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Abstract

Large scale structures traced by galaxies are believed to have formed by amplification of

small perturbations. Galaxies are highly over-dense systems, matter density ρ in galaxies

is thousands of times larger than the average density ρ̄ in the universe. Typical density

contrast (δ ≡ ρ/ρ̄ − 1) in matter at these scales in the early universe was much smaller

than unity in the early universe. Thus the problem of galaxy formation and the large scale

distribution of galaxies requires an understanding of the evolution of density perturbations

from small initial values to the large values we encounter today.

Initial density perturbations were present at all scales that have been observed. The

equations that describe the evolution of density perturbations in an expanding universe

have been known for several decades and these are easy to solve when the amplitude of

perturbations is small. Once density contrast at relevant scales becomes comparable to

unity, perturbations becomes non-linear and coupling with perturbations at other scales

cannot be ignored. The equation for evolution of density perturbations cannot be solved

for generic initial conditions in this regime. N-Body simulations are often used to study

the evolution in this regime.

In this thesis we first develop the numerical tools, and use it to study aspects of

gravitational clustering in an expanding universe.

xi
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N-Body Methods

A Modified TreePM Code

In chapter 2 we discuss the performance characteristics of using the modification of the

tree code suggested by Barnes (1990) in the context of the TreePM code. The optimization

involves identifying groups of particles and using only one tree walk to compute force for

all the particles in the group. This modification has been in use in our implementation of

the TreePM code for some time, and has also been used by others in codes that make use

of tree structures.

In this work, we present the first detailed study of the performance characteristics

of this optimization. We show that the modification, if tuned properly can speed up the

TreePM code by a significant amount. However we show that this optimization not only

results in a speedup but computes forces more accurately. Force is explicitly computed at

three levels: (i) short range particle-particle (PP) interactions for intra-group particles, (ii)

short-range particle-cell (PC) interactions using the BH-Tree and finally (iii) long-range

particle-mesh (PM) interactions are computed using Fast Fourier Transforms.

We also demonstrate that this approach optimizes cache utilization in modern proces-

sors. We also combine this modification with the use of individual time steps and indicate

how to combine these two schemes in an optimal fashion. We find that the combination

is at least a factor of two faster than the modified TreePM without individual time steps.

Overall performance is often faster by a larger factor, as the scheme of groups optimizes

use of cache for large simulations.

The modified method is very well suited and was essential for the development of

the Adaptive TreePM method discussed in the next section. The reason for this is that

the hierarchy of time steps helps in evolving trajectories for particles with very different

softening length, and the modified cell acceptance criterion of the modified TreePM is

useful in reducing the force calculation to an effective particle-particle interaction where

symmetrization of force does not add a significant overhead.



CONTENTS xiii

The Adaptive TreePM method

In chapter 3 we discuss a new N -body code.

One of the limitations of most cosmological codes has been the use of a force softening

length that is much smaller than the typical inter-particle separation. This is true of fixed

resolution codes. This leads to departures from collisionless evolution that is desired in

these simulations. We propose a particle based method with an adaptive resolution where

the force softening length is reduced in high density regions while ensuring that it remains

well above the local inter-particle separation. The method, called the Adaptive TreePM,

is based on the modified TreePM code.

We present the mathematical model and an implementation of this method, and

demonstrate that the results converge over a range of options for parameters introduced

in generalizing the code from the TreePM code. We reformulate the equations of motion

so that energy-momentum conservation is not violated when going from a fixed resolution

code to an adaptive resolution code.

We explicitly demonstrate collisionless evolution in collapse of an oblique plane wave.

We compare the code with the fixed resolution TreePM code and also an implementation

that mimics adaptive mesh refinement methods and comment on the agreement, and dis-

agreements in the results. We find that in most respects the ATreePM code performs at

least as well as the fixed resolution TreePM in highly over-dense regions, from clustering

and number density of haloes, to internal dynamics of haloes. We also demonstrate that

the Adaptive Code is able to better resolve the internal structure of halos and show that

the adaptive code is faster than the corresponding high resolution TreePM code.

Aspects of Gravitational Clustering

Mass function of haloes: scale invariant models

In chapter 4 we use the N -body code discussed in chapter 2 to study the clustering prop-

erties of dark matter halos through the Mass Function. The Mass Function describes the

number density of halos of a given mass in a given cosmology. Even though this relates to a
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highly non-linear regime of gravitational clustering, simple theoretical arguments have been

used to obtain the form for the mass function that describes results of N-Body simulations

to within a factor of a few.

The Press-Schechter mass function is based on the spherical collapse model and has

been shown to fit poorly to simulations. On the other hand the Sheth-Tormen mass function

is based on the more realistic ellipsoidal collapse model as it becomes possible to take tidal

forces due to fluctuations at larger scales into account. The Sheth-Tormen mass function

matches the simulations much better than the Press-Schechter mass function. Both of these

are based on theoretical arguments and have a universal form, independent of the shape of

the initial power spectrum and also insensitive to changes in the cosmological model.

In the last few years, large N-Body simulations of the LCDM model have demon-

strated that the mass function is not universal, and various groups have given epoch and

cosmology dependant fitting functions for this model. The LCDM model has a gradually

varying effective spectral index at relevant scales and a different cosmological background,

and this makes the published results difficult to interpret in terms of a theoretical model.

We approach this problem differently and see whether the non-universal description can

be attributed to a spectrum dependence of the form of the mass function. We specifically

look at scale free cosmologies in an Einstein De Sitter background and look for departures

of non-universality. This choice of cosmology does not introduce any scale into the prob-

lem. These models have the advantage of being self-similar, hence stringent checks can

be imposed while running these simulations. We provide spectrum dependent fits for the

parameters in the Sheth-Tormen mass function, and show that this allows us to fit simula-

tion data much better. We also show explicitly that the best fit Sheth-Tormen parameters

have a clear dependence on power spectrum. Our results also indicate that an improved

analytical theory with more parameters is required in order to provide better fits to the

mass function.

HI as a probe of the large scale structure

In chapters 5 and 6 we focus on modeling the redshifted 21cm line of neutral Hydrogen

(H I) in high resolution dark matter simulations. We study the H I power spectrum and
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its evolution and predict prospects for detection, both statistical and direct.

Power Spectrum and its evolution

The redshifted 21cm line is a promising probe of the Epoch of Reionization. However it can

also be used for studying large scale structure in the post reionization epoch. Observations

tell us that the neutral density parameter ΩH I ' 0.001 in the redshift range 1 ≤ z ≤ 5

and is locked in dense clumps. We model the distribution of HI in the post-reionization

universe. This model uses gravity only N-Body simulations and an ansatz to assign HI to

dark matter haloes that is consistent with observational constraints and theoretical models.

The additional feature that we obtain is the bias of H I with respect to Dark Matter, which

in earlier work was taken to be unity or derived from very low resolution simulations. We use

high resolution simulations to determine scale dependent H I bias over a range of redshifts.

Higher resolution simulations are used at larger redshifts in order to cover the range of halo

masses where significant amount of HI may be present. The characteristic mass of haloes is

smaller at early times and hence higher resolution simulations are required. We highlight

the significantly high bias for the HI distribution at small scales. This aspect has not been

discussed before and it implies that a statistical detection of HI at large scales and direct

detection of the brightest regions at moderate redshifts requires comparable integration

time using existing telescopes.

Visibility correlations and prospects for detection

We follow the determination of H I power spectrum in the post-reionization era with compu-

tation of visibility correlations. Possibility of a statistical detection using visibility correla-

tions is discussed. Simulated maps of the HI distribution in the post-reionization era are also

constructed to study the prospects for direct detection with existing and upcoming radio

telescopes. We show that the GMRT1 and an upgraded MWA2 (MWA5000) can potentially

detect signal from the HI distribution at high redshifts. MWA5000 can detect visibility

correlations at large angular scales at all redshifts accessible to it in the post-reionization

1Giant Meterwave Radio Telescope. See http://gmrt.ncra.tifr.res.in for details.
2The Murchison Widefield Array. See http://www.mwatelescope.org/ for details.
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era. The GMRT can detect visibility correlations at lower redshifts, specifically there is a

strong case for a survey at z ' 1.3. We also discuss prospects for direct detection of rare

peaks in the HI distribution using the GMRT. We show that direct detection should be

possible with integration time that is comparable to, or even less than, the time required

for a statistical detection.
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Chapter 1

Introduction

One of the most important discoveries in modern cosmology was that we live in an ex-

panding Universe (Hubble, 1929). It was observed that galaxies are receding from us

with a speed proportional to the distance. Current estimate of the expansion rate is

H0 = 71.9+2.6
−2.7km/s/Mpc (Komatsu et al., 2009; Mould et al., 2000). If we extrapolate

backwards in time then one sees that densities and temperature are singular at an epoch.

This singularity is called the Big Bang.

Large scale structures traced by galaxies are believed to have formed by amplification

of small perturbations (Peebles, 1980; Padmanabhan, 1993; Peacock, 1999; Padmanabhan,

2002; Bernardeau et al., 2002). Observations of galaxies tell us that these are uniformly

distributed on very large scales (Yadav et al., 2005; Sarkar et al., 2009), the scale of ho-

mogeneity being ∼ 70h−1 Mpc - 80h−1 Mpc. However they tend to cluster at small scales

forming complex structures like filaments, sheets and voids. The measurements of the

earliest fluctuations come from observations of the Cosmic Microwave Background (CMB)

radiation. These are fluctuations in the radiation field which has come directly to us from

the early Universe and are of the order of ∆T/T ∼ 10−5 at large scales (Smoot et al., 1992;

Komatsu et al., 2009) These observations also suggest that the content of the Universe can

be broken down into ordinary matter or baryons, (∼ 4%), cold dark matter ∼ 22% and

dark energy ∼ 74%

The goal of the study of structure formation in the Universe is to understand the

3



4 CHAPTER 1. INTRODUCTION

formation and physical properties of galaxies and their clustering starting from small initial

perturbations with a given spectrum. This involves the study of non-linear gravitational

clustering along with other physical processes in an expanding Universe. On large scales

the clustering properties are dictated by gravity alone. However on small scales non-

gravitational effects contribute significantly. The first visible objects are believed to have

formed in potential wells generated by highly overdense dark matter haloes. Therefore

in order to understand the clustering of galaxies one first needs to understand how dark

matter clusters.

In this chapter we describe the basic framework in which one can understand the

evolution of perturbations in an expanding Universe. We then describe the tools that are

needed in understanding the properties of clustering.

1.1 The Expanding Universe

We begin by describing, in this section, the standard big-bang cosmology (Peebles, 1993;

Weinberg, 2008). The assumption that the Universe is homogeneous and isotropic on large

scales leads to the choice of a spacetime coordinate system for which the metric takes the

simple form known as the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric, Fried-

mann (1922); Robertson (1929, 1935); Walker (1936); Lemâıtre (1931b,a):

ds2 = −c2dt2 + a2(t)

[
dx2

1− kx2
+ x2(sin2 θdφ2 + dθ2)

]
(1.1)

Here a(t) is the scale factor, (x, θ, φ) the comoving coordinate (coordinates of the funda-

mental observer), k is the curvature constant. Values of k can be +1, 0 or −1 and the

Universe will be closed, flat or open respectively. t is the cosmic time.

We relate the observationally measured coordinates r also known as the physical or

proper coordinates to the comoving coordinate x by r(t) = a(t)x. We then have the proper

velocity of a given observer:

ṙ(t) = ȧ(t)x + a(t)ẋ = vh + vp (1.2)

Where the second term vp is called the peculiar velocity of objects. In the absence of
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peculiar velocities we have:

vh =

[
ȧ(t)

a(t)

]
a(t)x =

[
ȧ(t)

a(t)

]
r(t) ≡ H(t)r(t) (1.3)

This is the Hubble Law with H(t) being Hubble’s parameter. Hubble’s constant is its value

today, i.e., at t = t0. Thus the expansion of the Universe leads to objects moving away

from us at a speed proportional to the distance.

The evolution of a(t) is governed by the matter and energy density in the Universe. In

order to compute for a(t) we have to solve Einstein’s field equations for the FLRW metric.

Gµν − Λgµν = 8πGTµν (1.4)

with Gµν ≡ Rµν− 1
2
gµνR the Einstein tensor and Rµν , R and gµν are the Ricci tensor, Ricci

scalar and the metric tensor respectively. Tµν is the energy-momentum tensor, Λ is the

cosmological constant and G is the gravitational coupling constant. Under the assumptions

of homogeneity and isotropy Tµν takes the form (we have taken c = 1):

Tµν = dia[−ρ̄(t), p(t), p(t), p(t)] (1.5)

here p(t) is the pressure and ρ̄(t) is the energy density. Using the R00 and Rii components

of the Ricci tensor and equating them with the corresponding components of the energy-

momentum tensor we obtain:

ȧ2 + k2

a2
=

8πG

3
ρ̄+

Λ

3
(1.6)

2
ä

a
+
ȧ2 + k2

a2
= −8πGp+ Λ (1.7)

These two equations alongwith the equation of state (EoS) p = p(ρ̄), completely deter-

mine the three functions, a(t), ρ̄(t), p(t). Using the conservation of the energy-momentum

tensor, T µν;ν = 0 one obtains, (equivalently one could have used eq. 1.6 and eq. 1.7):

d

da
(ρ̄a3) = −3a2p (1.8)

Given an EoS p = p(ρ̄) one can integrate this equation to obtain ρ̄ = ρ̄(a). For an EoS of

the form p = wρ̄, the density varies as

ρ̄ ∝ a−3(1+w) (1.9)
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The constituents in our Universe can typically be classified as radiation and relativistic

matter, with EoS prad = 1
3
ρ̄rad, non-relativistic matter with EoS pnr ≈ 0 and the cosmo-

logical constant with pΛ = −ρ̄Λ. Using eq. 1.9 one sees that the corresponding energy

density scales as ρ̄rad ∝ a−4, ρ̄nr ∝ a−3 and ρ̄Λ = constant, independent of a. In other

words expansion of the Universe dilutes the energy density of radiation and non-relativistic

matter.

It is possible to define a characteristic density in terms of the Hubble constant, eq. 1.3,

the critical density ρ̄c defined as:

ρc =
3H2

0

8πG
(1.10)

ρ̄ = ρ̄rad + ρ̄nr is the sum of both relativistic and non-relativistic matter. We define

the dimensionless density parameter for the ith component of matter:

Ωi ≡
ρ̄i(t0)

ρc
(1.11)

Eq. 1.6 can now be rewritten as:

ȧ2

a2
+
k

a2
= H2

0

[
Ωrad

(a0

a

)2

+ Ωnr

(a0

a

)3

+ ΩΛ

]
(1.12)

H2(a) = H2
0

[
Ωrad

(a0

a

)2

+ Ωk

(a0

a

)2

+ Ωnr

(a0

a

)3

+ ΩΛ

]
(1.13)

where Ωk = Ωnr + Ωrad + ΩΛ − 1 with k = a2
0H

2
0 Ωk is the density parameter due to the

curvature and ΩΛ = Λ
3H2

0
. Observations tells us that Ωtot = Ωnr + Ωrad + ΩΛ = 1.099+0.100

−0.085

(Komatsu et al., 2009) which tells us that Universe is nearly flat, Ωk = Ωtot − 1 ≈ 0.

1.1.1 The Einstein deSitter Model

The Einstein deSitter model is perhaps the simplest cosmological model where one considers

a flat Universe with only non-relativistic matter, i.e. Ωtot = Ωnr = 1.0. With p = 0 one

obtains using eq. 1.8:

d

da
(ρ̄a3) = 0⇒ ρ̄(t) = ρ̄(t0)

[
a(t0)

a(t)

]3

(1.14)



1.1. THE EXPANDING UNIVERSE 7

Substituting it in eq. 1.6 one can solve for a(t) given the initial condition a(t = 0) = 0:

a(t) = [6πGρ̄(t0)]
1
3 a(t0)

2
3 (1.15)

If we normalise a(t) to unity today, i.e. at a(t0) = 1, we obtain:

6πGρ̄(t0) = t−2
0 ⇒ a(t) =

(
t

t0

) 2
3

(1.16)

The Einstein deSitter Universe expands forever with a decelerating rate of expansion and

the density decreases as:

ρ̄(t) =
1

6πGt2
(1.17)

1.1.2 Expansion of the Universe and its effect on Observables

The expansion of the Universe affects the measurements of physical quantities. Here we

describe some of them.

• The Hubble scale:

The Hubble parameter defines a time scale and can be used to define a length scale

(Peebles, 1980; Padmanabhan, 1993) over which physical processes act coherently.

The comoving Hubble radius is defined as

dH(z) =
c

H(z)
(1.18)

This is also the scale at which general relativistic effects become important. For

l� dH Newtonian gravity is often adequate.

• Redshifting of emitted frequency :

Suppose a source is emitting a signal at a frequency νem. If the the observer is static

with respect to the source then the observed frequency, νobs, is the same as the emitted

frequency, νobs = νem. If there is a relative motion between observer and source then

νobs 6= νem and the shift may be defined as 1 + z = νem/νobs. If the relative speed v is

much smaller than the speed of light then this shift is z = v/c. Suppose now that the
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observer and source are separated by an infinitesimal distance δr. Due to expansion

the relative velocity is δv = ȧ
a
δr and the relative frequency shift is:

δν

ν
= −δv

c
= −1

c

ȧ

a
δr = − ȧ

a
δt = −da

a
(1.19)

Where we have used the fact that light travels on a null surface, cδt = δr This implies

that

ν(t)a(t) = constant (1.20)

and the frequency shift z can be written as

1 + z(t) =
a(t0)

a(t)
(1.21)

Expansion of the Universe leads to a decrease in frequency, or a redshifting of the

frequency. The redshift function z(t) and scale factor a(t) are equivalent descriptors

of expansion and can be used as time variables. A decrease in frequency leads to an

increase in wavelength λobs = λem(1 + z)

• Scaling of momentum due to expansion:

One can use similar arguments to show that the momentum of particles (Padmanab-

han, 1996) decreases due to expansion.

p(t)a(t) = constant (1.22)

In the case of non-relativistic motion v ∝ p hence the proper velocity also decreases

as a−1 due to expansion.

• The luminosity distance and angular diameter distance:

Consider an emitter and an observer in a static Universe. The source has luminosity

L. Then in a time interval dt it emits energy Ldt. The observed flux is

Sdt =
Ldt

4π2D2
(1.23)

Here D is the distance between emitter and observer. In an expanding Universe this

distance is given by integrating over the null geodesic in the radial direction:

c

∫ tobs

te

dt

a(t)
=

∫ D

0

dx

1− kx2
(1.24)
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The energy is received in a time interval dtobs and is related to the time interval for

emission dte by dte/a(te) = dtobs/a(tobs). Similarly the radiation is redshifted by a

factor a(te)/a(tobs). The flux is received in a sphere of surface 4π2D2a2(tobs). The

observed flux is therefore:

S =
dte
dtobs

a(te)

a(tobs)

L

4π2a2(tobs)D2

=
L

4π2a2(tobs)D2(1 + z)2
(1.25)

It is convenient to define a quantity called the Luminosity Distance, DL(z) = a(tobs)D(1+

z) which reduces the above equation to a form similar to the expression in the case

of a static Universe, eq. 1.23.

Sdt =
Ldt

4π2D2
L(z)

(1.26)

Similar considerations can be used to define quantity called the Angular Diameter

Distance, DA(z), for relating the angular size of an object in an expanding Universe.

These two distance measures are related by

DA(z)(1 + z)2 = DL(z) (1.27)

1.1.3 The Newtonian Limit

In principle, the process of structure formation should be studied in a fully covariant manner

within the theory of general relativity. However Newtonian mechanics is generally valid at

most scales of cosmological interest. It is valid in regions which are small compared to the

Hubble radius l � dH and large compared to the Schwarzschild radius of most massive

black holes. Newton’s equations of motion (EoM) are recovered in the weak field limit

of general relativity, i.e., when Φ � c2. Conversely if one assumes that particle motions

are non-relativistic v2/c2 � 1 one can reduce an arbitrary metric to the following form

(Landau & Lifshitz, 1975) in the Newtonian limit:

ds2 = −(c2 + 2Φav)dt
2 + dr2 (1.28)

with Φav � c2. Here Φav is the effective Newtonian potential that should be used in the

equations of motion.
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Consider the following coordinate transformation in the FLRW metric:

r = a(t)x

t̄ = t− t0 +
1

2

H(t)a2(t)

c2
x2 + O(x4) = t− t0 +

H−1

2

a2x2

d2
H

+ O(x4) (1.29)

Where dH is the Hubble radius. In the above transformation the spatial coordinates have

been changed from comoving to the proper coordinates and the time has been corrected

for the gravitational redshift. The transformation changes the metric to:

ds2 = −
[
1− ä

a

r2

c2

]
c2dt̄2 +

[
1 +

(
ȧ

a

)2
r2

c2
+
k

a2
r2

]
dr2 + r2

[
dθ2 + sin2 θdφ2

]
(1.30)

Here we have ignored cubic and higher order terms in r/dH � 1 because we are only

interested in regions that are small compared to the Hubble radius. The coefficient of dr2

can be set to unity if v2/c2 � 1, r � dH and r � dk. Here dk = ca/
√
k is the curvature

scale. The line element then reduces to :

ds2 = −
[
1− ä

a

r2

c2

]
c2dt̄2 + dr2 + r2[dθ2 + sin2 θdφ2] (1.31)

Comparing this with eq. 1.28 one can identify the the effective Newtonian potential due to

the homogeneous and isotropic background Universe.

Φav = −1

2

ä

a
r2 =

2

3
πG(ρ̄+ 3p) (1.32)

For a Universe with only non-relativistic matter and cosmological constant the potential

takes the form:

Φav =

(
2

3
πGρ̄nr −

1

6
Λ

)
r2 =

(
1

4
H2

0 Ωnr
a3

0

a3
− 1

2
H2

0 ΩΛ

)
r2 (1.33)

The potential and the Newtonian approximation are valid only when the particle motions

are non-relativistic, and the scales of interest are much smaller than the Hubble scale.

