y1)-dalr —yu)  (6.117)

r=1 (y1,....y21) €Ly

1 }
+typm S psly) o pusy) > Aalr =) Aalz —ya).  (6.118)

(Y1,-y21) €EJ2

We now estimate the term given in (6.117). Using the trivial bound on

log N 2k—k
log w )

Sl — 1) - Al — ) < (
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n € {l,...,p} such that

We first prove that for any [ < % log'/® w, we have

log N)(l_zll)k| | -1

INall2r < 15+ (logw B|=r, (6.110)

where B = Bohr(I", ). For this let us start with the expression

INAI3 = B |(Aa % o () [* (6.111)
= E, [E,\a(z +y)us(y)” (6.112)
< Eyl,.-.,yzzﬂB(?Jl) e pp(ya)Exda(z —yr) - Aa(r — ya). (6.113)

For each 2I- tuple (yi,...,ys) € Z3,, the inner sum of (6.113) can be estimated as

E a(z—y1) - dalz —yy) <

1 <logN

2kl w
M ) Ay, .-yl (6.114)

log w

where

k
Alyr, - ya) = {1§$§M1 [[aWz+ab+bi—ay), J[ »
i=1

pS(NW)1/4k+1

=1 foreachl <j < 21}.
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A4 = Nl

STEP 1: Let us now take € € (0,¢;] and § € (0,1] for some small enough ¢; > 0.
Let us fix the Bohr set B(T,€) of Zy with T' = {r € Zy; : |Aa(r)| = 6} U {1}. We
note that B = B(T',¢) C [—eM, eM]. We define \; as the convolution function over
Z given by X, := A4 * Ap where A\g = I?B If € is small enough, then we see that the

support of A’ is contained in the interval [-2N,2N]. Since M > 2N, we may also

consider X, as a function on Z,;. Since
Na(n) = Aa x p(n) = Buezy Aa(n — x) pp (),

i .
where pp = (l l) '15. Thus A, can also be seen as a convolution over Z;.

STEP 2: We follow E. Naslund [22, Section 2.1]. We need the following lemma

which is due to Klimov [18, Theorem 3].

Lemma 6.5.8. (Klimov) Let 1 <i<r,1<n< X,vp<0v < for a fized vy,

wa
log?” X’
and define X,(qi, ;) to be the number of integers n for which p 1 gn + ;, for each
p<w,and each 1 <i <r. Then if ug = O(exp(logB v)) for a fixed constant B > 0

we have, forr > 2

1\ —r log log g
Xolgi, ;) < - 5) (1 + (W))?

where vy = max(q;, w; ;) wi; = |Lig; — L (1 <4,5 <7r), and p(p) is the number of
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Accordingly, we define the normalized indicator function of A by

k
A= L (logN) L

log w

where L = % <yvar 1. With this normalization, we see that EjpjAa = o and

0 < Aa < Apw, recalling the definition of Ay from Section 6.5.3.

Given a function f : Z — C with support in [-2N,2N], we define an M-periodic
function f by f = f(n + IM) where [ is the unique integer such that n + [M €
[—M/2, M /2], thus we may consider f as a function on Zy;.

We define the convolution f * g of functions f,g : Z — C with finite support by

frgn) =2 g f(n—x)g(x).

We can treat A4 as a function on Zj, (by abuse of notation we take by 4= A4 ). Inthis
section our aim is to find a decomposition Ay = Fy + F, of A4 such that ||Fy||pr(z,,)

is “small” and ||Fy|;2 is “small 7. In fact we have the following proposition.

Proposition 6.5.6. Let Ay as above. Let € € (0,¢1],0 € (0,1]) be such that
0 *loge™t < colog N for small positive absolute constants ci,cy. Then there ex-

ists X, : Zy — R such that ||)\:4||L21( ) g ¥ foranyl < 1/20 log'?w and

Z

IAa = Nylluz < €4+ Y1,

Proof. Proof of this proposition has three steps. In the first step we give a function

X, in second the step we estimate || X||121(z,,) and in the third step we estimate

146



6.5.4 Transference principle

We begin the proof of Theorem 6.5.1 in this subsection and complete it in the next
subsection. Let V' € M,,,(Z) be a translation invariant matrix of complexity one
with m > 3. We can choose a linear parametrization ¥ : Z¢ — Z™ Nkerq(V) in an
exact 1-normal form over Z at every i € [m]. We assume that N is large enough with
respect to d,m, ¥,V and F. Let us take a prime M such that 2(||[V||™ + || ¥[|™) <
M < 4V([VII™ + 9N

We need to analyse functions supported on [—2N,2N]. For this, we embed the
interval [—2N,2N] in a cyclic group Zj;. The linear map ¥ reduces modulo M to
a linear map 6 : Z4, — kerz, (V) in exact 1-normal form over Z,; at every i € [m]

and such that ||0|| = ||¥||.

Let N > 1 be an integer and let us recall the values

1 1
W=Hp, w=colog N, (by/W)=1 with 006{816—#2’4]64—11'

p<w

k
We consider a subset A C {1,..., N} such that |A| > « (lloogiﬁ) N and

b+ AW C S(NW, (NW)1/4k+1),
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where T is equals to y € [1, M]so that = ympd M for any z € x,;. Thus we have

~ —_~—

vi(gi(n +x)) = v(di(n) + di(x)).

Hence using (6.67), for any good x, we have

~+

t

ne[PdHVl (¢1(x+mn)) = ne[PdHV< T))

i=1 =1

=1+0
D( ogNl o(1)>

since ¢; is a non-zero affine linear map, for any 4, the number of bad x is at most

Op.tm (PJWd_l). Since v(n) <. M€, we obtain

E,ez1 I{z good} H vi (¢s(x +n))

ne[p) i=1 (6.108)
P 1
= (= 0mn (37)) (00 (zyen)
and
t
PMc¢
E,cz4 I{znot good} H v (¢i(x +1n)) = Opime (7) (6.109)
ne[P)e i=1

Using (6.109), (6.108) and noting that N =<p,, M, we obtain the pseudorandom

asymptotic property

t
1
E, v (dn(2) =1+ Opp | ————— .
EZ%E l( l( )) Dt ((10gN)1_0(1)>
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of finite complexity such that the map @ : Z¢ — Z! induces the map ® : VAT
and [|®]|n = [|]].

Now let us consider
t

Bzt [[ 1 (61(x)).

i=1
Let P = MY? and through the embedding [P] < Zy;, we identify [P]? as a subset

of Z4,. Note that for any n € Z%, we have

t t
E.cqt [[11(61(2) = Bpege [[ 11 (61(2 +n)).
=1 i=1

Hence we have

t t

E,cz [[ 1 (61(2) = Breza Bucppe [ [ 11 (4102 +n)).

=1 1=1

We say that x € Z4, is good if for any i with 1 <i < t, we have
M M M M
¢i(z)¢ |——,——+DP| U|—,——-DP
2 2 M 272 M
where [a, b]s is a interval in the integers with respect to the metric
|z — y||pr = min |z — y + Mn)|.
nez
If z is good, then for every n € [P]¢, we have
Gi(z +n) = ¢ + di(n)
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of [11] to give an explicit error term, which involves the level of the pseudorandom
majorant. The following proposition, due to Henriot [15, Proposition 11], gives a

pseudorandom majorant on A, yy.

Proposition 6.5.5. Let D > 1. There exists a constant Cp such that if N > Cp
and c;N < M < ¢oN is a prime, then there exists a D-pseudorandom weight vy :

Zy — RT of level (log N)'=°W) such that
0< Nw <p 1. (6.105)

Proof. Let v be a pseudorandom majorant as in Proposition 6.5.4. Now we define
v, as follows.

vi(n) :=v(n) forne{l,...,M}

and we extend vy to whole the set of integers Z as periodically with period M. Thus

vy defines a function on Z,;. Clearly we have
0< 5\b7W <p V.

Now we verify the pseudorandom property. For this let us consider an affine linear
map

D= (py,...,0): 2% — 7", (6.106)

of finite complexity with d, ¢, ||®|| < D. Then there exists an affine linear map

b — (&1,...,@) YN (6.107)
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1 Ll ot
e R—) (6.103)

¢ O —c|L|}/? log R)Ox+(1) 1 =
Coka Tt (e (log R) +w+ oz R +P

provided that L < clog R/logw. Assume that P > N, for some absolute constant
c¢1 which depends at most on ¢ and k. Choose L = C(loglog N)? and R = N" with

bnt < ¢p/2, so that

E,cpp | [ Avrwlti(n)] = &z + O((log N)~H+oW). (6.104)

i€(t]

By Lemma 6.5.6, we have ¢, 5 » > 0 and therefore we may define a normalized weight
function v := C;}C!QAXV rw, Which satisfies the desired pseudorandomness asymptotic

by (6.104), and which majorizes a constant multiple of Ay .

