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Summary

This thesis studies four problems in the theory of modular forms. The first one

is about getting explicit Shimura lifting of a certain class of modular forms of half-

integral weight, which generalises the works of B. Cipra, D. Hansen and Y. Naqvi.

In the second problem, simultaneous non-vanishing of twisted L-functions asso-

ciated to modular forms of integral weight is considered. It is a conjecture that there

exists infinitely many twists of L-functions which do not vanish simultaneously. In

this direction, following a method of R. Munshi, it is shown that if a product of L-

functions associated to two modular forms is non-zero for one character twist, then

there are infinitely many character twists of these products of L-functions which are

non-zero.

The problem of determining modular forms using the central values of L-functions

is well studied in the case of forms of integral weight. In the third problem, we

generalise the method adopted by S. Ganguly, J. Hoffstein and J. Sengupta to the case

of modular forms of half-integral weight. It is proved that in the case of forms of

half-integral weight also the central values of convolution L-functions determine the

forms.

The final problem of this thesis is about sign changes of Fourier coefficients of

cusp forms. It is well-known that the Fourier coefficients of cusp forms change its

sign infinitely often. In this direction there are many works which give quantitative

results. Sign changes of Fourier coefficients of cusp forms at some special sequences

have also been studied by many authors. The final result in this thesis deals with the

sign change problem for the sequence of integers which are sums of two (integer)

squares. It is established that on this sparse sequence, the Fourier coefficients of cusp

forms of integral weight change sign infinitely often.
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CHAPTER1
Introduction and Preliminaries

1.1 Introduction

In this thesis, we have considered four problems. First problem is about finding ex-

plicit Shimura image of certain class of modular forms of half-integral weight and

thus giving a generalisation of the work of Cipra [33] and Hansen- Naqvi [1010]. Second

problem is about simultaneous non-vanishing of the twisted L-function, this problem

is a generalisation of the work of Munshi [2727]. In the third problem, we have con-

sidered the problem of determining modular forms of half-integral weight and thus

giving a result analogous to the work of Ganguly-Hoffstein-Sengupta [55]. Finally, we

have considered the problem of sign change of the Fourier coefficients of cusp form

at integers, which can be written as sum of two squares.

3



4 §1.2. Preliminaries

1.2 Preliminaries

Now, in this chapter we give some basic definitions and properties of modular forms

of integral and half-integral weights.

1.3 Notations

Let N, Z, Q, R and C be the set of natural numbers, integers, rational numbers, real

numbers and complex numbers, respectively. For z ∈ C, Re(z) denotes the real part

of z and Im(z) denotes the imaginary part of z. For any complex number z and a

non-zero real number c, we denote by ec(z) = e2πiz/c. If c = 1, we simply write e(z)

instead of e1(z). Let H = {τ ∈ C : Im τ > 0} be the complex upper half-plane. We

denote by q = e(τ), for τ ∈H . For a complex number z, the square root is defined

as follows:

√
z=| z | 12 e

i
2 arg z, with −π < arg z≤ π.

We set z
k
2 = (

√
z)k for any k ∈ Z. The full modular group SL2(Z) is defined by

SL2(Z) =

⎧⎪⎨
⎪⎩
⎛
⎜⎝ a b

c d

⎞
⎟⎠ : a,b,c,d ∈ Z, ad−bc= 1

⎫⎪⎬
⎪⎭ .

For a positive integer N, we denote the congruence subgroup Γ0(N) of SL2(Z) as

follows:

Γ0(N) =

⎧⎪⎨
⎪⎩
⎛
⎜⎝ a b

c d

⎞
⎟⎠ ∈ SL2(Z) : c≡ 0 (mod N)

⎫⎪⎬
⎪⎭ .
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1.4 Modular forms on Γ0(N)

The group GL+
2 (R)=

⎧⎪⎨
⎪⎩
⎛
⎜⎝ a b

c d

⎞
⎟⎠ : a,b,c,d ∈ R, ad−bc> 0

⎫⎪⎬
⎪⎭ acts onH via frac-

tional linear transformations, i.e., for γ =

⎛
⎜⎝ a b

c d

⎞
⎟⎠ ∈ GL+

2 (R) and τ ∈H

γτ :=
aτ +b
cτ +d

.

Let k ∈ Z and γ =

⎛
⎜⎝ a b

c d

⎞
⎟⎠ ∈GL+

2 (R). For a complex valued function f define the

slash operator as follows:

( f |k γ)(τ) := (det γ)
k
2 (cτ +d)−k f (γτ).

Definition 1.4.1 Let k be a positive integer and χ a Dirichlet character modulo N. A

holomorphic function f : H −→ C is said to be a modular form of weight k, level N

and character χ , if

1. ( f |k γ)(τ) = χ(d) f (τ), ∀ γ =

⎛
⎜⎝ a b

c d

⎞
⎟⎠ ∈ Γ0(N), i.e.,

f
(
aτ +b
cτ +d

)
= χ(d)(cτ +d)k f (τ), ∀ γ =

⎛
⎜⎝ a b

c d

⎞
⎟⎠ ∈ Γ0(N).

2. f is holomorphic at all the cusps of Γ0(N).

Further, we say that f is a cusp form if f vanishes at all the cusps of Γ0(N).

We denote the space of all modular forms and the subspace of all cusp forms of weight

k, level N with character χ on Γ0(N) byMk(Γ0(N),χ) and Sk(Γ0(N),χ), respectively.
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If χ is the trivial character, then we denote these spaces asMk(Γ0(N)) and Sk(Γ0(N)),

respectively. When N = 1, we simply denote these spaces by Mk and Sk respectively.

For f , g ∈Mk(Γ0(N),χ) such that f g is a cusp form, the Petersson scalar product

of f and g is defined as:

〈 f ,g〉 =
1

[SL2(Z) : Γ0(N)]

∫
Γ0(N)\H

f (τ)g(τ)(Im(τ))kd∗τ,

where Γ0(N)\H is a fundamental domain for the action of Γ0(N) on H and d∗τ is

the invariant Haar measure. If τ = x+ iy, then the invariant Haar measure is given by

d∗τ = dxdy
y2 .

Example 1. Let k be an even integer greater than 2. The normalized Eisenstein series

Ek of weight k for SL2(Z) is defined as:

Ek(τ) := ∑
γ∈Γ∞\Γ

1|kγ

=
1

2
∑

(m,n)∈Z2\(0,0)
(m,n)=1

1

(mτ +n)k
.

Then Ek is a modular form of weight k for SL2(Z) with Fourier expansion

Ek(τ) = 1− 2k
Bk

∞

∑
n=1

σk−1(n)qn,

where σk−1(n) = ∑
d|n

dk−1 and Bk’s are Bernoulli numbers defined by

x
ex−1

=
∞

∑
k=o

Bk
xk

k!
.
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We have

E4(τ) = 1+240
∞

∑
n=1

σ3(n)qn,

E6(τ) = 1−504
∞

∑
n=1

σ5(n)qn,

Example 2. The Ramanujan delta function is defined as

Δ(τ) :=
1

1728
(E4(τ)3−E6(τ)2),

which is a cusp form of weight 12 for SL2(Z) with Fourier expansion

Δ(τ) = q
∞

∏
n=1

(1−qn)24 =
∞

∑
n=1

τ(n)qn,

where τ(n) is called the Ramanujan tau function.

Example 3. Let θ 2(τ) =
(

∑
n∈Z

qn
2

)2

= ∑
n≥0

r2(n)qn, where r2(n) denotes number of

ways n can be written as a sum of two squares. Then

θ 2(z) ∈M1(Γ0(4),χ),

where χ(d) = (−1)(
d−1
2 ).

Example 4. Let m be a be a positive integer. The m-th Poincaré series of weight k for

SL2(Z) is defined by

Pk,m(τ) := ∑
γ∈Γ∞\SL2(Z)

e2πimτ |kγ, (1.1)
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where Γ∞ :=

⎧⎪⎨
⎪⎩±

⎛
⎜⎝ 1 t

0 1

⎞
⎟⎠ : t ∈ Z

⎫⎪⎬
⎪⎭ . The mth Poincaré series Pk,m is a cusp form

of weight k > 2 for SL2(Z) with Fourier expansion

Pk,m(τ) =
∞

∑
n=1

gm(n)qn,

where

gm(n) = δm,n+(−1)
k
2+1

( n
m

) k−1
2 π

∞

∑
c=1

Kc(m,n)Jk−1

(
4π
√
mn

c

)
,

and Kc(m,n) is the Kloosterman sum defined by

1

c ∑
d (mod c)

dd−1≡1 (mod c)

ec(nd+md−1),

and Jk−1(x) is the Bessel function of order k−1. The Poincaré series has the following

property: If f ∈ Sk has the Fourier expansion f (τ) =
∞
∑

m=1
a(m)qm, then

〈 f ,Pk,n〉= Γ(k−1)

(4πn)k−1
a(n). (1.2)

We now define Hecke operators which send modular forms to modular forms. Let

n be a positive integer such that (n,N) = 1. For f (τ) =
∞
∑

m=0
a(m)qm ∈Mk(Γ0(N),χ),

the n-th Hecke operator Tn is given in terms of the Fourier expansion by

(Tn f )(τ) =
∞

∑
m=0

an(m)qm,

where an(m) = ∑
d|(m,n)

χ(d)dk−1a(mn
d2 ). If f ∈Mk (or Sk), then Tn f ∈Mk (or Sk). The

family {Tn : n ∈ N} of Hecke operators is commuting. The Hecke operators Tn acting
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on Sk(Γ0(N),χ) are self-adjoint with respect to the Petersson inner product.

Definition 1.4.2 A cusp form is said to be an eigenform if it is a simultaneous eigen-

function for all the Hecke operators.

The space Sk(Γ0(N),χ) has a basis of eigenforms. For each prime p|N the Hecke op-

eratorU(p) is defined as follows. If f (τ)= ∑
m≥1

a(m)qm, then f (τ)|U(p) := ∑
m≥1

a(pm)qm.

Also, if d is a positive integer, then the duplicating operator B(d) is defined as

f (τ)|B(d) := f (dτ).

Suppose that f (τ)∈ Sk(Γ0(N)), then f (τ)∈ Sk(Γ0(dN)) for any positive integer d≥ 1

and f (dτ) ∈ Sk(Γ0(dN)). Therefore, f (τ) sits in Sk(Γ0(dN)) in atleast two different

ways. The theory of newforms distinguishes these types of forms, called the oldforms,

which are generated by forms of level < N.

We define the subspace Soldk (Γ0(N)) by

Soldk (Γ0(N)) :=⊕ dM|N
M 
=N

Sk(Γ0(M))|B(d),

We now define the subspace of newforms denoted as Snewk (Γ0(N)) as the orthogonal

complement of Soldk (Γ0(N)) in Sk(Γ0(N)) with respect to the Petersson inner product.

One has Sk(Γ0(N)) = Soldk (Γ0(N))⊕Snewk (Γ0(N)). Further the space Snewk (Γ0(N)) has

an orthogonal basis of eigenforms. The following lemma tells us about the growth of

the Fourier coefficients of a modular form.

Lemma 1.4.3 [1111] If f ∈Mk(Γ0(N),χ) with Fourier coefficients a(n), then

a(n)� nk−1+ε ,
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and moreover, if f is a cusp form, then

a(n)� n
k
2− 1

4+ε .

Note that for a Hecke eigen cusp form f , Deligne’s bound is a(n)� n
k−1
2 +ε . For

more details on the theory of modular forms of integral weight, we refer to the books

of Iwaniec [1111], Ono [3232], Koblitz [1515].

We associate an L-function to f (τ) = ∑m≥1 a(m)qm ∈ Sk(Γ0(N),χ)) defined by

L(s, f ) =
∞

∑
n=1

a(n)
ns

,

for Re(s)> k
2 +1.

Theorem 1.4.1 Let f be as above and put g= f |WN, where WN =
( 0 −1

N 0

)
.

Let

L(s, f ) = ∑
n≥1

a(n)
ns

,

L(s,g) = ∑
n≥1

b(n)
ns

.

Then L(s, f ) and L(s,g) can be extended to entire functions and satisfy the functional

equation

Λ(s, f ) = ikΛ(s,g),

where

Λ(s, f ) =
(√

N
2π

)s

Γ(s)L(s, f )

and

Λ(s,g) =
(√

N
2π

)s

Γ(s)L(s,g).
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The following theorem gives modular property of the twist of a modular form by

a Dirichlet character.

Theorem 1.4.2 Let f ∈Mk(Γ0(N),χ), where χ is a Dirichlet character of conductor

N∗ with N∗|N. Let ψ be a primitive Dirichlet character modulo r. If

f (τ) = ∑
n≥0

a(n)qn,

then the "twisted series"

fψ(τ) = ∑
n≥0

a(n)ψ(n)qn

is an element of Mk(Γ0(M),χψ2), where M is the least common multiple of N,N∗r,

and r2. Moreover if f is a cusp form, then so is fψ .

Given f ∈ Sk(Γ0(N),χ) and ψ a primitive Dirichlet character modulo r, we associate

the twisted L-function by

L(s, f ,ψ) = ∑
n≥1

a(n)ψ(n)
ns

where a(n)’s are the Fourier coefficients of f . Note that this L-function is nothing but

L(s, fψ), the L-function of the twisted modular form fψ .

Theorem 1.4.3 ([1111]) Let f ∈ Sk(Γ0(N),χ), ψ a primitive Dirichlet character mod-

ulo r with (N,r) = 1 and M = Nr2. Put

Λ(s, f ,ψ) =

(√
M

2π

)s

Γ(s)L(s, f ,ψ).

Then Λ(s, f ,ψ) is an entire function, bounded in vertical strips and satisfying the

functional equation

Λ(s, f ,ψ) = ikw(ψ)Λ(k− s,g,ψ),
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where

w(ψ) = χ(r)ψ(q)τ(ψ)2/r

and g= f |WN.

In the above τ(ψ) is the Gauss sum given by τ(ψ) = ∑u (mod r)ψ(u)e(u/r) and WN

is the Fricke involution as defined in Theorem 1.4.1.

1.5 Modular forms of half-integral weight

For a non-negative integer k and γ =

⎛
⎜⎝ a b

c d

⎞
⎟⎠ ∈ Γ0(4N) we define the slash oper-

ator as follows:

f |k+1/2 γ(τ) :=
( c
d

)(−4

d

)k+1/2

(cτ +d)−k−1/2 f (γτ),

where
( c
d

)
is the Kronecker symbol and

(−4
d

)
= ±1 or 0 according as d ≡ ±1

(mod 4) or d is even.

Definition 1.5.1 Let k be a non-negative integer and χ be a Dirichlet character mod-

ulo 4N. A holomorphic function f : H −→ C is said to be a modular form of weight

k+1/2 on Γ0(4N) with character χ , if

1. f |k+1/2 γ(τ) = χ(d) f (τ), ∀ γ =

⎛
⎜⎝ a b

c d

⎞
⎟⎠ ∈ Γ0(4N).