Gravitational clustering occurs at scales which are much smaller than the scale of homo-

geneity, which current studies estimate it to be ∼ 70h−1Mpc (Yadav et al., 2005; Sarkar

et al., 2009) This scale is indeed much smaller than the Hubble scale ∼ 3000h−1Mpc. We

can therefore study gravitational clustering in the Newtonian framework.
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1.2 Cosmological Evolution of the Density Field

1.2.1 Particle Dynamics in an Expanding Universe

The dynamical evolution of a self-gravitating set of particles can be described by the fol-

lowing equations:

r̈(t) = ä(t)x(t) + 2ȧ(t)ẋ(t) + aẍ(t) = −∇Φtot = −∇(Φav + φ)

∇2
rΦtot = ∇2

r(Φav + φ) = 4πGρ− Λ = (4πGρ̄− Λ) + 4πGρ̄δ

ρ(r) =
∑
i

miδ
3
D(r− ri) (1.34)

Here ri is the position of the ith particle, Φtot is the total gravitational potential, with a

contribution from the background Universe Φav and that due to perturbations in it φ. ρ is

the density field of the set of particles, mi the mass of the ith particle and δ is the density

contrast characterising the perturbations in the density field defined as

δ(r) =
ρ(r)− ρ̄
ρ̄(t)

(1.35)

The terms corresponding to the background expansion can be identified, in the limit δ = 0,

as

äx = −∇rΦav(t) or Φav(t) = −1

2
aäx2 = −1

2

ä

a
r2 (1.36)

Where we have recovered eq. 1.32. The rest represents the equation of motion of particles

due to fluctuations in the density

aẍ + 2ȧẋ = −∇rφ (1.37)

We finally obtain for the EOM due to the perturbed field using eq. 1.13 and eq. 1.34

ẍ + 2
ȧ

a
ẋ = −∇rφ(x, t)

a
= −∇xφ(x, t)

a2

∇2
xφ = 4πGa2ρ̄δ =

3

2
H2

0 Ωnr
δ

a
(1.38)
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In the Universe without perturbations the perturbed potential φ = 0. We then see from the

above equation that a2ẋ = avp = constant. Thus the velocity dependant term in the EOM

acts as a damping term and the timescale of damping is fixed by the rate of expansion

H(t) = ȧ/a. The expansion time scale in a matter dominated Universe texp ∼ (Gρ̄)−1/2

and the collapse time scale goes as tcol ∼ (Gρ)−1/2 ' (Gρ̄)−1/2(1− δ/2), both of which are

of the same order. Therefore the growth of perturbations is slow as compared to a static

Universe.

1.2.2 Growth of Perturbations

The complete equations

The density contrast grows with time as overdense regions collapse and accrete matter at

the expense of under dense regions. We can follow the evolution of the density contrast

by combining the EOM, eqs. 1.38 with the expression for density, eq. 1.34. The Fourier

component δk of the density contrast δx ≡ δ(x, t) are related through a Fourier transform:

δx(t) =

∫
d3k

(2π)3
δk(t) exp(ik.x) (1.39)

δk(t) =

∫
d3x

V
δx(t) exp(−ik.x) (1.40)

Using eq. 1.34 and eqs. 1.38 we obtain the evolution equation for Fourier components of

the density contrast (Peebles, 1980).

δ̈k + 2
ȧ

a
δ̇k = 4πGρ̄nrδk + Ak −Bk (1.41)

where

Ak = 2πGρ̄nr
∑

k′ 6=0,k

[
k′.k

|k′|2
+

k.(k− k′)

|k− k′|2

]
δk′δk−k′ (1.42)

Bk =
1

M

∑
i=1,N

mi(k.ẋi)
2 exp(−ik.xi) M =

∑
i=1,N

mi (1.43)

Ak and Bk are non-linear coupling terms between different modes. Bk couples density

contrasts in an indirect manner through peculiar velocities of particles.
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The linear limit

One can obtain the linear limit (δk � 1) by dropping terms that are quadratic or of higher

order in perturbed quantities.

δ̈k + 2
ȧ

a
δ̇k = 4πGρ̄nrδk (1.44)

It can be shown that in a Universe without a relativistic component, the Hubble parameter

itself is a solution of the equation (Heath, 1977). That is however a decaying solution. The

second solution can be obtained using the Wronskian(Heath, 1977).

X = 1 + Ωnr

(
1

a
− 1

)
+ ΩΛ(a2 − 1)

b(t) ∝ X1/2

a

∫ a da

X3/2
(1.45)

b(t) is the growing mode of density perturbations.

This can be easily solved in an Einstein deSitter Universe X = a−1 and b(t) ∝ a(t) =

(t/t0)2/3. The growth rate is a power law with a small index as compared to an exponential

rate in a static Universe (Jeans, 1902). One can cast the EOM eq.1.38 in a useful form by

using the growing mode as a time function:

du

db
= −3

2

Q

b
(u− g)

∇2ψ =
δ

b
(1.46)

where

g ≡ −∇ψ = − 2

3H2
0 Ωnr

(a
b

)
∇φ

Q =

(
ρ̄nr
ρc

)(
ȧb

aḃ

)2

=

(
ρ̄nr
ρc

)
1

f 2
(1.47)

and u ≡ dx/db is the generalised velocity, ψ the generalised potential, g the generalised

force, and f = d ln(b)/d ln(a). This form of casting the EOM is particularly useful since

the generalised acceleration du/db = 0 in the linear regime and hence one can relate the
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generalised velocity u to the generalised force g at early times. In an Einstein deSitter

Universe, a = b and Q = 1. Therefore the EOM reduces to:

du

da
= − 3

2a
(u− g) (1.48)

1.3 Statistical Measures of Clustering

There are two general approaches to the empirical study of large scale matter distribution

· · · the botanical and the statistical (Peebles, 1980). The former deals with studying and

classifying objects on an individual basis while the latter deals with studying the gross

properties of matter distribution using statistical methods. When dealing with vast amount

of data one has to resort to statistical methods. In this section we outline some of the

statistical measures used in studying clustering properties of matter.

1.3.1 Correlation Function and Power Spectra

Spatial properties of a statistically homogeneous set of points (be it galaxies and other

objects in observations or simulation particles) are characterised by n-point correlation

functions. The 2-point correlation function is defined as:

ξ(r) = 〈δ(x)δ(x + r)〉 (1.49)

The angular brackets indicate an averaging extending over all space. Therefore

ξ(r) =
1

V

∫
d3xδ(x)δ(x + r) (1.50)
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Let δk be the Fourier transform of δ(r). Since δ(r) is a real quantity δk satisfies the reality

condition δ−k = δ∗k, We therefore get:

ξ(r) =
1

V

∫
d3x

∫
d3k

(2π)3
δk exp [−ιk.x]

∫
d3k′

(2π)3
δk′ exp [−ιk′.(x + r)]

=

∫
d3k

(2π)3
δk

∫
d3k′

(2π)3
δk′ exp [−ιk′.r]

[
1

V

∫
d3x exp [−ι(k′ + k).x]

]
=

∫
d3k

(2π)3
δk

∫
d3k′

(2π)3
δk′ exp [−ιk′.r] δD(k′ + k)

=

∫
d3k

(2π)3
|δk|2 exp [−ιk.r]

=

∫
d3k

(2π)3
P (k) exp [−ιk.r]

(1.51)

We define the power spectrum P (k) as the Fourier transform of the 2-point correlation

function.

In an isotropic Universe the perturbations cannot have a preferred direction, therefore

we have the property, ξ(r) = ξ(r) and P (k) = P (k). The angular part of the k-space

integral of eq. 1.51 can be performed easily and we obtain:

ξ(r) =
1

(2π)3

∫
P (k)

sin(kr)

kr
4πk2dk

∫
k3P (k)

(2π2)

sin(kr)

kr

dk

k

=

∫
∆2(k)

sin(kr)

kr
d ln k (1.52)

Where the power spectrum has been expressed in dimensionless form

∆2(k) =
k3P (k)

(2π2)
(1.53)

The meaning of ∆2(k) is similar to the power spectrum, in that it is a measure of the

fluctuations in density but in a logarithmic interval in k. It is the Fourier space counterpart

of ξ(r). Thus ∆2(k) = 1 means that density fluctuations have a typical amplitude equal to

unity at scales around 1/k.
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If the density field is a Gaussian random field, then all higher order moments can be

expressed in terms of the 2-point functions. In most cosmological models the initial density

field is chosen to be a Gaussian random field.

Just as the 1-point function, the density contrast δ(r), is defined as the excess density

over the average and can be thought of as the excess number of points (if one thinks of

sampling the density field by random points), the 2-point function ξ(r) can be interpreted

as a measure, on the average, excess number of pairs separated by a distance r. If one

chooses to sit on a given particle location1 then ξ(r) can be thought of as counting, on the

average, the excess (over the mean) number of neighbours for a given particle within the

interval [r, r + dr]. Thus if a point is chosen from a distribution then the average number

of neighbours at a distance r in an infinitesimal volume δV is

δN2 = n̄δV [1 + ξ(r)] (1.54)

Here n̄ is the number density of the distribution. Similarly the three-point correlation

function can be defined in terms of pairs to a complete a triangle with a randomly chosen

point.

δN3 = n̄2δV2δV3[1 + ξ(r12) + ξ(r13) + ξ(r13) + ζ(r12, r13, r23)] (1.55)

Here rij = |ri − rj|;i, j = 1, 2, 3 form the side of the triangle.

Usually pair counting is done in order to compute the correlation function. Higher

order correlations are often estimated by their volume averages, the irreducible moments

(cumulants) of counts in cells µN . The volume average of the correlation function ξ̄(r) is

interpreted as the excess number of neighbours within a distance r of a given point.

ξ̄(r) =
3

r3

∫ r

0

y2ξ(y)dy = 3

∫ ∞
0

d ln k∆2(k)

(
sin(kr)− kr cos(kr)

k3r3

)
(1.56)

1.3.2 Mass variance

The next statistical indicator we consider is the root mean square (rms) fluctuation in mass

at a scale r, σ2(r). This is a direct measure of fluctuations at the given scale r and unlike

1Note however that unlike δ(r) which is a local quantity ξ(r) is a statistical quantity
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ξ and ξ̄ it is positive definite by definition. It is defined as:

σ2(r) =
〈(M − 〈M〉)2〉
〈M〉2

=
〈δM2〉
〈M〉2

=
1

2π2

∫
dkk2P (k)|W (k, r)|2 (1.57)

where M ≡ VWρ. VW is the effective volume of the smoothing function W and for the

spherical top hat smoothing function VW = 4πr3/3. For a spherical-top hat window W (k, r)

is given by

W (k, r) = 3

(
sin kr − kr cos kr

k3r3

)
(1.58)

and in real space

W (|x− x′|, r) =

 3
4πr3

|x− x′| < r

0 Otherwise
(1.59)

It is more useful to express σ2(r) in the familiar form

σ2(r) =

∫ (
k3P (k)

2π2

)
|W (k, r)|2d ln k =

∫
∆2(k)|W (k, r)|2d ln k (1.60)

For a power law model P (k) ∝ kn, we obtain;

σ2(r) ∝ r−(n+3) and σ2(M) ∝M−(n+3)/3 (1.61)

or

σ2(r) =

(
r

rnl

)−(n+3)

and σ2(M) =

(
M

Mnl

)−(n+3)/3

(1.62)

Where the scale of nonlinearity rnl is identified with the scale at which mass variance σ2

becomes unity. Note that ξ(r), ξ̄(r), σ2(r) , eqs. 1.52, 1.56, 1.60 are similar quantities with

a change only in the smoothing function. Therefore the scaling relations holds even for ξ

and ξ̄

1.3.3 The radial pair-velocity

The final statistical indicator that is of interest to us is the dimensionless radial pair velocity

hpair defined as:

hpair = −〈vp(r, a).r〉
Hr2

(1.63)
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Where vp(r, a) is the relative velocity of pairs of objects separated by r at epoch a. hpair

is the ratio of radial component of this velocity and the Hubble flow both evaluated at r,

hence it is a dimensionless quantity. In the linear regime ξ̄ � 1, h = (2/3)ξ̄, in an Einstein

deSitter Universe, (Peebles, 1980). In the non-linear regime if we can ignore the effect of

mergers then we expect objects to be in virial equilibrium, hence these velocities should be

equal and opposite in order to have a stable system (stable clustering limit). We expect

h→ 1 as ξ̄ →∞.

1.4 Non-linear gravitational clustering

We have seen that modes of density perturbations grow independently in the linear regimes,

eq. 1.41. With time the modes couple to each other and a simple analytical solution is

not possible and one has to resort to numerical methods, namely N−body simulations.

Nevertheless it is important to have some insight into the process of structure formation

with the use of approximate analytical models. Here we outline some of them.

1.4.1 The Zeldovich approximation

The source term in Poisson’s equation, eq. 1.46, δ/b(t) is constant in the linear regime,

implying that the generalised force g is constant in the linear regime. It can also be shown

that the velocity u is constant in the linear regime, which means that the generalised

acceleration is zero
du

db
= 0 (1.64)

Hence

u(x, b) = u(x) = g(x, b) = g(x) (1.65)

This is valid only in the linear regime, δ � 1. However one can extrapolate this equation

to a regime which is slightly non-linear.

In the Zeldovich approximation velocities are constant in Lagrangian space, the co-

ordinate system attached to particles. Thus the velocity of each particle is constant and
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equals its initial velocity

u(x, b) = u(q) = g(q) (1.66)

where q is the Lagrangian position of the particle, same as its initial position and x is its

Eulerian position. The particle trajectories evolve as

x = q + bg(q) (1.67)

Particles move with a uniform velocity that is determined by its initial potential. The Zel-

dovich approximation is a one-step mapping between initial and final conditions. Approx-

imate constancy of velocities results in the linear regime wherein timescales of expansion

and and collapse cancel each other. It is particularly useful in setting up initial conditions

in N−body simulations where one evolves a linear density field to a weakly non-linear

regime. Particles are displaced from a uniform grid according to the eq. 1.67. However

one needs to generate the initial potential ψ in order to compute g = −∇ψ. The power

spectrum of density fluctuations relates it to the power spectrum of the potential through

the Poisson equation.

Pψ(k, a) =
Pδ(k, a)

a2k4
=
P lin
δ (k, a = 1)

k4
(1.68)

Here P lin
δ (k, a = 1) is the linearly extrapolated power spectrum of the initial density fluc-

tuation. Care must also be taken in choosing the size of the first step, since the Zeldovich

approximation breaks down at shell crossing. The initial displacement should be such that

shell crossing does not even in the most overdense region in the realization.

1.4.2 Spherical collapse

The spherical collapse model is one of the simplest models which qualitatively describes

how a galaxy or a cluster collapses and forms by breaking away from the general expansion

of the Universe. It is not an exact model but nevertheless serves as a reference for generic

collapse. The densities of the overdense region and background should be evolved using

Friedmann equations, however in what follows we solve this problem using Newtonian

mechanics which also gives the same results.
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If we consider that the total mass enclosed within a spherical shell is M (which does

not change during collapse) and the radius at time t is R(t) then

R̈(t) = − GM

R2(t)
(1.69)

and so
Ṙ2(t)

2
=
GM

R
+ E (1.70)

Here E is an integration constant which can be identified with the total energy of the

shell. If we consider that the energy of the system is negative, as is required for formation

of a bound system, then the above equation can be solved with the following parametric

solution

R(θ) =
GM

2|E|
(1− cos θ) = A (1− cos θ) =

Rmax

2
(1− cos θ) (1.71)

t(θ) =
GM

(2|E|)3/2
(θ − sin θ) = B (θ − sin θ) =

tmax
π

(θ − sin θ) (1.72)

where A2 = 2|E|B2, Rmax = 2A, tmax = Bπ.

Eq. 1.71 shows that due to gravitational attraction, the expansion rate of the over-

dense regions slows down in comparison to the background. After reaching a maximum size

Rmax (called the turn-around radius) at time tmax, the overdense region stops expanding

and begins to collapse. At turnaround:

E = − GM

Rmax

⇒ Rmax =
GM

|E|
= 2A (1.73)

However we expect the overdense region to virialize instead of collapsing to R = 0. At

virialization:

E =
U

2
=

GM

2Rvir

⇒ Rvir =
GM

2|E|
=
Rmax

2
(1.74)

From equation (1.71) we can write an expression for the density of the overdense region

ρ(t) =
3M

4πR3(t)
=

3M

4πA3(1− cos θ)3
(1.75)

If we model the expansion of background by the Einstein-de Sitter model then the average

density ρ̄(t) evolves as

ρ̄(t) =
1

6πGt2
(1.76)
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From equation (1.75) and equation (1.76) we can write an expression for the nonlinear

density contrast

1 + δ(t) =
ρ(t)

ρ̄(t)
=

9

2

(
GMB2

A3

)
[θ(t)− sin θ(t)]2

[1− cos θ(t)]3

Using the fact that A2 = 2|E|B2, and |E| = GM/2A, we get

1 + δ =
9

2

(θ − sin θ)2

(1− cos θ)3
(1.77)

In order to compare the nonlinear and linear density contrast we expand the above

equation around θ = 0

1 + δ =
9

2

(θ − sin θ)2

(1− cos θ)3
=

9

2

[
θ −

(
θ − θ3

6
+ θ5

120
− ..
)]2

[
1−

(
1− θ2

2
+ θ4

24

)]3 ≈ 1 +
3

20
θ2 (1.78)

and so

δl(θ) =
3

20
θ2 (1.79)

and in the linear limit

θ(t) ≈
(

6πt

tmax

)1/3

and R(t) ≈ Rmax

4
θ2

and so

δl(t) =

(
6πt

ttmax

)2/3

or δl(t) ∝ a(t) (1.80)

Note that this is exactly the same result as is given by linear perturbation theory. From

eq. (1.80) and (1.77) we can easily compute the linear and nonlinear density contrast

respectively at the turn-around i.e., θ = π, t = tmax

δturn =


3(6π)2/3

20
≈ 1.06 linear

9π2

16
− 1 ≈ 4.6 nonlinear

(1.81)

If we consider that the nonlinear density contrast at turn-around and virialization are δturn

and δvir respectively and use the fact that ρ ∝ 1/R3, and ρ̄ ∝ 1/t2, then

1 + δvir
1 + δturn

=
ρvir/ρ̄vir
ρturn/ρ̄turn

=

(
Rmax

Rvir

)3(
tvir
tmax

)2

(1.82)
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and so at the virialization i.e., tvir = 2tmax, we get

δvir =


3(12π)2/3

20
≈ 1.68 linear

32
[

9π2

16

]
− 1 ≈ 176 nonlinear

(1.83)

1.4.3 The Press-Schechter formalism

The Press-Schechter formalism (Press & Schechter, 1974) predicts the number density of

objects of mass M in the Universe. It identifies peaks in the linear density field that collapse

at a later time. The number density is estimated by identifying the fraction of mass F (M)

in collapsed objects at any time t, which have mass greater than M , with the fraction of

the initial volume for which the density contrast is greater than a critical value i.e., δ > δc.

Here M is the mass enclosed in a spherical volume of radius r and is related to the average

density field ρ̄ through M = 4
3
πr3ρ̄ . The critical density contrast δc is identified with

the linearly extrapolated density contrast at time t, needed for virialization in spherical

collapse model i.e., δc = 1.68, for an Einstein-de Sitter model. The main results of the

Press-Schechter formalism can be derived in the following way.

If we consider that the initial density field is a Gaussian random field, and smooth

it at a scale r, using a spherical-top hat window function W (x, r), then the probability of

finding a spherical region with density contrast in range [δ, δ + dδ] is given by

P (δ, r) =
1√

2πσ(r)
exp

(
− δ2

2σ2(r)

)
(1.84)

where

σ2(r) =

∫
dk

k

k3P (k)

2π2
9

(
sin kr − kr cos kr

(kr)3

)2

(1.85)

In the Press-Schechter formalism the fraction of mass F (M) in the collapsed objects with

mass greater than M is identified with the fraction of the initial volume for which δ > δc.

F (M) =

∫ ∞
δc

P (δ, r)dδ =

∫ ∞
δc

1√
2πσ(r)

exp

(
− δ2

2σ2(r)

)
dδ =

1

2
Erfc

[
δc

σ
√

2

]
(1.86)

Here Erfc(x) is the complimentary error function.
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This formalism does not take into account the mass in underdense regions, which also

collapses eventually. It underestimates the mass function F (M) by a factor of two which

is corrected by multiplying eq. 1.86 by two.

F (M) =
2√
π

∫ ∞
δc/σ

√
2

e−x
2

dx = Erfc

[
δc

σ
√

2

]
= Erfc

(
ν√
2

)
(1.87)

where ν = δc/σ. However the excursion set formalism for mass functions (Bond et al.,

1991) remedies this problem naturally. On the basis of eq. 1.87 we can also compute the

fraction of mass g(M)dM , called the multiplicity function, in the objects which have mass

in the range [M,M + dM ].

g(M)dM =
∂F (M)

∂M
dM =

√
2

π

(
δc

σ(M)

)(
−1

σ(M)

∂σ(M)

∂M

)
exp

(
− δ2

c

2σ2(M)

)
dM (1.88)

or

g(M)dM =

√
2

π

∣∣∣∣dlnσdM

∣∣∣∣ ν exp(−ν2/2)dM (1.89)

and the comoving number density of objects N(M)dM2 in the mass range [M,M + dM ] is

N(M)dM =
ρ̄

M
× g(M)dM =

√
2

π

ρ̄

M2

∣∣∣∣ dlnσdlnM

∣∣∣∣ ν exp(−ν2/2)dM (1.90)

We will later (chapter 4) refer to the quantity f(ν) defined as:

g(M) = f(ν)

∣∣∣∣dlnσdM

∣∣∣∣ (1.91)

as the mass function. For the spherical collapse model

f(ν) =

√
2

π
ν exp(−ν2/2) (1.92)

For the ellipsoidal collapse model (Sheth & Tormen, 1999; Sheth, Mo, & Tormen, 2001)

the massfn f(ν) is given by

f(ν) = A

√
2q

π

[
1 + (qν2)−p

]
ν exp

(
−qν2/2

)
. (1.93)

2sometimes authors refer to N(M) as dn
dM . We will use them interchangeably.
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where A, p, q are constants. This is also known as the Sheth-Tormen mass function.