Let us take N to be a large positive integer and consider an embedding [N] < Z,,
where M is a prime larger than N. We are interested in finding a pseudorandom
majorant over Zj; for the function Ay, which we can think of as a function on
Z);. More precisely, given a function f : Z — C with support in [N], we define
an M-periodic function f(n) = f(n + M ), where [ is the unique integer such that
n+ IM € [M]. Note that f may in turn be viewed as a function on Zj;.

It is relatively easy to construct a pseudorandom majorant on Z,,; from the pseu-

dorandom majorant on the integers Z, given in Proposition 6.5.4, by cutting Z¢,

into small boxes as explained in [11, page 527]. But Henriot refined the arguments
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Thus, we have

o0 o0 o , 9
cxmz/ / (/ P(E)(1 +i€)* 120 e )y - day.
0 0 JRr
We observe that
X r 4+ o) = (1) / )1+t e O g,
R

Hence,

Cx k2 = / / X+ + xk))z dry - - - dxy, (6.101)

which shows that ¢, 42 > 0.

O
Lemma 6.5.7. Let 1 < L < Clgfg—gj. Then we have
hﬁ%w/ / 0 HEM H Szy)dfw
bt (i.9)€0 (6.102)
1 1 Llogw
= C;,k,Q +0 (6_C|L| gt o + loggR ) .

Proof. The proof of this lemma follows by using the Euler product Hp E, ¢ value

from lemma 6.5.5 and recalling the growth of (. O

Now we are in a position to give a proof of Proposition 6.5.4
PROOF OF PROPOSITION 6.5.4.— Let P > 1. Using lemmas 6.5.2, 6.5.4 and 6.5.7,

we see that the average E,c(pja [ [;cjq Ay, rw[i(n)] is equal to
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By Lemma 6.5.3, we have

[T&e -1 <1+k S )T+ 0u)

p>w B vertical

= (1+ Ogp(w H H p s Zz‘j)(_l)lBlk.

p>w B vertical

Since p~* = 1+ O(Llogp/log R) for p < w and |z| < L/log R, we have

HEP,§=(1+Ot,k(%+LiO_gw J(ogw)™ ] Cl—i—Zzl] DR (6.99)

p - B vertical

Using the fact that ((s) = =5(1+ O(|s — 1])) for R(s) > 1, it follows that

1 Llog _1)IBI )
1= (1+0u(+ lozg];“))(logw)kt T =) (6100

D B vertical B

If we substitute the value of z;; in the above equation (6.100), we get the conclusion

of the lemma. O

Definition 6.5.6. (Sicve factor) cyro = [[gs (%) P(&1)p(&2)dE1dEs
Lemma 6.5.6. For any k > 0, we have ¢y 2 > 0

Proof. Note that

1 / / He (244(¢ 1+§2)daj cdr T

(2 + Z(él + 52
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We now estimate the error term in (6.89). By the multiplicativity of a(my, ..., my)

we can write the error term in (6.89) as

24,4 Tij
6_0L1/2 H Z Oz(prl, o 7prt)p_Tg% (6.92)

p (Tij)E{O,l}Q

= gl H Z a(p, B)p_hlzg‘R (6.93)

p BCQ

Note that if B # (), then we have a(p, B) < K?*/p. Keeping this in mind we obtain

an upper bound for the error term as

_CL1/2 k2|Q| .

< e H (1+ p,—1+1/10g3) (6.94)
p

_eLl/? 1 —|Q|k? .

< e H (1 p—m/logg) (6.95)
p
e (L o (6.96)
log R

<p e P (log R)'. (6.97)

Thus we get the conclusion of the lemma by (6.97),(6.91), (6.88) and (6.89). O
With the estimates on a(p, B) in our hand we can evaluate the Euler product.

Lemma 6.5.5. Let 1 < L < ‘j};’—gR be a parameter. For every & € [—L, L%, we have
g w

HEp,§ = <1+Ok,t(%+%)) hz_%fw H ( Z (1+i£ij))—(—1)lBlk (6.98)

D Buwertical (i,j)€B
Proof. Note the identity > 5. ea(—1)/P! = —t, and write z;; = (1 + i&;)/ log R.
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where we use the fact that ¢(€) < e~¢¢I"”. Therefore we have

lo M i€i;)/ 1o .
I x(7) / . i T g (686)
L,L)%

(i,j)EQ ('L ])EQ

—cL1/2 H m logR (()87)

(4,7)€Q

We write the value of the above product (6.86) in (6.82), then we see that the value

given in (6.82) becomes

/ /[ . S almaycm) T plmig)my! 0 B (e ) de  (6.88)

JEN® (1.5)€Q
! 1
+0 (e_CLl/2 z almy,...,my) H mijbgR). (6.89)
(mi,j)ENQ (4,)€Q
Using the multiplicativity of a(my, ..., m;), we can write the main term in (6.88) as

/ /[ (—1)ZGneamiig(p .. p't) x
L,I)?

p (rj )E{O 139

(6.90)
'R 2(i.j)eq Tii%is H p(&ij)dis,

(i,5)€

where z;; = (1+i&;;)/ log R and r; = max(r; 1, 7;2). We can write the above quantity,

by using the definition of Euler factor, in a closed form as

/ /LL]QHEM [T etz (6.91)

(1,5)eQ
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Therefore, in this case, we get a(p, B) < 1/p°. O

We define the following Euler factor.

Definition 6.5.5. (Euler factor) Let € € R® and z;; = (1+i&;;)/log R. We define

Epe =Y (=1)"la(p, B) p~ >taeni, (6.81)
BCQ

The estimates on a(p, B), by Lemma 6.5.3, and the fact that R(z;;) > 0 guarantees

the absolute convergence of the product [, By e.

Lemma 6.5.4. For any L > 1, we have

! lo my; 5 .
Z almy,...,my) H p(m ;) x( lf RJ) (6.82)
(m;,;)ENS (i,5)€Q &
_ / / [1Ee T #(€s)des + 0" (log R)*). (6.83)
(=L.LJ 7y (i,) R
Proof. We have that
@)= [ e e (6.8

Let L > 1 be a real number. In (6.84) taking the value © = logm,;/log R and

truncating the integral at —L to L we get that

log my;; Lo &)/ o 1 “ToE R
N Ogmo) _ / mij(1+ €i7)/ 1 8 o(&,)dEy + O (et 2 m;;' "), (6.85)
log R -L
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the variables m; j, keeping in mind that m; = [m; 1, m; o). Writing m;; = p™s,r; =
max (71, 7i2), and B = {(4,j) € Q : r;; = 1, we have r; = 1 if and only if r;; = 1 for
some j € [2], since our m;;’s are square-free, that is , if and only if the slice B; of

B at i is non-empty. Therefore
a(p™, ..., p") = Epezg (p|F(b+ Wipi(n)) Vi: B; #0) =: a(p. B) (6.79)

A non-empty set B C € is said to be vertical if B C {i} x [2] for some 7 € [t]. We

now estimate the size of the local factors a(p, B) in the following lemma.

Lemma 6.5.3. For B # (), we have

0 ifp<w

2
=
=
I
[

if p > w and B vertical

()k(#) if p > w and B is not vertical.
\

Proof. (i) Let p < w, then p|W. Recall that our choice of b satisfies (£'(b), W) = 1.
Therefore p does not divide F'(b+1;(n)W) for any [ and n. Thus we have a(p, B) = 0.
(ii) Let p > w. Let us recall the polynomial F(n) = [[*_,(ain+b;). Since p > w, we
can choose w to be a sufficiently large enough so that a;’s are invertible modulo p.
When B is vertical, there is only one 7 such that that B; is non-empty and therefore

a(p,B) = k/p. (iii)) Let p > w and B is not vertical, then there are at least two

indices ¢, 7 such that B; and B; are non-empty. Note that

[{n € Z¢: p|F(b+ ¥i(n)W) and p|F(b+ 1b;(n)W)}] < p*2. (6.80)
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Proof. Note that the value in (6.72) is equal to

¢ logm .
> 11 Z(n)w)u(m)x <1og R) : (6.74)

ne[P]d i=1 \ m|F(b+y;

After opening the square in (6.74) and interchanging the summation we see that the

quantity in (6.74) equals

3y ( 1 nimy) X(lﬁfgﬁ’j)) 3y . (6.75)

(mg,;)ENS (i,5)€Q ne[P)?
m; ;| F (b+1; ()W) V(i,5)€Q

The counting inner sum in (6.75) can be rewritten as

Z H Lo 17 (b s (myw) (6.76)

nelP)e (i,5)€Q

and which is equal to

t
Z H Lini P (b (nyw) (6.77)

ne[P]d i=1
where m; = [m;1,m;s]. Letting m = [my, ..., my] we see that (6.77) equals to
t
P! Enez;ln H Lo F(btys (myw) + Ot(Pd_1)~ (6.78)
i=1

By using the facts that max, |x(z)] < R and R = N7 > 1, we get the conclusion of
the lemma from (6.78), (6.75) and (6.72). O

Observe that by the Chinese remainder theorem, a(my, ..., m;) is multiplicative in
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as p(§) < e~ The advantage of this choice is that, by truncation at any

parameter L > 1, we have
L . 1/2
= / m T/, de + O(emh7) for m < R. (6.70)

We now make preparation for the proof of Proposition 6.5.4. We fix D > 1 and
w = cglog N, so that we may assume w is larger than any fixed constant depending
on D and our polynomial F. We then consider a system of affine-linear forms
W : Z¢ — 7 of finite complexity such that d.t, || ¥| < D.