2. f is holomorphic at all the cusps of Γ0(4N).

Further, we say that f is a cusp form if f vanishes at all the cusps of Γ0(4N).

We denote the space of all modular forms of weight k+1/2 with character χ on

Γ0(4N) by Mk+1/2(4N,χ) and when k ≥ 1 the subspace of all cusp forms is denoted
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by Sk+ 1
2
(4N,χ).

Example Let ψ be a primitive Dirichlet character (mod r), let ν = 0 or 1 according

as ψ(−1) = (−1)ν . The theta function associated to the character ψ is defined by

hψ(τ) =
∞

∑
−∞

ψ(m)mνe(m2τ). (1.3)

Then hψ(τ) is a modular form of half-integral weight and hψ ∈ Mν+1/2(4r2,ψ(ν)),

where ψ(ν)(m) = ψ(m)
(−1

m

)ν
.

When r = 1, the above theta series is the classical theta series θ(τ) given by

θ(τ) = ∑
m∈Z

e(m2τ) ∈M1/2(4). (1.4)

The Petersson scalar product on Sk+1/2(4N,χ) is defined as follows:

〈 f ,g〉 =
1

[SL2(Z) : Γ0(4N)]

∫
Γ0(4N)\H

f (τ)g(τ)(Im(τ))k+1/2d∗τ,

here d∗τ is the invariant Haar measure as defined in §1.4. The space Sk+1/2(4N,χ) is

a finite dimensional Hilbert space.

Definition 1.5.2 For positive integer n, the n-th Poincaré series of weight k+1/2, (k

is a positive integer) is defined by

Pk+1/2,n(τ) := ∑
γ∈Γ∞\Γ0(4N)

e2πinτ |k+1/2 γ. (1.5)

It is known that Pk+1/2,n ∈ Sk+1/2(4N) (for this fact we refer to the proof of [1818,

Proposition 4]. The Poincaré series has the following property:
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Lemma 1.5.3 Let f ∈ Sk+1/2(4N) with Fourier expansion

f (τ) =
∞

∑
m=1

a(m)qm.

Then

〈 f ,Pk+1/2,n〉=
Γ(k− 1

2)

i4N(4πn)k−
1
2

a(n). (1.6)

Here i4N denotes the index of Γ0(4N) in SL2(Z). The following lemma gives the

growth of the Fourier coefficients of a half-integral weight modular form.

Lemma 1.5.4 If f ∈Mk+1/2(4N,χ) with Fourier coefficients a(n), then

a(n)� nk−
1
2+ε ,

and moreover, if f ∈ Sk+1/2(4N,χ) is a cusp form, then

a(n)� n
k
2+

1
4+ε .

In his 1973 paper [3737], G. Shimura introduced the theory of modular forms of half-

integral weight. He obtained the following map from the space of cusp forms of

half-integral weight to cusp forms of integral weight.

Theorem 1.5.1 ([3737], [3131]) Let t be a square-free positive integer and suppose that

f (τ) =
∞

∑
n=1

b(n)e(nτ)∈ Sk+1/2(4N,χ), where k is a positive integer. If At(n) are given

by
∞

∑
n=1

At(n)n−s = L(s− k+1,χχk
−4χt)

∞

∑
n=1

b(tn2)n−s, (1.7)

where Re(s) is large and χt =
( t
·
)
is the real non-principal character modulo t (mod-

ulo 4t if t ≡ 2,3 (mod 4)), χ−4 =
(−4
·
)
is the odd character modulo 4, define the map
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St as follows.

St( f )(τ) =
∞

∑
n=1

(
∑
d|n

χ(d)χk
−4(d)χt(d)dk−1b(tn2/d2)

)
e(nτ) =

∞

∑
n=1

At(n)e(nτ).

(1.8)

Then St( f )(τ) ∈M2k(2N,χ2). Moreover, if k ≥ 2, then St( f ) is a cusp form.

When N is odd, we define a canonical subspace of the space of cusp forms of half-

integral weight introduced by Kohnen and denoted by S+k+1/2(4N). This is the sub-

space of Sk+1/2(4N), consisting of cusp forms ∑
n≥1

c(n)qn with the property that c(n)=

0 unless (−1)kn ≡ 0,1 (mod 4). Later corresponding to each fundamental discrimi-

nant D (i.e. D is 1 or the discriminant of a quadratic field) with (−1)kD> 0, Kohnen

in [1717],[1818] defined the D-th Shimura-Kohnen map, given by

SD(g)(τ) = ∑
n≥1

⎛
⎜⎝ ∑

d|n
(d,N)=1

(
D
d

)
dk−1c(n2|D|/d2)

⎞
⎟⎠qn. (1.9)

Also when N is squarefree, Kohnen has given a newform theory for S+k+1/2(4N). Sup-

pose that S+,new
k+1/2(4N) denotes the subspace of newforms of S+k+1/2(4N). Kohnen has

proved that S+,new
k+1/2(4N) and Snew2k (N) [subspace of newforms in S2k(N)] are isomor-

phic as modules over the Hecke algebra.

Theorem 1.5.2 If f (τ) = ∑
n≥1

a(n)qn ∈ Snew2k (N) is a normalized Hecke eigenform

(a(1) = 1) and g(τ) = ∑
n≥1

c(n)qn ∈ S+,new
k+1/2(4N) be the corresponding form of half-

integral weight under the SD map with c(|D|) 
= 0, for a fundamental discriminant D

with (−1)kD > 0. Then the Fourier coefficients of f and g are related (via the map

SD) by

c(n2|D|) = c(|D|) ∑
d|n

(d,N)=1

μ(d)
(
D
d

)
dk−1a(n/d).
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For each prime l dividing N (odd squarefree), let Wl be the Atkin-Lehner involution

on S2k(N) associated to l and defined by Wl =
( l α

N lβ

)
, with l2β −Nα = l, and

α,β ∈Z. Then f |2k W� =w� f ,where w� =±1. For a fundamental discriminatDwith

(D,N) = 1, (−1)kD > 0 and Re(s)� 0 we denote by L( f ,D,s) = ∑
n≥1

(D
n

)
a(n)n−s,

the L-function of f twisted by the quadratic character
(D). Then L( f ,D,s) has a

holomorphic continuation to C and the completed L-function

L∗( f ,D,s) = (2π)−s(ND2)s/2Γ(s)L( f ,D,s)

satisfies the functional equation

L∗( f ,D,s) = (−1)k
(

D
−N

)
wNL∗( f ,D,2k− s),

where wN = ∏
l|N

wl ∈ ±1. Note that L( f ,D,k) = 0 for (−1)k
( D
−N

)
=−wN .

Below, we state the explicit Waldspurger formula obtained by Kohnen [1818].

Theorem 1.5.3 Let D be a fundamental discriminant with (−1)kD > 0 and N be an

odd squarefree natural number. Suppose that for all prime divisors l of N, we have(D
l

)
= wl. Then

|c(|D|)|2
〈g,g〉 = 2ν(N) (k−1)!

πk |D|k−1/2L( f ,D,k)
〈 f , f 〉 , (1.10)

where ν(N) denotes the number of distinct prime divisors of N.

For more details on the theory of modular forms of half-integral weight, we refer to

the book of Koblitz [1515], Ono [3232], and the work of Shimura [3737].



CHAPTER2
Shimura image of certain modular

forms of half-integral weight

2.1 Introduction

In his 1973 paper [3737], G. Shimura introduced the theory of modular forms of half-

integral weight. In that paper, he obtained a correspondence between the space of

modular forms of half-integral weight and modular forms of integral weight. In par-

ticular, corresponding to each squarefree positive integer t, he obtained a map St

from modular forms of half-integral weight to modular forms of integral weight.

In this connection, in an unpublished work the following property of the first

Shimura map was observed by A. Selberg (see [33, p. 58]). Let f ∈ Sk(1) be a Hecke

eigenform, then the image of the function f (4z)θ(z) under S1 is f 2(z)−2k−1 f 2(2z),

where θ(z) is the classical theta function given by
∞

∑
−∞

e(n2z). B. A. Cipra in [33],

generalized the observation made by Selberg by considering the general theta function

17
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hψ corresponding to a primitive Dirichlet character ψ modulo a prime power. We

write ψ(−1) = (−1)ν , where ν = 0,1 accordingly if ψ is even or odd.

Then, Cipra proved the following theorem.

Theorem 2.1.1 ([33]) Let f (z) be a normalized newform in Sk(N,χ). For a primitive

Dirichlet character ψ modulo r = pm, where p is a prime, and μ ≥ m, let F(z) =

f (4pμz)hψ(z), where hψ(z) is the generalized theta function as defined in (1.41.4). Let

g(z)=∑n≥1 c(n)e(nz)= f (z) f (pμz), if ν = 0 and g(z)= 1
2πi ( f

′(z) f (pμz)− pμ f (z) f ′(pμz)),

if ν = 1. Here f ′(z) is the derivative of f w.r.t z. Let G(z) = ∑n≥1 ψ(n)c(n)e(nz) =

gψ(z) be the ψ-twist of g. Then F ∈ Sk+ν+1/2(4N1,χψχk+ν
−4 ), G∈ S2(k+ν)(N1,χ2ψ2),

where N1 = lcm(Npμ ,r2). Moreover,

S1(F)(z) = G(z)−2k+ν−1χ(2)ψ(2)G(2z) ∈ S2(k+ν)(2N1,χ2ψ2).

In 2008, D. Hansen and Y. Naqvi [1010] generalized the work of Cipra by consid-

ering ψ to be a Dirichlet character modulo any positive integer. Below we give the

result of Hansen-Naqvi.

Theorem 2.1.2 ([1010]) Let ψ be a Dirichlet character modulo r=∏�
i=1 p

αi
i , and write

ψ = ∏�
i=1 ψi, where ψi is a Dirichlet character modulo pαi

i . Further, let ψ(−1) =

(−1)ν , ν = 0 or 1 according as ψ is even or odd. For a normalized Hecke eigen-

form f ∈ Sk(N,χ) set F(z) = f (4rz)hψ(z) ∈ Sk+ν+1/2(4N′r2,χψχk+ν
−4 ), where N′ =

N/gcd(N,r). Define the function g(z) as

g(z) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑
d|r

gcd(d,r/d)=1

ψd(−1) f (dz) f (rz/d) if ν = 0,

1

πi ∑
d|r

gcd(d,r/d)=1

ψd(−1)d f ′(dz) f (rz/d) if ν = 1.

(2.1)
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Then we have

S1(F)(z) = gψ(z)−2k+ν−1ψ(2)χ(2)gψ(2z),

which belongs to the space S2(k+ν)(2N′r2,χ2ψ2), where gψ(z) is the ψ-twist of g(z).

In this chapter, we generalize the result of Hansen-Naqvi to get similar result in

the case of general t-th Shimura map St . The chapter is organised as follows. First we

state our theorems and give a proof of them. At the end, we provide some examples

to our result.

Statement of main results

Let r = ∏�
i=1 p

αi
i and ψ be a primitive Dirichlet character modulo r with ψ(−1) =

(−1)ν , where ν = 0 or 1 according as the character ψ is an even or odd charac-

ter modulo r. As indicated earlier, we write ψ = ∏�
i=1 ψi, where ψi is a Dirichlet

character modulo pαi
i and for any positive divisor d|r, we let ψd = ∏

p
α j
j ‖d

ψ j. For a

modular form f ∈ Sk(N,χ) with Fourier expansion f (z) = ∑
n≥1

a(n)e(nz), let us define

the function gt(z) by

gt(z) = a(t)g(z), (2.2)

where a(t) is the t-th Fourier coefficient of f and g(z) is the function defined by (2.12.1).

Corresponding to the character ψ modulo r, let hψ(z) be the theta function as defined

in (1.41.4).

Theorem 2.1.3 Let f (z) be a normalized Hecke eigenform in Sk(N,χ) and t be a

square-free positive integer such that t|N, gcd(t,2N/t) = 1. For the existence of

a square-free t 
= 1, we assume that N has the property that there exists an odd

prime p|N with p2 
 |N. Let ψ be a primitive Dirichlet character modulo r such that

gcd(r, t) = 1. Set Ft(z) = f (4rz)hψ(tz). Then, Ft ∈ Sk+ν+1/2(4N′r2,χψχtχk+ν
−4 ),



20 §2.1. Introduction

where N′ = N/gcd(N,r). For the Hecke eigenform f , let gt(z) be the function de-

fined by (2.22.2) with g(z) as in (2.12.1). Let Gt(z) = gtψ(z) = ∑
n≥1

ψ(n)c(n)e(nz) (c(n)

is the n-th Fourier coefficient of gt) be the ψ-twist of gt , which is a modular form in

S2(k+ν)(N′r2,χ2ψ2). Then we have

St(Ft)(z) = Gt(z)−2k+ν−1ψ(2)χ(2)Gt(2z) (2.3)

and it belongs to the space S2(k+ν)(2N′r2,χ2ψ2).

Due to our assumption that gcd(t,N/t) = 1, the t-th Fourier coefficient a(t) of f

is non-zero, from which it follows that the function gt(z) defined by (2.22.2) is non-zero.

The second main theorem is the following (which has no conditions on the square-free

integer t).

Theorem 2.1.4 Let f (z) be a normalized Hecke eigenform in Sk(N,χ) and ψ be a

primitive Dirichlet character modulo r as in Theorem 2.1.32.1.3. For a square-free pos-

itive integer t, set Ht(z) = f (4rtz)hψ(tz). Then, Ht ∈ Sk+ν+ 1
2
(4N′r2t,χψχtχk+ν

−4 ),

where N′ = N/gcd(N,r). Corresponding to the Hecke eigenform f , let g(z) be the

function defined by (2.12.1) and let G(z) be the ψ-twist of g, given by G(z) = gψ(z) =

∑
n≥1

ψ(n)c(n)e(nz), where c(n) is the n-th Fourier coefficient of g. Then G(z) ∈

S2(k+ν)(N′r2,χ2ψ2) and the image of the function Ht under the t-th Shimura map

is given by

St(Ht)(z) = G(z)|∏
p|2t

(
1−χ(p)ψ(p)pk+ν−1B(p)

)
(2.4)

and it belongs to the space S2(k+ν)(2N′r2t,χ2ψ2), where B(d) is the operator which
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is defined by f |B(d)(z) = f (dz). If t is such that gcd(N, t)> 1, then

St(Ht)(z) = G(z)| ∏
p|2t/gcd(N,t)

(
1−χ(p)ψ(p)pk+ν−1B(p)

)

∈ S2(k+ν)(2N
′r2t/gcd(N, t),χ2ψ2).

(2.5)

More precisely, we have St(Ht)(z) ∈ S2(k+ν)(2N′r2t/gcd(Nr, t),χ2ψ2).