For a power law model i.e., P (k) ∝ kn

σ2(M) =

(
M

Mnl

)−(n+3)/3

⇒
∣∣∣∣ dlnσdlnM

∣∣∣∣ =
(n+ 3)

6
(1.94)

and so for Press-Schecter theory

NPS(M)dM =
1√
2π

ρ̄

M2

(n+ 3)

3

(
M

Mnl

) (n+3)
6

exp

[
−1

2

(
M

Mnl

)(n+3)/3
]
dM (1.95)

With the the Sheth-Tormen mass function we obtain:

NST (M)dM = A

√
q

2π

ρ̄

M2

(n+ 3)

3

1 +

(
q

(
M

Mnl

) (n+3)
3

)−p
×

(
M

Mnl

) (n+3)
6

exp

[
−1

2

(
M

Mnl

)(n+3)/3
]
dM (1.96)

In this chapter we have described the basic framework to study non-linear gravitational

clustering in an expanding Universe. We have seen that in the linear regime it is possible

to solve the evolution of density perturbations analytically because modes evolve indepen-

dantly. Analytical models such as the Zeldovich approximation can extend this to the

quasi-linear regime. We have also seen how a simple model like that of Press-Schecter

theory predicts the abundance of halos in the non-linear regime. However when modes of

the density field start to couple with each other, eq. 1.41, it is impossible to solve for the

evolution of density perturbations and numerical techniques such as N -body simulations

have to be employed. N-body methods do not give the insight which analytical methods

provide but they give an accurate evolution of the system which can, among the myriads

of other applications, be used to test the limits of analytical predictions such the Zeldovich

approximation and the Press-Schecter theory described here.

In the following two chapters our study will be aimed at improving on an existing

N-body method, and developing a new N-body code.



Chapter 2

A Modified TreePM Code

2.1 Cosmological N-body simulations

In the last chapter we described the equations that describe the evolution of density per-

turbations in an expanding Universe. Once density contrast at relevant scales becomes

comparable to unity, perturbations become non-linear and coupling with perturbations at

other scales cannot be ignored. The equation for evolution of density perturbations can-

not be solved for generic initial conditions in this regime. N-Body simulations (e.g., see

(Efstathiou et al., 1985; Bertschinger, 1998; Bagla & Padmanabhan, 1997; Bagla, 2005))

are often used to study the evolution in this regime. Alternative approaches can be used

if one requires only a limited amount of information and in such a case either quasi-linear

approximation schemes (Bernardeau et al., 2002; Zel’Dovich, 1970; Gurbatov, Saichev, &

Shandarin, 1989; Matarrese et al., 1992; Brainerd, Scherrer, & Villumsen, 1993; Bagla &

Padmanabhan, 1994; Sahni & Coles, 1995; Hui & Bertschinger, 1996) or scaling relations

(Davis & Peebles, 1977; Hamilton et al., 1991; Jain, Mo, & White, 1995; Kanekar, 2000; Ma,

1998; Nityananda & Padmanabhan, 1994; Padmanabhan et al., 1996; Peacock & Dodds,

1994; Padmanabhan, 1996; Peacock & Dodds, 1996; Smith et al., 2003) suffice. However,

even the approximation schemes and scaling relations must be compared with simulations

before these can be used with confidence.

Last three decades have seen a rapid development of techniques and computing power

25
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for cosmological simulations and the results of these simulations have provided valuable

insight into the study of structure formation. The state of the art simulations used less

than 105 particles two decades ago (Efstathiou et al., 1988) and if the improvement had

been due only to computing power then the largest simulation possible today should done

with have been around 109 particles, whereas the largest simulations done till date used

more than 1010 particles (Springel et al., 2005). Evidently, development of new methods

and optimisations has also played a significant role in the evolution of simulation studies

(Efstathiou et al., 1985; Barnes & Hut, 1986; Greengard & Rokhlin, 1987; Bouchet &

Hernquist, 1988; Jernigan & Porter, 1989; Hernquist, 1990; Makino, 1990, 1991; Hernquist,

Bouchet, & Suto, 1991; Couchman, 1991; Ebisuzaki et al., 1993; Theuns, 1994; Brieu,

Summers, & Ostriker, 1995; Suisalu & Saar, 1995; Xu, 1995; Dubinski, 1996; Kravtsov,

Klypin, & Khokhlov, 1997; Macfarland et al., 1998; Bode, Ostriker, & Xu, 2000; Brieu &

Evrard, 2000; Dehnen, 2000; Knebe, Green, & Binney, 2001; Springel, Yoshida, & White,

2001; Kawai & Makino, 2001; Makino, 2002; Dehnen, 2002; Bagla, 2002; Bagla & Ray,

2003; Makino et al., 2003; Bode & Ostriker, 2003; Ray & Bagla, 2004; Dubinski et al.,

2004; Makino, 2004; Springel, 2005; Merz, Pen, & Trac, 2005; Yoshikawa & Fukushige,

2005; Wadsley, Stadel, & Quinn, 2004; Thacker & Couchman, 2006) Along the way, code

developers have also successfully met the challenge posed by the emergence of distributed

parallel programming.

In this chapter, we discuss the performance characteristics of an optimisation for tree

codes suggested by Barnes (1990). We do this in the context of the TreePM method (Bagla,

2002; Bagla & Ray, 2003) where the tree method is used for computing the short range

force. The TreePM method brings in an additional scale into the problem, i.e., the scale

up to which the short range force is computed and this leads to non-trivial variations in

error in force.

This chapter is organised as follows: we introduce the TreePM method in §2.2, and

discuss the optimisation scheme in §2.3. Performance of the optimisation scheme is dis-

cussed in §2.4, and we discuss combining this with individual time steps for particles in

§2.5. We end with a discussion in §2.6.
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2.2 The TreePM Algorithm

The TreePM (Bagla, 2002; Bagla & Ray, 2003) is a hybrid N-Body method which combines

the BH-Tree method (Barnes & Hut, 1986) with the PM method (Bagla & Padmanabhan,

1997; Klypin & Shandarin, 1983; Miller, 1983; Bouchet & Kandrup, 1985; Bouchet, Adam,

& Pellat, 1985; Hockney & Eastwood, 1988; Merz, Pen, & Trac, 2005).

The TreePM method explicitly breaks the potential into a short-range and a long-

range component at a scale rs. The PM method is used to calculate the long-range force

and the short-range force is computed using the BH Tree method. Use of the BH Tree for

short-range force calculation enhances the force resolution as compared to the PM method.

The gravitational force is divided into a long range and a short range part using

partitioning of unity in the Poisson equation.

φk = −4πGρk
k2

= −4πGρk
k2

exp
(
−k2r2

s

)
− 4πGρk

k2

[
1− exp

(
−k2r2

s

)]
= φlrk + φsrk

φlrk = −4πGρk
k2

exp
(
−k2r2

s

)
(2.1)

φsrk = −4πGρk
k2

[
1− exp

(
−k2r2

s

)]
(2.2)

Here φsrk and φlrk are the short-range and long-range potentials in Fourier space. ρ is the

density, G is the gravitational coupling constant and rs is the scale at which the splitting of

the potential is done. The long-range force is solved in Fourier space with the PM method

and the short-range force is solved in real space with the Tree method. The short range

force in real space is:

Fsr(r) = −GMr

r3

[
erfc

(
r

2rs

)
+

r

rs
√
π

exp

(
− r2

4r2
s

)]
(2.3)

Here erfc is the complementary error function.

The short range force is below 1% of the total force at r ≥ 5rs, therefore it is computed

within a sphere of radius rcut ' 5rs using the BH tree method. The tree structure is built
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out of cells and particles. Cells may contain smaller cells (subcells) within them. Subcells

can have even smaller cells within them, or they can contain a particle. In three dimensions,

each cubic cell is divided into eight cubic subcells. Cells, as structures, have attributes like

total mass, location of centre of mass and pointers to subcells. Particles, on the other hand

have the usual attributes: position, velocity and mass.

Force on a particle is computed by adding contribution of other particles or of cells.

A cell that is sufficiently far away can be considered as a single entity and we can add

the force due to the total mass contained in the cell from its centre of mass. If the cell

is not sufficiently far away then we must consider its constituents, subcells and particles.

Whether a cell can be accepted as a single entity for force calculation is decided by the

cell acceptance criterion (CAC). We compute the ratio of the size of the cell Lcell and

the distance r from the particle in question to its centre of mass and compare it with a

threshold value

θ =
Lcell
r
≤ θc (2.4)

The error in force increases with θc. A poor choice of θc can lead to significant errors

(Salmon & Warren, 1994). Many different approaches have been tried for the CAC in

order to minimize error as well as CPU time usage (Salmon & Warren, 1994; Springel,

Yoshida, & White, 2001). The tree code gains over direct summation as the number of

contributions to the force is much smaller than the number of particles.

The TreePM method is characterised therefore by three parameters, rs,rcut and θc.

For a discussion on the optimum choice of these parameters the reader is referred to (Bagla

& Ray, 2003).

2.2.1 Moving particles

The EOM in comoving coordinates eq. 1.38 has a velocity dependant term proportional to

the Hubble parameter, H(t) = ȧ(t)/a(t). Numerical integration of such equations can be

tricky and one has to generally employ an iterative procedure. We use a simple change of

the time variable to transform the EOM into a form which does not contain this velocity
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dependant term. The negative time (Klypin & Shandarin, 1983) variable θ defined as:

dθ =
H0dt

a2
(2.5)

transforms the EOM 1.38

¨̃x = −3

2
Ωnra∇xχ

∇2
xχ = δ (2.6)

Here ¨̃x ≡ d2x
dθ2

and φ = 3
2

ΩnrH2
0

a
χ. This form is familiar and we employ a 2nd order leap-frog

integrator to integrate the EOM.

2.3 The scheme of groups

We first describe an optimization scheme due to (Barnes, 1990), given in the paper with

a curious title A modified tree code: Don’t laugh, it runs. This scheme can be used

with any N-body algorithm that uses tree data structures to compute forces. The origin

of the optimisation is in the realisation that the tree walk used for computing forces is

computationally the most expensive component of a tree code. The idea is to have a

common interaction list for a group of particles that is sufficiently small. Given that we are

working with a tree code, it is natural to identify a cell in the tree structure as a group. One

can then add the contribution of particles within the group using direct pair summation.

The cell acceptance criterion (CAC) for the tree walk needs to be modified in order to take

the finite size of the group into account. In our implementation of the TreePM method,

we modified the standard CAC in the following manner:

Lcell ≤ (r − rm) θc (2.7)

where rm is the distance between the centre of mass of the group, and the group member

that is farthest from the centre of mass. This is calculated once before the force calculation

and does not add much in terms of overhead.

The modified CAC can be thought of as the standard CAC with a distance dependent

θc, with the value of θc decreasing at small r. As we require a larger number of operations



30 CHAPTER 2. A MODIFIED TREEPM CODE

for smaller θc, each tree walk with the modified CAC is expected to require more CPU

time than a tree walk with the standard CAC. However, as we do a tree walk for a group

of particles in one go, CPU time is saved as the time taken for tree walk per particle comes

down.

There is an overhead as there is a pair-wise force calculation within the group. The

cost of this overhead increases as the square of the number of particles in the group. In order

to keep the overhead small, one would like the group to be sufficiently small compared to

the size of the N-Body simulation and hence a maximum size cmax and an upper bound on

the number of particles in the group npmax is used. An upper limit on the size of the group

is pertinent because of the indirect effect through the change in the CAC. The effect of the

additional parameter cmax with the modified CAC will be seen when we discuss errors in

section 2.4. Our implementation of the modified method by using a different definition of

groups, with the additional parameter cmax and the modified CAC (eq. 2.7) ensure that the

short-range force is extremely accurate. This is different from previous implementations

(Barnes, 1990; Makino, 1991; Yoshikawa & Fukushige, 2005; Wadsley, Stadel, & Quinn,

2004) where the group scheme was parametrized by just one parameter npmax and the

standard CAC (eq. 2.4) used for tree traversal. We note in passing that the modified CAC

is crucial in order to limit errors. Indeed, we find that working with the standard CAC

leads to errors in short range force that are orders of magnitude larger.

2.3.1 Estimating Speedup

We model the modified Tree/TreePM method with the aim of estimating the speedup that

can be achieved. If N is the total number of particles, np the typical number of particles

in a group and ng the number of groups then clearly we expect ng × np = N . The total

time required for force calculation is a sum of the time taken up by the tree walk and the

time taken up by pair wise calculation within the group. Actual calculation of the force,

once the interaction list has been prepared takes very little time and can be ignored in this

estimate, as can the time taken to construct the tree structure. The time taken is:

Tg = αng lnN + βngn
2
p = α

N

np
lnN + βNnp (2.8)
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Here we have assumed that the time taken per tree walk scales as O(lnN) even with the

modified CAC1. The time taken is smallest when

np =

(
α lnN

β

)1/2

; Tgmin = 2βNnp = 2α
N

np
lnN (2.9)

Thus the optimum number of particles in the group scales weakly with the total number of

particles. In the optimum situation, we expect the tree walk and the pair wise components

to take the same amount of CPU time.

For comparison, the time taken for force calculation in the standard TreePM is:

T = αN lnN (2.10)

and we make the simplifying assumption that α is same for the two cases. The expected

speed up is then given by:

T

Tgmin
=

1

2

(
α lnN

β

)1/2

. (2.11)

The speedup for the optimum configuration scales in the same manner as the optimal

number of particles per group. A more detailed analysis of this type can be found in

Makino (1991).

The calculation we have presented above is approximate and ignores several factors,

some of these have already been highlighted above. There are other subtleties like the role

played by the finite range rcut over which the short range force is calculated. The size of

a group (cmax) cannot be varied continuously, and hence np is also restricted to a range

of values. Further, the number of operations do not translate directly into CPU time as

some calculations make optimal use of the capabilities of a CPU while others do not. For

example, the pair wise calculation is likely to fare better on processors with a deep pipeline

for execution whereas tree walk can not exploit this feature. The finite bandwidth of the

CPU-memory connection also has an impact on the scaling with N for large N . In the

following section, we discuss the implementation of the modified TreePM method and the

timing of the code with different values of parameters.

1This is an approximation as we expect the tree walk to depend on cmax, npmax
and θc as well. The

finite size of groups should lead to deviations from the O(lnN) variation and the deviation should scale as
the ratio of the volume of the group and the volume of the simulation box. As this ratio becomes smaller
for large simulation boxes, we feel that the approximation we have made is well motivated.
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2.4 A Modified TreePM Algorithm

Tests of the TreePM method have shown that 95−98% of the time goes into the short-range

force calculation. Keeping this in mind the scheme of groups was introduced to optimize

the short-range force calculation in terms of speed. A welcome feature is more accurate

force computation. Since the optimum set of TreePM parameters have been discussed in

(Bagla & Ray, 2003), we now look for the optimum choice of the additional parameters,

cmax and npmax , which describe the Modified TreePM algorithm. The analysis that follows

is divided into two parts. First we look at the optimum values of cmax and npmax which

minimise the time for short range force computation. Second, we study errors in total and

short range force with this new scheme.

2.4.1 Optimum Parameters of The Modified TreePM Algorithm

We choose rs = 1, rcut = 5.2rs and θc = 0.5 for the discussion that follows. With this

choice the error in force for 99% of the particles is less than a few percent (Bagla & Ray,

2003). We present analysis of performance of the modified TreePM for two different particle

distributions taken from an N−body simulation, with N = N3
box = 2003.

• An unclustered distribution that corresponds to the initial conditions of an N−body

simulation.

• A clustered distribution taken again from the same N−body simulation. The scale

of non-linearity for the clustered distribution is 8 grid lengths.

We have verified that the nature of results does not change significantly for simulations

with the number of particles ranging from 323 to 2563.

In figure 2.1 we show the time taken for computing the the short-range force (solid

line) and determine the values of (cmax, npmax) for which this timing is a minimum. Two

leading contributions to the calculation of short range force are shown separately:

• Intra-group particle-particle contribution (dashed line).

• Time taken for tree-walk and the related force calculation (dot-dashed line).
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Figure 2.1: Time taken for computation of the short term force in the Modified TreePM

method for an unclustered (left panel) and a clustered (right panel) distribution. Solid

lines represent the time taken by a complete short-range force calculation. Dashed lines

are the contribution to the force due to pairs within a group, the intra-group contribution.

Dot-Dashed lines are the contributions to force due to tree walk. Purple, black and blue

lines are for cmax = 3.125, 6.25, 12.5 respectively
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Given that a group is a cell with maximum width

cmax =
Nbox

2m
, (m is an integer), (2.12)

cmax can take discrete values. We choose to restrict up to cmax ∼ 2rcut as for larger cells,

the dominant contribution to force on a given particle arises from the intra-group particle-

particle interaction and the time taken for this is a sensitive function of the amplitude of

clustering.

The time taken for computing the short range force in both, unclustered (left panel)

as well as clustered (right panel), distributions is qualitatively described by our model (see

eq. 2.8). The pairwise force increases linearly with npmax , the maximum number of particles

in a group, and, scales as np, the average number of particles in a group. The time taken

for tree-walk decreases as n−0.65
pmax , reaches a minimum and then increases with npmax (blue

line) for the largest cmax used here. For other values of cmax we see the timing levelling

off near the minimum. The scaling n−0.65
pmax is different from 1/np we used in the analytical

model and the reason for this is likely to be in the approximations we used. We find that

the scaling approaches 1/npmax as we consider simulations with a larger number of particles.

One crucial reason for different scaling is the modified CAC we use here. This effectively

leads to a smaller θc for cells closer to the group and the number of such cells increases

with cmax.

In both cases the total time is still dominated by the tree-walk. The plateaus in the

plots often indicate that the number of particles in a group of maximum size cmax have

saturated. At initial times where the fluctuations are small there is also a lower bound on

the number of particles contained in a group. In the clustered distribution there is no such

lower bound but an upper bound, larger than the corresponding upper bound in case of

the unclustered distribution, exists and is dictated by the amplitude of clustering in the

distribution of particles.

From figure 2.1 we see that the optimum values of (cmax, npmax) = (12.5, 1024) &

(6.25, ≥ 1024) given by the minima of the solid blue line and the plateau of the solid

black line respectively. In the latter case the time taken does not change for npmax ≥ 1024

and we consider this to be a useful feature that makes cmax = 6.25 a better choice as

fine tuning of npmax is not required. For the optimum (cmax, npmax) one can see that
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Table 2.1: The following table lists the optimum values of (cmax, npmax) for simulations of

various sizes but having the same TreePM parameters: rs = 1, rcut = 5.2rs θc = 0.5.

Nbox = N1/3 coptmax noptpmax

64 4.0 ≥1024

128 4.0 ≥1024

160 5.0 ≥1024

200 6.25 ≥1000

force computation takes the same time for the clustered and the unclustered distributions.

Table 2.1 lists optimum values for (cmax, npmax) for N-Body simulations with different

number of particles. These numbers indicate that a good choice for cmax is one which is

closest to rcut, i.e. cmax ∼ rcut. The parameter npmax can be taken to be 103 ≤ npmax as we

find little variation beyond this point.

One can get an estimate of the overheads for the group scheme by looking at the limit

of npmax → 1. Here we compare the performance of the TreePM with the modified code

by plotting the time taken by the former as a large dot on the same panel where the time

taken for the modified code is shown in the form of curves. The difference between these

timings is around 0.1%.

The speedup for the optimal configuration of the modified TreePM, as compared

with the base TreePM code is ∼ 83. This is a huge gain and has to do with better

utilisation of the CPU cache. The speedup is less impressive for smaller simulations, and

is larger for bigger simulations. This is shown in figure 2.2 where we plot the time taken

for force calculation per particle per step as a function of the total number of particles

in the simulation. This is shown for the TreePM as well as the modified TreePM codes.

Performance on two different types of processors is shown here to demonstrate that the

optimisation works equally well on these. One can see that the TreePM code becomes

(CPU-Memory) bandwidth limited for simulations with more than 643 particles and the

time taken increases more rapidly than O(lnN). This does not happen in case of the
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modified TreePM where the scaling is O(lnN) throughout. There is a slight increase in

time for the modified code at Npart ∼ 106 which may be attributed to the finite size of

the CPU cache but unlike the unmodified code the scaling of the code does not break

down beyond this point. It is this difference that leads to impressive speedup for large

simulations. For simulations with up to 643 particles we get a speedup by a factor of four.

2.4.2 Errors in Force

We now study errors in force for the modified TreePM force. Errors are calculated with

respect to a reference force computed with very conservative values of TreePM parameters:

θc = 0.01, rs = 4.0, rcut = 5.2rs. With these values the reference force is accurate to 0.1%

(Bagla & Ray, 2003).

ε =
|Fref − F|
|Fref |

(2.13)

Here ε, Fref , F are the relative error, reference force and the typical force in a simulation.

We calculate errors for two distributions of particles:

• A uniform (unclustered) distribution.

• A clustered distribution taken from an N−body simulation.

Both distributions have N3
box = N = 1283 particles. The exercise we follow is similar to

(Bagla & Ray, 2003) but now we wish to highlight the effect of groups on errors in force.

Figure 2.3 shows the distribution of errors for different values of θc. The results

are shown for both the distributions being studied here: the unclustered distribution (left

panels) and the clustered distribution (right panels). The top row is with cmax = 2.0 and

the lower row is for cmax = 4.0. We used rs = 1.0 and rcut = 5.2rs for this figure. In the

case of the unclustered distribution error decreases with θc but saturates at θc = 0.3 and

does not decrease as θc is decreased further. The situation is different for the clustered

distribution where the errors are not sensitive to θc. This suggests that the errors are

dominated by the long-range force. The unclustered distribution has larger errors than the

clustered distribution. This is because the net force on each particle in the unclustered

distribution is small, whereas force due to a cell with many particles is large and many
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Figure 2.2: Time taken for short-range force calculation per particle per step for N = 323

to N = 2563 for the TreePM (thick line) and the Modified TreePM (thin line). The solid

line shows the performance of the codes on a single core of Intel 5160 (3.0 GHz) processor

and the dashed line shows the performance on a single core of the AMD Barcelona (2.1

GHz) processor.
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Figure 2.3: Distribution of errors in total force for different values of θc with cmax = 2.0

for unclustered (top left panel) and clustered (top right panel) distributions. Dashed, dot-

dash-dot-dash, dotted, dash-dot-dot-dot lines are for θc = 0.1, 0.2, 0.3 and 0.5 respectively.

We used rs = 1.0, rcut = 5.2rs for these plots. The corresponding plots for cmax = 4.0 are

shown in lower left and lower right panels.
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such large contributions have to cancel out to give a small net force. Truncation errors in

subtracting these large numbers seem to systematically give a net large error. Larger cells

contribute for larger θc hence the variation with θc is more dramatic in the unclustered

case. This effect is apparent in the discussion of the short-range force. With θc = 0.3, 1%

of particles have errors in total force greater than 4% in the unclustered case and 1.6% in

clustered case.