We first expand the divisor sums inside the correlation of divisor sums, and it is
useful to introduce a notation Q@ = [t] x [2]. Note also that the prime in Z/ means

that the summation is restricted to square-free numbers.

Lemma 6.5.2. Let (m;;) € N®. We write m; for the lem [m;1,m;s] of m;1 and

mgo. Let

a(myy, mig, .., M1, Myo) = a(ma, ..., my) = Byeza (mJF(b + Wi (n)) Vi € [t])
(6.71)
Let also P > 1. Then

hew > Merw[Vi(n)]. . Ay rw[tbi(n)] (6.72)

ne[P]t

log m;
= pd Z’ u(ml, .. mt H ” ”Lw ( (ing]> + ()(R2‘Q|Pd—1)_ (6.73)
(m,;)EN® (i)eQ og
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7 is a positive constant to be chosen later. Let us take a sequence of real numbers

p: N — R such that p(1) = 1 and with support on [R] which we will choose later.

k
Definition 6.5.4. We let hgw = (logR> and

log w

2

Aprw(®) =haw | 3 pm)p(m) | (6.68)

m|F(b+Wn)
Our pseudorandom majorant turns out to be a constant multiple of the above func-
tion. Indeed the constant is 0;7272 where ¢, 2 is as in Lemma 6.5.6.

Lemma 6.5.1. Let R = N" with 0 < n < ¢/2 < 1/8k + 2, where ¢q is as in 0.64.
We have

0 < Nw Ly Mprw L N° (6.69)

for every e > 0.

Proof. The second inequality follows from the divisor bound. For the first inequality:
note that if Ay y/(n) is non zero, then all the divisors of F(Wn+b) exceed N'/1+1(>

R) except 1. O

Now we specify the weights p(m). We let

1
ﬂ(m) =X (f;ig) where X(gg) = 1[_171]@) 6x+1€—1/1—m2.

By Fourier inversion formula, we have x(z) = [% ¢(€)e”TE%d¢ for every z €

1-1/(1—2?

[—1,1], where ¢ is the Fourier transform of 1;_)(z)e ), and thus decays
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long arithmetic progressions and linear patterns in primes. Our majorant takes the
form as in (6.68).
Let us fix a large integer N and recall the values

1 1
8k +2" 4k +1

W = Hp, w=-cologN, (b,W)=1 with ¢ € [ } . (6.64)
p<w

Let us define the measure associated to W-tricked sifted sets as

log N
log w

Ao (n) == < )k 1(n€[N]:b+Wne S(NW,(NW)YV#H), (6.65)

We will construct a weight function over Z which majorizes A\, 1 and satisfies pseu-

dorandomness asymptotics. Indeed we have the following proposition.

Proposition 6.5.4. Let D > 1 be a parameter. There exist a constant Cp such
that the following holds. For N > Cp and w = colog N, there exists v : Z — R™T

such that, for every e > 0,
0< >\b,W <Lp v <L N° (666)

and, for any P > N, absolute constant ci, and any affine system ¥ : Z¢ — Z! of

finite complexity and such that d,t,||¥|| < D,

E,c(p)a vii(n)]...vj(n)] =14 Op (m) ) (6.67)

We closely follow [15, Section 5] to prove this proposition. We let R = N, where
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that the functions f; are dominated by a pseudorandom measure. More precisely

we have

Proposition 6.5.3. (Generalized Von Neumann theorem,)

Let d,t,Q), H > 1 be parameters. There exists a constant D depending on d,t,Q
such that the following holds. Suppose M > D is a prime and ¥ : Z4, — 7%, be
an affine linear system of complexity one and it is in exact 1-normal form at each
i € {1,...,t}, and such that ||¥|| < Q. Suppose also that v : Zp; — RT is D-
pseudorandom of level H, and fi,..., f; : Zipyr — R with | fi| < v for each i. Then

we have

A Sl < min (filloazan) +Op(HTY). (6.63)

6.5.3 Construction of a pseudorandom majorant

In this section we will construct pseudorandom majorant of the normalized indicator
function of W-tricked sifted sets. The idea of constructing this majorant is primarily
based on the Selberg A%-sieve. The essence of Selberg sieve is to consider sums of
the form (3_,, p(d))? with weights p(d) € R such that p(1) = 1 and p(d) = 0 for
d > R for some sieve level R. Here p(d)’s are called Selberg weights. Nowadays
it has become a powerful tool to deal with the set of primes. For instance Gold-
ston, Pintz and Yildirim [9, 8] considered a particular type of Selberg weights while
studying small gaps between primes. Green and Tao [11, 12] studied correlations of

(> dpn p(d))? for smooth weights p(d) while establishing the presence of arbitrarily
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complezity with d, ¢, ||U|| < D ( where & = U — U(0) is linear part of V), we have
14 ) p

1

Enezg viv1(n)] - v[gn(n)] = 1+ Op(4). (6.61)

This pseudorandomness property turns out to be invariant under averaging. In fact

we have the following proposition.

Proposition 6.5.2. Let D, H > 1 be parameters. Suppose that v : Ziyr — R is D-
pseudorandom of level H, B is a symmetric subset of of Zipr and up = (|B|/M)™ 1.

Then v' = (v + v * ug)/2 is also D-pseudorandom of level H.

Proof. Let vy = v and v; = v % ug. Thus we have
ve(xz) = Byepr(z +ey) for cach €€ {0,1}. (6.62)
Let T'= Ep ez, V[ (n)] - - v 1 (n)]. We have

T = EEE{O,I}tEnEZ%I Ve, [wl(n)] T Ve [wt(n)]

= Eee{O,l}tEyEBtEneZ‘}wV[wl(n) +ey] - v[b(n) + e

Note that for every e € {0,1}" and y € BY, the affine linear system (¢; + €;9;)1<i<
has the same linear part as (1;)1<;<¢. Since v is D-pseudorandom of level H, we

have T'= 1+ Op(H™"). Thus v/’ is also D-pseudorandom of level H. O

We now have come to the main part of this subsection. The following proposition,

which is Theorem 3 in [15], gives us estimates on the count A(fi,..., f;) provided
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the quantity in (6.59) becomes

(1) (0)
Eo,0Bo o fil@)i(@t+s’ —o,7)x (6.60)

fle+ o =) e + 2y — o 2y — )

Now let us change the variables in (6.60). Let :cgl) — a:go) = hy and xgl) - x§°) = ha,

then we see that the quantity in (6.60) becomes

2
Eq i hoezy, H Clwlfl(fﬂ‘f'zwjhj)
j=1

we{0,1}2

which is exactly equals to || f1]|{.

We remark here that the validity of the inequality (6.57) requires |f;| < 1 for each
. But while working with sifted sets we encounter functions which are not bounded
by 1 and in general such an inequality does not hold for those functions. How-
ever, a weak form of the inequality (6.57) holds for the class of functions which are
dominated by a “pseudorandom measure”.

We now define, following [15, Section 6], functions called pseudorandom majorants

and discuss their basic properties.

Definition 6.5.3. Let D, H > 1 be parameters. We say that v : Zyr — R7T s

D-pseudorandom of level H if, for every affine system U : Z4, — Zb, of finite
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which is same as

d
(0)
E ORI E,, H filapzy” + ajors + Z aj;x; + bj)x

JEYT i=3

H fi( aﬂazl ) 4+ ajoTs + Z ajiz; + b;)

JEY
and which is at most
d
0
E 20 2D gy vaCZng E., f1 (a1137§ ) + a9 + Z ayT; + bl) X
=3
d
1
f](alll'g ) + a12T9 —+ z a1;T; + bl) .
i=3
Let us change the variables. Given x3,...,x4 € Zy;, we set by + 2?23 a;jr; =Y.

Then we see that

A(fro. . f)]P < E o 0, B, fily + anz\” + anrs) fily +anat” + apws)|.
(6.58)
Applying Cauchy-Schwarz to the right hand side of (6.58), we see that the square

of this is at most

1
Eo,0BEw o fily+ 2 +2) fily + 2 + 2Y)

(1)

(6.59)
A+ ) fiy + 2+ ad)).

We again change the variables in (6.59). Let x = y + T(O) + Té then we see that
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z1,29 for j # 1. Let Yy = {j € [d] : 1;depends at most on 1} and similarly let
Yo ={j € [d] : ¥;depends at most on x5}.