Remark 2.1.1 Though we didn’t have any condition on t, the level of the half-

integral weight cusp form in Theorem 2.1.42.1.4 is divisible by t. So, effectively both

the theorems are concerning the t-th Shimura image of certain modular forms whose

level is divisible by t. The method of proving these results suggests that these type

of constructions won’t give information for the t-th Shimura maps on forms of half-

integral weight whose level is relatively prime to t.

2.2 Proof of Theorem 2.1.32.1.3

First we state an inversion formula needed for the proof of the theorem. As f ∈
Sk(N,χ) is a normalized Hecke eigenform, its Fourier coefficients a(n) satisfy the

following multiplicative property:

a(m)a(n) = ∑
d|(m,n)

χ(d)dk−1a(mn/d2). (2.6)

The inversion formula is the inverse of the above property.

Proposition 2.2.1 ([33], [1010, Proposition 2.2]) If f (z) = ∑n≥1 a(n)e(nz)∈ Sk(N,χ) is

a Hecke eigenform with a(1) = 1, then we have

a(mn) = ∑
d|(m,n)

μ(d)χ(d)dk−1a(m/d)a(n/d), (2.7)
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for any positive integers m,n, where μ is the Möbius function.

Let hψ(z) be the theta function as defined in (1.41.4), where ψ is a primitive Dirich-

let character modulo a positive integer r. We assume the prime factorization of r

as given before. Since f ∈ Sk(N,χ), f (4rz) ∈ Sk(4Nr,χ) and hψ(tz) belongs to

Mν+1/2(4r2t,ψχν
−4χt), where t is a square-free positive integer. So, when t|N, the

function F(z) defined by F(z) = f (4rz)hψ(tz) is a cusp form in the space

Sk+ν+1/2(4N′r2,χψχtχk+ν
−4 ), where N′ = N/gcd(N,r). Since f ∈ Sk(N,χ), using

the definition of the function gt given by (2.22.2), we see that the function Gt(z), which

is the ψ-twist of gt , is a cusp form in S2(k+ν)(N′r3,ψ2χ2). Below we give a proof of

the fact that Gt ∈ S2(k+ν)(N′r2,ψ2χ2).

As [Γ0(N′r2) : Γ0(N′r3)] = r, we let the coset representatives be given by

α j :=

⎛
⎜⎝ 1 0

jN′r2 1

⎞
⎟⎠

for j= 0,1, ...,r−1. To prove our claim, we need to show that Gt(z) |k α j =Gt(z) for

all j = 0,1, ...,r−1. We consider the Gauss sum τ(ψ) =
r−1

∑
m=0

ψ(m)e2πim/r. By using

the Gauss sum (refer to [1515], page 128), we can write

Gt(z) =
τ(ψ)

r

r−1

∑
v=0

ψ(v)gt(z− v/r) =
τ(ψ)

r

r−1

∑
v=0

ψ(v)gt(z) |k γv,

where γv =

⎛
⎜⎝ 1 −v/r

0 1

⎞
⎟⎠ . By observing that

⎛
⎜⎝ 1 −v/r

0 1

⎞
⎟⎠
⎛
⎜⎝ 1 0

jN′r2 1

⎞
⎟⎠=

⎛
⎜⎝ 1− jvN′r − jN′v2

jN′r2 jvN′r+1

⎞
⎟⎠
⎛
⎜⎝ 1 −v/r

0 1

⎞
⎟⎠ ,
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we finally conclude that Gt(z) |k α j = Gt(z) for all j = 0,1, ...,r− 1. For a detailed

proof we refer to [[1515], Page 128]. We write the Fourier expansion of the function

gt(z) by gt(z) = ∑n≥1 c(n)e(nz) (2.22.2). Then, if ψ is an even character (i.e., when

ν = 0), the Fourier coefficients c(n) are given by

c(n) = a(t) ∑
d|r

gcd(d,r/d)=1

ψd(−1)
∞

∑
m=−∞

a(m)a(
n−dm
r/d

).

Note that a(�) = 0 whenever � is not an integer or � ≤ 0. Since f is a normalized

Hecke eigenform, and t|N, we have a(t)a(m) = a(tm), m ≥ 1. Note that for t|N, the

newform f is an eigenfunction under the Hecke operatorU(t) and since a(1) = 1, we

have the relation a(tm) = a(t)a(m)∀m≥ 1. Therefore, we have

c(n) = ∑
d|r

gcd(d,r/d)=1

ψd(−1)
∞

∑
m=−∞

a(tm)a(
n−dm
r/d

). (2.8)

When ψ is an odd character (i.e., when ν = 1), the Fourier coefficients c(n) are

given by

c(n) = ∑
d|r

gcd(d,r/d)=1

ψd(−1)
∞

∑
m=−∞

(n−2dm)a(tm)a(
n−dm
r/d

). (2.9)

Let Ft(z) = ∑n≥1 b(n)e(nz). Then as f (z) = ∑n≥1 a(n)e(nz), by using the defini-

tion of the theta function hψ(z) given by (1.41.4), we get

Ft(z) =
∞

∑
n=1

a(n)e(4rnz)
∞

∑
m=−∞

mνψ(m)e(tm2z). (2.10)
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This gives the Fourier coefficient b(n) as

b(n) =
∞

∑
m=−∞

mνψ(m)a
(
n− tm2

4r

)
. (2.11)

So, we have

b(tn2) =
∞

∑
m=−∞

mνψ(m)a
(
t(n2−m2)

4r

)
. (2.12)

By our assumption, (t,2r) = 1. Also ψ(m) = 0 for any m divisible by d, where d is

a divisor of r. When n and m are integers with 4|(n2−m2) both the factors n−m

and n+m have to be even. So, let
(n−m

2 ,r
)
= d, then m ≡ n (mod 2d) and m ≡ −n

(mod 2r/d). If (d,r/d) = d′ 
= 1, then m≡ n≡−n≡ 0 (mod 2d′). This implies that

ψ(m) = 0. So, it is enough to assume that (d,r/d) = 1 and we substitutem= n+2dm′

for some m′ ∈ Z and m+n= 2n+2dm′. Since (d,r/d) = 1, we have

ψ(m) = ψd(m)ψr/d(m).

As m≡ n (mod d) and m≡−n (mod r/d), we have

ψ(m) = ψd(n)ψr/d(−n) = ψd(n)ψr/d(n)ψr/d(−1) = ψr/d(−1)ψ(n). (2.13)

Using this in (2.122.12), we get

b(tn2) = ψ(n)
∞

∑
m=−∞

(n−2m)ν ∑
d|r

(d,r/d)=1

ψr/d(−1)a
(
tm(n−dm)

r/d

)
. (2.14)
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Case (i): ψ(−1) = 1, i.e., ν = 0. In this case ψd(−1)ψr/d(−1) = 1 gives the fact that

ψd(−1) = ψr/d(−1) =±1. Therefore, we get

b(tn2) = ψ(n) ∑
d|r

(d,r/d)=1

ψd(−1) ∑
m∈Z

a
(
tm(n−dm)

r/d

)
. (2.15)

Now by applying Selberg inversion (Proposition 2.2.12.2.1) we have,

a
(
tm(n−dm)

r/d

)
= ∑

δ |tm
δ |
(

n−dm
r/d

)
μ(δ )χ(δ )δ k−1a(tm/δ )a

(
n−dm
δ r/d

)
.

Substituting this in (2.152.15), we get

b(tn2)=
∞

∑
m=−∞

∑
d|r

gcd(d,r/d)=1

ψd(−1)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∑
δ |tm

(δ ,t)=1

δ |
(

n−dm
r/d

)
μ(δ )χ(δ )δ k−1a(tm/δ )a

(
n−dm
δ r/d

)
⎞
⎟⎟⎟⎟⎟⎟⎟⎠

ψ(n)

(2.16)

As t divides N, we have an additional condition (δ , t) = 1 (in the sum over δ ) and so

we have

b(tn2) =
∞

∑
m=−∞

∑
d|r

gcd(d,r/d)=1

ψd(−1)

⎛
⎜⎜⎝∑

δ |m
δ |n

μ(δ )χ(δ )δ k−1a(tm/δ )a
(
n−dm
δ r/d

)⎞⎟⎟⎠ψ(n)

=
∞

∑
m=−∞

∑
d|r

gcd(d,r/d)=1

ψd(−1)

⎛
⎜⎜⎝∑

δ |m
δ |n

μ(δ )χ(δ )δ k−1ψ(δ )ψ(n/δ )a(tm/δ )a
(
n/δ −dm/δ

r/d

)⎞⎟⎟⎠

=
∞

∑
m=−∞

∑
d|r

gcd(d,r/d)=1

ψd(−1)

(
∑
δ |n

μ(δ )χ(δ )δ k−1ψ(δ )ψ(n/δ )a(tm)a
(
n/δ −dm

r/d

))
.
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Now, using the Fourier expansion of g given by (2.82.8), it follows that

b(tn2) = ∑
δ |n

μ(δ )χ(δ )δ k−1ψ(δ )ψ(n/δ )c(n/δ )

= ∑
δ |n

μ(δ )χ(δ )δ k+ν−1ψ(δ )ψ(n/δ )c(n/δ ). (2.17)

Case (ii): ψ(−1) =−1, i.e., ν = 1. In this case ψd(−1)ψr/d(−1) =−1. So, equation

(2.122.12) now becomes

b(tn2) = ψ(n) ∑
d|r

(d,r/d)=1

ψd(−1) ∑
m∈Z

(n−2dm)a
(
tm(n−dm)

r/d

)
. (2.18)

Now, proceeding as in the previous case, we get

b(tn2) =
∞

∑
m=−∞

∑
d|r

gcd(d,r/d)=1

ψd(−1)

(
∑
δ |n

μ(δ )χ(δ )δ k+ν−1ψ(δ )ψ(n/δ )(n/δ −2dm)a(tm)a
(
n/δ −dm

r/d

))
.

Using the Fourier expansion of g given by (2.92.9) in the above expression, we get the

same expression as in (2.172.17). Thus, in both the cases (ψ even or odd) we have the

same expression for b(tn2) given by (2.172.17). Now we evaluate the Dirichlet series

associated to the coefficients b(tn2) in the following.

∞

∑
n=1

b(tn2)n−s =
∞

∑
n=1

∑
δ |n

μ(δ )χ(δ )δ k+ν−1ψ(δ )ψ(n/δ )c(n/δ )n−s

=
∞

∑
n=1

μ(n)χ(n)ψ(n)nk+ν−1−s
∞

∑
n=1

ψ(n)c(n)n−s

= L(s+1− k−ν ,χψ)−1
∞

∑
n=1

ψ(n)c(n)n−s
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Since Ft ∈ Sk+ν+1/2(4N′r2,χψχtχk+ν
−4 ), we have to multiply the left-hand side of

the above equation by L(s− k−ν + 1,χχtψχk+ν
−4 χk+ν

−4 χt) to get the Dirichlet series

corresponding to the image of Ft under Shimura map St (see equation (1.71.7)). How-

ever, L(s− k−ν + 1,χχtψχk+ν
−4 χk+ν

−4 χt) = L(s− k−ν + 1,χψχ4). So, multiplying

both the sides by L(s− k−ν +1,χψχ4), we get

L(s− k−ν +1,χψχ4)
∞

∑
n=1

b(tn2)n−s =
L(s+1− k−ν ,χψχ2

−4)

L(s+1− k−ν ,χψ)

∞

∑
n=1

ψ(n)c(n)n−s.

(2.19)

All Dirichlet series that appears above converge absolutely for Re(s) sufficiently

large, and so by an easy consideration of Euler products, the quotient of the L-

functions simplifies as follows:

L(s+1− k−ν ,χψχ2
−4)

L(s+1− k−ν ,χψ)
=

∏p
 | 2Nr(1−χ(p)ψ(p)pk+ν−1−s)−1

∏p
 | Nr(1−χ(p)ψ(p)pk+ν−1−s)−1
(2.20)

=
(
1−χ(2)ψ(2)2k+ν−1−s

)
. (2.21)

Therefore,

∞

∑
n=1

At(n)n−s =
(
1−χ(2)ψ(2)2k+ν−1−s

) ∞

∑
n=1

ψ(n)c(n)n−s

and so,

St(Ft) =
∞

∑
n=1

ψ(n)c(n)e(nz)−χ(2)ψ(2)2k+ν−1
∞

∑
n=1

ψ(n)c(n)e(2nz).

In other words, St(Ft)(z) = Gt(z)− χ(2)ψ(2)2k+ν−1Gt(2z). This completes the

proof.



28 §2.3. Proof of Theorem 2.1.42.1.4

2.3 Proof of Theorem 2.1.42.1.4

The proof is similar and we indicate only the relevant changes to be carried out. Let

the Fourier expansion of H be given by Ht(z) = ∑n≥1 h(n)e(nz). Taking the n-th

Fourier coefficient of f as a(n) as before, h(n) is given by (compare this with (2.112.11)):

h(n) =
∞

∑
m=−∞

mνψ(m)a
(
n− tm2

4rt

)
. (2.22)

So, we have

h(tn2) =
∞

∑
m=−∞

mνψ(m)a
(
(n2−m2)

4r

)
.

Here we note that the above expansion is the same as in Eq. (3.5) of [1010] (in the case

ν = 0). Again giving the same argument as presented after (2.122.12) , we arrive at the

following in the general case (ν = 0 or 1).

h(tn2) = ψ(n) ∑
d|r,

(d,r/d)=1

(−1)νψd(−1) ∑
m∈Z

a
(
m(n−dm)

r/d

)
(n−2dm)ν

and so we finally get

∞

∑
n=1

h(tn2)n−s =
∞

∑
n=1

∑
δ |n

μ(δ )χ(δ )δ k+ν−1ψ(δ )ψ(n/δ )c(n/δ )n−s

= L(s+1− k−ν ,χψ)−1
∞

∑
n=1

ψ(n)c(n)n−s

To get the Dirichlet series corresponding to the image of Ht under St we have to

multiply both sides of the above equation by L(s−k−ν +1,χψχ4χ2
t ). In the present

case, the ratio of the L-functions that appear on the right-hand side has the following

simplification.
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L(s+1− k−ν ,χψχ4χ2
t )

L(s+1− k−ν ,χψ)
=

∏p
 | 2Nrt(1−χ(p)ψ(p)pk+ν−1−s)−1

∏p
 | Nr(1−χ(p)ψ(p)pk+ν−1−s)−1

= ∏
p|2t

(
1−χ(p)ψ(p)pk+ν−1−s

)
.

Therefore,

St(Ht) =

(
∞

∑
n=1

ψ(n)c(n)e(nz)

)
|∏
p|2t

(
1−χ(p)ψ(p)pk+ν−1B(p)

)

In other words, St(Ht)(z)=G(z)|∏p|2t
(
1−χ(p)ψ(p)pk+ν−1B(p)

)
. This completes

the proof.

2.4 Examples

In this section, we shall give some examples to illustrate our results. Examples 1 to

3 are for Theorem 2.1.32.1.3 and Examples 4 and 5 are for Theorem 2.1.42.1.4. Also in the

examples q= e(z).