The effect of the modified CAC (eq. 2.7) is seen by comparing the plots of figure 2.3

for the unclustered distribution. The modified CAC is more stringent for larger value of

cmax and this is clearly seen in the error for θc = 0.5. There is a lack of variation in errors

with θc for θc < 0.5 indicating that at this stage the dominant contribution to errors is

from the long range force calculation. The short-range force is more accurate with a larger

cmax due to two reasons:

• The modified CAC has an r dependent opening angle threshold and requires a smaller

θc at small distances. This is likely to reduce errors.

• The number of particles in a group is larger for larger cmax. As the contribution of

force from these particles is computed by a direct summation over pairs, the errors

are negligible.

One may raise the concern that the errors in the present approach are likely to depend

on location of a particle within the group. We have checked for anisotropies in error in

force calculation in groups that may result and we do not find any noteworthy anisotropic

component.

In figure 2.4, we plot the errors in short-range force for the same distributions (un-

clustered and clustered) of particles for various values of θc. The reference short-range force

was computed with θc = 0.01, rs = 1.0, rcut = 5.2rs and cmax = 4.0. We only varied θc and

continued to use rs = 1.0, rcut = 5.2rs, cmax = 4.0 for computing the short-range force and

then the errors. For the purpose of computing errors in the short range force, we cannot

vary rs between the reference and the test model.

The effect of decreasing θc is more dramatic on errors in the short-range force. For

the unclustered case the errors for 1% of the particles decreases by nearly 2.5 decades to
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Figure 2.4: Distribution of errors in short range force for different values of θc for unclustered

(left panel) and clustered (right panel) distributions. Dashed, dot-dash-dot-dash, dotted,

dash-dot-dot-dot lines are for θc = 0.1, 0.2, 0.3 and 0.5 respectively. cmax = 4.0, rs = 1.0,

rcut = 5.2rs was used for these plots.
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Figure 2.5: Scaling of the time taken for short-range force calculation with θc for the

TreePM (left panel) and the modified TreePM (right panel).

2 × 10−4% for θc = 0.1. In the clustered case the errors for 1% of the particles decrease

by nearly 1.5 decades to 3.4 × 10−2% for θc = 0.1. One can obtain very high accuracy in

short-range force by taking θc = 0.2. As the short range force is the dominant one at small

scales, the TreePM code can be used to follow the local dynamics fairly well by using a

smaller θc. The impact of a small θc on CPU time remains to be seen though.

In figure 2.5 we look at how the CPU time for force calculation scales with θc for the

TreePM (left panel) and the modified TreePM (right panel). We compute the time taken

for short-range force calculation per particle per timestep. We have seen in figure 2.1 and

the corresponding discussion that clustering does not seriously affect the performance of

the TreePM code. We therefore do not repeat the exercise for distributions with different

levels of clustering. We performed the short-range force timing on a clustered distribution

taken from an N−body simulation with N3
box = N = 1283. We used rs = 1.0 and rcut = 5.2

for the TreePM and the modified TreePM. In addition cmax = 4.0, npmax = 1024 were

used for timing the modified TreePM. When θc is decreased from 0.5 to 0.2 the time

for force computation per particle increases by 7.2% for the TreePM and 21% for the
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modified TreePM, the fractional increase being larger for the modified code because of the

modified CAC. However the modified code is around one order of magnitude faster than the

unmodified one for this case and even more for a larger simulation, therefore this scaling

with θc affects little the performance of the modified code. The speedup of the modified

TreePM over the TreePM when θc is reduced from 0.5 to 0.2 decreases from 22.2 to 19.6,

respectively. A nice feature of TreePM codes is that unlike tree codes, the CPU time taken

by TreePM codes is less sensitive to θc
2. Thus one can obtain much higher accuracy for

the short range force with a TreePM code for a considerably smaller cost in terms of the

CPU time.

2.5 A Hierarchy of Timesteps

Due to the existence of a large range of dynamical time scales in a simulation of large scale

structures, computing forces for slowly moving particles at every timestep is not required.

It is better to integrate the orbits of rapidly moving particles with a smaller timestep than

those that move relatively slowly, this reduces the number of force calculations that are

required. As force calculation is the most time consuming component of an N-Body code,

this results in a significant reduction of the CPU time required. We have implemented a

hierarchical time integrator similar to that used in GADGET-2 (Springel, 2005), in which

particle trajectories are integrated with individual timesteps and synchronised with the

largest timestep. As we allow the block time step3 to vary with time, we work with the so

called KDK approach (Kick-Drift-Kick) in which velocities are updated in two half steps

whereas position is updated in a full step. It can be shown that with a variable time step,

KDK performs better than DKD (Drift-Kick-Drift) (see the GADGET-2 paper (Springel,

2005) for details.). In our implementation of the hierarchy of time steps, the smaller time

steps differ by an integer power (n) of 2 from the largest, block time step. An array is then

used to store the value n which determines the timestep of the particle. The code drifts all

2For example, the CPU time for a tree code increases by about 500% for the same change in θc for a
simulation with N ≈ 104, and the increase in CPU time is larger for simulations with a larger number of
particles (Hernquist, 1987).

3Same as the largest time step.
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Table 2.2: This table lists the time taken for a complete simulation run for the unoptimised

TreePM, TreePM with hierarchical time steps, TreePM with the group scheme, and finally

the TreePM with the group scheme as well as the hierarchical time steps and their speedup

with respect to the base TreePM.

Run Groups Individual Timesteps Time (secs) Speedup w.r.t Run 1

1 No No 401983 1.0

2 No Yes 145240 2.77

3 Yes No 67639 5.94

4 Yes Yes 31612 12.72

the particles with the smallest timestep to the next time, where a force computation is done

for particles that require an updating of velocity (Kick). We have tested the robustness of

the hierarchical KDK integrator by successfully integrating the 3−body problem discussed

by Szebehely & Peters (Szebehely & Peters, 1967).

Solving the equation of motion with a hierarchy of time steps can be combined with

the group scheme. Since tree construction takes a small fraction of the total time, the tree

structure can be reconstructed whenever particles require an updating of velocity. The

groups that contain such particles can then be identified and particles within each group

can be reordered into two disjoint sets: ones that need an updating of velocity and others

that don’t. Force is computed only for particles in the first set. Since each group represents

a very small fraction of the total number of particles, the overhead of reordering particles

is negligible.

Table 2.2 lists the time taken for a complete simulation run for the unoptimised

TreePM, TreePM with hierarchical time steps, TreePM with the group scheme, and finally

the TreePM with the group scheme as well as the hierarchical time steps and their speedup

with respect to the base TreePM. The model used for this comparison is a power law model

with n = −1.0, N3
box = N = 643. We used rs = 1.0, rcut = 5.2rs, θc = 0.5 and ε = 0.2 in

all the runs. Here ε is the softening length. We used cmax = 4.0 and npmax = 1024 for the
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modified TreePM.

We note that the hierarchical integrator gives a speedup of better than a factor 2,

irrespective of whether the scheme of groups is used or not. The speedup is larger if the

softening ε is smaller, as the number of levels in the hierarchy increases with decreasing ε.

The scheme of groups on the other hand gives a speedup of 4 or better for small simulations,

and a much larger speedup for bigger simulations. This speedup has little dependence on

the TreePM parameters, i.e. θc, rs, rcut. The combination of two optimisations gives us a

speedup of 10 or more even for small simulations.

2.6 Discussion

The scheme of groups when combined with a hierarchical integrator for the equation of

motion guarantees a speedup of better than 10 for any N−body code which uses tree

structures for computing forces. From the algorithmic point of view one does not expect a

much larger speedup for larger N . However, as seen in figure 2.2, the scheme also allows us

to make better use of the cache on CPUs and the effective speedup can be very impressive.

We have demonstrated that memory overhead is negligible, and as was observed in (Barnes,

1990) this optimisation just takes around 200 extra lines of code. A welcome feature is more

accurate force computation than the code without this modification. This modification in

principle introduces two additional parameters (cmax, npmax), but these are not independent

and we have found that cmax ∼ rcut and npmax ≥ 103 are good choices across a range of

simulation sizes.

Our analysis of the optimisation has been restricted to fixed resolution simulations.

In case of zoom-in simulations the range of time scales is much larger and a more com-

plex approach for combining the group scheme with the hierarchy of time steps may be

required. Relative efficacy of the two optimisations may be very different in such a case

when compared with the example studied in the previous section.

In summary, we would like to point out that the scheme of groups leads to a significant

optimisation of the TreePM method. The amount of CPU time saved is significant for

small simulations, and cache optimisation leads to even more significant gains for large
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simulations. We have shown in this paper, that it is possible to incorporate the scheme in

a simple manner in any tree based code. The overall gain is very impressive as we are able

to combine this with the use of a hierarchy of time steps. The possibility of combining the

two optimisations has been explored in this work for the first time.





Chapter 3

The Adaptive TreePM Code

One of the limitations of most cosmological N-body codes stems from the use of a force

softening length that is much smaller than the typical inter-particle separation. This leads

to departures from collisionless evolution that is desired in these simulations. We propose

a particle based method with an adaptive resolution where the force softening length is

reduced in high density regions while ensuring that it remains well above the local inter-

particle separation. The method, called the Adaptive TreePM, is based on the TreePM

code. We present the mathematical model and an implementation of this code, and demon-

strate that the results converge over a range of options for parameters introduced in gen-

eralizing the code from the TreePM code. We explicitly demonstrate that the evolution

of density pertrubations is collisionless in collapse of an oblique plane wave. We compare

the code with the fixed resolution TreePM code and also an implementation that mimics

adaptive mesh refinement methods and comment on the agreement, and disagreements in

the results. We find that in most respects the ATreePM code performs at least as well

as the fixed resolution TreePM in highly over-dense regions, from clustering and number

density of haloes, to internal dynamics of haloes. We also show that the adaptive code is

faster than the corresponding high resolution TreePM code.

47
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3.1 Introduction

In modeling gravitational clustering, cosmological N-Body codes should ensure the follow-

ing:

• The universe does not have a boundary. Therefore cosmological simulations need to

be run with periodic boundary conditions1. The simulation volume should be large

enough for the effects of missing modes to be small (Bagla & Ray, 2005; Bagla &

Prasad, 2006; Power & Knebe, 2006; Prasad, 2007; Bagla, Prasad, & Khandai, 2009).

• The mass of each particle in simulations should be much smaller than mass scales of

interest in the simulation output. This is to ensure adequate mass resolution.

• Each particle in an N-Body simulation represents a very large number of parti-

cles/objects in the universe. Thus we must ensure that pair-wise interaction of

N-Body particles is softened at scales comparable with the local inter-particle separa-

tion. If this is not ensured then the resulting two body collisions introduce errors in

the resulting distribution of particles (Splinter et al., 1998; Binney & Knebe, 2002).

In spite of the vast improvement in computing power, simulators have often had to com-

promise on one or more of these points. Often, errors also creep in due to the approximate

methods used for computing force in simulations. A large fraction of current cosmological

N-Body codes suffer from collisionality or force biasing. Force is biased when softening

lengths ε are much larger than the local mean inter-particle separation, r̄ij. Whereas a

complementary effect, collisions, occur whenever ε� r̄ij. The reader is referred to Dehnen

(2001) for a detailed discussion on these two effects. Codes that adapt their softening

lengths to local densities generally are mostly of the adaptive mesh refinement type. These

use a grid for solving the Poisson equation and often have anisotropies in force at scales

comparable to the size of a grid cell. Codes that use fixed softening lengths are not entirely

collisionless, and, in highly over-dense regions force is biased. The TPM (Xu, 1995; Bode,

Ostriker, & Xu, 2000; Bode & Ostriker, 2003) is a particle based code with a one step adap-

tive resolution. However, in this case the use of the unmodified PM approach for computing

1An exception are simulations of large spherical volumes that do not suffer significant deformation
during the course of evolution.
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the long range force introduces significant errors at scales comparable to the grid. In this

work we describe a code that addresses all three issues of force anisotropy, collisionality

and force biasing by employing an adaptive softening formalism with the TreePM code.

The choice of the optimal softening length has been discussed at length (Merritt,

1996; Athanassoula et al., 2000; Dehnen, 2001; Price & Monaghan, 2007). These studies

were carried out in the context of isolated haloes in dynamical equilibrium, e.g., Plum-

mer and Hernquist profiles, therefore errors can be defined clearly. It is also possible to

compare various physical quantities in simulations with analytical expressions derived from

the distribution function. Dehnen (2001) derived analytical expressions for errors in the

context of these profiles. This work suggested that the optimal softening length must adapt

to the local inter-particle separation as a function of space and time. Price & Monaghan

(2007) developed an energy-momentum conserving formalism with adaptive softening and

demonstrated that it was superior to fixed softening. This code was developed for problems

where expansion of the Universe is not relevant.

The evolution of perturbations at small scales depends strongly on the mass and

force resolution. High force resolutions can lead to better modeling of dense haloes, but

gives rise to two body collisions in regions where the softening length is smaller than the

local inter particle separation (Splinter et al., 1998; Binney & Knebe, 2002; Diemand et

al., 2004; Binney, 2004; El-Zant, 2006; Romeo et al., 2008). As all particles in very high

density regions go through such a phase during evolution, any errors arising due to two

body collisions can potentially effect the structure of high density haloes that form. A high

force resolution without a corresponding mass resolution can also give misleading results

as we cannot probe shapes of collapsed objects (Kuhlman, Melott, & Shandarin, 1996). In

addition, discreteness and stochasticity also limit our ability to measure physical quantities

in simulations, and these too need to be understood properly (Thiébaut et al., 2008; Romeo

et al., 2008). In all such cases, the error in modeling is large at small scales. It is important

to understand how such errors may spread to larger scales and affect physical quantities.

This work is organized as follows. In §3.2 we describe the formalism for adaptive

softening in a cosmological N-body code. In §3.3 we describe how adaptive softening is

implemented with the TreePM method. We briefly discuss the performance characteristics

of ATreePM in §3.4. We discuss validation of the ATreePM code in §3.5 and conclude in
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§3.6.

3.2 Adaptive Force Softening

3.2.1 Formalism

The aim of any collisionless N-body code is to self consistently evolve the phase-space

distribution function (DF) f(r,v, t) under its own gravitational force field F(r, t):

∂tf + (∂rf).v + (∂vf).F = 0 (3.1)

F(r, t) = −G
∫ ∫

d3r′ d3v
r− r′

|r− r′|3
f(r′,v, t) (3.2)

The approach that one takes is to sample the DF, by N phase-space points, {ri,vi}t=ti ,
at initial time t = ti. Liouville’s theorem then states that evolving the trajectories of

these points to any time t > ti will be a representation of the DF at that time. Since the

system is a collisionless one, one has to suppress artificial two-body collisions arising out of

interactions between particles that are used for sampling the density field. One therefore

assigns a finite size to N-Body particles which ensures softening of force at small scales,

instead of assuming these to be point particles. The density field when sampled by point

particles,

ρ(r) =

∫
d3vf(r,v, t) ≡

N∑
j=1

mjδ
3
D(r− rj) (3.3)

is now smoothed at small scales if we assign a finite size ε to every particle:

ρ(r) =

∫
d3vf(r,v, t) ≡

N∑
j=1

mjW (|r− rj|, ε) (3.4)

where W (u, ε) is known as the smoothing kernel and we have assumed that particles are

spherical in shape. Here mj is the mass of the jth particle. We can now integrate the

Poisson equation to obtain the expression for the kernel for computing force and potential.

Both the quantities are softened at scales below the softening length ε. We choose to work

with the cubic spline kernel (Monaghan & Lattanzio, 1985) whose expression is given below.
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Complete expressions for the potential and force are given in the Appendix (See Eqn.(A1,

A2)).

W (u, ε) =
8

πε3


1− 6(u

ε
)
2

+ 6(u
ε
)
3
, 0 ≤ u

ε
< 0.5

2(1− u
ε
)
3
, 0.5 ≤ u

ε
< 1.0

0, 1.0 ≤ u
ε

(3.5)

In the context of individual softening lengths the density at the location of the ith particle

is given by:

ρ(ri) =
N∑
j=1

mjW (rij, εi) =
nn∑
j=1

mjW (rij, εi) (3.6)

where i,j indicate the particle indices, rij = |ri − rj| and εi ≡ ε(ri). The summation in

principle can be extended upto infinity if the kernel is infinite in extent (e.g., plummer,

gaussian kernels). But since such kernels tend to bias the force (Dehnen, 2001; Price &

Monaghan, 2007) we work with kernels with a compact support, in particular the cubic

spline kernel. Such kernels ensure that the force is 1/r2 beyond the softening scale. nn is the

number of the nearest neighbors within εi for the particle i. In the discussion that follows

we assume that this number is fixed for every particle and sets the value of the softening

length εi. We implicitly assume it in our summation. Integrating the Poisson equation we

obtain the Green’s function for the potential φij ≡ φ(rij, εi), where the functional form for

φ is given in the Appendix (See Eqn.(A1, A2)).

With the introduction of individual softening lengths for particles, the symmetry of

the potential is lost and momentum conservation is violated. Since ε(r) is now a local

quantity, the EOM is incomplete if one takes the expression of force with the fixed soft-

ening length ε replacing it by a local softening length ε(r). Hence energy conservation

also gets violated. This is because the force is derived from the potential and with the

introduction of a local softening length ε(r) in the potential, the gradient must also act on

ε(r) giving us an extra term. Traditionally this grad-ε (∇ε) term has been ignored since in

typical applications these were found to be subdominant when compared to the usual force

(Gingold & Monaghan, 1982; Evrard, 1988; Hernquist & Barnes, 1990; Monaghan, 1992).

It has been shown recently (Price & Monaghan, 2007), that this term plays an important

role in N-Body simulations. We study the impact of ignoring this term in Cosmological

simulations.
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A remedy for momentum non-conservation is to use a symmetrized softening length

εij =
1

2
(εi + εj) (3.7)

and plug it into the expression for density to re-derive a symmetrized expression for the

potential as φ(rij, εij). This prescription changes the softening length and hence the neigh-

borlist, which one has to recompute. Another disadvantage is that with this prescription

for symmetrization, the number of neighbors is not fixed for every particle and hence er-

rors in all smoothed estimates are not the same for every particle. An alternate method

(Hernquist & Katz, 1989) is to symmetrize the kernel itself.

W̃ij = W̃ji =
1

2
[W (rij, εj) +W (rij, εi)]

φ̃ij =
1

2
[φ(rij, εj) + φ(rij, εi)] (3.8)

The total potential is thus

Φtot =
1

2

N∑
i,j

φ̃ij (3.9)

We can use this to write a Lagrangian which is manifestly symmetric and this ensures

momentum conservation. Energy is conserved only if the ∇ε term is retained in the EOM.

L =
N∑
i

1

2
miv

2
i −

G

2

N∑
i,j

mimjφ̃ij (3.10)

The EOM of motion can be derived with this Lagrangian (the reader is referred to

Price & Monaghan (2007) for details)

dvi
dt

= − G
∑
j

mjφ̃
′
ij

ri − rj
|ri − rj|

− G

2

∑
j

mj

[
ζi
Ωi

∂Wij(εi)

∂ri
+
ζj
Ωj

∂Wij(εj)

∂ri

]
(3.11)

Where the first term is the standard Newtonian force term (we refer to it as the ∇φ term).

The second is the energy conserving ∇ε term which would be zero for fixed softening.
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Notice that all terms are antisymmetric in i, j and hence the total momentum is conserved.

Here ζ and Ω are defined as:

ζi ≡
∂εi
∂ρi

∑
j

mj
∂φ(rij, εi)

∂εi
(3.12)

Ωi =

[
1− ∂εi

∂ρi

∑
j

mj
∂Wij(εi)

∂εi

]
(3.13)

Expressions for ∂W
∂r

, ∂W
∂ε

and ∂φ
∂ε

are given in the Appendix (See A3,A4 andA5). As εi ∝ ρ
− 1

3
i

we have ∂εi
∂ρi

= − εi
3ρi

. The term Ω term ensures that the EOM is accurate to all orders in ε

(Springel & Hernquist, 2002).

3.3 The Adaptive TreePM Method

We choose to implement adaptive softening with a modified TreePM code described in

chapter 2. In principle one can also incorporate a similar formalism for treecodes (Springel,

Yoshida, & White, 2001), P3M codes (Couchman, 1991; Couchman, Thomas, & Pearce,

1995) and other variants like TPM (Xu, 1995), TreePM (Bagla, 2002; Springel, 2005) and

GOTPM (Dubinski et al., 2004). We shall discuss one advantage of using the TreePM code

with the group optimizations below.

We rewrite the short range potential and force in real space:

ϕsr(r, ε) = Gmφ(r, ε)erfc

(
r

2rs

)
(3.14)

Fsr(r, ε) = Gmf(r, ε)C

(
r

rs

)
(3.15)

C

(
r

rs

)
=

[
erfc

(
r

2rs

)
+

r

rs
√
π

exp

(
− r2

4r2
s

)]
(3.16)

Here erfc is the complementary error function. φ(r, ε) and f(r, ε) are the usual potential

and force kernels, respectively. C(r/rs) modifies the softened Newtonian force kernel f(r, ε)

to the short-range force Fsr(r, ε). The expression for φ(r, ε) and f(r, ε) depend on the kernel

W (r, ε) used for smoothing and are given for cubic spline in the Appendix. We find that



54 CHAPTER 3. THE ADAPTIVE TREEPM CODE

tabulating erfc(u) and C(u) and using interpolation to compute these functions is much

more effective than calculating them every time.

The modified TreePM method is characterized therefore by effectively four param-

eters, rs, rcut, θc and npmax . For all our tests we choose conservative values rs = 1.0,

rcut = 5.2rs, θc = 0.3 and npmax = 2048 which give errors below 1% in force. All lengths

are specified in units of the PM grid, i.e., size of one cell of the PM grid = 1.

3.3.1 Estimating the Softening Length

Our first task is to get an estimate of the softening length for each particle. A natural way

to extract a local length scale uses the numerical value of local density. The local number

density is related to the softening length as:

ε(r) ∼
(

nn
n(r))

) 1
3

(3.17)

n(r) is the number density at the location of the particle and we assume all particles

have the same mass. Here, nn is a reference number and we take it to be the number of

neighbors used for estimation of the number density. The above equation is implicit and

can be solved iteratively, see, e.g., Springel & Hernquist (2002); Springel (2005); Price &

Monaghan (2007) for details. Price & Monaghan (2007) have shown that errors are not

very sensitive to the exact value of nn. We choose nn = 32 in our simulations, and also

comment on variation in results with this choice.