To prove our proposition, it is enough to prove that
ACf1 - fOL < Al

By the definition 6.5.1 of A(f,..., fi), we have

A1 £l = [Bucag Ailen(@)]- - filnla)]
= ey, [T Hlvs@)] TT @)

JEY JjeY2
= Exz ----- xq€Z H f][wj(x)] ECL’1€ZM H fj[’lﬂj(ﬁ)]
JEY? JEYL
< Eoy.wgczn |Boiczy H fj[wj(x)] :
JEYL

As a consequence of Cauchy-Schwarz inequality and noting the fact that |f;| < 1,

we see that the square of |A(f1,..., f;)| is at most

JEYT 1=3

d
H fj ((lel‘(ll) + CleZL‘Q + Z (L]ZLl + bj),
3

JEN =
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Note that this operator A counts W-patterns with weight functions fi,..., f;. This
count can be controlled by Gowers U**1-norm.

We now first define Gowers uniformity norms and see how A(fi,..., f;) can be
controlled by ||fi|l2 in the case of complexity one systems provided that |f;| < 1

for each i = 1,...,t. See [12, Appendix B and C] for more details about this norm.

Definition 6.5.2. Let f : Zy, — C. We define the Gowers uniformity norm

| fllus+1(zy) by the formula

s+1
s+1 w 3
we{0,1}s ! Jj=1

where C' is the complex conjugate operator on the space of complex valued functions

on Zy.
Remark 6.5.1. For any function f : Zy — C, we have || f[[}. = 3.z, Qe

Proposition 6.5.1. Let U : Z4, — Z', be an affine linear system of complezity one
and it is in exact 1-normal form at each i € {1,...,t}. Let f1,...,fy : Zy — C

with | f;| <1 for each i. Then we have

(A o)l < min (]| fiflo2). (6.57)

Proof. Let ¢ = (¢1,...,9:) : Z%, — Z, be an affine linear system of complexity
one and it is in exact l-normal form at each ¢ € [t]. Let v; = Z;l:l a;;x; + b; for
1 < j <t Since vy is in exact 1-normal form, there exists two indices ji,jo € [d],

say j1 = 1,72 = 2, such that a11a12 # 0 and 1); does not depend on both the variables
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Hence, in order to prove Theorem 6.1.2 it is enough to prove the following result.

Theorem 6.5.1. (W-tricked version)
Let V,F and S(N, NY4+1) .= Su.(N, NY4+1) be as in Theorem 6.1.2. Let A C
{1,..., N} be such that b+ AW C S(NW, (NW)Y%+1) “where

1 1
W=Hp, w=cologN, (b,W)=1 with COE{8k+2’4k—i—1}

p<w

Let us also assume that, for any € > 0,

log w

k
|A| > « (l gN) N with a> c(loglogN)_ﬁJre. (6.54)
0

Then there exists y € A with distinct coordinates such that Vit = 0.

In the following three subsections we prepare for the proof of Theorem 6.5.1, and

we conclude the section with the proof of it.

6.5.2 Controlling V-patterns of complexity one

Let M be a prime number and let Zy, := Z/MZ be the group of residue classes
modulo M. Let ¥ : Z4, — Z!, be an affine system of finite complexity s and it is

in exact s-normal form at each i € {1,... t}.

Definition 6.5.1. The operator A on functions fi,..., f:: Zy — R defined by

A(fr, o fo) = Epega filbi(n)] -+ felt(n)]. (6.55)
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Let
k
XW={1gbgW: <Haib+bi,W>=1}. (6.47)
=1

By Brun sieve, we have

Xwl <ep——nsr 6.4
’ LV| =~ CF(IOg'U))k'? ( 8)
where ¢ depends at most on F. Since W < N4+ we have
N
ANPb)| =A] > , .4
> AN PO =412 ero g (6.49)

be Xw

where P(b) = {n:n =0b(modW)}. By Pigeonhole principle, there exists by € Xy

such that

AN P(by)| > ca ol > cpa logw " N (6.50)
V=TT X log N)F = T \logN ) W ‘

where we used an upper for | Xy | in the second inequality.

Let

N = {EJ = Nrzto), (6.51)

where we use the value of W =[] _, p, from (6.46), with co = 1/8k + 2.

Put

/ N —b
A = {1 <n< 7 O by +nW e AC S(N,Nl/4k+1)}. (6.52)

Then we have, from (6.50), that

, 1 o
A > cpa [ —22 ) N (6.53)
log
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Here )\:4 approximates A4 means that the sum of U-patterns of complexity one with
weight function Ay — /\i4 is “small”. In fact, this W-pattern count can be controlled
by Gowers U?-norm [[Aq — A,||g2. To prove Theorem 6.1.2, it is enough to find a
function X, so that [[As — A,||> is small and > onez)pz N,(n) > p, which is the
theme of the Transference principle. By Theorem 6.1.3, the count of W-patterns of
complexity one with weight function A, is “large” as A, is a dense subset of the
integers. Therefore the count of W-patterns with weight function A, is large. We

discuss this in detail in the following subsections.

6.5.1 Reduction to a W-tricked set

Let us assume that N is a sufficiently large integer. Let S(N, N'/*¥*1) be a set as

in Theorem 6.1.2 and let
A C S(N, NV*+1)  with |A| = a|S(N, NV4*+L)| (6.44)

Using the estimate (6.3) on the cardinality of S(N, N'/4+1) e have

N
Al > cpa ——— 6.45
where cp depends at most only upon F.
Let
W = H p, where w=cologN, with ¢y e ! ! . (6.46)
’ ’ 8k + 2" 4k +1

p<w
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We end this section with the proof of Theorem 6.4.1.

Proof of Theorem 6.4.1: We have Z/pZ = B({1},1) := By and A, C Z/pZ with
|Ap| = «|By|. We apply Proposition 6.4.1 repeatedly, starting with A) = A, and
By = Z/pZ, to obtain a sequence of regular Bohr sets By, By, ..., By and Ag -
By, ... ,A’; C By of densities aq,...,a,. The iteration stops if A’; satisfies the
case (i) of Proposition 6.4.1. We have a; > a;_1 + (cj0;_1)*™ > a + i(c;a)®™

and hence k < (c;a)7%™. Moreover we have d(B;) < d(B;_,) + 1 and if d(B;) =

d(B;_1)+1, then a; > a;_1 + (c1a_1)*™. Therefore d(By) < (c1a)) 2™+ 1. Moreover

. (c10)tm | (cro)t0ms  \F o b
OBi) 2 Griay)emar, O(Pi-t) and hence 3(By) 2 (4@<1+||<I>p\|p>2q2m) - Since 4,
satisfies the case (i) of Proposition 6.4.1, the result follows by using the bounds of

0(By), d(By) and k, as well as the following inequality

Ene(z/pz)att H Ap(¢'(n)) > Eycz/pz)att H A’;(gbi(n)).

i=1 =1

6.5 Translation invariant equations in sifted sets

In this section we prove Theorem 6.1.2. We closely follow Henriot [15, Sections 6
and 7]. We first reduce our problem to the case of a W-tricked set which we also
call A (by abuse of notation) as shown in subsection 6.5.1. We then consider this
set as a subset of Z/pZ for some suitable prime p. We appropriately normalize the
indicator function of this set, i.e., A4, so that we can “approximate” this normalized

indicator function A4 by a function \’; which has “positive density” in the integers.
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which implies that

EnzeBzEn;eBl’f(”O +nyng + +n1n;) ep((no +nyny + -l—nln;)y)

> |Enen [ (no +ming)ey(nimy)| —200¢'d > (cra)*™ /4.
On the other hand , for n; € By, we have [1 — e,(niyn’)| < 8cc'd. Hence,

EnzeBzEn;eBl’f(no +nyng + +n1n;) ep((no +nyny + -l—nln;)y)‘
< Epen ‘En;eB;f(no +nyn; + +n1n;) ep(nm;)‘

< E,en ‘EngeB;f(“’O +nyng + +nm1)‘ + 8¢ cd.

So, from the two bounds above, it follows that

' (c10)®™ ;
Enen |Eycp f(no+nin + —|—n1n,)‘ > 5 (6.42)
Note that
, , (ClC)é)Qm
ETLLEBzEnZQBl/f(nO + niny + +n1nl) Z 5(”0) —200c d Z _1—67
since ng ¢ E. Hence, there exists n; € B; such that
, ciov 2m ‘
E,cp f(no+nin++niny) > (c10) (6.43)

16 7

which proves the conclusion (3) of Proposition 6.4.1.
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Note that

EnoGBo5(nO) = EnoEBoEnlEBlf(nO + nlnl)
)Gm

(ra
> —200(1 mold > —
> 20001 + [lol) "t > ~ AT

since Ey ep,f(no) = 0 and by our choice of p. This gives an upper bound
|E| < 3(ci0)™| Bol/4-

It follows that there exists ng € (1 — ¢)By \ E and y € Z/pZ such that

|Ene, f(no + ning)e,(ningy)| >
Fix such an ng and y. We define Bl' by
By := Bohr(S U {yn1}, ¢ ¢d)

with ¢ < (c;a)?™d~1/2'3. Then for any n, € B;,

Enen f(no + ning + +11ny) — Eyep, f(no + nimg) ep(ningy)| < 200¢ d,
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Now let us assume that the conclusion (1) of Proposition 6.4.1 is false. Then by

using the inequality (6.33) and the value of p, given in (6.36), we get that
/z Oé S
Enerne_g o8 HA ) < o (6.37)
Hence by Corollary 6.4.1, we have
Enpen, max |Epnep, f(no + agbm)ey(yagbm)|” > (cra)™ (6.38)
yE€Z/pZ

for some 1 <1< gand 1 <i<m with a; # 0 and 0; defined as in (6.32). We also
have B; = By|. = Bohr (S, ¢d) with (p/2)? < ¢ < pt.