Example 1: The case r = 1. Let

f (z) = η3(2z)η3(6z) = q−3q3+2q7+9q9−22q13+26q19+O(q20)

be the newform in S3(12,
( ·
3

)
). Let θ(z) = ∑∞

n=−∞ e(n2z) be the theta function. Set

F3(z) = f (4z)θ(3z) = q4+2q7−3q12−6q15+2q16+O(q17),

which belongs to S3+1/2(48). Since N = 12, let t = 3 and so let gt(z) = a(t) f 2(z) =
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−3 f 2(z) ∈ S6(12). Since r = 1, we have

G3(z) = g3(z) =−3 f 2(z) =−3q2+18q4−27q6−12q8+36q10+O(q11).

As N = 12, χ(2) = 0 and so by Theorem 2.1.32.1.3

S3(F3)(z) = G3(z)−2k−1χ(2)ψ(2)G3(2z) =−3 f 2(z) ∈ S6(12).

Example 2: In this example, we will take ψ to be the Legendre symbol
( ·
5

)
modulo

5 which is an even character modulo 5. So, r = 5. Let f be the newform in the space

S4(6) given by the eta product η2(z)η2(2z)η2(3z)η2(6z). Then

f (z) = q−2q2−3q3+4q4+6q5+6q6−16q7−8q8+9q9+O(q10).

Since N = 6, we take t = 3. Also, N′ = N = 6, a(3) =−3. The functions F and g are

defined as follows.

F3(z) = f (20z)hψ(3z) ∈ S4+1/2(600,
(15
·
)
),

g3(z) = 2a(3) f (z) f (5z) = −6 f (z) f (5z) = ∑
n≥6

c(n)e(nz) ∈ S8(30),

where hψ(z) = ∑n∈Z
(n
5

)
e(n2z). The function G3(z)∈ S8(150) is the ψ-twist of g3(z)

and is given by

G3(z) = ∑
n≥1

(n
5

)
c(n)e(nz).

Since N is even, χ(2) = 0 and so by Theorem 2.1.32.1.3, we get

S3(F3)(z) = G3(z) ∈ S8(150).
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Example 3: In this case, we shall take ψ to be the odd Dirichlet character modulo

3 given by the Legendre symbol
( ·
3

)
. Let f (z) = η3(z)η3(7z) = q− 3q2 + 5q4−

7q7−3q8+9q9+O(q10) be the newform in S3(7,
( ·
7

)
). We have N = 7, t = 7,r = 3

and F7(z) = f (12z)hψ(7z)∈ S4+1/2(252,
(
3
·
)
), where hψ(z) = ∑n∈Z n

(n
3

)
e(n2z). The

7-th Fourier coefficient a(7) of f is −7. The function g7 is defined by

g7(z) =
−7

πi

[
f ′(z) f (3z)−3 f ′(3z) f (z)

]
= ∑

n≥1

c(n)e(nz) ∈ S8(21)

and G7(z) is defined by

G7(z) = ∑
n≥1

(n
3

)
c(n)e(nz).

By Theorem 2.1.32.1.3 we have

S7(F7)(z) = G7(z)−23
(
2

7

)(
2

3

)
G7(2z) = G7(z)+8G7(2z) ∈ S8(126).

Example 4: As in Example 2, let ψ be the Legendre symbol
( ·
5

)
modulo r= 5. Let f

be the newform in the space S4(6) given by the eta product η2(z)η2(2z)η2(3z)η2(6z).

Then

f (z) = q−2q2−3q3+4q4+6q5+6q6−16q7−8q8+9q9+O(q10).

Let us take t = 7. In this case, N′ = N, g(z) = 2 f (z) f (5z) = ∑n≥6 c(n)e(nz) ∈ S8(30)

and G(z) = ∑n≥1

(n
5

)
c(n)e(nz) ∈ S8(150). The function F7(z) is defined by F7(z) =

f (140z)hψ(7z) ∈ S4+1/2(4200,
(
35
·
)
), where hψ(z) = ∑n∈Z

(n
5

)
e(n2z). Then by The-

orem 2.1.42.1.4, we have the following.

S7(F7)(z) = G(z)
∣∣(1+23B(2)

)(
1+73B(7)

)
= G(z)+8G(2z)+343G(7z)+2744G(14z) ∈ S8(2100).
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Example 5: In Example 4, we take t = 5. Then, N′ = N and the functions f ,g,G are

the same. The function F5(z) is defined by F5(z) = f (100z)hψ(5z) ∈ S4+1/2(3000),

where hψ(z) is as defined in Example 4. In this case, Theorem 2.1.42.1.4, gives the fol-

lowing.

S5(F5)(z) = G(z)
∣∣(1+23B(2)

)
= G(z)+8G(2z) ∈ S8(300).

Note that the level of the integral weight form is 300, where it should have been 1500.

Since t divides r, the level of the integral weight form is further divided by t.



CHAPTER3
On simultaneous non-vanishing of the

twisted L-functions of newforms on

Γ0(N)

3.1 Introduction

Let f1 and f2 be two normalized Hecke eigenforms of weight 2k1 and 2k2 respectively

and of levelN and assume that k1≡ k2 (mod 2). LetD denotes the set of fundamental

discriminants, i.e. for a d ∈D either d = 1 or d is the discriminant of a quadratic field.

Define the set

Δ( f1, f2) := {d ∈D : L( f1⊗χd,1/2)L( f2⊗χd,1/2) 
= 0},

where L( fi⊗χd,s), is the twisted L-function associated with fi (i= 1,2) by quadratic

character χd for d ∈ D , here χd is defined by χd(n) =
(d
n

)
, where

(d
n

)
is the gen-

33
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eralised Jacobi symbol. We prove that if the set Δ( f1, f2) is non-empty, then the

cardinality of the set Δ( f1, f2) is infinite. This result is a generalisation of the work

of R. Munshi [2727], who first obtained similar result when N = 1. Our method is very

similar to the one adopted by Munshi. The idea is to use the connection between

half-integral weight modular forms and integral weight modular forms as developed

by Kohnen [1616]. Especially the Waldspurger formula relating the special values of

the twisted L-function associated to a modular form of integral weight and square of

the Fourier coefficients of the corresponding half-integral weight modular form. Be-

fore we proceed to state our result we fix the notation about the L-functions studied

in this chapter. For a cusp form f (τ) = ∑∞
n=1 a(n)e(nτ) and for a Dirichlet character

χ , the two L-functions associated to f , denoted by L( f ,s) and L( f ,χ,s) are defined

as follows

L( f ,s) =
∞

∑
n=1

a(n)n−s

L( f ,χ,s) =
∞

∑
n=1

a(n)χ(n)n−s.

However, we consider the normalized L-function associated to a cusp form of weight

2k defined by

L( f ⊗χ,s) = ∑
n≥1

a(n)
nk−1/2

χ(n)n−s. (3.1)

We give below the precise statement of our result.

Theorem 3.1.1 Let f1 and f2 be two normalized Hecke eigenforms of weight 2k1 and

2k2 respectively and of level N, where N is odd square-free and also assume that k1

and k2 are of same parity. Suppose that there exists a fundamental discriminant d

such that (d,N) = 1 and

L( f1⊗χd,1/2)L( f2⊗χd,1/2) 
= 0,
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then there are infinitely many such fundamental discriminants d with the above prop-

erty. In other words the cardinality of the set Δ( f1, f2) is either zero or infinite.

3.2 Proof of Theorem 3.1.13.1.1

Let N be a fixed positive odd square-free integer. Suppose that

fi(τ) =
∞

∑
n=1

ai(n)e(nτ) ∈ S2ki(N), i= 1,2

be two Hecke eigenforms of weight 2ki and level N with ai(1) = 1. Let

Fi(τ) =
∞

∑
n=1

Ai(n)e(nτ) ∈ S+k+1/2(4N)

be the half-integral weight modular form corresponding to fi, under the Shimura-

Kohnen correspondence given by (1.91.9).

We assume that the set Δ( f1, f2) is nonempty and cardinality of Δ( f1, f2) is finite.

We show that it leads to a contradiction.

Define H(τ) := F1(τ)F2(τ). Then for any γ =

⎛
⎜⎝a b

c d

⎞
⎟⎠ ∈ Γ0(4N), the transfor-

mation of F1(τ) and F2(τ) w.r.t γ implies that

H(γτ) = (cτ +d)
k1+ 1

2 (cτ +d)k2+
1
2H(τ). (3.2)

Note that the condition k1≡ k2 (mod 2) implies that the
(−4

d

)
factor in the transforma-

tion cancel with each other. Let κ1 =∞,κ2, ...,κh be the inequivalent cusps of Γ0(4N),

Then for each cusp κi there exists gi ∈ SL2(Q) such that gi∞ = κi and Γi := giΓ∞g−1
i ,

where Γi and Γ∞ are the stabilizer group of the cusps κi (i > 1) and ∞ respectively.
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We have an Eisenstein series corresponding to each cusp κi as follows;

Ei(τ,s,k) := ∑
γ∈Γi\Γ0(4N)

j(g−1
i γ,τ)kIm(g−1

i γτ)s, (3.3)

where j(γ,τ) = (cτ +d)(cτ +d)−1 for γ =

⎛
⎜⎝a b

c d

⎞
⎟⎠ .

These Eisenstein series converge absolutely for Re(s)> 1 and have analytic con-

tinuation to the whole complex plane. If we write

−→
E (τ,s,k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

E1(τ,s,k)

E2(τ,s,k)
...

Eh(τ,s,k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Then these Eisenstein series together satisfy a functional equation given by

−→
E (τ,s,k) = Φ(s)

−→
E (τ,1− s,k), (3.4)

here Φ(s) is a h× h matrix called scattering matrix [1111, p. 238] and satisfies the

condition

Φ(s)Φ(1− s) = Ih×h,

where Ih×h is the h×h identity matrix.

Observing that for any α,β ∈ SL2(Z), j(αβ ,τ) = j(α,βτ) j(β ,τ). Consequently we

have,

Ei(ητ,s,k) = (cτ +d)
−k
(cτ +d)kEi(τ,s,k), η ∈ Γ0(4N). (3.5)

From the transformation of H(τ) and Ei(τ,s,k) equations (3.23.2) and (3.53.5) it follows
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that the function

H(τ)Ei

(
τ,s,

k1− k2
2

)
y

k1+k2+1
2

is invariant under Γ0(4N). Therefore, we can consider the Rankin-Selberg integral

Ri(s) =
∫

Γ0(4N)\H
H(τ)Ei

(
τ,s,

k1− k2
2

)
Im(τ)

k1+k2+1
2

dudv
v2

, (τ = u+ iv∈H). (3.6)

We use the functional equation satisfied by Ri(s), which was obtained by Shamita

Dutta Gupta [77], which we present below.

Theorem 3.2.1 ([77]) Let Ri(s) be as defined in (3.63.6). Then Ri(s) has a meromorphic

continuation to all s, the only possible poles being at s = 0,1,αi j,1−αi j and ρ/2,

where ρ’s are the nontrivial zeros of the Riemann zeta function. Further we have the

following functional equation

−→
R (s) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

R1(s)

R2(s)
...

Rh(s)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
= Φ(s)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

R1(1− s)

R2(1− s)
...

Rh(1− s)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
= Φ(s)

−→
R (1− s),

where φ(s) is as in equation (3.43.4).

To prove our theorem, we adopt the following strategy. We use the Rankin unfold-

ing argument and the Fourier series expansion of Fi(τ), to express Rankin-Selbebrg

integrals Ri(s) for the cusp κi = ∞, in terms of the Dirichlet series

D(s) =
∞

∑
n=1

A1(n)A2(n)
ns+k∗ ,

where k∗ = k1+k2−1
2 . Since Ai(n) are the nth Fourier coefficient of the newform Fi(τ)
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of weight ki+1/2 in the Kohnen plus space of level 4N, we use the Shimura-Kohnen

map obtained by Kohnen (1.91.9). Using this map, we are able to write the Dirichlet

Series D(s) in terms of (upto certain Dirichlet series Ξ(s)) the Rankin-Selberg L-

function corresponding to the integral weight newforms fi(τ). Finally, by computing

the order of zeros of Ξ(s) in a rectangle and using the known result about the zeros

of Rankin-Selberg L-function, we arrive at a contradiction. We now give a detailed

argument.

Consider the integral

Ri(s) =
∫

Γ0(4N)\H
H(τ)Ei

(
τ,s,

(k1− k2)
2

)
Im(τ)

k1+k2+1
2

dudv
v2

,

=
∫

Γ0(4N)\H
H(τ) ∑

γ∈Γi\Γ0(4N)
j(g−1

i γ,τ)
k1−k2

2 Im(g−1
i γτ)s Im(τ)

k1+k2+1
2

dudv
v2

,

=
∫

Γ0(4N)\H
∑

γ∈Γi\Γ0(4N)
H(τ) j(g−1

i γ,τ)
k1−k2

2 Im(g−1
i γτ)s Im(τ)

k1+k2+1
2

dudv
v2

.

We can interchange the sum and integration in the above equation to get

Ri(s) = ∑
γ∈Γi\Γ0(4N)

∫
Γ0(4N)\H

H(τ) j(g−1
i γ,τ)

k1−k2
2 Im(g−1

i γτ)s Im(τ)
k1+k2+1

2
dudv
v2

.

Using the change of variable τ to giτ, we get

Ri(s)= ∑
γ∈Γ∞\Γ0(4N)

∫
g−1
i Γ0(4N)\H

H(giτ) j(g−1
i γ,giτ)

k1−k2
2 Im(g−1

i γgiτ)s Im(giτ)
k1+k2+1

2
dudv
v2

.

Now using the Rankin unfolding argument, we have

Ri(s) =
∫

Γ∞\H
j(gi,τ)

−(k1−k2)
2 H(giτ)Im(giτ)

k1+k2+1
2 Im(τ)s

dudv
v2

.
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Therefore,

R∞(s) =
∫

Γ∞\H
H(τ)Im(τ)

k1+k2+1
2 Im(τ)s

dudv
v2

,

=
∫

Γ∞\H
F1(τ)F2(τ)Im(τ)

k1+k2+1
2 ys

dudv
v2

.