We are using the formalism developed by Price & Monaghan (2007) for achieving an

adaptive resolution in gravitational interactions of particles. As the formalism was devel-

oped in the context of SPH codes, and some of the quantities required can be computed

naturally using the SPH method. These methods were used even though the gravita-

tional interaction is completely collisionless. We follow a similar implementation and use

methods commonly used in SPH simulations, even though there are no hydrodynamical

effects present in the gravitational interaction being studied here. For an overview of SPH

methods, please see Lucy (1977); Gingold & Monaghan (1977).

The SPH methods assign values for functions like the density to particles by averaging

over nearest neighbors. The construction of the list of nearest neighbors is an essential
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requirement in these methods. All quantities (ρ, ∇ε, Ω, ζ etc.) can be computed at runtime

with this neighborlist once we have converged to a value for ε by solving Eqn.(3.17). We

compute the neighborlist using linked lists (Hernquist & Katz, 1989).

We put bounds on the maximum softening length, εmax and εmin. A maximum bound

is required so that force softening is restricted to the short-range force only, we choose

εmax = rs
2

in order to ensure that the long range force is of order 1% of the total force

(or smaller) at scales where force softening is important. This ensures that any errors

arising from non-modification of the long range force are smaller than 1%, if one puts

a lower threshold on the maximum allowed error then the scale εmax has to be lowered

correspondingly. Alternatively, one can work with a larger rs and then it becomes possible

to allow a larger εmax.

In our implementation a neighbor search is carried out only upto εmax. Particles

which do not have nn neighbors within εmax are assigned εi = εmax and the spherical top

hat (STH) density is assigned with the number of neighbors within εmax. For these particles

we assign Ω = 1 and ζ = 0, which makes their ∇εi = 0. The ∇ε term is calculated before

the short-range force so that the individual softening lengths needed for short-range force

calculation are also assigned in the process.

3.3.2 Memory Requirements

Even though we use two separate data structures, namely linked lists for∇ε and tree for∇φ
in order to compute the total short-range force, additional memory requirements compared

to TreePM are minimal: we require one additional array for storing the softening lengths.

The ∇ε term does not require an additional array since it is a component of the short-range

force and it can be computed at run time. This is because the two data structures are never

required at the same time. We require specification of the largest force softening length in

a given cell (See the subsection on the cell acceptance criterion below.). This amounts to

a single precision array of the same size as the number of cells in the tree.

An advantage of using an analytical splitting of force, in the manner TreePM does, is

that computation of short-range force does not need global data structures. For example

one can geometrically divide regions into smaller regions and construct local trees and
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linked lists in them (just like one would go about doing it in a distributed code) and

iterate through these regions for computing short-range force instead of constructing one

global data structure for the entire simulation volume for computing the short-range force

(Dubinski et al., 2004). This reduces memory usage significantly and the dominant part is

taken up by the arrays required for computing the long range PM force.

3.3.3 Timestepping Criterion and Integration

We have implemented a hierarchical time integrator similar to that used in GADGET-2

Springel (2005), in which particle trajectories are integrated with individual timesteps and

synchronized with the largest timestep. As we allow the block time step2 to vary with

time, we work with the so called KDK approach (Kick-Drift-Kick) in which velocities are

updated in two half steps whereas position is updated in a full step. It can be shown that

with a variable time step, KDK performs better than DKD (Drift-Kick-Drift) (see Springel

(2005) for details.). We give separate PM (long range, global) kicks and Tree (short range,

individual) kicks3. The block timestep ∆t
PM

is determined by the particle which has the

maximum PM acceleration a
PM

max:

∆t
PM

= δt

(
εmax
aPMmax

)1/2

(3.18)

Here δt is the dimensionless accuracy parameter. In our implementation of the hierarchy

of time steps, the smaller time steps differ by an integer power (n) of 2 from the largest,

block time step. An array is then used to store the value n which determines the timestep

of the particle. Individual timesteps ∆ti are first calculated:

∆tsri = δt

(
εi
asri

)1/2

(3.19)

and then the appropriate hierarchy n is chosen depending on this value. Here asri and εi

are the moduli of the individual short-range acceleration (sum of the ∇φ and ∇ε terms)

and the softening lengths respectively. TreePM has a similar time-stepping criterion with

εi replaced by ε.

2Same as the largest time step.
3Tree kick includes the contribution of the ∇ε term.
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The code drifts all the particles with the smallest timestep to the next time, where a

force computation is done for particles that require an updation of velocity (Kick). However

the neighborlist and individual softening lengths εi are computed for all particles at every

small timestep. This is because, even though some particles do not require a velocity

update, their neighbors might require one for which they would contribute through their

updated softening lengths. The ∇ε term however is computed only for those particles

requiring a velocity update.

Within a given block time step, the smaller time steps are constant for a given particle.

The time smaller step changes across block time step and this brings in inaccuracies in

evolution of trajectories. It is possible, in principle, to ensure that the second order accuracy

is maintained here. However, we find that the time steps for particles change very slowly

and this change does not affect trajectories in a significant manner.

The Courant condition is satisfied for the choice of δt we use. Indeed, we chose δt

by requiring that two particles in a highly eccentric orbit around each other maintain the

trajectory correctly for tens of orbits.

3.3.4 Cell Acceptance Criterion For ATreePM

The adaptive force resolution formalism requires us to symmetrize force between parti-

cles that are separated by a distance smaller than the larger of the two softening lengths.

Without this, the momentum conservation cannot be ensured. For pairs of particles sep-

arated by larger distances, there is no need to explicitly symmetrize force as there is no

dependence on the softening length at these scales4. Thus the cell acceptance criterion

needs to be changed within the tree part of the code to ensure that for pairs of particles

4As an aside we would like to note that the Tree method does not conserve momentum explicitly.
This is because the tree traversal approximates the force due to pairwise interactions, and in the process
the pairwise symmetry is lost. In the modified Tree method (Barnes, 1990; Makino, 1991; Yoshikawa &
Fukushige, 2005; Khandai & Bagla, 2009) explicit pairwise force is computed for particles within each group.
Particles within a group have a common interaction list for force due to particles outside the group. Exact
pairwise PP force is computed explicitly for intra-group particles and we have a pairwise symmetry for this
component, but for interaction with particles outside the group there is no explicit pairwise symmetry and
hence no explicit momentum conservation.
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Figure 3.1: Wall clock timing for TreePM (left) as a function of ε and ATreePM (right)

with ∇ε (solid) and without ∇ε (dashed) as a function of nn

separated by the critical distance, forces are computed through pairwise particle-particle

(PP) interaction. In our implementation, along with particles, cells (and hence groups)

are assigned softening lengths corresponding to the particle contained within the cell that

has the largest softening length. The CAC, that is modified when we go from the TreePM

to the modified TreePM (Khandai & Bagla, 2009) has to be refined further to take into

account the largest softening lengths for particles within cells and groups whose interaction

is to be computed.

(L
cell

+ ε
max

cell
)

(rgcm − Lgroup − ε
max

group
)
≤ θc (3.20)

ε
max

cell
, ε

max

group
are the softening lengths of the cell and group (in the sense explained above)

respectively. rgcm is the distance separating the centers of mass of the group and the cell.

L
cell

is the size of the cell and Lgroup is the distance to the furthest particle from the center of

mass of the group. This CAC ensures that the interaction of particles separated by less than

the softening length is computed in a direct pairwise manner and hence can be explicitly

symmetrized. These are also the pairs for which the ∇ε term needs to be computed.
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3.4 Performance characteristics

3.4.1 Timing

We now look at the wall clock time as a measure of performance between different codes.

We studied evolution of a power law model with n = −1 using 1283 particles up to the

stage where the scale of non-linearity is 6 grid lengths. More details of the run are given

in the section on validation of the ATreePM code. Figure 3.1 shows wall clock time as a

function of softening length ε for TreePM (left panel) and the wall clock time as a function

of nn for the ATreePM codes.

We can qualitatively understand the slope for the TreePM curve by looking at the

equivalent time-stepping criterion as Eqn.(3.19) for TreePM.

∆tsri = δt

(
ε

asri

)1/2

(3.21)

From here the naive expectation is that the time taken should scale as ε−0.5. The slope of

the curve is in the range −0.55 to −0.65. The reason for this small deviation lies in our use

of a hierarchy of time steps, where trajectories of all the particles are not updated at every

time step. However, positions of particles are updated at every time step and this operation

as well as those related to creating the tree structure at every step add an overhead. This

overhead becomes more and more important at small ε where we have many more levels of

hierarchy realized in a simulation. This leads to steepening of the curve from the simple

expectation given above.

For the ATreePM, we expect softening lengths to be larger for larger nn. On the

other hand, a larger nn implies a larger neighborlist and the time taken for setting up the

neighborlist increases. The second effect is the dominant one and we see that the time

taken for Adaptive TreePM increases with nn. We see that time taken by both variants of

ATreePM is similar for nn = 32 and 48. This indicates that the time taken for calculation

of the ∇ε term is negligible. There is a difference between the timing for nn = 16, as the

code with the ∇ε does not evolve the system correctly: this can be seen in all the indicators

like the amplitude of clustering, mass function, etc., presented in the next section. We see

that TreePM with ε = 0.025 takes 50% more time than ATreePM with nn = 32, whereas
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Figure 3.2: Left : Cumulative distribution of softening lengths at the final epoch of an

N-Body simulation (See Figure 3.8 bottom-left). Right : Average square error (ASE) for

ATreePM with ∇ε (solid line) and ATreePM without ∇ε (dashed line) as a function of nn

.

the time taken is comparable with ATreePM with nn = 48.

Since ε is assigned by hand in TreePM, the use of a small softening length means a

considerable number of particles obtain a small timestep even though the acceleration for

these particles is small and does not vary rapidly with time. In the hierarchical integrator

that we use, this means that force computation is done more often within a block timestep.

In ATreePM on the other hand a small softening is only assigned to particles in over-

dense regions. This saves time in the under-dense and not so over-dense regions and the

ATreePM code devotes more time to evolving trajectories in highly over-dense regions. This

is illustrated in Figure 3.2 where we have plotted the cumulative distribution of softening

lengths at the final epoch in one of the simulations used here (see lower-left panel of

Figure 3.8). The softening length has been computed here for nn = 32. We find that

only 5% of the particles have a softening length smaller than the smallest softening length

ε = 0.025 used for the fixed resolution simulations. Even at this epoch where highly non-
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linear clustering is seen, nearly half the particles have a softening length corresponding to

the maximum value of 0.5. This shows how we are able to evolve the system in an ATreePM

simulation with a lower computational cost while resolving highly over-dense regions.

3.4.2 Errors

In this section we discuss the dependence of errors on nn. In cosmological simulations it

is difficult to define errors when softening lengths are varied due to the lack of a reference

setup. Nevertheless we can choose the optimal softening length such that one minimizes

the globally averaged fluctuation in force as the softening lengths are varied. Following

Price & Monaghan (2007), we define average square error:

ASE(nn) =
B

N

N∑
i

|fi(nn)− fi(nn + ∆nn)|2 (3.22)

N is the total number of particles. B is a normalization constant which is taken as 1/f 2
max,

with fmax being the largest value of force in either runs. ∆nn is the change in nn and we

choose this to be 8. The behaviour of errors with nn remains qualitatively the same with

other values of ∆nn. Figure 3.2 shows ASE as function of nn for ATreePM with ∇ε (solid

line) and ATreePM without ∇ε (dashed line). These are computed for the same clustered

distribution of particles. The qualitative behavior of ASE here is same as seen in (Price &

Monaghan, 2007). At small nn ATreePM with ∇ε has larger errors than ATreePM without

∇ε. This is also reflected in the poor evolution of density fluctuations with nn = 16 for the

ATreePM with ∇ε, discussed in the next section. Both variants have a minima, the value

of error at the minima being lower for ATreePM with the ∇ε term. Another interesting

feature is that the region where errors are small is fairly broad for the ATreePM with the

∇ε term. For larger nn the error increases sharply for ATreePM without the ∇ε term.

Thus the optimal configuration is the one with the ∇ε term and 20 ≤ nn ≤ 32.
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Figure 3.3: Top row: Phase plots of the normal (to one of the planes of collapse) component

of the velocity vs normal component of particle displacement for TreePM with ε = rs
10
, rs

4
, rs

2

(columns 1-3 respectively). Bottom row: Transverse component of velocity vs Normal

component of velocity along one of the planes of collapse for the above runs. The scatter

plot shows this for a random subset of particles, whereas the line shows the average value

in a few bins.
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Figure 3.4: Top row: Phase plots of the normal component of particle displacement vs

normal component of the velocity for ATreePM with εi ≤ rs
2

for nn = 16 without ∇ε,
nn = 16 with ∇ε and nn = 32 with ∇ε (columns 1-3 respectively). Bottom row: Normal

component of velocity vs Transverse component of velocity along one of the planes of

collapse for the above runs. The scatter plot shows this for a random subset of particles,

whereas the line shows the average value in a few bins.
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3.5 Validation of the Adaptive TreePM code

Cosmological N-Body simulations lack the equivalent of equilibrium distribution functions

for haloes, e.g., Plummer halo that may be used to validate a new code. Use of such

equilibrium distributions allows one to quantify errors in a clean manner. However, given

that the formalism we use is the same as that presented by Price & Monaghan (2007), and

that their implementation works well with such tests gives us confidence in the formalism.

In the following discussion, we will test the Adaptive TreePM code in a variety of ways and

look for numerical convergence. We compare the performance of the Adaptive TreePM

with the fixed resolution TreePM. We also study the role of the ∇ε term and check if

dropping this term leads to significant changes in the evolution of clustering. This last

point is important as most AMR codes do not have an equivalent term in the equation of

motion.

3.5.1 Two-body collisions: plane wave collapse

We start by checking whether the adaptive force softening suppresses two body collisions

in the Adaptive TreePM code. We repeat a test recommended by Melott et al. (1997)

where they study the collapse of an oblique plane wave. In this test, the collapse should

not lead to any transverse motions if the evolution is collisionless. Melott et al. (1997) had

shown that codes where the force softening length is much smaller than the inter-particle

separation are collisional and lead to generation of significant transverse motions. Some

authors (Heitmann et al., 2005) have stated that the failure to ensure planar symmetry may

not have a one to one correspondence with collisionality. However, the test is nevertheless

an important one and we present the results with the ATreePM code here.

We use exactly the same initial perturbations as used by Melott et al. (1997). The

simulations are done with 643 particles and a 643 grid. We choose rs = 1 grid length. Other

simulation parameters are as described in the subsection §3.3 on the TreePM code. The

output is studied at a = 3, following Melott et al. (1997).

We first conduct the test with the fixed resolution TreePM code. Top row of the

Figure 3.3 shows the phase portrait along the direction of collapse for different choices of
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the force softening length. The softening length varies between 0.1 ≤ ε ≤ 0.5 in units of the

mean inter-particle separation. We see that the phase portrait in the multi-stream region is

heavily distorted for the smallest force softening length but is correct for the largest force

softening length used here. This reinforces the conclusions of Melott et al. (1997) that

using a force softening length that is much smaller that the mean inter-particle separation

leads to two body collisions. This point is presented again in the lower row of Figure 3.3

where we show a scatter plot of modulus of the transverse (to the direction of collapse)

velocities and radial velocities. This is shown for a random sub-set of all particles. We see

that transverse motions are significant for the simulation with the smallest force softening

length, but are under control for the largest force softening length. Thick line in the lower

panels connects the average modulus of the transverse velocities in bins of magnitude of

radial velocity. The visual impression gathered from the scatter plot is reinforced in that

with decreasing force softening length, we get larger transverse motions.

Figure 3.4 presents results of simulations with the same initial conditions carried out

with the Adaptive TreePM code. We show the results for Adaptive TreePM without the

∇ε term, nn = 16 (left column); with the ∇ε term, nn = 16 (middle column), and, with

the ∇ε term, nn = 32 (middle column). In general we do not recommend use of nn = 16

due to reasons discussed in the preceeding subsection on errors, discussion in the following

subsections, and in Price & Monaghan (2007), but we nevertheless use it in order to look for

early signs of two body collisions in a simulation with a relatively small number of particles.

The phase portrait for all the three Adaptive TreePM runs is a faithful representation of

the expectations. The transverse motions are suppressed strongly, almost to the same level

as the TreePM simulation with a force softening of ε = 0.5. One of the reasons for this

is that the highest overdensities reached in this experiment do not lead to a considerable

reduction in the force softening length. The other reason is that the adaptive nature of the

code leads to presence of a sufficient number of neighbours within a force softening length

and hence the anisotropy in the transverse force is reduced substantially.

Thick lines in the lower panels show the modulus of the average transverse velocities

in a few bins of the modulus of the longitudinal velocity. We see that for TreePM, the

magnitude of transverse motions drops rapidly as we increase the force softening length.

We also note that for the adaptive TreePM, the magnitude of transverse motions is similar
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to that seen with the TreePM when ε for the TreePM coincides with the εmax for the

ATreePM.

We conclude the discussion of this test by noting that our requirement of ε & r̄ij,

where r̄ij is the local inter-particle separation, ensures collisionless behavior in evolution of

the system.

3.5.2 Convergence with nn and relevance of the ∇ε term

For the following discussions we run a power-law model with index n = −1.0. The spectrum

is normalized at a an epoch when the scale of non-linearity rnl = 6.0 in grid units. The scale

of non-linearity is defined as the scale at which the linearly extrapolated mass variance,

defined using a top hat filter, is unity σ(rnl, z) = 1. The simulations are done with 1283

particles and a 1283 grid. We choose rs = 1 grid length. Other simulation parameters are

as described in the subsection §3.3 on the TreePM code. We assume that the Einstein-

de Sitter model describes the background universe. In this case self-similar evolution of

quantities for power law models provides an additional test for simulation results.

Clustering Properties

We compute the volume averaged 2−point correlation function ξ̄.

ξ̄(r) =
3

r3

∫ r

0

ξ(x)x2dx (3.23)

ξ is the two point correlation function (Peebles, 1980). To compute ξ̄ from simulation

output, we take 15 independent random subsets of 105 particles each. We then estimate

the average value of ξ̄ over these subsets. The maximum and the minimum values of ξ̄ in

these subsets are our estimate of the errors. Figure 3.5 shows ξ̄ at an epoch when rnl = 6.0.

TreePM (left column) with ε = 0.025, 0.05, 0.1, 0.2, 0.5 are shown in black, red, blue, ochre

and magenta respectively. ATreePM with ∇ε (middle column) and ATreePM without ∇ε
(right column) with nn = 16, 32, 48 are shown in blue, red, black lines respectively. The

lower row is a zoom-in of ξ̄ so as to highlight the differences at small scales, due to the

variation in ε and nn in different runs.
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Figure 3.5: Top Row : This figure plots the volume averaged 2-point correlation function ξ̄

as a function of scale at rnl = 6.0 for TreePM (left) and ATreePM with ∇ε (middle) and

ATreePM without ∇ε (right). The four curves (black, red, blue, ochre, mauve) for TreePM

are for runs with softening lengths of ε = rs
40
, rs

20
, rs

10
, rs

5
, rs

2
. For the ATreePM runs the three

curves (black, red, blue) are for nn = 16, 32, 48. Bottom Row: zoomed in plots of Top Row.

Grey surface in the ATreePM plots is ξ̄ bounded by error-bars for TreePM with ε = rs
40
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Figure 3.6: This figure tests self similar evolution of the scaled 2-point correlation function

ξ̄(r/rnl) by plotting it at the epochs when rnl = 2.0, 4.0, 6.0 (black, red, blue lines)for

TreePM (left) ATreePM with ∇ε (middle) , ATreePM without ∇ε

One can show that we require a minimum of 12 neighbors to solve for Eqn.(3.17).

The ∇ε term is important in over-dense regions where εi � εmax, and is a rapidly varying

function of density, one therefore requires a reasonably large nn to compute it accurately.

Use of a small nn leads to a noisy estimate of∇ε and Figure 3.5 illustrates this point5. With

nn = 16, ξ̄ deviates significantly from our expectations. Disagreement is worse for ATreePM

with ∇ε, as this is the case where a poor estimate of the extra term leads to larger errors.

If we use a larger nn, we expect to see convergence at some point. Curves for nn = 32

and 48 agree with each other (within error-bars) for ATreePM with ∇ε indicating that

evaluation of the extra term is stable. It also indicates that this extra term compensates

for the use of a larger number of particles, otherwise typical softening length is expected

to be larger for higher nn and this should lead to lowering of the clustering amplitude at

small scales. This is very clearly illustrated for TreePM (left column in Figure 3.5) where

increasing ε reduces ξ̄ monotonically. We also see this effect for ATreePM without the ∇ε
term where the amplitude of clustering is much smaller for nn = 48 as compared to nn = 32

and the difference between the two is more than twice that seen for ATreePM with the ∇ε
term. Such a behavior is expected, and has been seen by Price & Monaghan (2007)in a

5Also see Figure 3.2.
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Table 3.1: The following table shows the variation of rcon and rss with time for TreePM

and the two variants of ATreePM as a function of softening

Runs rcon rcon rcon rss rss

rnl = 6.0 rnl = 4.0 rnl = 2.0 rnl = 6.0 rnl = 4.0

TreePM (ε = rs
2

) 1.2 0.96 0.61 1.1 0.67

TreePM (ε = rs
5

) 0.61 0.44 0.36 0.42 0.15

TreePM (ε = rs
10

) 0.25 0.20 0.10 0.18 0.16

TreePM (ε = rs
20

) 0.10 0.10 0.10 0.10 0.17

TreePM (ε = rs
40

) - - - 0.10 0.18

ATreePM (∇ε, nn = 32) 0.10 0.15 0.30 0.27 0.31

ATreePM (∇ε, nn = 48) - - - 0.42 0.47

ATreePM (nn = 32) 0.27 0.28 0.38 0.54 0.42

ATreePM (nn = 48) - - - 0.59 0.50

different context. They noted that the increase in force softening length with nn leads to

a bias in the force at small scales. The ∇ε term corrects for this and biasing of force is

less important. Since the distribution of particles gets more strongly clustered with time,

we expect over-softening of the force field to degrade further evolution for the TreePM and

the ATreePM without ∇ε, beyond a certain epoch.