Let us now also assume that the conclusion of Proposition 6.4.1 is false. Then we

have
E, e f(no +niny) < %7 (6.39)
for all ng € Z/pZ with ng + ny1B; C By, where ny = a;b;.
For ng € By, we write d(ng) = Ey,ep, f(no + niny). Thus we have
o) oM
sne) < T (6.40)

for each ng € (1 —c¢)By. Let E be the set consisting of those integers ng in (1 —¢)B,y

with d(ng) < —(cya)?™/32.
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where ¢, > 0 is an absolute constant. Let b} = a;,;b; and

/

1<i<m
j<k<l—1
a;;7#0
(4,k)#(G0.5)

Then a;,b; = b}, and we may rewrite (6.35) as

4 1
||fi0||U2(BO7Bj,Bl,b’1,b’1[7’2) Z (0204)4'”'

Since we have ([b}], + [b5])* < (1 +||®]],)??™, using Theorem 6.3.1 we see that (ii)

of the claim holds. Hence the result follows. O

Proof of Proposition 6.4.1:

We can assume that ¢ is a large fixed integer. Let us assume that
A, C By := Bohr(S,0)

with |A,| = a|By|, and let set f = A, — a|By|.

Let p be a real number such that
(14 l¢llp)* ™ pd = (cr)*™, (6.36)

where ¢; > 0 is a small absolute constant(at most depends on ¢, ¢, m). Let By, ..., B,
be regular Bohr sets with By = Byl,, and Bj = B;_1|,, where p; € [p/2, p) for all

1<7<q
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1. Enel‘[}’-:o b; Bj H:il Ap(¢z(n)) < %-

2. There exist i,] with 1 <1 <m and 1 <1 < q for which ay; # 0. For such an
a;; we have

Enoen, max |Encp, f(no + aubmg)ey(yagbm)|* > (c1a)™™,
yEZ/pZ

where f = A, — aB,.

Proof. We set fo = aBy and f; = A, — aBy. Then we have

bt FL#0) By T
=1 i=1
+ Z EnEH;?:obijHf'w(i)(qﬁi('rz)).
i—1

we{0,1}™
wZ0

Using Lemma 6.2.7 (ii) and the fact that by = 1, we see that the first term in the
right hand side of the above equality is equal to o™ (1 + O((1 + ||®]],)?pd)) and
hence at least %-. Therefore if the case (i) of the claim does not hold, then for some
w € {0,1}™ with w # 0, we have

m m

1T | a
_EHEH?:O bij fw(z)(@ (n)) Z 2m+2 )
=1

where fy,u,) = fi = Ay — aBy for some 7. Hence using Lemma 6.4.4 there exist

1 <j <1< qwith a;y;a,,; # 0, such that

4 4 .
||fi0||U2(Bo,Bj»Buaz‘ojby‘yaiolbl) > (c20)™, (6.35)
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summations, we see that the right hand side of (6.34) is

q q
/
Enj,n;ebij E”EHOSiSq b; B; | | fs(no + QgjTj + E asknk) fs(no + asjnj + § asknk)~
i7J SEX; k=1 k=1
k#j k#j

By one more application of Cauchy-Schwarz inequality, we see that |A|* is at most
q
Enj)n;ebij Enenogigq biB; | Enyen 5, f1(no + ayng + ayng + Z 1My ) X

7,1 k=1
k#£j,l

2

q
fi(no + aljn; +ayn; + Z a1kn)

k=1
k3.l

which equals , by Lemma 6.2.7, to

2

EnoEBo E

nyn'; €, B; E, co,5.f1(no + arjng + ayng) fi(no + (Iljn/j + ayny)

+O((1+[8ll,)™pd).

After opening the square in the above sum, we see that the sum is same as

4
||f1 ||U2(Bo,Bj,Bl,a1jbj,allbl)'

Thus, the assertion of the lemma holds.

O

Corollary 6.4.1. If (1 + ||®|],)*™pd < (c10)™ for a sufficiently small absolute

constant ¢y > 0, then one of the following holds.
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Proof. Let us assume that g = 1. By the assumption on ® = (¢!, ... ¢™) :
(Z/pZ)" — (Z/pZ)™, we have

q
¢1(n0, ce qu) =Ny + Z a;N;
i=1

and there exists 1 < j < [ < ¢ such that ajjay # 0, and for ¢ # 1, ¢' may
depend on at most one of n; and n;. For k = j. [, let X; = {1l < r < ¢
¢" depends at most on ng}.

Let
A= Euerpe g [ [ £(97(0)
r=1

Thus, we have

A= Bueocnn. [T £ @) IT Ao )

seX;\{1} seX;
= E”EHOSigq b; B; H fS(QSS(n)) Eanbij H fS(QSS(n))
i#] seX\{1} s€X;

By applying Cauchy-Schwarz inequality, we see that

|‘/\|2 S EnEHOSiquiBz‘ Enijij H f8(¢s(n)) : (634)

7‘75] SEX]'

After opening the square on the right hand side of (6.34) and interchanging the
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such that with A} = (A”n—_1"0>, we have
‘All, N B1)| > (a+ (c1a)*™)| By,

where ¢; > 0 is an absolute constant.

Let p be a real number and B, ..., B, be regular Bohr sets with B, = B%l and B; =

B, where p; € (2,p] for all 1 < j < q. Let ®, = (¢',...,¢™) : (Z/pZ)T™ —
j i € (3 P

71'!3]‘
(Z/pZ)™ be the linear map as in Theorem 6.4.1. Then for any ¢, with 1 < i < m,
we have ¢'(ng,...,ng) = ng + 23:1 ai;n; for some a;; € Z/pZ. We set by = 1 and

for any 7 with 1 < j < ¢, we set

b= J] e (6.32)

1<i<m
1<1<5—1
a1 70
Using Lemma 6.2.5, we have
. ' p\ 20 " A
Bucapmen [[A00) 2 (5) Buery o [[ 460 639)
i=1 i=1

The following lemma is the local version of generalized Von Neumann theorem.

Lemma 6.4.4. Let f1,.... fn : Z/pZ — C be a function with || f;||., < 1. Then for

any i, there exist 1 < j <1 <gq, with a;;a,; # 0 such that

4
m
q 4
Brere o8, L1 0)] < il sy oty + OUL+ 1B]])7 pd).
i=1
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To prove Theorem 6.4.1, we need the following density increment argument which

is noted as a following proposition.

Proposition 6.4.1. Let o« > 0 be a real number, p be a prime and By C Z/pZ be
a reqular Bohr set of dimension d and radius §. Let A, C By with |A,| > «|By|.
Let @ = (@1, ..., ¢™) : (Z/pZ)" — (Z/pZ)™ be a linear map as in Theorem 6.4.1.
Then one of the following holds.

1. We have

m ) C](SOZ 10amd
EnE(Z/pZ)q+1 H Ap(gbL('n)) Z (m) ’
=1

where ¢; > 0 is an absolute constant.

2. There exists a reqular Bohr set By, ng € Z/pZ, ny € (Z/pZ)* with

6mq

5(By) > (1)

Al + ||@p||p)2q2md2q5(Bo) and d(By) = d(Bo)

such that with A} = (A”n—_lno> , we have
410 B| > (a4 (@a)™)|B),

where ¢; > 0 is an absolute constant.

3. There exists a reqular Bohr set By, ng € Z/pZ, ny € (Z/pZ)* with

5(31) > (cla)6mq

) <
— Al 4+ ||(I)p||p)2‘12md2qo(B0) and d(B1) < d(Bo) +1
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follows that

EnG(Z/pZ)q‘pr(d);l)(n)) - fp(wgl(n)) = p_(m_r) Z fp(yl) - fp(ym)~

y=(y1,...,.ym)Eker(Vp)

(6.29)

Since we have supp(f) C [N, N] and p > 2||V||N, it follows that

Z foyn) o fo(ym) = Z Folyr) - fo(ym)
yeKer(V}) yeKer(V,)N[—N,N|™ (() 30)
= > f).- fym).
yeKer(V)
Hence the result follows.

O

PROOF OF PROPOSITION 6.1.3.—

Choose a prime p with 2(||V||™ + [|¢||™)N < p < 4(]|[V]|™ + ||[¢||™)N. Then p
satisfies the assumptions of Lemma 6.4.2 and Lemma 6.4.3. Let A, denotes the
image of A under the natural projection map « : Z — Z/pZ. Then we have
[Ap| = [A] =

Wﬂlwm) p = cap, where ¢ > 0 is a constant depending only upon

V and m. Then using Theorem 6.4.1 with ® = ¥, we obtain

_8m 1 -
Eng(z/pz)qﬂAp(z/); (n))... Ap(z/J;?(n)) > ¢ exp(—coa ¥ log a), (6.31)

where ¢y, co > 0 are constants depending only upon V' and m. Now using Lemma

6.4.3 with f equal to the indicator function of A, we obtain the result.
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For any prime p, let W, = (¢,,...,0") : (Z/pZ)"*" — (Z/pZ)™ be the linear map

induced by ¢ and V, : (Z/pZ)™ — (Z/pZ)" be the linear map induced by V. We

have the following lemma which is a simple consequence of Lemma 6.2.4.