Now replacing F1 and F2 by their Fourier series expansions, we have

R∞(s) =
∫

Γ∞\H

(
∞

∑
n=1

A1(n)e(−nτ)

)(
∞

∑
m=1

A2(m)e(mτ)

)
Im(τ)

k1+k2+1
2 +s dudv

v2
. (3.7)

A fundamental domain for the action of Γ∞ onH is given by [0,1]× [0,∞]. Integrating

(3.73.7) over this region, we get

R∞(s) =

1∫
0

∞∫
0

(
∞

∑
n=1

A1(n)e(−nτ)

)(
∞

∑
m=1

A2(m)e(mτ)

)
Im(τ)

k1+k2+1
2 +s dudv

v2

=
∞

∑
n=1

∞

∑
m=1

A1(n)A2(m)
1∫

0

∞∫
0

e(−nτ)e(mτ)Im(τ)
k1+k2+1

2 +s dudv
v2

=
∞

∑
n=1

A1(n)A2(n)
∞∫
0

e(−nτ)e(nτ)Im(τ)
k1+k2+1

2 +s dudv
v2

=
Γ(s+ k∗)
(4π)(s+k∗)

∞

∑
n=1

A1(n)A2(n)
ns+k∗ , k∗ =

k1+ k2−1

2
. (3.8)

We now consider the Dirichlet series defined by

D(s) :=
∞

∑
n=1

A1(n)A2(n)
ns+k∗ ,

which appeared in the the Rankin-Selberg integral R∞ (3.83.8). Now we relate D(s)

with the normalized Rankin-Selberg L- function L( f1× f2,s), where L( f1× f2,s) =
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∞
∑
n=1

a1(n)a2(n)
nk1+k2+s−1 . Now by writing n= |d|m2 and using the explicit Shimura-Kohnen map

Theorem 1.5.21.5.2, we have

A1(n)A2(n) = A1(|d|)A2(|d|) ∏
i=1,2

∑
δi|m

(δi,N)=1

μ(δi)χd(δi)δi
ki−1ai(m/δi)

Therefore,

D(s) = ∑
d∈Δ( f1, f2)

A1(|d|)A2(|d|)
|d|s+k∗

∞

∑
m=1

1

m2(s+k∗) ∏
i=1,2

∑
δi|m

(δi,N)=1

μ(δi)χd(δi)δi
ki−1ai(m/δi).

Since fi, i= 1,2 are normalized Hecke eigenforms, the functions

∑
δi|m

(δi,N)=1

μ(δi)χd(δi)δi
ki−1ai(m/δi)

are multiplicative in m. Hence, we get

∞

∑
m=1

1

m2ω ∏
i=1,2

∑
δi|m

(δi,N)=1

μ(δi)χd(δi)δi
ki−1ai(m/δi) = ∏

p
Lp(w,d),

where

Lp(w,d) = 1+
∞

∑
l=1

1

p2lw ∏
i=1,2

∑
δi|pl

(δi,N)=1

μ(δi)χd(δi)δi
ki−1ai(pl/δi).

As

∑
δ |pl

μ(δ )χd(δ )δ k−1a(pl/δ ) = a(pl)−χd(p)pk−1a(pl−1),

we have

Lp(w,d)= 1+
∞

∑
l=1

1

p2lw

[(
a1(pl)−χd(p)pk1−1a1(pl−1)

)(
a2(pl)−χd(p)pk2−1a(pl−1)

)]
.
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Now by observing that the local Euler factor of L( f1× f2,s) is given by 1+∑∞
l=1

a1(pl)a2(pl)
pls

and the local Euler factor of L( fi⊗χd,s) is given by

1

(1−χd(p)ai(p)p−s+χN(p)p2ki−1−2s)

where, χN(p) = 1 if p � N and χN(p) = 0 if p | N.

By executing the sum over l and using the Hecke relation for the Fourier coeffi-

cients a1(pl) and a2(pl). We obtain

Lp(w;d) =
Lp( f1× f2,2s)

Lp( f1⊗χd,2s+1/2)Lp( f2⊗χd,2s+1/2)
Ep(s;d),

where the first factor on the right-hand side is the local Euler factor for the normalized

Rankin-Selberg L−function L( f1× f2,2s), and the last factor is such that the Euler

product ∏
p
Ep(s;d) is absolutely convergent for σ > 1/8. Since L( f1× f2,2s) =

∏p Lp( f1× f2,2s)

and L( fi⊗χd,2s+1/2) = ∏p Lp( fi⊗χd,2s+1/2) for i= 1,2. It follows that

D(s) = L( f1× f2,2s)Ξ(s), (3.9)

where

Ξ(s) = ∑
d∈Δ( f1, f2)

A1(|d|)A2(|d|)
|d|s+k∗ l(s;d)

with

l(s;d) =
E(s;d)

L( f1⊗χd,2s+1/2)L( f2⊗χd,2s+1/2)

and E(s;d) is an Euler product which converges absolutely in the half-plane σ >
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1/8 and the center of L( f1× f2,s) is at s= 1/2.

Now order the elements of Δ( f1, f2) as follows.

Δ( f1, f2) = {d1, ...,dm} ,with |d1|< |d2|< ... < |dm|.

Then Ξ(s) is meromorphic in the half plane σ > 1
8 , and it is holomorphic in the half-

plane σ ≥ 1
4 . Now we consider the rectangle

R= {s= σ + it : 1/3≤ σ ≤ α,T ≤ t ≤ T +H}

and let

f (s) =
|d1|s+k∗Ξ(s)

A1(|d1|)A2(|d1|)l(s;d1)
= 1+

m

∑
i=2

α(i)
l(s;di)
l(s;d1)

(
d1
di

)s+k∗

,

where αi depends on Aj(|di|), j = 1,2 and i = 1,2, ...,m. Then by applying the Lit-

tlewood lemma which states that:

If ν(σ) = the number of zeros − number of poles, of f in the region having Re(s)≥
σ , where 1/3 < σ < α . Zeros and poles being counted with multiplicity and given

weight 1/2 if occuring on the boundary, Then

α∫
1/3

ν(σ)dσ =
−1

2πi

∫
∂R

log f(s)ds,

here ∂R denotes the boundary of R oriented counterclockwise. we get that

∑
ρ=β+iγ∈R, f (ρ)=0

β −1/3=
1

2π

T+H∫
T

log|f(1/3+ it)|dt− 1

2π

T+H∫
T

log |f(α + it)|dt

+
1

2π

α∫
1/3

arg(f(σ + i(T+H)))dσ − 1

2π

α∫
1/3

arg(f(σ + iT))dσ .
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Now by observing that for large α , log | f (α + it)| = OΔ(1) and as σ → ∞ we

have,

f (σ + it) = 1+OΔ(e−σ(log |d2|−log |d1|)),

we get

∑
ρ=β+iγ∈R, f (ρ)=0

β −1/3= OΔ(H).

If we denote by N(T,Ξ) the number of zeros of Ξ(s) (counted with multiplicity) in

the region {s : σ ≥ 1/2, |t|< T}, from the above observation we obtain

N(T,Ξ) = OΔ(T ).

Now by using the functional equationD(s) =G(s)D(1−s),whereG(s) is determined

by the scattering matrix Φ(s) Theorem 3.2.13.2.1, and it involves Γ-functions. Using (3.93.9),

we get

L( f1⊗ f2,s) = G(s)L( f1⊗ f2,2− s)
Ξ(1− s/2)

Ξ(s/2)
(3.10)

now we look at the number of zeros of L( f1⊗ f2,s) in the ractangle

R= {S= σ + it : 1/2≤ σ ≤ 1, |t| ≤ T} .

as it is well known that (see for example [1212]) number of zeros N(T, f1 ⊗ f2) of

L( f1⊗ f2,s) is of order cT logT, where c is a non zero constant. Now we look at the

number of zeros of right hand side of the functional equation (3.103.10). G(s) will have

atmost O(1) possible zeros in R, L( f1⊗ f2,2− s) will not have any zeros in R as

2−Re(s) ≥ 1. Also Ξ(s/2) has no poles in the region and so the major contribution

to zeros of right hand side is coming from Ξ(1− s/2), which is of order OΔ(T ). As

the zeros of LHS in (3.103.10) has order O(T logT) and RHS has order O(T ) we get a

contradiction.
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CHAPTER4
Determining modular forms of

half-integral weight by central values

of convolution L-function

4.1 Introduction and Statement of the main theorem

The problem of determining Hecke eigenforms is one of the central problems in the

theory of modular forms. In this chapter we consider the problem of determining half-

integral weight Hecke eigenforms by central values of the convolution L-functions.

There are many works related to the problem of determination of a Hecke eigen-

form of integral weight by the special values of its twisted L-functions. Here we

mention some of these results. In [2323] W. Luo and D. Ramakrishnan showed that if

two normalized newforms f and f ′ are such that L(1/2, f ,χD) = L(1/2, f ′,χD) for

all quadratic characters χD =
(D
·
)
, then f and f ′ are equal. As an application, they

45
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proved that if g1 and g2 are newforms in the Kohnen plus space of weight k+ 1/2

on Γ0(4N) (N is odd and square-free) with Fourier coefficients b1(n) and b2(n) with

the property that b21(|D|) = b22(|D|) for almost all fundamental discriminants D with

(−1)kD > 0, then g1 = ±g2. This question was posed by W. Kohnen in [1818]. In

1999, Luo [2222] proved the following result. Let Hk(N) denote the orthogonal ba-

sis of normalized Hecke eigenforms of weight k on Γ0(N). Suppose that f and g

are two normalized newforms of weight 2k (resp. 2k′) on Γ0(N) (resp. Γ0(N′)).

If there exists a positive integer � and infinitely many primes p such that for all

forms h∈H2�(p), the central values of the Rankin-Selberg L-functions are equal (i.e.,

L(1/2, f ⊗h) = L(1/2, f ′⊗h)), then k= k′, N =N′ and f = f ′. This result of Luo can

be viewed as the GL(2) analog of the result of Luo and Ramakrishnan which is men-

tioned above. As a variant of Luo’s result, in [55], S. Ganguly, J. Hoffstein and J. Sen-

gupta considered twists by Hecke eigenforms of fixed level and varying weight. More

precisely, if g ∈ H�(1) and g′ ∈ H�′(1) are such that L(1/2, f ⊗ g) = L(1/2, f ⊗ g′),

f ∈ Hk(1) for infinitely many k, then �= �′ and g= g′. (Here k, �, �′ are all even pos-

itive integers.) There are other generalizations in the case of eigenforms of integral

weight (see for example [3535, 3838]). In this chapter, we generalise the work of Ganguly

et. al to the case of forms of half-integral weight. We consider Hecke eigenforms

of half-integral weight on Γ0(4) which lie in the Kohnen plus space and prove the

following result.

Theorem 4.1.1 Let g,g′ be two Hecke eigenforms belonging to the Kohnen plus

space on Γ0(4) of weights �+1/2 and �′+1/2 respectively, such that �≡ �′ (mod 2).

Suppose that

L(1/2, f ⊗g) = L(1/2, f ⊗g′) (4.1)
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for any Hecke eigenform f of weight k+1/2 on Γ0(4) belonging to the Kohnen plus

space, for sufficiently large weights k. Then we have, �= �′ and g= g′.

The method of proof has several steps, which we explain in brief below before

we proceed to the details of the proof. For Hecke eigenforms f ∈ S+k+1/2(4) and

g ∈ S+�+1/2(4), we consider their Rankin-Selberg convolution L(s, f ⊗ g) and use its

approximate functional equation, we obtain an asymptotic expression for the follow-

ing average:

∑
f∈Fk+1/2(4)

ω f L(1/2, f ⊗g)
a f (|D|)
|D|k/2−1/4

,

where F+
k+1/2(4) is an orthogonal basis of Hecke eigenforms in the Kohnen plus

space S+k+1/2(4), a f (|D|) is the |D|-th Fourier coefficient of f and ω f is a constant de-

fined in the next section. Considering these averages for both g and g′ overF+
k+1/2(4),

we deduce (using the explicit main and error terms of the above average) that

ag(|D|)
|D|�/2−1/4

=
ag′(|D|)
|D|�′/2−1/4

, (4.2)

for all fundamental discriminants D with (−1)kD > 0. By the Shimura-Kohnen cor-

respondence, the functions g and g′ correspond to Hecke eigenforms F and F ′ in S2�

and S2�′ resp., and the explicit Waldspurger theorem connecting the special values of

the L-functions corresponding to F and F ′ and the square of the |D|-th Fourier coef-

ficients of g and g′. Therefore, using (4.24.2), it follows that the special values of the

L-functions corresponding to F and F ′ are equal. At this stage, we apply the result

of Luo and Ramakrishnan [2323] to conclude that � = �′ and g = g′, proving our main

theorem.

The necessary auxiliary results are obtained in the following subsections.
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In §4.2, we establish the Petersson formula and in §4.3, we consider the Rankin-

Selberg L-function of half-integral weight. In §4.4 we obtain an approximate func-

tional equation for the Rankin-Selberg L-function and apply this to get an auxiliary

theorem in §4.5. In §4.6 and §4.7 we get estimates for the main term and error term

respectively. Finally in §4.8 we present a proof of the main theorem.

4.2 Petersson Formula

For k ≥ 2 a natural number. Let S+k+1/2(4), denote the Kohnen plus space. Let m ∈ N

be such that (−1)km ≡ 0,1 (mod 4). Then the m-th Poincaré series in S+k+1/2(4) is

characterised by

〈 f ,P+
k+1/2,m〉=

Γ(k−1/2)

6(4πm)k−1/2
a f (m),

for all f ∈ S+k+1/2(4). The factor 6 in the denominator is exactly the index of Γ0(4) in

SL2(Z). The Fourier expansion of the Poincaré series P+
k+1/2,m(z) in S+k+1/2(Γ0(4)) is

obtained in [1818, Proposition 4], which is given by

P+
k+1/2,m(z) = ∑

n≥1

(−1)kn≡0,1 (mod 4)

gk+1/2,m(n)q
n, (4.3)

where

gk+1/2,m(n) =
2

3

[
δm,n+(−1)[

k+1
2 ]π

√
2(n/m)(k/2−1/4) ∑

c≥1

Hc(m,n)Jk−1/2(
π
√
mn
c

)

]
,

(4.4)

and q= e2πiz, z ∈H , the complex upper half-plane. In the above,

Hc(m,n) = (1− (−1)ki)
(
1+

(
4

c

)) 1

4c ∑
δ (4c)∗

(
4c
δ

)(−4

δ

)k+1/2

e4c(mδ +nδ−1),
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where δ−1 is an integer such that δδ−1 ≡ 1 (mod 4c), Jk−1/2(x) is the Bessel func-

tion of order k− 1/2 and δm,n is the Kronecker delta function. We also recall the

notation ec(x) = e2πix/c for a complex number x and an integer c. The symbol
( c
d

)
denotes the generalised quadratic residue symbol as described in [3737, 1515]. Now, as

P+
k+1/2,m(z) ∈ S+k+1/2(4), writing it in terms of an orthogonal basis and using the char-

acteristic property of Poincaré series we have,

P+
k+1/2,m(z) = ∑

f∈F+
k+1/2

(4)

ω f
a f (m)
mk−1/2

f , (4.5)

where F+
k+1/2(4) denotes an orthogonal basis for the plus space S+k+1/2(4) and ω f =

Γ(k−1/2)

6(4π)k−1/2

1

〈 f , f 〉 . Now by comparing the n-th Fourier coefficients of both the sides

of the above equation and using (4.44.4), we get

∑
f∈F+

k+1/2
(4)

ω f
a f (m)a f (n)
(mn)k/2−1/4

=
2

3

[
δm,n+(−1)[

k+1
2 ]π

√
2 ∑
c≥1

Hc(m,n)Jk−1/2

(
π
√
mn/c

)]
,

(4.6)

where ω f is defined as above.