We have plotted the scaled 2-point volume averaged correlation ξ̄(r/rnl) at small

scales in Figure 3.6 for TreePM with ε = 0.025 (left panel), ATreePM with the ∇ε term

(middle panel) and ATreePM without the ∇ε term (right panel). We used simulations with

nn = 32 for both the ATreePM runs shown here. ξ̄ has been computed at epochs when

the scale of non-linearity rnl = 2, 4 and 6 (black, red and blue lines respectively). Since

the only scale in power-law models is the scale of non-linearity rnl, introduced by gravity,

one expects ξ̄ to evolve in a self-similar manner. The scale of self-similarity, rss, for a given

epoch is is determined by finding the scale at which ξ̄ matches with the ξ̄ of the earlier

epoch within the error bars computed in the manner described above.
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We illustrate numerical convergence properties of the three codes in table 3.1. Here,

we list the scale rcon and rss at different epochs. For ATreePM rcon is the scale beyond

which ξ̄ with the given nn matches with a reference ξ̄ with nn = 48. For TreePM this is

the scale where ξ̄ with a given force softening length matches with the reference ξ̄ with

ε = 0.025.

We find that both variants of ATreePM converge with time, the convergence being

more rapid for ATreePM with ∇ε as compared to ATreePM without ∇ε. The scale of

convergence rcon is also smaller for ATreePM with ∇ε. On the other hand self-similar

behavior is degraded with evolution for ATreePM without ∇ε as rss increases with time,

whereas for ATreePM with the ∇ε term the evolution is self-similar over a larger range of

scales.

Thus we may conclude that the ATreePM with the ∇ε has well defined numerical

convergence as we vary nn, and the evolution of power law models for this code is self-

similar over a wide range of scales. This sets it apart from the ATreePM without the ∇ε
term, where the convergence with nn is not well defined and the evolution of a power law

model is self-similar over a smaller range of scales. Better match with the fixed resolution

TreePM code is an added positive feature for the code with the∇ε term. This raises obvious

questions about AMR codes, where no such term is taken into account as we increase the

resolution of the code. We comment on this issue in the Discussion section.

We briefly comment on the convergence and self-similar evolution in the fixed res-

olution TreePM code. As seen in Table 3.1, we find that at early times the scale above

which we have self-similar evolution is almost the same for ε ≤ 0.2. This may indicate

discreteness noise, or it may be due to two body collisions during early collapse (Splinter

et al., 1998; Melott et al., 1997; Joyce, Marcos, & Baertschiger, 2008; Romeo et al., 2008).

At late times, the scale above which evolution is self-similar is rss ∼ 2ε. This indicates that

any transients introduced at early times by discreteness, etc. have been washed out by the

transfer of power from large scales to small scales (Little, Weinberg, & Park, 1991; Evrard

& Crone, 1992; Bagla & Padmanabhan, 1997; Bagla & Prasad, 2008). Thus one gets an

improved self-similar evolution at late times in the fixed resolution TreePM with the use

of a smaller softening length.

On the other hand we see that for TreePM, rcon increases with time. As defined
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above, this is the scale at which ξ̄ obtained with a given value of ε matches with the value

obtained using ε = 0.025. We find that at the last epoch rcon ≥ 2ε, whereas at early times

the limit is rcon ≥ ε. This trend is contrary to that seen with the ATreePM for which rcon

decreases with time, the rate at which it comes down being faster for the ATreePM with

the ∇ε. We would like to point out that we do not probe ξ̄ for scales r < 0.1 as the number

of pairs with a smaller separation is often too small to get reliable estimates of ξ̄.

Another remarkable fact is that for the TreePM code, rss ≤ rcon. Thus we have

the desired behavior in terms of evolution even though we are yet to achieve numerical

convergence at the relevant scales. Such a problem does not exist for the ATreePM code.

Lastly, as we show below, the ATreePM code is very good at resolving highly over-

dense regions very well. This would appear to be in contradiction with the slightly lower

two point correlation function. The reason for the slightly lower correlation function is

that the ATreePM code does not resolve small haloes, in particular those with fewer than

nn particles (see the discussion of mass function of collapsed haloes). Indeed, the number

density of small haloes is severely under-estimated in the ATreePM simulations and we

believe that this is the main reason for a weaker two point correlation function.

Collapsed Haloes

We now look at another global indicator, namely the mass function of collapsed haloes, to

compare the performance of the TreePM and the ATreePM codes. The number density of

haloes N(M)dM in the mass range (M,M + dM) is plotted in Figure 3.7. Haloes were

identified using the Friends-Of-Friends algorithm with a linking length ll = 0.1 in grid units

and haloes with at least 8 particles were considered.

For TreePM we see that as we increase the force softening length there is a clear

change in the mass function. The mass function converges for all masses with ε ≤ 0.2.

However, the mass function for ε = 0.5 shows fewer haloes of up to about 102 particles.

Thus the effect of a large softening length and hence biasing in force is seen in mass function

up to fairly large mass scales. This qualitative behavior is insensitive to the choice of linking

length, though the scale of convergence is smaller if we choose a larger linking length.

The ATreePM does not sample the haloes with fewer than nn members properly. This
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Figure 3.7: Mass function for TreePM (left), ATreePM with ∇ε (middle) and ATreePM

without ∇ε (right). For TreePM ε = rs
40
, rs

10
, rs

2
are drawn in black, red, blue lines respec-

tively. nn = 32, 48 are drawn in black and red lines for ATreePM. The arrows represent

nn in mass units. The black dot-dashed curve on every plot is the Press-Schecter mass

function, shifted vertically by multiplying by a factor of 1.5. The black dashed line in

ATreePM is for TreePM with ε = rs
40
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Figure 3.8: This figure shows a slice from simulation where the most massive halo resides

(see top left corner). Top panel is for TreePM with ε = rs
40

(left) and ATreePM with ε = rs
2

.

Bottom panel is for ATreePM with ∇ε (left) and ATreePM without ∇ε (right). nn = 32

was taken for ATreePM.
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Figure 3.9: This figure is a zoom in of Fig. 3.8 and shows the region of simulation where

the most massive halo resides (see top left corner of Fig. 3.8). Top panel is for TreePM

with ε = rs
40

(left) and ATreePM with ε = rs
2

. Bottom panel is for ATreePM with ∇ε (left)

and ATreePM without ∇ε (right). nn = 32 was taken for ATreePM.
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Figure 3.10: This figure shows the largest halo at rnl = 6.0 for TreePM with ε = rs
40

(left

column), ATreePM with ∇ε and nn = 32 (middle column) and ATreePM without ∇ε and

nn = 32 (right column). The first row contains all the particles in the halo. The second,

third and forth rows represent particles in the halo which have a density greater than

5× 104, 105 and 2× 105 respectively.



76 CHAPTER 3. THE ADAPTIVE TREEPM CODE

is expected as such over-densities are not sufficient to reduce the softening length from

εmax. At larger scales we have a convergence for nn = 32 and nn = 48, where the mass

function agrees with that for TreePM with ε = 0.025. Mass function for nn = 16 deviates

significantly from the other two for ATreePM, deviation being larger for the ATreePM with

the ∇ε term. We believe that this is due to the noisy estimation of the force softening

length and the ∇ε term, and resulting errors in force.

As a reference the Press-Schecter mass function is also plotted in all three panels

(black dot-dashed line). However it has been shifted up vertically by multiplying N(M)dM

by a factor of 1.5 for ease of comparison.

Distribution of particles in a simulation is a useful representation for comparing large

scale features. The distribution of particles in a thin slice is shown in Figure 3.8. We have

shown the distribution for four simulations: TreePM with ε = 0.025 (top-left), TreePM with

ε = 0.5 (top-right), ATreePM with the ∇ε term and nn = 32 (lower-left) and ATreePM

without the ∇ε term and nn = 32 (lower-right). The distribution of particles is for the last

epoch, corresponding to rnl = 6 grid lengths. This slice contains the largest halo in our

simulation on the top left corner. We note that the large scale distribution is the same in

all cases, indicating that the Adaptive TreePM is not changing anything at large scales.

We zoom in on the region around the largest halo in Figure 3.9, where the distribution

of particles is shown from the set of simulations used in Figure 3.8. Distribution of mass at

scales larger than a grid length is the same in all simulations but at small scales we begin to

see some differences between the distribution of particles in different simulations. TreePM

with ε = 0.5 differs most from the other three, in that it does not resolve small scale

structures. This happens due to the relatively large force softening length that inhibits

collapse if the expected size of the collapsed halo is smaller than ε. The notable differences

between the TreePM (ε = 0.025) and the ATreePM slices are as follows:

• Small haloes in the region away from the large haloes are more compact for TreePM

than for ATreePM. This is perhaps caused by the ATreePM not having a constant ε

and it is likely that in these clumps the local value of ε is larger than 0.025 that is

used in the TreePM.

• Location of sub-structure in the central halo differs somewhat between the different
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simulations.

Figure 3.10 shows the inner regions of the halo seen in Figure 3.9. We show the

inner parts of the halo in the four cases (TreePM (ε = 0.025), ATreePM with the ∇ε term

(nn = 32), ATreePM without the ∇ε term (nn = 32). The top row shows all the particles in

the inner parts of the halo. The second row shows all the particles with an SPH over-density

estimate (computed with nn = 32 and using the kernel specified in Eqn. 3.5) of greater than

5×104, the third row shows the particles with an over-density of greater than 105, and, the

last row shows particles with an overdensity larger than 2×105. We see that the ATreePM

with the ∇ε term shows the most pronounced central part of the halo in the top panel, and

this impression gains strength as we move to lower panels. Table 3.2 gives us the number

of particles in the various panels of Fig. 3.10. TreePM with ε = 0.025 manages to trace

some of the highly over-dense substructure seen in the ATreePM simulations, though with

a much smaller number of particles in these clumps. The ATreePM with the ∇ε term does

better than the one without, particularly at the highest over-densities used here. Indeed

ATreePM with the ∇ε term retains nearly 7 times as many particles in the halo core as

compared to TreePM and ATreePM without the ∇ε term. The same thing is also reflected

in Figure 3.5 where the ATreePM without the ∇ε term is seen to underestimate clustering

at small scales. It is noteworthy that the size of highly over-dense structures in the core of

this halo are much bigger than the force softening length for the TreePM.

It is notable that the ATreePM is able to resolve highly over-dense regions while taking

much less time than the fixed resolution TreePM. Thus we have the added performance at

the cost of fewer resources.

Dynamics within Collapsed Haloes

The equation of motion for the adaptive code has the additional ∇ε term, and it is impor-

tant to test whether this term leads to a change in dynamics in highly overdense regions.

We test this by studying the dynamics in central cores of the largest haloes in the simula-

tion. We study the ratio 〈2T 〉/〈U〉 at a scale corresponding to r200/5, with the averaging

done around the centre of mass of the halo. We chose the reference scale in this manner as

the density profiles for haloes with different softening length differ considerably and using
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Table 3.2: This table shows the number of particles npart above a density threshold (as in

Figure 3.10) retained in the core of the most massive halo

Runs npart npart npart

ρ ≥ 5× 104 ρ ≥ 105 ρ ≥ 2× 105

TreePM (ε = rs
40

) 320 106 18

ATreePM (∇ε, nn = 32) 568 297 125

ATreePM (nn = 32) 374 169 18

a high density contour to define the radius leads to very different physical scales. Figure 11

shows 〈2T 〉/〈U〉 as a function of softening length ε for the fixed resolution TreePM simu-

lations. This has been done for the five largest haloes in the simulation. We see that as

we go to a larger softening length, the ratio becomes larger than unity, indeed for ε = 0.5

the ratio is closer to two for one of the haloes. This is likely to happen if the size of the

over-dense core is comparable to the softening length, and indeed this is the case for some

of the haloes used for this plot. The same plot shows the ratio as seen in the adaptive

code (with the ∇ε term) with empty squares, and as filled triangles for the adaptive code

without the ∇ε term. These circles are plotted at small values of ε, not used for TreePM

runs. The values of ε used for positioning these symbols in the plot has no relevance to the

simulation, and this has been done purely for the purpose of plotting the values. We see

that the values for the ratio in both the adaptive codes correspond closely to the values of

the ratio seen in fixed resolution TreePM simulations with a small ε. Thus we may conclude

that the additional term in the Adaptive code is not leading to any significant changes in

the dynamics, as compared to the fixed resolution codes.

3.6 Discussion

In this chapter we have introduced the first cosmological N-Body code that has a continu-

ously varying force resolution. This is based on a well defined formalism that ensures energy
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Figure 3.11: Ratio of two times the kinetic energy and the potential energy, 2T/U , for the

5 largest haloes as a function of softening length for TreePM (black lines). Open squares

and filled triangles are for ATreePM with and without ∇ε respectively.
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and momentum conservation. An important aspect of this formalism is that it modifies

the equation of motion at scales below the force softening length. Our implementation of

the formalism uses methods developed for SPH codes, this is required as we need to assign

quantities like density to particles. We have described our implementation of the code in

detail here. We have given a brief summary of errors in force for the Adaptive TreePM

code with the new parameter nn. Given that this code is based on the TreePM code, it

inherits the errors in force with respect to all the other parameters. As we have seen in

earlier work (Bagla, 2002; Bagla & Ray, 2003; Khandai & Bagla, 2009), errors in force can

be minimised to a fairly low level for the TreePM with a judicious choice of parameters.

We find that the time taken by the Adaptive TreePM (for nn = 32) is comparable to

that taken by the fixed resolution TreePM code if the latter uses a force softening length

that is about 1/20 of the mean inter-particle separation.

One of the key reasons for considering adaptive resolution is to avoid two body col-

lisions. Cosmological simulations require collisionless evolution. We test the Adaptive

TreePM by simulating collapse of an oblique plane-wave. We find that unlike the fixed

resolution TreePM code that leads to large transverse motions, a clear sign of two body

collisions, the Adaptive TreePM code does not have any significant transverse motions.

(See Figures 3.3, 3.4)

We have compared the performance of the Adaptive TreePM with that of the fixed

resolution TreePM code for power law initial conditions. We used a power law model and

the Einstein-de Sitter background as it allows us to test codes by requiring self-similar

evolution of the correlation function. We find that for nn = 32, the resulting density

distribution in the Adaptive TreePM is comparable to that seen in the highest resolution

TreePM in many respects. The correlation function for the two match at all scales and

the mass function of collapsed haloes matches for haloes with more than nn particles. The

Adaptive TreePM with the ∇ε term in the equation of motion does much better than the

TreePM as well as the Adaptive TreePM without the extra term in resolving highly over-

dense cores of massive haloes. It is noteworthy that the Adaptive code takes less time than

the TreePM it has been compared with (see fig. 3.1).

We have tested the codes by looking for convergence in results as we modify the key

parameters that describe the force resolution. We find that the fixed resolution TreePM
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code converges slower than expected from, for example, self-similar evolution of clustering.

The Adaptive TreePM code with the∇ε term converges fairly quickly and offers an effective

dynamical range that is slightly smaller than the fixed resolution TreePM that takes almost

the same time to run.

Given our analysis of errors, and the comparison of the performance of the ATreePM

code with and without the extra term in the equation of motion, the natural conclusion

is that we require the extra term in order to obtain low errors and numerical convergence.

This raises the obvious question about the AMR codes where no such extra term is used.

Further, in most AMR codes, resolution is increased when there are of order 10 particles in

the lower resolution elements. We find that the errors are minimized when this number is

around 20 even when the extra term is not taken into account. It is not clear how serious

these issues are, given that AMR codes have been developed and tested in a variety of ways

over the last three decades, but it is a concern6.

We have established in this chapter that an adaptive resolution code for evolution of

perturbations in collisionless dark matter can give reliable results for a range of indicators

from clustering properties to mass function of collapsed haloes and even get the internal

dynamics of collapsed haloes tight. Further, we show that such a code is efficient in that it

is faster than fixed resolution codes that give us comparable force resolution in highly over

dense regions. Such a code is very useful as it allows us to probe clustering at small scales

in a reliable manner. Studies of box-size effects have shown that large simulation boxes

are required in order to limit the effect of perturbations at larger scales that are not taken

into account (Bagla & Prasad, 2006; Bagla, Prasad, & Khandai, 2009). In such a situation

an adaptive code provides us with a reasonable range of scales over which the results can

be trusted. We expect to use this code to address several issues related to gravitational

clustering in an expanding universe. We also plan to revisit issues related to density profiles

of collapsed haloes.

Given the conclusions listed above, we feel that the Adaptive TreePM methods rep-

6One aspect where AMR codes do relatively poorly is in getting the halo mass function at the low mass
end (O’Shea et al., 2005; Heitmann et al., 2008). As one can see in figures in the papers cited here, the
shortfall is often spread over a decade in mass of haloes. We do not see any gradual decline in the number
density of haloes in ATreePM up to the cutoff set by nn.
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resents an exciting development where we can set aside worries about the impact of colli-

sionality. The relative speed of the adaptive code also makes this a more pragmatic option.



Chapter 4

Mass function of haloes: scale

invariant models

Press-Schechter theory gives a simple, approximate functional form of the mass function of

dark matter haloes. Sheth and Tormen (ST) refined this mass function to give an improved

analytical fit to results of N -body simulations. These forms of the halo mass function are

universal (independent of cosmology and power spectrum) when scaled in suitable variables.

Using large suites of LCDM N -body simulations, studies in the last few years have shown

that this universality is only approximate. We explore whether some of the deviations from

universality can be attributed to the power spectrum by computing the mass function in

N -body simulations of various scale-free models in an Einstein-de Sitter cosmology. This

choice of cosmology does not introduce any scale into the problem. These models have the

advantage of being self-similar, hence stringent checks can be imposed while running these

simulations. This set of numerical experiments is designed to isolate any power spectrum

dependent departures from universality of mass functions. We show explicitly that the best

fit ST parameters have a clear dependence on power spectrum. Our results also indicate

that an improved analytical theory with more parameters is required in order to provide

better fits to the mass function.

83



84 CHAPTER 4. MASS FUNCTION OF HALOES

4.1 Introduction

The halo mass function describes number density of dark matter haloes of a given mass

in a given cosmology, and is an essential input for a diverse set of tools used for making

theoretical predictions. The halo model of large scale structure, for example, is based

on the theory of mass functions (Cooray & Sheth, 2002). Accurate knowledge of the mass

function is important for several cosmological applications, including semi-analytic theories

of galaxy formation (White & Frenk, 1991); constraints on cosmological parameters using

galaxy cluster abundance (Majumdar & Mohr, 2003), gravitational lensing (Bartelmann et

al., 1998) and constraints on non-Gaussianity in the primordial power spectrum (Bartolo,

Matarrese, & Riotto, 2005) of matter perturbation.

It is possible to develop the theory of mass functions in a manner that makes no

reference to the details of the cosmological model or the power spectrum of fluctuations.

That is, we expect the mass function to take a universal form, when scaled appropriately.

Simple theoretical arguments have been used to obtain this universal functional form of the

mass function (Press & Schechter, 1974; Bond et al., 1991; Sheth, Mo, & Tormen, 2001).

Bond et al. (1991) and Sheth, Mo, & Tormen (2001) used the excursion set theory to derive

the mass function. Much work has also been done to determine the extent to which this

form is consistent with results from N-body simulations (Jenkins et al., 2001; White, 2002;

Reed et al., 2003; Warren et al., 2006; Reed et al., 2007; Lukić et al., 2007; Cohn & White,

2008; Tinker et al., 2008) with the conclusion that the agreement is fairly good. Recent

comparisons with very large N-Body simulations also provide hints that the form of the

mass function is not universal.

The Press-Schechter mass function (Press & Schechter, 1974) is based on the spheri-

cal collapse model (Gunn & Gott, 1972) and the ansatz that the mass in collapsed objects

is related to the volume with density above a certain threshold. The shape of the mass

function agrees with numerical results qualitatively: at a quantitative level there are de-

viations at the low mass and the high mass ends (Efstathiou et al., 1988; Jenkins et al.,

2001). Improvements to the Press-Schechter mass function have been made to overcome

this limitation. In particular, the Sheth-Tormen mass function is based on the more real-

istic ellipsoidal collapse model (Sheth & Tormen, 1999; Sheth, Mo, & Tormen, 2001) and
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it fits numerical results better. These mass functions relate the abundance of haloes to the

initial density field in a universal manner, independent of cosmology and power spectrum.

Many fitting functions with three or four fitting parameters have been proposed. These

are based on results of simulations of the LCDM model (Jenkins et al., 2001; Reed et al.,

2003; Warren et al., 2006).

In the last few years, large N-Body simulations of the LCDM model have demon-

strated that the mass function is not universal (White, 2002), and epoch dependent fitting

functions have been given for this model (Reed et al., 2007; Tinker et al., 2008). The

results of Lacey & Cole (1994) also show a small dependence of the mass function on the

power spectrum but given the size of simulations these deviations are small. These studies

show non-universality by noting variations in the form of mass function with redshift or

cosmology in successively larger simulations that explore a large range in mass. Much of

the numerical work in this area during the last decade has focused on the LCDM model,

it being the model favored by observations.

It is expected that this non-universality is a result of variation of mass function param-

eters either with cosmology or with the power spectrum or both. Cosmology dependence

is introduced by the variation in the threshold density for collapse (Barrow & Saich, 1993).

The CDM class of models have a power spectrum of density fluctuations with a gradually

varying slope or the spectral index, n(k), which decreases with decreasing scale (increasing

wavenumber k). As perturbations at smaller scales collapse earlier, the effective index of

the power spectrum is small at early times and increases towards late times. The threshold

overdensity for collapse also changes as the cosmological constant becomes more important

at late times. Thus the variation in mass function may be due to the shape of the power

spectrum, or cosmology, or both. This makes the published results difficult to interpret in

terms of a theoretical model. It is then hard to discern any trends in non-universality that

will potentially provide a physical understanding. Given the number of applications of the

theory of mass function like computation of merger rates, halo formation rates, etc., it is

essential to develop a clear understanding of the origin of non-universality. The only other

option is to work with fitting functions for each of these quantities derived from N-Body

simulations.