Lemma 6.4.2. For any prime p with p > max(||¢||™, [|V]|™), we have
Im(¥,) = ker(V,) and dim(ker(¥,)) =¢+1—m+r. (6.27)

Moreover U, is in exact 1-normal form with ||| = [|¥p|],.

Proof. Since Im(z)) C ker(V), it follows that for any p, we have Im(V,) C ker(V}).
Using Lemma 6.2.4, we have dim(Im(V,)) = dim(Im(¥)) and dim(ker(V,)) =
dim(ker(V)). Since we have dim(Im(W)) = dim(ker(V)), it follows that dim(Im(W,,)) =

dim(ker(V})). Hence the first claim follows. The second claim is easy to verify.

The following lemma is due to Henriot [15, Lemma 5].

Lemma 6.4.3. Let ¢ and ¥, be as above. Let f : Z — C be a function with
supp(f) C [=N, NJ and let p > 2(]|V||™ + |[&||™")N. Then f also induces a map
Iy Z/pZ — C and we have

Encz/pzyr Jp(y(0) - fp (W (n)) = p~ 7" > F) .. Fye).
y=(y1,-..,yt) EKer(V)

(6.28)

Proof. From Lemma 6.4.2, we have dim(ker(V¥,)) = ¢ +1 — (m — r). Therefore it
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Proof. Since dim (ker(V)) = m — r, we have that ker(V) N Z™ is a free Z- mod-
ule of rank m — r. Thus, there exist Z- linear vectors X; = (1,...,1), Xy =

(@12, -, ama), ... and Xy = (@1m—r, - - - Gm—r) such that
ker(V)NZ" =ZX, + -+ +ZX,, .
Thus, we have a Z- linear isomorphism
V=, ™) 2™ = ker(V) N Z™

where ¢ (21, ..., T ) = 21+ D01 agay fori = 1,...,m.

We also have the complexity of ¢ is 1, as the complexity of V is 1. In particular, ¥
has complexity at most 1 at i € [m]. Thus, there exists a partition Y, UY; of [m]\ {7}
such that ¢* ¢< ¢ : j € Y; > for [ = 1,2. Thus, we can find vectors f, fo € Z™"
such that ¥¢(f1) # 0,4 (f2) # 0 and 7 (f,) = 0 for j € Y} and ¢!(fy) = 0 for [ € Ys.

Let d = m —r + 2. We now define a linear system 1" : 74— 7™ as follows

U (51, 92) = V(@ + Y1 fi + yafo).

Note that in this newly defined linear system 7' depends on the variables v, y» but
1’ may depend at most on one of y; and y,. Thus, the system is in exact 1-normal
form at i € [m]. If we continue this process, we can make a linear system which is
in exact 1-normal form at each ¢ € [m]. By our choice of 9 itself, second condition

of the lemma holds. O
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6.4 Translation invariant equations in integers

In this section we give a proof of Theorem 6.1.3 by deducing it from the following

theorem.

Theorem 6.4.1. Let p be a prime and A, C Z/pZ with |A,| > ap. Let & =
(@' ...,¢™) : (Z/pZ)™*" — (Z/pZ)™ be a linear map with ¢'(ng,...,ng) = ng +

¢'(0,n1,...,n,) and @ is in 1-normal form. Then we have

Eocz /o Ap(¢'(n)) ... A4,(¢™ (n)) > 1 exp(—ca™" log é), (6.26)

where c1,co > 0 are constants depending at most on m, ||®||, and q.

Let V' € M,«n(Z) be a translation invariant matrix of complexity one and rank r.
We think of V' as a linear map from Q™ to Q". Then the dimension of ker(V) is

m — r. In the following lemma we give a linear parametrization of ker(V).

Lemma 6.4.1. There exists a linear parametrization ¢ = (Y1, ..., 0p) + 2971 —
ker(V)NZ™ such that
1. v is in exact 1-normal form at each i1 =1,...,m and

2. For eachi=1,...,m, we have



and (ble/B?ftz) = bibyB. f.,. Thus we have

|supp(f)[p*
o) < gy, g 2 |8 Ju) 00

2
lsupp(f)

< TPV
= 1B,P |BQ|2 hed. Z

Zblbz (t1 — ) fr,(2)

Thus we have

2

h(ng) < lsupp(f)] e

0) < 3T 13 (6.23)
|B1| |Bg| nEZ/pZtez/pZ

Z f(?’l, =+ b]bgng)ep(tblbgng)

na€Ba

Since supp(f) C ng + b1 By + biby By, the right hand side of (6.23) is not more than

2

lsupp(f)| Z max (6.24)

| By |?| Ba|? {€Z/pZ Z f(n =+ bibang)e, (thibony)
neno+by B +2b1bs By

no€B>

Using the fact that |ng + b1 B1 + 2b1b2Bs| = (1 4+ O(|be|pp"d))|B1| and we choosing

p” small enough so that (1 + O(|be|,p"d)) < 2, we see that
g(no) < 4Eq, coB1+2b1b28s ténz%{z |En,en, f(n0 + 11 + bibans) t‘3;z;(l715271215)|2 . (6.25)
By the assumptions ||f||é2(X07X17X27b17b1b2) = E,,en,9(n0) > n* and
(lbl|p + |b2|p)2(/)/ + P”) < 07]4/d7
the assertion of the theorem follows from (6.25) and Lemma 6.2.7.
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which shows that g(ng) > 0 for all ng € By. We also have an inequality

2
1
g(no) S W Z Z f(no + bln(l) -+ blbgng)f(no + bln% + blbgng)

nd,nt€Z/pZ In2€B>

(6.21)
For each ny € By, we now estimate g(ng). For this we can assume, by (6.20), that
supp(f) € no + b1 By + biby By, thus we have [supp(f)| < (1 + O(|ba[,p"d)) [Bi]. Let

us write h(ng) for the right hand side of the above inequality (6.21), then note that

h(no) = ﬁ S S @FWIE W), (6.22)

nanbe€Ba  x,y,2,WEZL/pZ
x—b1bang=z—b1banh
T—y=z2—w

The expression for h(ng) can be rewritten, using Fourier transform, as follows

4 2 2 2

hno) = s > |Balbbat)| [Tt + )] [Fie)
|Bl|| |tt€Z/pZ

max Z ‘Bg (b1baty) ‘A(tri—tz)r Z ‘f(tQ)‘Q

= Bi|?2|Bs|?
| 1|| o|* 1262, 127,

By Parseval’s identity E,|g(2)[> = 37, |§(£)|*, we see that

supp(f)|p? ~ 2|~
h(ne) < (PP 3 ‘Bg(blbgtl)‘ Fit + )
€z,

2
|Bl|2|BQ|2 t2€Zy . ‘

~

Note that @(tl) = E(b]bgtl), ﬁz(tl) = f(t1 + t2) where

fo(x) = f(z)e(=xts/p)

106



We call the following theorem as an inverse theorem for the local Gowers U?-norm.
The proof of this theorem closely follows that of Theorem 3.2 in [33], but here we take
advantage of the positivity of each “individual” summand to get an improvement

over Theorem 3.2 in [33], whereas Shao worked with “certain” summands only.

Theorem 6.3.1. Let f : Z/pZ — C be a function with |f| < 1. Let n € (0,1) be a

real number and by, by € (Z/pZ)*. Let By, By, By be reqular Bohr sets of rank d with
Bl = BOI , and BQ = BII L, (()].7)
P P

where p' and p”" are positive real numbers with (|by], + |baly)? (0 +p") < C—Zlﬁ for some
sufficiently small absolute constant ¢ > 0. If |[f {2y By o1 piby) = N then

4

Engery M En,c, f(no + bibsny) e, (bibynat)[* > Z—O (6.18)

Proof. By the definition of the local Gowers U?-norm || f| |4Uz( Bo.By . Baby biby) OF @ func-
tion f, we have

4 .
||f||U2(X0,X17X2,b1,b152) = EnOEBOg(n0)7 (619)

where g(no) = Epo e, Eng nien, [locioye Cllf (ng + bin{™ + bybyny?).

Observe that for each ng € By, we have

2

1
g(no) = W OZ Z f(no + bln(l) + blbgng)f(no -+ bln% + blbgng) ,

nl,n%EBl n2€B3

(6.20)
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Lemma 6.2.8. Let f,g: Zny — C. Then

1. (Plancherel theorem)

Enczy f(n)g(n) = Y f(©)3(©).
E€ZN

2. (Fourier inversion)

fw) =3 ferey)
EeNy

)

6.3 Inverse theorem for local Gowers U2-norm

In this section we define a local Gowers U?-norm and obtain a inverse theorem for
it, which roughly says that if the local Gowers U?-norm of a function is large, then

this function must posses some structure.