4.3 Rankin-Selberg L-functions

In this section, we shall obtain a functional equation satisfied by the Rankin-Selberg

L-function associated to forms of half-integral weight. Let fi ∈ S+ki+1/2(Γ0(4)), i =

1,2, and fi(z) = ∑n≥1 a fi(n)e(nz) be their Fourier expansions. We also assume that

k1 and k2 have the same parity, i.e., k1 ≡ k2 (mod 2). Set H(z) = f1(z) f2(z). Then

for any γ =

⎛
⎜⎝a b

c d

⎞
⎟⎠ ∈ Γ0(4), we get

H(γ(z)) = (cz+d)
k1+1/2

(cz+d)k2+1/2 f1(z) f2(z),
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since
(−4

d

)−k1−1/2(−4
d

)−k2−1/2
= 1, as k1 ≡ k2 (mod 2).

Note that the group Γ0(4) has three cusps ∞,0,1/2 and the matrices g∞ =

⎛
⎜⎝ 1 0

0 1

⎞
⎟⎠,

g0 =

⎛
⎜⎝ 0 −1

2

2 0

⎞
⎟⎠, g1/2 =

⎛
⎜⎝ 1 −1

2

2 0

⎞
⎟⎠ take the cusp ∞ to the corresponding cusps ω =

∞,0,1/2 respectively. Corresponding to each cusp ω = ∞,0,1/2, there is an integral

weight Eisenstein series of level 4 (and with weight �) given by the following.

Eω(z,s;�) = ∑
γ∈Γω\Γ0(4)

j(g−1
ω γ,z)�Im(g−1

ω γz)s. (4.7)

In the above, j(γ,z) = (cz+d)(cz+d)−1 and the stabilizer Γω of the cusps ω is given

by Γω = gωΓ∞g−1
ω , ω = ∞,0,1/2. It is known that these Eisenstein series converge

absolutely for Re(s) > 1, have analytic continuations to the whole of C and they

satisfy a functional equation, we refer to [1111], [2727] for details. In particular, we have

E∞(z,1− s;�) = φ∞(s)E∞(z,s;�)+φ0(s)E0(z,s;�)+φ1/2(s)E1/2(z,s;�), (4.8)

where

φ∞(s) =
24s−3ζ (2s)Γ(s+ �)π−s

(1−22s−2ζ (2−2s)Γ(1− s+ �)π−(1−s))
(4.9)

and

φ0(s) = φ1/2(s) = (
1

22s−1
−1)φ∞(s). (4.10)

Also for any γ =

⎛
⎜⎝ a b

c d

⎞
⎟⎠ ∈ Γ0(4) we have

Eω(γz,s;�) = (cz+d)
−�
(cz+d)�Eω(z,s;�).
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So, the function H(z)Eω(z,s; k1−k2
2 )y

k1+k2+1
2 is invariant under Γ0(4) and therefore,

one can consider the integral

Rω =
∫

Γ0(4)\H
H(z)Eω(z,s;

k1− k2
2

)y
k1+k2+1

2
dxdy
y2

. (4.11)

Now following the standard unfolding argument, we obtain the Rankin-Selberg L-

function as follows:

L(s, f1× f2) =
∞

∑
n=1

a f1(n)a f2(n)
ns+(k1+k2−1)/2

. (4.12)

In the following, we define the completed Rankin-Selberg L-functions associated to

f1 and f2 corresponding to each of the three cusps ∞,0,1/2.

Λ∞(s, f1⊗ f2) = π−2s−k∗Γ(s+ k′)Γ(s+ k∗)ζ (2s)
∞

∑
n=1

a f1(n)a f2(n)
ns+k∗ ,

Λ0(s, f1⊗ f2) = π−2s−k∗Γ(s+ k′)Γ(s+ k∗)ζ (2s)
∞

∑
n=1

n≡0 (mod 4)

a f1(n)a f2(n)
ns+k∗ ,

Λ1/2(s, f1⊗ f2) = π−2s−k∗Γ(s+ k′)Γ(s+ k∗)ζ (2s)
∞

∑
n=1

n≡(−1)k1 (mod 4)

a f1(n)a f2(n)
ns+k∗ .

(4.13)

In the above, we have made the following substitutions, k′ = (k1− k2)/2 and k∗ =

(k1+ k2− 1)/2. We also assume w.l.g that k1 > k2. Since k1 and k2 have the same

parity, k′ is an integer. These completed Rankin-Selberg L-functions together satisfy

a functional equation, which is given below.

Λ∞(1−s, f1⊗ f2)=ψ∞(s)Λ∞(s, f1⊗ f2)+ψ0(s)Λ0(s, f1⊗ f2)+ψ1/2(s)Λ1/2(s, f1⊗ f2),

(4.14)
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where

ψ∞(s) =
1

2(1−22s−2)
, ψ0(s) = ψ1/2(s) =

(−1)k
′
(1−22s−1)

2(1−22s−2)
. (4.15)

Note that ψ∞(1/2) = 1. Since both f1 and f2 belong to the Kohnen plus space, we

see that

Λ∞(s, f1⊗ f2) = Λ0(s, f1⊗ f2)+Λ1/2(s, f1⊗ f2).

So, with this observation we have the following.

Λ∞(1− s, f1⊗ f2) =

⎧⎪⎪⎨
⎪⎪⎩

Λ∞(s, f1⊗ f2), if k′ is even,

(2ψ∞(s)−1)Λ∞(s, f1⊗ f2), if k′ is odd.
(4.16)

4.4 Approximate functional equation

In this section, we determine approximate functional equation for the completed

Rankin-Selberg L-function and use it to get an expression for the central value of

the Rankin-Selberg L-function. We assume that fi’s are modular forms in S+ki+1/2(4).

Let G(u) be a holomorphic function on an open set containing |Re(u)| ≤ 3/2 and

bounded therein. We also choose the function G such that G(0) = 1, G(−u) = G(u)

(later we will be taking G(u) = eu
2
). For X > 0, we consider the integral

I(X ,s) =
1

2πi

∫
(3/2)

XuΛ∞(s+u, f1⊗ f2)
G(u)
u

du, (4.17)

where
∫
(c) means the integral over the line Re(s) = c. We now move the line of

integration from 3/2 to −3/2, which will pick up the residue at u = 0 (which is
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Λ∞(s, f1⊗ f2)) and so we get

I(X ,s) =
1

2πi

∫
(−3/2)

XuΛ∞(s+u, f1⊗ f2)
G(u)
u

du+Λ∞(s, f1⊗ f2).

Therefore,

Λ∞(s, f1⊗ f2) = I(X ,s)− 1

2πi

∫
(−3/2)

XuΛ∞(s+u, f1⊗ f2)
G(u)
u

du.

In the above, we use the functional equation given by (4.164.16) to get

Λ∞(s, f1⊗ f2) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

I(X ,s)− 1
2πi

∫
−3/2

Xu Λ∞(1−s−u, f1⊗ f2)G(u)
u du, if k′ is even

I(X ,s)− 1
2πi

∫
−3/2

Xu Λ∞(1−s−u, f1⊗ f2)
2ψ∞(s)−1

G(u)
u du, if k′ is odd.

(4.18)

Now by making the change of variable u going to −u and using the definition of

I(X ,s) given by (4.174.17), we have

Λ∞(s, f1⊗ f2) =

⎧⎪⎪⎨
⎪⎪⎩

I(X ,s)+ I(X−1,1− s), if k′ is even

I(X ,s)+
I(X−1,1− s)
2ψ∞(s)−1

, if k′ is odd.
(4.19)

(Recall that k′ = (k1− k2)/2.) We now define

L(s, f1⊗ f2) := ζ (2s)L(s, f1× f2), (4.20)

where L(s, f1× f2) is defined by (4.124.12). We write the Dirichlet series corresponding

to L(s, f1⊗ f2) as follows.

L(s, f1⊗ f2) = ζ (2s)L(s, f1× f2) =
∞

∑
n=1

b f1⊗ f2(n)n
−s, (4.21)
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where the coefficients are given by

b f1⊗ f2(n) = ∑
n=mt2

a f1(m)a f2(m)
mk∗ , (4.22)

where k∗ = k1+k2−1
2 . Substituting the above equation, the integral I(X ,s) defined by

equation (4.174.17) becomes

I(X ,s) =
1

2πi

∫
(3/2)

Xuπ−2s−2u−k∗Γ(s+u+ k∗)Γ(s+u+ k′)
∞

∑
n=1

b f1⊗ f2(n)

ns+u
G(u)
u

du.

Now, interchanging the order of integration and summation, we get

I(X ,s) = π−2s−k∗Γ(s+ k∗)Γ(s+ k′)
∞

∑
n=1

b f1⊗ f2(n)

ns
Vs(

π2n
X

), (4.23)

where

Vs(
π2n
X

) =
1

2πi

∫
(3/2)

Xu

(π2n)u
γ(s,u)

G(u)
u

du,

γ(s,u) =
Γ(s+u+ k∗)Γ(s+u+ k′)

Γ(s+ k∗)Γ(s+ k′)
.

(4.24)

Replacing X by X−1 and s by 1− s in (4.234.23), we get

I(X−1,1− s) = π−2+2s−k∗Γ(1− s+ k∗)Γ(1− s+ k′)
∞

∑
n=1

b f1⊗ f2(n)

n1−s V1−s(
π2n
X−1

).

Therefore, using (4.194.19), when k′ is even, we get

Λ∞(s, f1⊗ f2) = π−2+2s−k∗Γ(1− s+ k∗)Γ(1− s+ k′)
∞

∑
n=1

b f1⊗ f2(n)

n1−s V1−s(
π2n
X−1

)

+π−2s−k∗Γ(s+ k∗)Γ(s+ k′)
∞

∑
n=1

b f1⊗ f2(n)

ns
Vs(

π2n
X

)
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and when k′ is odd, it follows that

Λ∞(s, f1⊗ f2) = π−2s−k∗Γ(s+ k∗)Γ(s+ k′)
∞

∑
n=1

b f1⊗ f2(n)

ns
Vs(

π2n
X

)

+
π−2+2s−k∗Γ(1− s+ k∗)Γ(1− s+ k′)

2ψ∞(s)−1

∞

∑
n=1

b f1⊗ f2(n)

n1−s V1−s(
π2n
X−1

).

Observing that at the point s= 1/2, both sides of the above expressions have the same

gamma factor and the same power of π , and so after cancellation of these terms, we

get

L(1/2, f1⊗ f2) =
∞

∑
n=1

b f1⊗ f2(n)

n1/2
(V1/2(

π2n
X

)+V1/2(
π2n
X−1

)).

Now, substituting X = 1 in the above, we have the following expression for the central

value:

L(1/2, f1⊗ f2) = 2
∞

∑
n=1

b f1⊗ f2(n)

n1/2
V1/2(π2n). (4.25)

4.5 An Auxiliary Theorem

Let g∈ S+�+1/2(4) be a Hecke eigenformwith Fourier coefficients ag(n) and letF+
k+1/2

denotes an orthogonal basis for the space S+k+1/2(4). For a fixed fundamental discrim-

inat D with (−1)kD> 0, we are interested in obtaining an asymptotic expression for

the following average :

∑
f∈Fk+1/2(4)

ω f L(1/2, f ⊗g)
a f (|D|)
|D|k/2−1/4

.



56 §4.5. An Auxiliary Theorem

Using the equation (4.254.25), the above average becomes

∑
f∈F+

k+1/2
(4)

ω f L(1/2, f⊗g)
a f (|D|)
|D|k/2−1/4

= 2 ∑
f∈F+

k1+1/2
(4)

∞

∑
n=1

ω f
b f⊗g(n)
n1/2

a f (|D|)
|D|k/2−1/4

V1/2(π2n).

(4.26)

From now onwards, we use the following notation κ and κ∗ (instead of k′ and k∗):

κ = (k− �)/2 and κ∗ = (k+ �−1)/2. Now substituting for b f⊗g(n) from Eq.(4.224.22),

we get,

∑
f∈F+

k+1/2
(4)

ω f L(1/2, f ⊗g)
a f (|D|)
|D|k/2−1/4

= 2 ∑
f∈F+

k+1/2
(4)

ω f

∞

∑
n=1

(
∑

n=mt2

a f (m)ag(m)
mκ∗

)

× a f (|D|)
|D|k/2−1/4

V1/2(π2n)

n1/2

= 2
∞

∑
n=1

V1/2(π2n)

n1/2 ∑
n=mt2

ag(m)
m�/2−1/4

× ∑
f∈F+

k+1/2
(4)

ω f
a f (m)a f (|D|)
(m|D|)k/2−1/4

.

(4.27)

Using the Petersson formula (Eq.(4.64.6)), the above becomes

∑
f∈Fk+1/2(4)

ω f L(1/2, f ⊗g)
a f (|D|)
|D|k/2−1/4

=
4

3

(
ag(|D|)
|D|�/2−1/4

M|D|(k, �)+Eg,|D|(k, �)
)
,

(4.28)

where M|D|(k, �) is the main term given by

M|D|(k, �) = |D|−1/2
∞

∑
t=1

V1/2(π2|D|t2)
t

(4.29)
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and Eg,|D|(k, �) is the error term given by

Eg,|D|(k, �) =
∞

∑
n=1

V1/2(π2n)

n1/2 ∑
n=mt2

ag(m)
m�/2−1/4

(−1)[
k+1
2 ]π

√
2

×∑
c≥1

Hc(|D|,m)Jk−1/2

(
π
√

m|D|
c

)
, (4.30)

with V1/2(π2x) is given by (4.244.24).

Thus, we obtained the following (auxiliary) theorem to prove our main result.

Theorem A: Let g be a cusp form in the Kohnen plus space S+�+1/2(4), F+
k+1/2(4)

be an orthogonal basis for the space S+k+1/2(4) and D be a fundamental discriminant

such that (−1)kD > 0. Then we have the following formula for the spectral average

of the central values of the Rankin-Selberg (convolution) L-functions.

∑
f∈Fk+1/2(4)

ω f L(1/2, f ⊗g)
a f (|D|)
|D|k/2−1/4

=
4

3

(
ag(|D|)
|D|�/2−1/4

M|D|(k, �)+Eg,|D|(k, �)
)
,

(4.31)

where M|D|(k, �) and Eg,|D|(k, �) are given by Eqs.(4.324.32), (4.304.30) (ω f and L(1/2, f ⊗g)

are defined in §4.2 and §4.3 respectively).

In the next sections, we shall give estimates for these main and error terms in

order to get our main result.