The problem of an unclear origin of deviations of universality can be partially ad-
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dressed by studying a wider variety of models in the CDM class of models. This approach

has been taken by, for example, Neistein, Maccio, & Dekel (2009) in the context of univer-

sality in halo mergers. The effect of perturbations at larger scales in terms of the tidal field,

which is relevant for ellipsoidal collapse, also changes with time due to the variation in the

slope of the power spectrum with scale. Given that the tidal field is generated by larger

scales, it is not very clear whether a prescription based on the local index of the power

spectrum alone can provide a detailed explanation for the mass function. Since the CDM

spectra lack the simplicity of the scale-free spectra, we approach this problem differently.

We specifically look for departures from non-universality in the mass function for scale-free

power spectra of initial fluctuations with an Einstein-de Sitter background to check if the

non-universal description can be attributed to a spectrum dependence. Our choice of cos-

mology does not introduce any scale in the problem and the threshold overdensity does not

vary with time in any non-trivial manner. Thus we can isolate the non-universality of mass

functions arising from the slope of the power spectrum. We provide spectrum dependent

fits for the parameters in the Sheth-Tormen mass function, and show that this allows us to

fit simulation data much better.

We start with a discussion of the basic framework of mass functions in §4.2, where

we also set up the notation. Our numerical simulations are described in §4.3. We present

our analysis of the data in §4.4 along with the results. A discussion of their implications

appears in §4.5 and we summarize our conclusions in §4.6.

4.2 The Mass Function

In chapter 1 we had introduced the mass function which is described by the following

function in the Press-Schechter formalism:

f(ν) =

√
2

π
ν exp(−ν2/2) (4.1)

where ν = δc/ (σ(M)D+(z)). Here δc is the threshold overdensity for a spherically symmet-

ric perturbation, above which it collapses and forms a virialised halo. It has only a weak

dependence on cosmology and its value is 1.69 for Ω0 = 1 (Gunn & Gott, 1972; Peebles,
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1980). Fitting functions that describe the dependence of δc on cosmology are available

(Barrow & Saich, 1993; Eke, Cole, & Frenk, 1996; Navarro, Frenk, & White, 1996; Naka-

mura & Suto, 1997; Bryan & Norman, 1998; Henry, 2000). We take the value of 1.686

throughout our analysis as we are working with the Einstein-de Sitter cosmology.

The rms fluctuations of the linearly evolved density field at present is denoted by

σ(M), smoothed with a spherical top hat filter enclosing mass m and is calculated by

convolving the linear density power spectrum P (k), extrapolated to the current epoch, with

the filter W (k,M). In what follows we modify our notation slightly from those introduced

in chapter 1, we will treat the arguments r and M interchangeably in the mass variance,

i.e. σ(r) ≡ σ(M).

σ2(M) =

∫ ∞
0

dk

k

k3P (k)

2π2
W 2(k,M). (4.2)

D+(z) is the growth function (Heath, 1977). All mass is contained in haloes in this formal-

ism, this provides the normalization:∫ ∞
0

1

ν
f(ν)dν = 1 (4.3)

This mass function is related to the number of haloes of a given mass per unit comoving

volume by

dn

d lnM
=

ρ̄

M

d lnσ−1

d lnM
f(ν). (4.4)

The dependence on cosmology and power spectrum is absorbed in ν, and the theory of

mass functions can be developed without reference to the detailed dependence of ν on the

power spectrum or cosmology, so we expect the form of Equation (4.1) to be universal.

The Sheth-Tormen mass function is a modification to the Press-Schechter model and

is based on ellipsoidal collapse instead of spherical collapse. It has been shown to reproduce

simulation results better.

f(ν) = A

√
2q

π

[
1 + (qν2)−p

]
ν exp

(
−qν2/2

)
. (4.5)

Clearly, this is also a universal form.
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Table 4.1: Details of N -body simulations used in this work.

n Nbox Npart rinl rfnl rmax
nl zi

−2.5 5123 5123 0.2 1.0 0.1 36.21

−2.2 5123 5123 0.5 2.0 2.0 51.23

−2.0 5123 5123 1.0 4.5 4.2 62.80

−1.8 5123 5123 2.5 9.0 8.5 78.82

−1.5 4003 4003 2.5 12.0 10.0 103.38

−1.0 4003 4003 2.5 10.0 22.2 171.52

−0.5 2563 2563 2.5 12.0 18.2 291.53

+0.0 2563 2563 2.5 12.0 21.2 470.81

4.3 Numerical Simulations

We run a suite of models with a power law power spectrum (P (k) = Akn) of initial

fluctuations, in the range −2.5 ≤ n ≤ 0.0. We use the Einstein-de Sitter cosmological

background where the growing mode of perturbations D+(t) is the same as the scale factor

a(t). We used the TreePM code (Khandai & Bagla, 2009) for these simulations. The

TreePM (Bagla, 2002; Bagla & Ray, 2003) is a hybrid N-Body method which improves

the accuracy and performance of the Barnes-Hut (BH) Tree method (Barnes & Hut, 1986)

by combining it with the PM method (Miller, 1983; Klypin & Shandarin, 1983; Bouchet,

Adam, & Pellat, 1985; Bouchet & Kandrup, 1985; Hockney & Eastwood, 1988; Bagla &

Padmanabhan, 1997; Merz, Pen, & Trac, 2005). The TreePM method explicitly breaks the

potential into a short-range and a long-range component at a scale rs: the PM method is

used to calculate long-range force and the short-range force is computed using the BH Tree

method. Use of the BH Tree for short-range force calculation enhances the force resolution

as compared to the PM method.

The mean interparticle separation between particles in the simulations used here is

lmean = 1.0 in units of the grid-size used for the PM part of the force calculation. In our
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notation this is also cube root of the ratio of simulation volume N3
box to the total number

of particles Npart.

Power law models do not have any intrinsic scale apart from the scale of non-linearity

introduced by gravity. We can therefore identify an epoch in terms of the scale of non-

linearity rnl. This is defined as the scale for which the linearly extrapolated value of the

mass variance at a given epoch σL(a, rnl) is unity. All simulations are normalized such that

σ2(a = 1.0, rnl = 8.0) = 1.0. The softening length in grid units is ε = 0.03 in all runs.

Simulations introduce an inner and an outer scale in the problem and in most cases

we work with simulation results where Lbox � rnl ≥ Lgrid, where Lgrid, the size of a grid

cell is the inner scale in the problem. Lbox is the size of the simulation and represents the

outer scale.

Finite volume effects can lead to significant errors in N-Body simulations since modes

greater than the size of the box are ignored while generating initial conditions and during

evolution (Bagla & Ray, 2005; Bagla & Prasad, 2006; Power & Knebe, 2006; Bagla, Prasad,

& Khandai, 2009). The errors in the mass variance and hence most descriptors of clustering

can become arbitrarily large as the index of the power spectrum n approaches −3.0. The

prescription provided by Bagla & Prasad (2006) and Bagla, Prasad, & Khandai (2009) can

be used to find the regime where the results of a simulation are reliable at a given level of

tolerance. We require that the error in σ2 be less than 3% at the scale of non-linearity. This

requirement severely restricts the level of non-linearity that can be probed in simulations

with indices n = −2.5, −2.2 and −2.0 amongst the set of models we use here. We will use

these simulations mainly to illustrate the severity of finite box size effects and compare the

mass function obtained in the simulations with our expectations, but we do not use these

simulations for an explicit determination of the mass function. In Table (5.2) we list the

power law models simulated for the present study. We list the index of the power spectrum

n (column 1), size of the simulation box Nbox (column 2), number of particles Npart (column

3), the scale of non-linearity at the earliest epoch used in this study (column 4), and, the

maximum scale of non-linearity, rmaxnl (column 6) given our tolerance level of 3% error in

the mass variance at this scale. For some models with very negative indices we have run

the simulations beyond this epoch. This can be seen in column 5 where we list the actual

scale of non-linearity for the last epoch.
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Figure 4.1: Mass functions at z = 5.04 from our LCDM (WMAP5) simulations for

different simulation boxes. Black, red, blue, pale blue and ochre are for Lbox =

23.04, 51.2, 76.8, 153.6, 204.8 h−1Mpc respectively.
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In the next section we describe a procedure to put an upper limit on the high mass

bins since in these haloes counts are reduced due to finite boxsize considerations, especially

at late times. The counts of haloes in low mass bins are relatively unaffected by finite box

considerations. We therefore limit errors in the mass function by running the simulation

up to rmaxnl . Column 7 lists the starting redshift of the simulations for every model.

Models with a large slope of the power spectrum have more power at small scales and

the relative amplitude of fluctuations at small scales is large. Care is required for running

simulations of these models as small scales become non-linear at early times the rnl grows

very slowly with the scale factor. A very large number of time steps are required in order

to evolve the system to epochs with a large rnl. We require that the evolution of the two

point correlation function ξ̄ (Peebles, 1980) be strictly self-similar in the range of epochs

where we use the simulation data. This allows us to verify the correctness of evolution.

As a test of our simulation code we have run a set of LCDM (WMAP5) simulations for

different boxes. We have computed the number density of haloes in our simulations at

redshift z = 5.04. This is shown in figure 4.1. We find that the points from different boxes

lie on a single curve, as expected.

4.4 Analysis and Results

We use the Friends-of-Friends (FOF) (Davis et al., 1985) algorithm with a linking length l =

0.2 to identify haloes and construct a halo catalog. In order to avoid spurious identification

of haloes and also discreteness noise, we do not use haloes with a small number of particles

— only haloes with more than 60 particles are used in our analysis.

Given the halo catalog one can compute the mass function by first binning the haloes

in mass bins. We constructed logarithmic bins in mass with size ∆ logm = 0.2. Given the

halo count per logarithmic mass bin dn/d logm and using the fact that ρ̄ = 1, we write

Equation 4.4

f(ν) =
6

n+ 3

M

ρ̄

dn

d lnM
(4.6)
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Figure 4.2: Mass functions from our simulations (left column) and their residuals after

fitting a ST form (right column). Rows 1, 2 and 3 are for indices n = 0.0, −0.5, −1.0.

Solid black line is our best fit ST curve. Dashed line and dotted line show the standard ST

and PS curves respectively.
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Figure 4.3: Same as Figure (4.2) for indices n = 1.5 (top), and −1.8 (bottom).
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with ν = δc/a σ(M). For a power law power spectrum, we have

σ(M) =

(
M

Mnl

)−(n+3)/6

(4.7)

where m = 4πr3/3, and we take rnl(z = 0) ≡ 8.0. Note that Equation (4.7) tells us that it

is much easier to probe the small ν end of the mass function with larger indices. The scale

of non-linearity evolves as rnl ∝ D
2/(n+3)
+ = a2/(n+3), where the second equality follows for

the Einstein-de Sitter universe.

We choose to fit the Sheth-Tormen mass function of Equation (4.5) to our data by

the method of χ2 minimization. The correspondence with the mass function for ellipsoidal

collapse makes the Sheth-Tormen mass function physically motivated. The usefulness of

this approach is that the best fit values can potentially be used to compute merger rates,

etc. This however may not be the best choice of the functional form of the mass function

and we comment on it in the following discussion. The ST mass function has two free

parameters, which we denote by p and q. The condition that all mass must be in haloes

provides normalization for this function (Equation (4.4)). This gives

A = 1 +
2−pΓ(0.5− p)√

π
(4.8)

as a function of p (Cooray & Sheth, 2002).

We assume Poisson errors for counts of haloes in a mass bin. As discussed before,

the effect of a finite volume simulation volume suppresses the count of haloes in the large

mass end. One can either correct it (Reed et al., 2007, 2009) or remove these points from

the χ2 analysis. Correcting for these points is a tricky issue since it assumes an a priori

knowledge of the mass function, the quantity which is being constructed. One can however

follow an iterative procedure by first starting out with the standard ST mass function or

the Press-Schechter mass function, then use it to correct the counts at the large mass end

of the mass function and then do the χ2 analysis to compute a better ST mass function and

repeat the exercise all over again until one obtains a reasonable convergence in the fit. As

we shall see, the dispersion and the goodness of fit does not warrant this approach and in

this paper we choose to remove points affected by more than 10% in counts (as estimated

for PS counts) due to box size effects.
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Table 4.2: Best fit parameters of Sheth-Tormen mass function

n p q χ2
red pnew qnew χ

2(new)
red

0.0 0.141 1.065 4.933 − − −
−0.5 0.172 0.861 3.24 − − −
−1.0 0.201 0.712 31.31 − − −
−1.5 0.199 0.698 4.87 0.232 0.684 5.64

−1.8 0.181 0.698 4.760 0.250 0.677 6.23

−2.0 − − − 0.262 0.677 3.94

−2.2 − − − 0.274 0.698 4.56

We begin by fitting the ST mass function to the indices n = 0.0, −0.5, −1.0, −1.5

and −1.8. The raw mass function, i.e., data points, and the best fit ST curve is plotted

in the left column of Figures (4.2) and (4.3). The right hand column shows the residuals

with respect to the best fit mass function. We also show the PS and the standard ST mass

functions in each panel. Table (4.2) shows the best fit values of p and q and the reduced

χ2
red.

4.5 Discussion

At the outset a visual inspection of Figure (4.2) shows a clear trend in the shape of the

mass function with index n of the power spectrum. We also see that the evolution is self-

similar across different epochs for all indices. This is as expected for power law models in

Einstein-de Sitter background.

In Figures (4.2) and (4.3) we find that for the more negative indices n = −1.8, −1.5,

−1.0 we have a smaller dynamic range in ν as compared to n = −0.5, 0.0. This is expected

given that we have not evolved simulations with these indices over large range of epochs

due to finite boxsize considerations. Since the slope of f(ν) at the small ν end is related
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Figure 4.4: Relation between Sheth-Tormen parameters and the index n of the power law

power spectrum. Red circles denote data with smaller range in ν. The square denotes the

value of Manera, Sheth, & Scoccimarro (2009). See text for details.

to p — it is f(ν) ∝ ν1−2p as ν → 0 — one cannot trust these results as much as the results

with n = −0.5 and 0.0 which probe f(ν) out to much smaller values in ν. The best fit

values of (p, q) and χ2
red are shown in columns 2, 3 and 4 of Table 4.2 for every model

(column 1). Surprisingly χ2
red is relatively low for all indices as compared to the index

n = −1.0. Part of this is due to several outliers for the n = −1.0 spectrum which have

more than 10σ deviations. Removing these points we find that χ2
red = 11.3 from the original

value of χ2
red = 31.6. The corresponding values of (p, q) changes to (p, q) = (0.22, 0.73)

from (p, q) = (0.20, 0.71). In Figure (4.4) we also add the best fit value of p and q from

the recent work of Manera, Sheth, & Scoccimarro (2009), which used 49 realizations of an

LCDM simulation with 6403 particles in a box of side Lbox = 1280h−1Mpc. We identify

the effective index at z = 0, by computing

d log σ(M)

d logM

∣∣∣∣
σ=1

= −(neff + 3)

6
(4.9)

Next we look at the dependence of the two ST parameters (p, q) on the index of the

spectrum n and also their interdependence. In Figure (4.4) we find that all the trends seen

between p, q and n (neff for LCDM) are smooth when one considers the LCDM model and

the power law models with indices n = 0.0,−0.5,−1.0. We find that the relation between
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p and n is approximately

p(n) ' −0.0605 n+ 0.141 (4.10)

The trends in these parameters show deviations when one adds the models n = −1.5 and

−1.8, especially in the values of p; deviations in q are not as drastic. However if we use

Equation (4.10) and fix p for the indices n = −1.5,−1.8 and redo the χ2 analysis to fit

q then the χ2 does not change much, thereby corroborating our argument that the values

of p for the models n = −1.5, −1.8 are unreliable due to the small range in ν. The new

values of pnew, qnew, χ
2(new)
red are listed in columns 5-7 of Table ( 4.2). Figures (4.5 and 4.6)

plots the best fit ST curve using the extrapolated value of p for the models n = −1.5,−1.8,

n = −2.0 and −2.2. Since we have not probed highly non-linear scales for these models the

range of ν is even more limited, so much so that a full χ2 minimization for (p, q) is futile.

We therefore do not list the best fit values of (p, q) in Table ( 4.2) and proceed to do a

similar fitting using Equation (4.10) for the models n = −2.0, −2.2 and find that χ
2(new)
red is

is in the same range as for other models. The values pnew, qnew, χ
2(new)
red for these models

are given in columns 5-7 of Table ( 4.2). Again we find that the χ
2(new)
red is reasonable giving

credence to the extrapolation of Equation (4.10).

However the trend between p, q and neff is reversed when we compare with the

LCDM runs of Manera, Sheth, & Scoccimarro (2009). Here p decreases and q increases

with increasing redshift (increasing neff ), at z = 0.5. However at this redshift, ΩΛ has a

dominant role thereby making a simple interpretation difficult. We are carrying out a series

of numerical experiments where we simulate power law models in a background cosmology

with a cosmological constant to develop further understanding of this issue.

Warren et al. (2006) reported a reduced χ2
red ∼ 5 for the Sheth-Tormen mass function

with their data. Our values of χ2
red are similar and confirm that the Sheth-Tormen mass

function is inadequate in fitting the data in power law models.

The Sheth-Tormen parameters also show a clear dependence on the index of the spec-

trum. One approach of alleviating this problem would be to better model barrier shape

using simple models like the ones we have here. These can then be used to construct and

compare with more complicated barriers arising due to different cosmology and a scale

dependant index like the CDM class of models. The other approach can be purely phe-

nomenological: one can use results from simpler models like those studied here and under-
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Figure 4.5: Same as Figure (4.3), except that the solid black line here indicates Sheth-

Tormen mass function with parameters obtained by extrapolating p(n) and q(n) from

−1 ≤ n ≤ 0 as shown in Figure (4.4).
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Figure 4.6: Same as Figure (4.3), except that the solid black line here indicates Sheth-

Tormen mass function with parameters obtained by extrapolating p(n) and q(n) from

−1 ≤ n ≤ 0 as shown in Figure (4.4).
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stand how further complications in the model, like running index and different cosmologies,

affect the shape of the mass function.

Our focus has been on demonstrating that the mass function has a dependence on

the slope of the power spectrum. In this study we have not looked at how a change in

the definition of the halo—for example, change in the linking length in FOF halo finder or

using the SO halo finder instead of FOF (Lacey & Cole, 1994; Tinker et al., 2008)—affects

the mass function. Indeed one expects that the halo definition changes the amplitude of

the mass function (Cohn & White, 2008; White, 2002; Tinker et al., 2008) but we do not

expect it to affect our results in a significant manner.

4.6 Conclusions

We summarize the conclusions of the present study here.

• We find that the mass function is not universal and has an explicit dependence on

the power spectrum.

• The Sheth-Tormen parameters show a systematic trend with index of the power law

power spectrum. We also find that there is a correlation between these parameters.

• Evolution of the mass function f(ν) in power law models in an Einstein de Sitter

background is self-similar, i.e., the functional form does not change with time for a

given power law model. We do not expect this in the CDM class of spectra since

the effective index, neff , changes with redshift. However, the spectrum dependence

of p and q is not very strong, and the range over which neff varies is not very large,

hence the usual ST parameters are an adequate first approximation. Variation of

ST parameters becomes relevant if we require a very precise description of the mass

function.

• Our χ2 analysis shows that Sheth-Tormen mass function is inadequate and that better

modeling of collapse with more parameters is needed.
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• Finite box size considerations impose serious limitations on running simulations with

large negative indices of the power spectrum. This end of the spectrum probes the

mass function of high redshift objects. The way out would be to run orders of

magnitude larger simulations for indices with n→ −3. This is a challenge and would

be overcome only in the next generation of simulations.

• For models with n � −3, the rate of growth for rnl with time is very slow and as a

result a large number of time steps are required for evolving the system. The Adaptive

TreePM (Bagla & Khandai, 2009) may be useful for running such simulations.





Chapter 5

HI as a Probe of the Large Scale

Structure in the Post-Reionization

Universe: Power Spectrum and its

Evolution.

Until now we have only studied the clustering of dark matter using N -body simulations

simulations. Unfortunately direct detection of dark matter is not possible since it is very

weakly interacting. However most observations probe the Universe through visible matter

or baryons by targeting specific windows of the electromagnetic spectrum. In the next

two chapters we focus on one such window, the redshifted 21cm line of neutral Hydrogen

(HI hereafter). We model the distribution of HI in the post-reionization universe. This

model uses gravity only N-Body simulations and an ansatz to assign HI to dark matter

haloes that is consistent with observational constraints and theoretical models. We then

compute the smoothed one point probability distribution function and the power spectrum

of fluctuations in HI. This is compared with other predictions that have been made using

different techniques. We highlight the significantly high bias for the HI distribution at

small scales. This aspect has not been discussed before and it implies that a statistical

detection of HI at large scales and direct detection of the brightest regions at moderate

103
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redshifts requires comparable integration time using existing telescopes.

5.1 Introduction

Dark matter responds mainly to gravitational forces, and by virtue of larger density than

baryonic matter, assembly of matter into haloes and large scale structure is driven by

gravitational instability of initial perturbations. Galaxies are believed to form when gas in

highly over-dense haloes cools and collapses to form stars in significant numbers (Hoyle,

1953; Rees & Ostriker, 1977; Silk, 1977; Binney, 1977). The formation of first stars (McKee

& Ostriker, 2007; Zinnecker & Yorke, 2007; Bromm & Larson, 2004) in turn leads to

emission of UV radiation that starts to ionize the inter-galactic medium (IGM). The period

of transition of the IGM from a completely neutral to a completely ionized state is known

as the epoch of reionization (EoR), e.g., see Loeb & Barkana (2001). Observations indicate

that the process of reionization was completed before z ∼ 6 (Fan, Carilli, & Keating, 2006;

Becker et al., 2001; Fan et al., 2006). Many possible sources of ionizing radiation have been

considered, although stellar sources are believed to be the most plausible candidates, see,

e.g., Bagla, Kulkarni, & Padmanabhan (2009).