Definition 6.3.1. (Local Gowers U*-norm) Let p be a prime. Given X, X1, Xy C
Z/pZ and by,by € (Z/pZ)*. Then the local Gowers U?-norm of any function f :
Z/pZ. — C is defined as follows

4 : .
||fHU2(XO,X1,X2,b1,b2) =E nexo H cllf (no + biny™* + bany?) (6.16)
' 'n(l],n%eXl we{0,1)?
ng,n%EXg ’
where |w| = w; + wy and C is the involution defined as Cf = f on the space of

functions from Z/pZ — C.
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Lemma 6.2.7. Let B C Z/pZ be a regular Bohr set of rank d and f : Z/pZ — C

be a function with |f| < 1. Then for any 0 < p < 55 the following holds.

1. EneBIneg‘l_pf('rz) =E,cpf(n) + O(pd).

2. We have Eyp cxEnep f(n 4+ n1) = Enep f(n) + O(pd) for any X C Bj,.

We now recall some basic finite Fourier analysis. For more about this we refer to
sections 4.1 and 4.2 of [36].

Let N be an integer and let Zy := Z/NZ be a cyclic group of order N.

Definition 6.2.7. Let f,g: Zy — C. Then

(i) The Fourier transform f of f defined as follows

—nr

F(r) = Buca, f(n) ().

(i) The convolution f g of f and g is defined as
fxg(n) =Zpezy f(n—m)g(m).
(iii) For any 0 < p < oo, we define the LP(Zy) norm of f to be the quantity

1f oz = 1fllp = (Enezy | F(m)[P) 7.

We have the following properties of Fourier transform.
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6 >0 is

Bohr(S,0) :={x € Z/pZ : |zs|, < dp for all s € S}, (6.13)
and its rank d is defined as d := |S]|.

The following lemma, [36, Lemma 4.20], says that Bohr sets are not small in size.

More precisely we have

Lemma 6.2.5. Let S C Z/pZ and let § be a real number with 0 < 6 < 1/2, then
we have

|Bohr (S, 8)| > 6% p. (6.14)

We often write B to denote the set Bohr(S,0) and write d(B) and d(B) to denote
its radius and rank respectively. The p-dilate B|, of the Bohr set B is defined by
Bohr(S,0)), := Bohr(S, pd).

We say that a Bohr set B is regular if for every 0 < p < we have

1
100d’

(1—100pd) |B| < |By,,,| < (1+100pd) |B. (6.15)
The following lemma, see [36, Lemma 4.25], says that any Bohr set can be made

into a regular Bohr set by a small dilation. More precisely we have

Lemma 6.2.6. Given any real number p with 0 < p < 1 and a Bohr set B, there

exists p' €[5, p] such that B, is a regular Bohr set.

The following lemma is a crucial one used repeatedly in the sequel and its proof

follows straightaway from the definition of a regular Bohr set.
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say that V' s translation invariant if
a,-l—f—----l-aim:() Vi:]_,...,r. (611)

The following proposition, due to Henriot [15, Proposition 2|, gives a matrix com-

plexity criterion.

Proposition 6.2.1. Consider a matric V- € M,y (Z) with rows Ry,..., R, and
m > 2, and a system of linear forms ¥ : Q% — ker(V'). Then U has complexity at
most so at i if and only if there exists 0 < s < s and a partition {1,...,m}~{i} =

X, U--- U Xgy1 into non-empty sets such that, for every k =1,... s+ 1,

JEXk
where (e;)1<i<t s the canonical basis of Q.
Definition 6.2.5. (Complezity of a matriz) Let V. = (ai;) € Mywm(Z). Then

V' defines a linear map from Q™ to Q. Let us take any surjective linear map

U Q?— ker(V)N Q™. The complexity of V is defined as the complexity of V.

Note that the definition of complexity of a matrix is well defined by Proposition
6.2.1, that is, which does not depend on the choice of linear parametrisation of the
ker(V').

We now recall the definition of Bohr and regular Bohr sets and their properties.

Definition 6.2.6. (Bohr set) A Bohr set of a frequency set S C Z/pZ and radius
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induced by 1 satisfy the following property:
rk(Im(¢))) = dim(Im(¥)) = dim(Im(¥,)). (6.10)

Proof. By clearing denominators, we may choose a basis {y!,...,y"} of Im(¥) in
such a way that for every j, we have y/ € Z™ and there exists x/ € Z9 such that
1(x7) = y?. Hence Im(v)) contains a submodule of rank equal to dim(Im(¥)) which
implies that rk(Im(z)) > dim(Im(¥)). Suppose {z',...,z"} is a basis of Im(¢),
then z’’s are also linearly independent over Q. Hence it follows that rk(Im(¢))) =
dim(Im(W)).

Since ¢ = (,..., ™) : Z9 — Z™ is a Z-linear map, we have ¥'(zy,...,7,) =
23:1 a;;x; for some a;; € Z. The matrix of the linear map ¥ is equal to (a;;) €
Myxm(Q), whereas the matrix of the linear map ¥, is equal to (a;;). Here @;; € Z/pZ
is the image of a;; under the natural projection map from Z to Z/pZ.

The dimension of the image of U is equal to the maximum integer r such that there
exists a subset I C [1,q|, J C [1,m] with |I| = |J| = r and the determinant of the
matrix A = (a;j)ierjes is not equal to zero. Since det(A) < |[¢||” < ||¥]|™ < p.
it follows that the determinant of A is not equal to zero modulo p. Hence we
have det(@;;)icr jes is not equal to zero and dim(Im(V,)) > dim(Im(¥)). Similar

arguments show that dim(Im(¥,)) < dim(Im(¥)). Hence the result follows. O

Definition 6.2.4. (Translation invariant matriz) Let V = (a;;) € Mywm(Z). We
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The following lemma is due to Green and Tao [12, Lemma 4.4].

Lemma 6.2.3. (Normal extension) Let W : RT — R™ be an affine linear map of
finite complexity s. Then there exists an extension ¥ : Rq/ — R™ of U which is in

exact s-normal form.

Let U = (U!,...,¥™) : Z? — Z™ be an affine linear map. Then U'(zy,...,z,) =

2?21 a;jx; + b; for some a;;,b; € Z and the norm of ¥ is defined by
N[ := " faigl + > bl (6.8)
ij i=1

For any prime p and x € Z/pZ, let |z|, = |y|, where y € (=%, %] is the unique
integer such that its image under the natural projection map from Z to Z/pZ is
equal to z. Given a linear map ¥, = (U',...,9™) : (Z/pZ)? — (Z/pZ)™ with

UH(xq,. .., 2q) = Zgzl a;;x; for some a;; € Z/pZ, the norm of ¥, is defined as

[yl == Z |is]p- (6.9)
Y]

Given a linear map 1 : Z9 — Z™, it induces a linear map ¥ : Q7 — Q™ as well as a
linear map V, : (Z/pZ)? — (Z/pZ)™. Note that the image of ¢ is a free Z-module

with the rank equal to dim(Im(W)). In fact we have the following lemma.

Lemma 6.2.4. Let ¢ : Z9 — Z™ be a linear map. Let p be a prime such that
p > ||¢||™. Then the linear maps ¥ : Q4 — Q™ and U, : (Z/pZ)! — (Z/pZ)™ are
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with |1;| < s+1 and 7; € o; for any j #i. We say that W is in evact s-normal form
at i if there exists such 1; with |1;| = s+ 1. We say that U is in (exact) s-normal

form if it is in (exact) s-normal form at all i.

The following lemma says that every affine linear map which is in s-normal form

has a finite complexity. More precisely we have

Lemma 6.2.2. Let W = (Ul ... W™) : k9 — k™ be an affine linear map which is

in s-normal form, then the complexity of V is at most s.

Proof. Leti € {1,...,m} and let 7; = {iy,...,4,} be a subset of the support o; of U’
with 7; & o; for any j # i and r < s + 1. Let us take the partition {U' ... U™}
{¥'} =X, U---UX,, where X, = {0 : j #1, i) ¢ 0} for each h =1,...,7. Since
ir, belongs to support of W, it follows that ¥? does not belong to linear span (X},) of
X, for each h =1,...,r. Thus, complexity of ¥ at ¢ is at most s. Since we started

with an arbitrary index 7, so the complexity of W is itself at most s.

0

The converse of the above lemma is false. However, Green and Tao [12, Lemma 4.4]
proved that every affine linear map of complexity s can be “extended” to one that
is in s-normal form. Let U : R? — R™ be a R-affine linear map. We can also think
of this linear map as a k-affine linear map from k¢ to k™.

Definition 6.2.3. (Estension of an affine linear map) An extension of ¥ is an
affine linear map ' - RI = R™ with q > q, Im(V) = Im(V') and furthermore if
we identify RY with the subset R? x {O}q,_q of RY in a natural way, then U is the

restriction of U'.
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6.2 Preliminaries

Let R be an integral domain and & be its field of fractions. We are interested in the

case when R is Z or Z/pZ, where p is a prime number.