4.6 Estimation of the Main Term M|D|(k, �)

M|D|(k, �) = |D|−1/2
∞

∑
t=1

V1/2(π2|D|t2)
t

By using (4.244.24), we have

M|D|k, �= |D|−1/2
∞

∑
t=1

1

t
1

2πi

∫
(3/2)

(π2|D|t2)−uΓ(u+a)Γ(u+b)G(u)
Γ(a)Γ(b)u

du.
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Here we have put a= κ∗+1/2 and b= κ +1/2, where κ = k−�
2 ,κ∗ = k+�−1

2 . So we

have,

M|D|(k, �) =
|D|−1/2

2πi

∫
(3/2)

(π2|D|)−uΓ(u+a)Γ(u+b)G(u)
Γ(a)Γ(b)u

ζ (2u+1)du.

By moving the line of integration to Re(u) =−1/2, we note that the integrand has a

double pole at u= 0, with the residue at u= 0 given by

Γ′

Γ
(a)+

Γ′

Γ
(b)+2γ0− log(π2|D|),

where γ0 is the Euler’s constant. Therefore, we have

|D|1/2M|D|(k, �) =
Γ′

Γ
(a)+

Γ′

Γ
(b)+2γ0− log(π2|D|)+ I, (4.32)

where I denotes the following integral along the line (−1/2):

I =
1

2πi

∫
(−1/2)

(π2|D|)−uΓ(u+a)Γ(u+b)G(u)
Γ(a)Γ(b)u

ζ (2u+1)du.

By making the change of variable u=−1/2+ iv, we get

I =
1

2π

∫ ∞

−∞

(π2|D|)1/2−ivΓ(a−1/2+ iv)Γ(b−1/2+ iv)G(−1/2+ iv)
Γ(a)Γ(b)(−1/2+ iv)

ζ (2iv)dv.

(4.33)

Now using the estimate for the ratio of Γ-functions

Γ(A+ c+ it)
Γ(A+ it)

� |A+ it|c, (4.34)

where the implied constant depends on c, along with the fact that |Γ(x+ iy)| ≤ |Γ(x)|,
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We get the following estimate for the integral I along the line Re(u) =−1/2:

I ≤ |D|
1/2

2

∫ ∞

−∞
|a+ iv|−1/2|b+ iv|−1/2 |G(−1/2+ iv)|

|(−1/2+ iv)| |ζ (2iv)|dv

and this finaly gives us

I ≤ |D|
1/2

2κ

∫ ∞

−∞

|G(−1/2+ iv)|
|(−1/2+ iv)| |ζ (2iv)|dv.

Further, from the fact that ζ (it)� |t|1/2 and the exponential decay of the function

G(u), it follows that I� |D|1/2
κ . Finally, combining everything in (4.324.32), we have the

following estimate for the main term:

M|D|(k, �) = |D|1/2
(

Γ′

Γ
(a)+

Γ′

Γ
(b)+2γ0− log(π2|D|)

)
+O(1/k). (4.35)

4.7 Estimation of the error term Eg,|D|(k, �)

Before we proceed to estimate the error term, we obtain some preliminary results on

certain Dirichlet series in the following subsection.

4.7.1 Some facts on certain Dirichlet series

In this section we prove the functional equation of a Dirichlet series associated to

modular form of half-integral weight in the Kohnen plus space. Let g(z)=∑∞
n=1 ag(n)e

2πinz ∈
S+�+1/2(4). We consider the following Dirichlet series associated to g, defined by

Lg(s,
α
β
) =

∞

∑
n=1

ag(n)e(αn
β )

n�/2−1/4+s
, (4.36)
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where α,β are positive integers with (α,β ) = 1. We derive the functional equation

satisfied by the above Dirichlet series. Since g is invariant under the action of Γ0(4),

we get

g(γz) =
( c
d

)(−4

d

)−�−1/2

(cz+d)�+1/2g(z),

where γ =

⎛
⎜⎝a b

c d

⎞
⎟⎠∈ Γ0(4). Now, taking z= −d

c + it
c with t ∈R+, we get γz= a

c +
i
ct ,

so that

g(
−d
c

+
it
c
) =

( c
d

)(−4

d

)�+1/2

(it)−�−1/2g(
a
c
+

i
ct
). (4.37)

The Fourier expansions of g(z) and g(γz) (for the above value of z) are given by

g(
−d
c

+
it
c
) =

∞

∑
n=1

ag(n)e(
−nd
c

)e
−2πtn

c ,

g(
a
c
+

i
ct
) =

∞

∑
n=1

ag(n)e(
na
c
)e

−2πn
ct .

Using (4.374.37), the Mellin transform of g becomes

∫ ∞

0
g(
−d
c

+
it
c
)ts+�/2−1/4dt

t
=
∫ ∞

0

( c
d

)(−4

d

)�+1/2

(it)−�−1/2g(
a
c
+

i
ct
)ts+�/2−1/4dt

t
.

(4.38)

Now substituting the Fourier expansion of g(z) and g(γz) as given above, we get

LHS=
∫ ∞

0

∞

∑
n=1

ag(n)e(
−nd
c

)e
−2πnt

c ts+�/2−1/4dt
t

=
∞

∑
n=1

ag(n)e(
−nd
c

)
∫ ∞

0
ts+�/2−1/4e

−2πnt
c

dt
t

= (c/2π)s+�/2−1/4Γ(s+ �/2−1/4)
∞

∑
n=1

ag(n)e(−nd
c )

ns+�/2−1/4
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and

RHS=
∫ ∞

0

( c
d

)(−4

d

)�+1/2

(it)−�−1/2
∞

∑
n=1

ag(n)e(
na
c
)e

−2πn
ct ts+�/2−1/4dt

t

=
( c
d

)(−4

d

)�+1/2

(i)−�−1/2
∞

∑
n=1

ag(n)e(
na
c
)
∫ ∞

0
ts−�/2−3/4e

−2πn
ct

dt
t

= (c/2π)�/2+3/4−sΓ(�/2+3/4− s)
( c
d

)(−4

d

)�+1/2

i−�−1/2
∞

∑
n=1

ag(n)e(nac )
n�/2+3/4−s

.

Now by equating the LHS and RHS, we get the following functional equation

(c/2π)s+�/2−1/4Γ(s+ �/2−1/4)
∞

∑
n=1

ag(n)e(−nd
c )

ns+�/2−1/4

= (c/2π)�/2+3/4−sΓ(�/2+3/4− s)
( c
d

)(−4

d

)�+1/2

i−�−1/2
∞

∑
n=1

ag(n)e(nac )
n�/2+3/4−s

(4.39)

Remark 4.7.1 Note that it is possible to derive a Voronoi type summation formula

using the above functional equation (similar to [1212, p.83]) for modular forms of half-

integral weight.

4.7.2 Error term estimation

For simplicity, we write the error term as E and it is given by

E =
∞

∑
n=1

V1/2(π2n)

n1/2 ∑
n=mt2

ag(m)
m�/2−1/4

(−1)[
k+1
2 ]π

√
2 ∑
c≥1

Hc(|D|,m)Jk−1/2

(
π
√

m|D|
c

)
,

So, we write it as

E = (−1)[
k+1
2 ]π

√
2

∞

∑
m=1

ag(m)
m�/2+1/4

∞

∑
t=1

V1/2(π2mt2)
t ∑

c≥1

Hc(|D|,m)Jk−1/2

(
π
√

m|D|
c

)
.
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Now by using the inverse Mellin transform of the J-Bessel function (See for example

[55]), we can write E as

E =
(−1)[

k+1
2 ]π

√
2

2(2πi)2

×
∫

(3/2)

∫
(α)

ζ (2u+1)
G(u)
u

Γ( k2 − 1
4 +

s
2)

Γ( k2 +
3
4 − s

2)

Γ(12 +u+κ)
Γ(12 +κ)

Γ(12 +u+κ∗)
Γ(12 +κ∗)

×2sπ−2u−s|D|−s/2Sududs,

where

Su =
∞

∑
m=1

∑
c≥1

ag(m)
m�/2+1/4+u+s/2

Hc(|D|,m)
c−s

and κ,κ∗ are as in §4.5. Using the Weil bound for the Kloostermann sum Hc(|D|,m)
(i.e., Hc(|D|,m)� c1/2), the series converges absolutely and so we can change the

order of summation in Su. Using the definition of Hc(|D|,m), we get

Su = ∑
c≥1

(1− (−1)ki)(1+
(
4

c

)
)
cs−1

4
∑

a (mod 4c)∗

(
4c
a

)(−4

a

)k+1/2

×
∞

∑
m=1

ag(m)
m�/2+1/4+u+s/2

e
( |D|a+md

4c

)

= ∑
c≥1

(1− (−1)ki)(1+
(
4

c

)
) ∑
a (mod 4c)∗

(
4c
a

)(−4

a

)k+1/2

× e( |D|a4c )

c1−s Lg(1/2+u+ s/2,
d
4c

),

where d is an integer such that ad ≡ 1 (mod 4c) and we have denoted the sum over

m by the Dirichlet series Lg(s,d/4c) as defined in (4.364.36). Now by applying the func-
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tional equation for the Dirichlet series given by (4.394.39), we get

Su = (1− (−1)ki)
i�+1/2

4
(π/2)2u+sΓ( �2 +

1
4 −u− s

2)

Γ( �2 +
1
4 +u+ s

2)
∑
c≥1

(1+

(
4

c

)
)c−1−2u

∑
a (mod 4c)∗

(−4

a

)k−�
×Lg

(
1/2−u− s/2,

−a
4c

)
e(
|D|a
4c

).

Now we move the line of integration in the s variable to Re(s) = α = −7. Since

Re(−u− s/2+ 1/2) = 5/2, the Dirichlet series Lg(1/2− u− s/2,−a/4c) is abso-

lutely convergent. Therefore, we can write

∑
a (mod 4c)∗

(−4

a

)k−�
e(
|D|a
4c

)Lg
(
1/2−u− s/2,

−a
4c

)

=
∞

∑
m=1

ag(m)
m�/2+1/4−u−s/2 ∑

a (mod 4c)∗

(−4

a

)k−�
e
((|D|−m)a

4c

)

Since we are interested in the case where k and � having the same parity, the sum over

a reduces to the Ramanujan sum and so we have the following estimate for Su:

Su� (π/2)2u+sΓ(�/2+1/4−u− s/2)
Γ(�/2+1/4+u+ s/2)

.

Thus, the estimate of the error term E simplifies as

E�
∫

(3/2)

∫
(−7)

(π/2)2u+sζ (2u+1)
G(u)
u

Γ(k/2−1/4+ s/2)
Γ(k/2+3/4− s/2)

Γ(1/2+u+κ)
Γ(1/2+κ)

× Γ(1/2+u+κ∗)
Γ(1/2+κ∗)

Γ(�/2+1/4−u− s/2)
Γ(�/2+1/4+u+ s/2)

duds.

(4.40)

Now writing u= 3/2+ iv and s=−7+ it and integrating with respect to the t variable

we get,

E�
∫ ∞

−∞
k−7(k2+ v2)1/2| e−v2Γ(2+ iv+κ∗)Γ(2+ iv+κ)

(9/4+ v2)1/2Γ(1/2+κ∗)Γ(1/2+κ)
|dv.
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Finally, using the bound for the ratio of Γ-functions (4.344.34) and the estimate |Γ(x+
iy)| ≤ |Γ(x)|, we have

E� k−7
∫ ∞

−∞
(v2+ k2)7/2

e−v2

(9/4+ v2)1/2
dv� 1.

4.8 Proof of the Main Theorem

Using our auxiliary result (Theorem A), we shall prove the main result in this sec-

tion. By assumption, the functions g ∈ S+�+1/2(4) and g′ ∈ S+�′+1/2(4) are Hecke

eigenforms such that L(1/2, f ⊗ g) = L(1/2, f ⊗ g′), for all Hecke eigenforms f ∈
S+k+1/2(4). Therefore, Theorem A implies that for all fundamental discriminants D

with (−1)kD> 0,

ag(|D|)
|D|�/2−1/4

M|D|(k, �)+Eg,|D|(k, �) =
ag′(|D|)
|D|�′/2−1/4

M|D|(k, �′)+Eg′,|D|(k, �′). (4.41)

Using Stirling’s formula for the derivatives of Γ(s) and equation (4.354.35) it follows that

for k large, M|D|(k, �) = logk+O(1). Also the error terms are bounded for large k.

Using these two observations in (4.414.41) we get

ag(|D|)
|D|�/2−1/4

=
ag′(|D|)
|D|�′/2−1/4

, (4.42)

for all fundamental discriminants D with (−1)kD > 0. Let F and F ′ be the nor-

malised Hecke eigenforms of weights 2� and 2�′ on SL2(Z), corresponding to the

Hecke eigenforms g and g′ (via the Shimura-Kohnen maps) (1.91.9). Using the corre-

sponding Waldspurger’s formula for g and g′, obtained by Kohnen which is presented
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in (1.5.31.5.3) and using (4.424.42), we see that

L(F,χD, �) =C L(F ′,χD, �
′), (4.43)

for all fundamental discriminants with (−1)kD > 0 and C > 0 is a constant. (Here

L(F,χD, �) denotes the usual L-function associated to the modular form F twisted

with the character χD =
(D
·
)
.) Now Theorem B of Luo-Ramakrishnan [2323],which

states that if L(F,χD, �) = C L(F ′,χD, �
′) then � = �′ and F = CF ′ this implies that

�= �′ and F = F ′. Our main theorem now follows using the ‘multiplicity 1’ result in

S+�+1/2(Γ0(4)) (see [1616]).
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CHAPTER5
Sign changes of Fourier coefficients of

cusp form at sum of two squares

5.1 Introduction

Let Sk be the space of holomorphic cusp forms of even integral weight k for the full

modular group Γ = SL2(Z). Suppose that f (z) is a normalized Hecke-eigenform in

Sk. Then the Hecke eigenform f (z) has the following Fourier expansion at the cusp

∞:

f (z) =
∞

∑
n=1

a(n)e2πinz

with a(1) = 1.

For every n ∈ N, let

λ (n) =
a(n)

n
k−1
2

67
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denote the normalized Fourier coefficients. Here λ (n) are real and satisfy the multi-

plicative property that

λ (m)λ (n) = ∑
d|(m,n)

λ
(mn
d2

)
, (5.1)

where m and n are positive integers. It also satisfies the celebrated Deligne’s bound

λ (n)≤ d(n)�ε nε , (5.2)

where d(n) is the number of divisors of n and ε is any arbitrary small positive con-

stant.

In this chapter, we are interested in studying the sign changes of the subsequence

{λ (nk)}nk≥1, where nk is a sum of two squares i.e, nk = c2+d2 for some integers c and

d. The proof depends on the observation that the function r2(n), the number of ways

n can be written as sum of two squares, can be used as the weighted characteristic

function for those n which can be written as sum of two squares. First we state the

result of this chapter and then give a proof.

5.2 Main theorem

Let f ∈ Sk be a normalized Hecke eigenform of even integral weight k for the full

modular group and λ (n) denotes its n-th normalized Fourier coefficient as described

above. We state our main result.

Theorem 5.2.1 The sequence {λ (c2 + d2)}c,d≥1 has infinitely many sign changes.

Moreover, the sequence changes its sign at least x1/8−2ε times in the interval (x,2x]

for sufficiently large x, where ε is an arbitrarily small positive constant.
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5.3 Background set up

To get the sign change results at sum of two squares, one needs to consider the partial

sums

S1(x) = ∑
n=c2+d2≤x

λ (c2+d2),

S2(x) := ∑
n=c2+d2≤x

λ 2(c2+d2),

for x≥ 1 and some (c,d) ∈ Z2. Also, one needs to find the upper bound of S1(x) and

the approximate behaviour of S2(x). As we are just interested in the sign change of

the coefficients at sum of two squares, one can use r2(n) as the weighted characteristic

function of sum of two squares. Also, r2(n) is always non-negative. So to consider the

sign change of the Fourier coefficients at sum of two squares, it is enough to consider

the following sums.

S(x) = ∑
n≤x

λ (n)r2(n),

S f (x) = ∑
n≤x

λ 2(n)r2(n).

In number theory the function r2(n) has received much attention. It is well known

that [1111], r2(n) = 4∑d|n χ−4(d). We set r(n) := 1
4r2(n) = ∑d|n χ−4(d). So for any

prime p we have,

r(p) = 1+χ−4(p), r(p2) = 1+χ−4(p)+χ−4(p2) (5.3)

and so on. We define

L(s) :=
∞

∑
n=1

λ 2(n)r(n)
ns

(5.4)
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for Re(s)> 1. We use the following L-functions associated to f defined by

L(s, f × f ) :=
∞

∑
n=1

λ 2(n)
ns

(5.5)

and

L(s, f × f ×χ−4) :=
∞

∑
n=1

χ−4(n)λ 2(n)
ns

, (5.6)

where Re(s) > 1. Note that one can think of L(s, f × f × χ−4) as the convolution

L- function associated to f and g = f ⊗ χ−4(= ∑n≥1 a(n)χ−4(n)e2πinz). Then the

Rankin-Selberg L-function associated to f ⊗ f and f ⊗g are given by

L(s, f ⊗ f ) := ζ (2s)L(s, f × f ) (5.7)

and

L(s, f ⊗ f ⊗χ−4) := ζ (2s)L(s, f × f ×χ−4). (5.8)

These L-functions are well studied. They have analytic continuation and satisfy a

functional equation (see for instance [22]).

The following lemmas are important to study the average behaviour of S(x) and

S f (x).

Lemma 5.3.1 For Re(s)> 1, we have

L(s) = L(s, f × f )L(s, f × f ×χ−4)U (s) (5.9)

where U (s) converges absolutely and uniformly in the half plane Re(s) ≥ 1/2+ ε

for any ε > 0 and L(s, f × f ) and L(s, f × f × χ−4) are defined as in (5.55.5) and (5.65.6)

respectively.



§5.3. Background set up 71

Proof. The Euler product representations of L(s, f × f ) and L(s, f × f × χ−4) are

given by

L(s, f × f ) = ∏
p,prime

(
1+

λ 2(p)
ps

+
λ 2(p2)
p2s

+ · · ·
)
, (5.10)

and

L(s, f × f ×χ−4) = ∏
p,prime

(
1+

λ 2(p)χ−4(p)
ps

+
χ−4(p2)λ 2(p2)

p2s
+ · · ·

)
(5.11)

respectively, for Re(s)> 1. Since the Dirichlet coefficients (λ 2(n) and r(n)) in (5.45.4)

are multiplicative, using the multiplicative relation in (5.15.1) and (5.35.3), we have the

following Euler product representation for L(s) :

L(s) =
∞

∑
n=1

λ 2(n)r(n)
ns

= ∏
p,prime

(
1+

λ 2(p)r(p)
ps

+
λ 2(p2)r(p2)

p2s
+ · · ·

)

= ∏
p,prime

(
1+

λ 2(p)(1+χ−4(p))
ps

+
λ 2(p2)(1+χ−4(p)+χ−4(p2))

p2s
+ · · ·

)
,

(5.12)

for Re(s)> 1. Now for Re(s)> 1, we write

L(s) = ∏
p,prime

(
∞

∑
�=0

λ 2(p�)r(p�)p−�s
)

L(s, f × f ) = ∏
p,prime

(
∞

∑
�=0

λ 2(p�)p−�s
)

= ∏
p,prime

∞

∑
�=0

a� p−�s (say),

L(s, f × f ×χ−4) = ∏
p,prime

(
∞

∑
�=0

λ 2(p�)χ−4(p�)p−�s
)

= ∏
p,prime

∞

∑
�=0

b� p−�s (say),

(5.13)

where a� = λ 2(p�) and b� = λ 2(p�)χ−4(p�), with a0 = b0 = 1.
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Let U (s) = ∏
p,prime

(
∞

∑
�=0

α� p�s
)

be the Dirichlet series such that

L(s) = L(s, f × f )L(s, f × f ×χ−4)U (s),

for Re(s)> 1 where α0 = 1. We see that the Dirichlet series coefficients α� of U (s)

can be determined recursively as follows. It is easy to see that α1 = 0. By comparing

the powers of p−s both the sides, we get

λ 2(p)r(p) = α1+λ 2(p)+λ 2(p)χ−4(p).

Since r(p) = 1+ χ−4(p), the above relation implies that α1 = 0. Next, we compare

the coefficients of p−�s, � > 1 both the sides to get

λ 2(p�)r(p�) =
�

∑
j=0

α j
(
a�− j+a�− j−1b1+ . . .+a1b�− j−1+b�− j

)
. (5.14)

In the above equation, we assume that a j = 0 = b j if j < 0. With α0 = 1, α1 = 0,

the other coefficients α�, �≥ 2 can be computed recursively from the above equation.

Thus, the Dirichlet series U (s) is determined completely by the above relation. In

particular one gets that

U (s) = ∏
p,prime

(
1+

χ−4(p)(λ 2(p2)−λ 4(p))
p2s

+
(λ 2(p3)−2λ 2(p)λ 2(p2)+λ 6(p))(1+χ−4(p))

p3s
+ · · ·

)
.

We now use the multiplicative relation (5.15.1) satisfied by λ (n) to conclude that

U (s) = ∏
p,prime

(
1+

χ−4(p)(1−2λ 2(p))
p2s

+
2λ 2(p)(1+χ−4(p))

p3s
+ · · ·

)
.
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Since λ (n) � nε (by (5.25.2)) and since the term corresponding to p−s is zero, the

Dirichlet series U (s) given by the above Euler product converges absolutely and

uniformly for Re(s)≥ 1/2+ ε . This completes the proof.

Lemma 5.3.2 For any s= σ + it with 0≤ σ ≤ 1 and ε > 0, we have

s−1

s+1
L(σ + it, f ⊗ f )� f ,ε (1+ |t|)2(1−σ)+ε . (5.15)

Proof. The proof involves standard arguments using the Stirling formula for the Gamma

function in the functional equation of L(σ + it, f ⊗ f ) and the Phargmen-Lindelöf

principle. For details, we refer to Chapter 5 page 100 of [1212].

Lemma 5.3.3 For 1/2≤ σ ≤ 3/4, we have

(i)
∫ T

0
|L(σ + it, f ⊗ f )|2dt� T 4−4σ (logT )1+ε , (5.16)

and

(ii)
∫ 2T

T
|L(σ + it, f ⊗ f )|2dt� T 4−4σ (logT )1+ε . (5.17)

Proof. We refer [2424] for a proof. We also mention that the second inequality is valid

for Rankin-Selberg convolution of two different forms f and g. The same proof works

in the case f = g.

Now we state the main proposition, which provides the asymptotic behaviour of

S f (x) and an upper bound for S(x).

Proposition 5.3.1 We have

S(x)� x3/4+ε (5.18)

and

S f (x) =Cx+Of ,ε(x3/4+ε) (5.19)
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where C is a constant and ε > 0 is arbitrarily small.

Proof. Define

Lj(s) =

⎧⎪⎪⎨
⎪⎪⎩

L(s, f ⊗θ 2) if j = 1

L(s) if j = 2,

(5.20)

here θ is as in 1.41.4. Now by using the truncated Perron’s formula (cf. [3030, Exercise

4.4.16, page 67]), we have

S(x) = ∑
n≤x

λ (n)r2(n) =
1

2πi

∫ b+iT

b−iT
L1(s)

xs

s
ds+O

(
x1+ε

T

)
, (5.21)

and

S f (x) = 4 ∑
n≤x

λ 2(n)r(n) =
4

2πi

∫ b+iT

b−iT
L2(s)

xs

s
ds+O

(
x1+ε

T

)
, (5.22)

where b = 1+ ε and 1 ≤ T ≤ x is a parameter to be chosen later. We observe that

L1(s) has an analytic continuation to the whole complex plane. Using Lemma 5.3.15.3.1

and using the analytic continuation of Rankin-Selberg L- function (cf. [22]) we see

that L2(s) can be meromorphically continued to the half plane Re(s) > 1/2. In this

region, L2(s) has a simple pole at s = 1. Next we move the line of integration to

Re(s) = 1/2+ ε and apply the Cauchy residue theorem to obtain

∑
n≤x

λ (n)r2(n) =
1

2πi

{∫ 1/2+ε+iT

1/2+ε−iT
+
∫ 1+ε+iT

1/2+ε+iT
+
∫ 1/2+ε−iT

1+ε−iT

}
L1(s)

xs

s
ds

+O
(
x1+ε

T

)

= I1+ I2+ I3+O
(
x1+ε

T

)
(5.23)
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and

∑
n≤x

λ 2(n)r(n) = 4Res
s=1

L(s) x+
4

2πi

{∫ 1/2+ε+iT

1/2+ε−iT
+
∫ 1+ε+iT

1/2+ε+iT
+
∫ 1/2+ε−iT

1+ε−iT

}
L(s)

xs

s
ds

+O
(
x1+ε

T

)

=Cx+ J1+ J2+ J3+O
(
x1+ε

T

)
. (5.24)

HereC = 4Res
s=1

L(s) is a constant.

Now we evaluate the integrals in equation (5.235.23). By using the convexity bound for

the Rankin-Selberg L- function Lemma 5.3.25.3.2, we have

I1� x1/2+ε
(
1+

∫ T

1

|L1(1/2+ ε + it)|
t

dt
)

� x1/2+ε + x1/2+εT 1−ε . (5.25)

To evaluate the horizontal integral, we write s= σ + it so we have

I2+ I3 =
∫ 1+ε

1/2+ε

L1(σ + iT )xσ+iT

σ + iT
dσ −

∫ 1+ε

1/2+ε

L1(σ − iT )xσ−iT

σ − iT
dσ

�
∫ 1+ε

1/2+ε
|L1(σ + iT )|x

σ

T
dσ

�
∫ 1+ε

1/2+ε

max
1/2+ε<σ≤1+ε

|L1(σ + iT )xσ |
T

dσ (5.26)

� x1/2+ε

T ε +
x1+ε

T 1+ε (5.27)

Now by using (5.255.25),(5.265.26), and (5.235.23), we have

S(x) = O(x1/2+εT 1−ε)+O(
x1+ε

T 1+ε ). (5.28)

Now we evaluate the integrals in equation (5.245.24). By applying Lemma 5.3.15.3.1 and
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Cauchy-Schwartz inequality on the first integral J1, we obtain

J1� x1/2+ε
[(∫ T

0
|L(1/2+ ε + it, f ⊗ f )|2dt

)1/2

×
(∫ T

0

|L(1/2+ ε + it,χ−4⊗ f ⊗ f )|2
|1/2+ ε + it|2 dt

)1/2]

� x1/2+ε
[(∫ T

0
|L(1/2+ ε + it, f ⊗ f )|2dt

)1/2

×
(
1+

∫ T

1

|L(1/2+ ε + it,χ−4⊗ f ⊗ f )|2
t2

dt
)1/2]

. (5.29)

Here, we use standard argument and Lemma 5.3.35.3.3 (ii) in the second integral of (5.295.29)

and obtain

(∫ T

1

|L(1/2+ ε + it,χ−4⊗ f ⊗ f )|2
t2

dt
)1/2

� logT max
1<T1≤T

1

T 2
1

∫ T1

T1/2
|L(1/2+ ε + it,χ−4⊗ f ⊗ f )|2dt

� logT (5.30)

We insert (5.305.30) in (5.295.29) and apply Lemma 5.3.35.3.3 (i) to obtain

J1� x1/2+ε T 1−2ε(logT )3/2+ε . (5.31)

Now, we will concentrate on the horizontal integrals J2 and J3. Consider s = σ + it.

After applying Lemma 5.3.25.3.2 we get

J2+ J3�
∫ 1+ε

1/2+ε
|L(σ + iT, f ⊗ f )||L(σ + iT,χ−4⊗ f ⊗ f )| x

σ

T
dσ

� max
1/2+ε<σ≤1+ε

xσ T 4(1−σ)+2ε T−1 = max
1/2+ε<σ≤1+ε

( x
T 4

)σ
T 3+2ε

� x1+ε

T 1+2ε + x1/2+ε T 1−2ε . (5.32)
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Finally from (5.245.24), (5.315.31) and (5.325.32) we get

S f (x) =Cx+O
(

x1+ε

T 1+2ε

)
+O

(
x1/2+ε T 1−2ε(logT )3/2+ε

)
(5.33)

Now, we choose T = x1/4 in both the cases (5.285.28), (5.335.33) and we obtain

S(x)� x3/4+ε

and

S f (x) =Cx+O(x3/4+ε),

which completes the proof of the proposition.

5.4 Proof of Theorem 5.25.2

Now consider h = h(x) = x7/8. The proof is by contradiction, so assume that the

sequence {λ (n) : n= c2+d2)}n≥1 has constant sign, say positive for all n∈ (x,x+h).

Now we apply (5.25.2) and Proposition 5.3.15.3.1 respectively to obtain

∑
x<n≤x+h

λ 2(n)r2(n) = ∑
x<n≤x+h

λ (n)λ (n)r2(n)� xε ∑
x<n≤x+h

λ (n)r2(n)

� x2ε [(x+h)3/4+ε + x3/4+ε ]� x3/4+2ε . (5.34)

On the other hand, from Proposition 5.3.15.3.1, we get

∑
x<n≤x+h

λ 2(n)r2(n) = 4Ch+Of ,ε(x3/4+ε)� x7/8. (5.35)

Here one notes that each time ε may have different value. Now we compare the

bounds in (5.345.34) and (5.355.35) and arrive at a contradiction. Therefore, the sequence
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{λ (n)r2(n)}n≥1 has at least one sign change in the interval (x,x+h]. This in particular

implies that the sequence {λ (c2+d2)}c,d≥1 has infinitely many sign changes. In fact,

there are at least x1/8−2ε many sign changes in the interval (x,2x], for sufficiently large

x, where ε is arbitrarily small.
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