Definition 6.2.1. (Complexity of a affine linear map) Let U = (Ut ... 0™ k9 —
k™ be a affine linear map. The complexity of U at i, 1 < i < m, is the smallest
integer s > 0 for which there is a partition {¥, ... O™} {¥} = X -+ U X4y
into non-empty sets such that U* doest not belong to the linear span (X;) of X; for
any 1 < j < s+ 1, when such an integer exists. Otherwise we set the complexity of
U at i to be oo. The complexity of ¥ is the maximum of complexities of 1 at i over

allt=1,...,m.

Using the following observation, due to Green and Tao [12, Lemma 1.6], one can

easily decide, given an affine linear map whether it has a finite complexity or not.

Lemma 6.2.1. An affine linear map ¥ = (¥l ... ™) : k% — k™ has a finite

complexity if and only if for any i # j we have U # oW for all o € k.

We will recall the notion of normal form. For this, let us first set some notation here.
Given a affine linear form W in ¢ variables x4, ..., z,, the support of ¥ is the set of
indices j such that U depends on x;. That is, if ¥(z1,...,24) = Mjz1+- -+ A2+ A

then the support of W is the set {j : A; # 0}.

Definition 6.2.2. (Normal form) Let W = (U ... 0™) : k4 — k™ be an affine
linear map. Then each of W' is an affine linear form in q variables and let the

support of Ut be o;. We say that U is in s-normal form at i if there exists 7; C o;
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and |Sr(N, NY/9)| < N/(log N)2. Then the conclusion of the corollary follows from

Theorem 6.1.2.

Now we sketch the proof of Theorem 6.1.2. First we reduce to the case “ W-tricked
” set which we also call A as shown in the subsection 6.5.1. We consider this set as
a subset of Z,; for some prime M. We then appropriately normalize the indicator
function of this set and we denote it by A4. We decompose Ay = F; + F5 such that
the L™ (Zy)-norm ||F||1r(z,,) of Fi is “small” and the Gowers U?-norm ||Fy[y2 of
F, is “small” as shown in Proposition 6.5.6. Indeed F; will be smoothed version
of A4 (convolving A4 with a indicator function of a Bohr set). Since ||Fi||1r(z,,) is
small F; “behaves” like a dense subset of integers as shown in Proposition 6.5.7.
Thus, the count of complexity one patterns with weight function F} is large by
Theorem 6.1.3 as shown in Proposition 6.5.8. On the other-hand A4 and F; will be
dominated by “pseudorandom ” measure as it is shown in the Section 6.5.3. There
fore we conclude that the count of complexity one patterns with weight function

Aa is “large” as shown in the Section 6.5.5. Thus we conclude the proof of the

W -tricked version theorem.

In the following section we give the definition of complexity of a matrix and its
properties, mostly taken from [15], and introduce the notion of Bohr and regular

Bohr sets and their properties.
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where ¢ is a constant depending only upon V.

The proof of this theorem depends on both the inverse theorem for the local Gowers
U?-norm, which we discuss in Section 6.3, and density increment argument. We give

details in Section 6.4.

In 2006, Green and Tao found infinitely many non-trivial three term arithmetic
progressions in Chen primes. A prime number p is said to be a Chen prime if p + 2
has at most two prime factors, each of which is at least p*/''. We denote the set of
such prime numbers by Q. Then we have the following corollary of Theorem 6.1.2,

which improves upon and generalizes the result obtained by Green and Tao [10,

Theorem 1.2].

Corollary 6.1.4. Let V' be a translation invariant matrixz of order v x m with entries
in 2, of rank r and complexity one. Given any € > 0, there exists a positive constant
C' > 0 depending at most on r,m,V and € such that for any B C Q N [1, N]| there

exists a non-trivial solution x to Val =0 with x € B™ if
IB| > C (loglog N) &= < |Q(N)|. (6.6)

Proof. Let F(X) = X(X +2) and let A = BN (NY2 NJ, then we have A C
Sp(N, N9} with

Al > |B| = N2 > (loglog N) st |Q(N)| > ¢ (loglog N) ¢ |Sp(N, N*/9)],
(6.7)

here we use the facts that |Q(N)| > N/(log N)?, see for example [10, Theorem 6.1],
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let

Sp(N,z) ={n < N:ged(F(n),P(z)) =1}. (6.2)
Then by a standard application of the Brun’s sieve we have the bounds

N
logh N

| (Sp(N, NV | < , (6.3)

provided that F' is admissible of degree k£ and has non-zero discriminant.

Theorem 6.1.2. Let V be a translation invariant matriz of order r x m with entries
in Z, of rank r and complexity one and m > 3. Further, let F(X) = Hle(aiX+bi),
with a;, b; € Z, be an admissible polynomial of degree k with non-zero discriminant.
Then given any € > 0 there exists a positive constant C' > 0 and an Ny > 1 depending
at most on V, F and ¢ such that for all N > Ny and A C Sp(N, NY#+D) there

exists a non-trivial solution x to V! = 0 with v € A™ if
|A| > C (loglog N) st |Sp( N, NV (6.4)

This theorem can be proved using the following theorem combined with the trans-
ference principle of Green and Tao, in fact we use a version of transference principle

due to Helfgott-De Roton [14].
Theorem 6.1.3. Let V be a translation invariant matriz of order v x m with entries
inZ, of rank r and complexity one. Let A C [—N, N] be a subset of density cc. Then
1 .
[{x € A™: Vx* =0} > exp(—ca *"log —) N"", (6.5)
o
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the kernel of the associated linear map z — Vz from Q™ to Q" has dimension at
least 2. Then it can in turn be deduced from Szemerédi’s theorem that for any
subset A of N of positive upper density there is a non-trivial solution z to V' =0
with x € A™. One may naturally ask for quantitative versions of this result, but
these are rather difficult to obtain in general and are tied up with an appropriate
notion of “complexity” of V. For arbitrary V' of complexity one, Kevin Henriot [15]

has obtained the following theorem.

Theorem 6.1.1. Let V' be a translation invariant matriz of order r x m with entries
inZ, of rank r and complexity one and m > 3. Then there exists a positive constant
C > 0 depending at most on r,m and V' such that for any A C P N [1, N] there

exists non-trivial solution x to Va' = 0 with v € A™ if

|A| > C(loglog N)™ mmm(N). (6.1)

Henriot’s arguments for the above theorem were inspired by those in Shao [33].

We slightly modify the arguments of Henriot and Shao to get an improvement in
the exponent of loglog N in (6.1). Indeed, we improve “inverse theorem for the local
Gowers U%-norm” which leads us to the improvement in the exponent. Also, we give
a generalized version of Henriot’s theorem. More precisely, our main result is the

theorem below, which we state with the aid of the following notation

Let F(X) = [[2,(a;X 4+b;) € Z[X] be a polynomial in one variable with coefficients

in Z. We say F(X) is admissible if for each prime p there exists n € Z such that p

does not divide F(n). Further, for any real number z > 0, let P(z) = [][ .. p and

p<z
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g {ii+1,i+2}, a;;=11if j € {i,i+ 2} and a;,41 = —2. Then V is translation
invariant and for any x in Z™ with = (21, 29,...,%y), the relation V! = 0 is
equivalent to the assertion that a1, xs, ..., x,, are in arithmetical progression. Thus
Szemerédi’s theorem [35] is equivalent to the statement that for any A C N of
positive upper density, there is a non-trivial solution x to V' = 0 with z € A™.
Similarly, the celebrated result of Green and Tao [11] is equivalent to the statement
that for any subset A of the set of primes P with positive relative upper density in

P, there is a non-trivial solution x to Va! = 0 with = € A™.

The above example of a translation invariant matrix V' has “complexity” m — 2.

Indeed we can parametrize the kernel of V' by the system of linear forms

(AR AL
(a,d) — (a,a+d,...,a+ (m—1)d)

of complexity m — 2. Thus, for example finding a 3-term arithmetic progression is

of complexity one problem. Another example of complexity one system is given by

P - Zd+1 N Zd(d+1)/2

(1'0, :L']_, “ e ,Id) — (:EO + Ii + x])ISZS]Sd .

In fact this is a model for the complexity one systems. X. Shao [33] worked with

this system.

Let V of order r x m with entries in Z be a translation invariant matrix such that
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CHAPTER

Linear patterns of complexity one in

Chen primes

6.1 Introduction

A matrix V of order r x m with entries in Z is said to be translation invariant if
Vet = 0, where e is the vector (1,1,...,1) in Q™ and e’ its transpose. For such V
by a trivial solution of the system of linear equations Va! = 0 we mean x = Ae, for

some \ € Q.

A number of celebrated results in additive combinatorics can be recast as a state-
ments asserting the existence of a non-trivial solution z to Vzt = 0 with x € A™,
where A is a given subset of N. For instance, let m > 3 be an integer and

let V.= (a;;) be the matrix of order (m — 2) x m be defined by a;; = 0 if
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