Prior to the EoR, almost all the Hydrogen in the universe is in atomic form. Through

the EoR Hydrogen is ionized till we are left with almost no HI in the inter-galactic medium

and almost all the HI resides in the inter stellar medium (ISM) of galaxies. We focus

on the post-reionization era in this work and our aim is to make predictions about the

distribution of HI in this regime. It had been proposed by Sunyaev & Zeldovich (1972, 1975)

that the hyperfine transition of Hydrogen may be used to probe primordial galaxies. This

problem has been approached in past from the perspective of making specific predictions for

instruments like the GMRT (Subramanian & Padmanabhan, 1993; Kumar, Padmanabhan,

& Subramanian, 1995; Bagla, Nath, & Padmanabhan, 1997; Bagla, 1999; Bharadwaj, Nath,

& Sethi, 2001; Bharadwaj & Sethi, 2001; Bagla & White, 2003; Bharadwaj & Srikant, 2004;

Bharadwaj & Ali, 2005), or upcoming instruments like the the MWA1, ASKAP2 and SKA3,

1The Murchison Widefield Array (MWA). See http://www.mwatelescope.org/ for details.
2The Australian SKA Pathfinder. http://www.atnf.csiro.au/projects/askap/ for details.
3The Square Kilometer Array (SKA). See http://www.skatelescope.org/ for details.
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e.g., see Wyithe, Loeb, & Geil (2008). Much work in the last decade has focused on making

predictions for the power spectrum of fluctuations in HI, with an implicit assumption that

it is easier to make a statistical detection than a direct detection. Most of the instruments

are sensitive to the power spectrum of fluctuations at large scales, certainly larger than the

scale of non-linearity at the relevant epoch, and hence a significant fraction of the work

done in terms of making predictions is based on linear theory or approximations that work

well in the linear and quasi-linear regime. The halo model has also been used for predicting

the spectrum of fluctuations in the post-reionization universe.

In this study we revisit the issue of predicting fluctuations and use high resolution

N-Body simulations. This allows us to study fluctuations at scales comparable to, or even

smaller than the scale of non-linearity. We use dark matter simulations along with simple

ansatz for assigning neutral Hydrogen in order to make predictions of fluctuations in surface

brightness temperature. Our model is discussed in detail in §2. In §2.1 we summarize our

knowledge of the HI distribution at high redshifts and motivate the assignment schemes we

use in this work in §2.2. The N-Body simulations used by us are described in §2.3. Results

and discussion follow in §3 and we conclude in §4.

5.2 Modeling the HI distribution

In this section we describe our model of the HI distribution at high redshifts.

Our knowledge of the HI distribution in the universe is derived mainly from QSO ab-

sorption spectra, where the gas absorbs in the Lyman-α transition of the Hydrogen atom.

We know from observations of these absorption spectra that much of the inter-galactic

medium (IGM) is highly ionized and does not contain a significant amount of neutral

Hydrogen. Most of the neutral Hydrogen resides in relatively rare damped Lyman-α sys-

tems (DLAS) (Wolfe, Gawiser, & Prochaska, 2005). DLAS and other high column density

absorption features are believe to arise due to gas within galaxies (Haehnelt, Steinmetz,

& Rauch, 2000; Gardner et al., 2001). It is possible to make a quantitative estimate of

the total neutral Hydrogen content in DLAS and study the evolution of the total neutral

Hydrogen content of the universe (Storrie-Lombardi, McMahon, & Irwin, 1996; Rao &
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Turnshek, 2000; Péroux et al., 2005). These observations indicate that at 1 ≤ z ≤ 5, the

neutral Hydrogen content of the universe is almost constant with a density parameter of

ΩHI ' 0.001.

At low redshifts, the HI content can be estimated more directly through emission in

the Hyperfine transition. Observations in the local universe indicate a much lower neutral

Hydrogen content than seen at z ≥ 1 (Zwaan et al., 2005). The neutral gas fraction in

galaxies at intermediate redshifts appears to be much higher than in galaxies in the local

universe (Lah et al., 2007, 2009).

The spin temperature couples to the gas temperature through collisions of atoms with

other atoms, electrons, ions and also the Wouthuysen-Field effect (Purcell & Field, 1956;

Field, 1958, 1959; Wouthuysen, 1952a,b; Furlanetto, Oh, & Briggs, 2006). Observations

of 21 cm absorption by DLAS indicate that the spin temperature is orders of magnitude

higher than the temperature of the cosmic microwave background radiation (CMBR) at the

corresponding redshifts (Chengalur & Kanekar, 2000; Kanekar et al., 2009). This implies

that the emission in the 21 cm hyperfine transition can be safely assumed to be proportional

to the density of neutral Hydrogen, see, e.g., Furlanetto, Oh, & Briggs (2006).

δTb(z) = 4.6 mK

(
1− Tcmb

Ts

)
(1 + z)2 H0

H(z)

× xHI (1 + δ)

[
H(z)

(1 + z)(dv‖/dr‖)

]
' 7.26mK(1 + z)2 H0

H(z)

M
HI

1010M�

(
L

1Mpc

)−3

×
[

H(z)

(1 + z)(dv‖/dr‖)

]
(5.1)

where xHI is the fraction of Hydrogen in neutral form, δ is the density contrast of the gas

distribution, Tcmb is the temperature of the CMBR Ts is the spin temperature defined using

the relative occupation of the two levels for the hyperfine transition:

n1

n0

=
g1

g0

exp

{
−T?
Ts

}
, (5.2)

where subscripts 1 and 0 correspond to the excited and ground state levels of the hyperfine
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transition, T? = hν/kB = 68 mK is the temperature corresponding to the transition energy,

and g1/g0 = 3 is the ratio of the spin degeneracy factors of the levels.

Observations indicate that neutral gas is found only in galaxies in the post reionization

universe. Further, we know that galaxies in groups and clusters do not contain much

neutral gas. As cold gas is associated with galaxies, we may assume that it exists only in

haloes that are more massive than the Jeans mass. Further, we assume that neutral gas

is predominantly found in galaxies and not in larger haloes that may contain several large

galaxies. Jeans mass for haloes in a photo-ionizing UV background depends on the shape

of the spectrum of the ionizing radiation, typically we expect gas in haloes with a circular

velocity in excess of 60 km/s to cool, fragment and form stars. The mass within the virial

radius is related to the circular velocity and the collapse redshift as:

Mvir ' 1010 M�

(
vcirc

60km/s

)3(
1 + zc

4

)−3/2

(5.3)

Simulation studies show that DLAS can reside in haloes with even lower circular velocities

(Pontzen et al., 2008), i.e., haloes with mass lower than the expected Jeans mass can contain

significant amount of neutral Hydrogen. The gas in these haloes is able to self shield and

maintain a significant amount of HI even though the amount of gas is insufficient for

sustaining star formation4. We use this input and impose a lower cutoff in circular velocity

of 30 km/s, i.e., haloes with a lower circular velocity are not assigned any HI. Pontzen et

al. (2008) also found that haloes much more massive than a few times 1011 M� do not host

significant amount of HI. This is consistent with observations in the local universe where

galaxies in groups and clusters of galaxies contain very little HI. Some observations suggest

that the neutral fraction in galaxies in outer parts of clusters of galaxies may be high

compared to corresponding galaxies in the local universe (Lah et al., 2009). Assignment

for HI in more massive haloes is done in such a way as to ensure that very massive haloes

have a zero or negligible fraction of the total gas in neutral form. The transition scale for

the higher masses is chosen to coincide with 200 km/s. Given that it is easier to estimate

4Haloes that collapse much earlier may have hosted star formation, indeed the ISM of such galaxies
may have been blown away due to feedback. However, few haloes with a low circular velocity that collapse
very early are likely to survive without merger well into the post-reionization era. Errors arising out of HI
assignment to low circular velocity haloes should not lead to significant changes in our calculations.
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Table 5.1: The table lists the minimum mass of haloes Mmin that hosts HI in the simulated

HI distribution. The first column lists the redshift where simulated maps are constructed,

the second column lists Mmin we get by assuming a lower bound of 30 km/s on the circular

velocity of haloes, and column 4 lists the actual minimum halo mass used in construction

of the simulated maps. All masses are given in units of solar mass M�. Column 3 lists the

characteristic maximum mass of haloes computed using an upper bound on circular velocity

of 200 km/s and Column 5 shows the actual upper bound used while making simulated

maps. Column 6 lists the HI fraction of the total baryonic mass if we use the first HI

assignment scheme (see Eqn.(5.4).

z Mmin Mmax M sim
min M sim

max F1Ωnr/Ωb

5.1 108.83 1011.30 108.81 1011.30 0.24

3.4 109.04 1011.52 109.02 1011.50 0.15

1.3 109.43 1011.92 109.43 1011.90 0.11

mass than circular velocity for haloes identified in simulations, in particular for haloes with

a small number of particles, we choose to translate the threshold in circular velocity to a

threshold in mass assuming the collapse redshift and the redshift at which the system is

being observed to be the same, i.e., zc = z. While this may lead to inaccuracies regarding

inclusion of haloes close to the low mass end, we do not expect it to influence the results.

The minimum and the maximum masses for the redshifts considered here are listed in

Table 5.1.

Given a halo of mass M , all particles in it are assigned an equal HI mass which is a

fraction of their total mass. We describe three kinds of mass assignments here.

F1(M) = f1 (Mmin ≤M ≤Mmax) (5.4)

F2(M) =
f2

1 +
(

M
Mmax

)2 (Mmin ≤M ≤Mmax) (5.5)

F3(M) =
f3

1 +
(

M
Mmax

) (Mmin ≤M ≤Mmax) (5.6)
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Here Fk(M) is the mass fraction of HI in a given halo. The fraction of baryons that is in

the form of neutral Hydrogen is given by Fk(M)Ωnr/Ωb, where Ωb is the density parameter

of Baryons and Ωnr is the density parameter for non-relativistic matter. For the best fit

model for WMAP-5 (Komatsu et al., 2009) the ratio has the value Ωb/Ωnr ' 0.17 ' 1/6.

In all three cases the constant fk is determined by normalizing the HI mass in the

simulation volume to ΩHI = 0.001, the density parameter of HI indicated by observations

at relevant redshifts (Péroux et al., 2005). It is noteworthy that this normalization requires

a significant fraction of gas in haloes in the mass range between Mmin and Mmax be neutral

at high redshifts. In the assignment scheme with the sharp cutoff (scheme 1, Eqn. 5.4), the

HI fraction is the same in all haloes with mass between Mmin and Mmax. In the second

assignment scheme the HI fraction in a halo decreases monotonically with increasing halo

mass, and for large halo masses the HI mass goes to zero. This scheme applies to the

physical situation where very large haloes do not have any neutral Hydrogen. In scheme

3, the HI fraction decreases monotonically with increasing halo mass but the HI mass goes

to a constant value. The motivation of this scheme is to allow for some neutral Hydrogen

surviving in massive haloes in galaxies that are in the process of falling in. In the following

section, we compare the resulting distribution of HI with the three assignment schemes

described above. The present work is the first one where mass resolution of simulations is

adequate for resolving the smallest haloes that may host HI and the simulation volume is

also sufficient to make statements about the large scale distribution. We also ensure that

the finite size of the simulation volume does not affect the results presented here.

5.2.1 N-Body Simulations

We use gravity only simulations run with the TreePM code (Bagla, 2002; Bagla & Ray,

2003; Khandai & Bagla, 2009). The suite of simulations used here is described in the

Table 5.2. The cosmological model and the power spectrum of fluctuations corresponds to

the best fit model for WMAP-5: Ωnr = 0.26, ΩΛ = 0.74, ns = 0.96, σ8 = 0.79, h = 0.72,

Ωbh
2 = 0.02273 (Komatsu et al., 2009).

We use the Friends-of-Friends (FOF) (Davis et al., 1985) algorithm with a linking

length l = 0.2 to identify haloes and construct a halo catalog. The HI assignment schemes
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Table 5.2: Columns 1 and 2 list the size of the box and the number of particles used in

the simulations. Columns 3 and 4 give the mass and force resolution of the simulations,

while columns 5 and 6 tell us the redshift at which the simulations were terminated and

the redshifts for which the analysis were done

Lbox Npart mpart ε zf zout

(h−1Mpc) (h−1M�) (h−1kpc)

23.04 5123 6.7× 106 1.35 5.0 5.04

51.20 5123 7× 107 3.00 3.0 3.34

76.80 5123 2.3× 108 4.50 1.0 1.33

are then used to obtain the distribution of neutral Hydrogen.

Several existing and upcoming instruments can probe the post-reionization universe

using redshifted HI emission. The Giant Meterwave Radio Telescope5 (GMRT) can observe

redshifted HI emission from a few selected redshift windows whereas most other instruments

have continuous coverage in redshift bounded on two sides. We choose to focus on the

GMRT windows, as these are representative of the range of redshifts in the post-reionization

universe. In particular we will focus on the following redshift windows of GMRT: zout =

5.04, 3.34, 1.33. Finite box effects can lead to significant errors in the distribution of

haloes that host galaxies, apart from errors in the abundance of haloes of different masses

(Bagla & Prasad, 2006; Bagla, Prasad, & Khandai, 2009). The choice of simulations used

in this work ensures that such effects do not contribute significantly. Previous studies have

indicated that at z ' 0, we need a simulation box with Lbox ≥ 140h−1Mpc for the finite

size effects to be negligible (Bagla & Ray, 2005; Bagla & Prasad, 2006). On the other hand

the mass resolution of particles decreases as the cube of simulation volume. We balance

the requirements of high mass resolution and a sufficiently large box size by using different

simulations for studying the HI distribution at different redshifts. Details of the simulations

are given in the table. 5.2.

5See http://gmrt.ncra.tifr.res.in/ for further details.
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Figure 5.1: Slice of a simulation illustrating (1+δDM) at z = 3.34 in a simulation box of side

Lbox = 51.2h−1Mpc. The thickness of the slice corresponds to a bandwidth of 0.25MHz.

This is color coded such that red represents the dense regions, blue represents the regions

with average density and black indicates that there is no dark matter.
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Figure 5.2: Slice of a simulation illustrating (1 + δHALO) at z = 3.34 in a simulation box

of side Lbox = 51.2h−1Mpc. The thickness of the slice corresponds to a bandwidth of

0.25MHz. The color coding is similar to figure 5.1

.
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Figure 5.3: Slice of a simulation illustrating (1+δHI) at z = 3.34 in a simulation box of side

Lbox = 51.2h−1Mpc. The thickness of the slice corresponds to a bandwidth of 0.25MHz.

The color coding is similar to figure 5.1

.
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Figure 5.4: Slice of a simulation illustrating F3 , eq. 5.6, at redshift z = 1.33 in a simulation

box of side Lbox = 76.8h−1Mpc. The thickness of the slice corresponds to 0.45h−1Mpc.

The color coding is such that yellow represents particles with the maximum F3 and blue

represents those with the least F3. Black indicates particles which haven’t been assigned

any H I.
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Figure 5.5: Zoom in of figure 5.4 around coordinates (x, y) = (60, 40)

.
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Figure 5.6: Effect of HI mass assignment type on bias. Solid, dashed and dot-dashed lines

are for HI assignment types 1, 2 and 3 as described in eqs. 5.4-5.6. Bias was computed at

z = 3.34 for the 51.2h−1Mpc box with Mmax = 1011.5M�.
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Figure 5.7: Left : The dark matter power spectrum in the simulations with Lbox =

23 h−1Mpc and Lbox = 51.2 h−1Mpc at z = 5.1. Right : HI power spectrum in the same

simulations, see text for details.

5.3 Results

Given an HI mass assigment for particles in a simulation, we can proceed to compute the

expected signal from the HI distribution by making mock radio maps and spectra.

However before proceeding to the main results we visually illustrate how HI is assigned

in a dark matter simulation. Figure 5.1 shows a slice of thickness 0.25MHz from the

51.2h−1Mpc simulation at redshift z = 3.34. The color codes values of 1 + δDM with black

representing the underdense regions, while blue represents the average and the red pixels

are the densest regions. Owing to the large thickness of the slice, most of the fluctuations

in density have been smoothed out. Figure 5.2 shows dark matter particles in haloes, color

coded for 1+δHALO. These particles are assigned HI with the assignment scheme 3 (eq.5.6)

and figure 5.3 illustrates this, the color coding being for 1+δHI . In the following discussion

we will argue why we prefer this scheme. A careful inspection reveals that whereas δHALO

decreases in the filaments δHI doesn’t. One finds that the largest halos also contain a large
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HI mass, because even though they have the lowest HI mass per dark matter particle, the

assignment scheme guarantees that the mass contained in the largest halos saturates to a

constant value. This point is illustrated in figures 5.4 and 5.5. Figure 5.5 is a zoom in of

the region around the largest halo located near the coordinates (x, y) = (60, 40). Here we

take an even lower redshift in the 76.8h−1Mpc box so as to have larger halos. The slice is

extremely thin so as to cut across the largest halos. The color coding is for F3, eq. (5.6).

With black marking the F3 = 0 and yellow marking the particles with the maximum F3.

Here we find that the bigger halos have less HI assigned per particle, whereas the smalles

halos have the most HI. It is interesting to note that the satellite halos around the larger

halos have a considerably larger HI as compared to the parent halo.

We also compute the power spectrum in both real and redshift space. For redshift

space calculations, we use the peculiar velocity information of particles in haloes. Unlike

earlier studies, we resolve haloes of individual galaxies and hence the internal velocity

dispersion is naturally accounted for and there is no need to add it by hand (Kumar,

Padmanabhan, & Subramanian, 1995; Bagla, Nath, & Padmanabhan, 1997; Bagla & White,

2003).

We use the clouds-in-cell (CIC) smoothing to interpolate densities from particle lo-

cations to grid points for the purpose of computing densities and the power spectrum.

It is convenient to express the HI power spectrum in terms of the brightness tempera-

ture, though in comparisons with the dark matter power spectrum we revert to the usual

dimensionless form.

We define the real and redshift space scale dependant bias by the ratio of the corre-

sponding dark matter and HI power spectra.

b(k) =

[
P
HI

(k)

P
DM

(k)

]1/2

(5.7)

bs(k) =

[
P s
HI

(k)

P s
DM

(k)

]1/2

(5.8)

We start by checking the effect of HI assignment scheme on the resulting distribution. We

have computed the bias b(k) at z = 3.34 for the Lbox = 51.2h−1Mpc simulation using the

three schemes introduced above. The results are illustrated in the left panel of Figure 5.6 for
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the three assignment types Eqs. (5.4-5.6). We see that at large scales the three assignment

schemes give very similar results, whereas there is some disagreement between the assigment

scheme Eqn.(5.4) and the other two. The difference can be attributed to the fact that the

scheme described in Eqn.(5.4) puts more HI mass in haloes with masses near Mmax. The

figure also highlights that the differences between the HI assignment schemes are relatively

minor. We choose to work with scheme described in Eqn.(5.6) due to the better physical

justification, as discussed in §5.2.

It is noteworthy that while the bias is strongly scale dependent at large k (small

scales), it flattens out to a constant value at small k (large scales).

In order to check for the effects of a finite box size, we carried out a test for the

23 h−1Mpc simulation box. Instead of using the range of halo masses for HI assignment

that is appropriate for z = 5.1, we work with a slightly smaller range so that haloes of

these masses can be found in the 51.2 h−1Mpc simulation as well. Figure 5.7 shows the

dark matter power spectrum (Left panel) and the HI power spectrum (Right panel) with

the HI assignment restricted to a smaller range of masses, as described above. We see that

the dark matter power spectra from the two simulations agree through the range of scales

where there is an overlap. The HI power spectra also agree, though not as well as the dark

matter power spectra. These differences are so small that we do not expect these to affect

the final results in a significant manner. The difference can be attributed to the fact that

clustering of haloes is effected more strongly by the box size effects in simulations (Gelb &

Bertschinger, 1994; Bagla & Ray, 2005).

These tests validate our approach for assignment of HI to haloes, and also show that

the effects of a finite box-size are not significant at the level of the power spectrum or the

mass function.

5.3.1 Bias

This is amongst the first studies of the HI distribution at high redshifts where we resolve

the smallest haloes that can host significant amount of HI while ensuring that the finite

box size effects do not lead to an erronous distribution of haloes. One of the points that

we can address here is the effect of non-linear clustering on the HI distribution and the
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scale dependance of bias. Some of these effects are illustrated in Figure 5.8 where we have

plotted the power spectrum of fluctuations: the solid line shows the linearly extrapolated

power spectrum, the dashed line shows the non-linear dark matter power spectrum and

the dot-dashed line shows the HI power spectrum. All power spectra are for z = 3.34.

The dark matter and the HI power spectra have been computed with the simulation with

Lbox = 51.2 h−1Mpc.

It is apparent that at k > 0.5 h Mpc−1 the effects of non-linear clustering significantly

enhance the dark matter power spectrum. At k ∼ 10 h Mpc−1, the enhancement is close

to an order of magnitude. This is of utmost interest for upcoming instruments that can

resolve small angular scales.

We find that bias b(k) for the HI distribution is much greater than unity at high

redshifts. This is to be expected of galaxies at high redshifts (Fry, 1996; Mo & White,

1996; Bagla, 1998a,b; Mo, Mao, & White, 1999; Baugh et al., 1999; Magliocchetti et al.,

2000; Benson et al., 2000; Roukema & Valls-Gabaud, 2000; Sheth, Mo, & Tormen, 2001).

We note that the bias is scale dependent, and leads to a larger enhancement in the power

spectrum at very small scales.

The value of bias depends strongly on the choice of the characteristic mass of haloes

with HI. This is shown in Figure 5.9. All curves are for z = 3.34 and have been computed

with the simulation with Lbox = 51.2 h−1Mpc. This figure illustrates that the bias at all

scales varies monotonically with the charactersitic mass of haloes with HI. Variation is

gentle at large scales but fairly strong at small scales. Therefore it is extremely important

to have an accurate estimate of the charactersitic masses of such haloes. Indeed, it has

been pointed out that observations of the amplitude of clustering in the HI distribution

can be used to constrain masses of haloes that host DLAS (Wyithe, 2008).

While the preceeding figures describe the statistical bias computed from the ratio of

power spectra, Figure 5.10 shows the stochasticity of bias (Dekel & Lahav, 1999) in the

HI distribution. This figure shows a scatter plot of δHI smoothed at a scale of 3 h−1Mpc

with a spherical top hat window, plotted as a function of δDM smoothed at the same scale.

The figure shows a random subset of points from the simulation with Lbox = 51.2 h−1Mpc

at z = 3.34. The scatter about the average trend in the δHI − δDM is significant, and

increases as we go towards large overdensities in dark matter. The scatter becomes small
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Figure 5.8: The power spectrum of fluctuations: the solid line shows the linearly extrapo-

lated power spectrum, the dashed line shows the non-linear dark matter power spectrum

and the dot-dashed line shows the HI power spectrum. All power spectra are for z = 3.34.

The dark matter and the HI power spectra have been computed with the simulation with

Lbox = 51.2 h−1Mpc.
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Figure 5.9: The dependance of bias on Mmin and Mmax. The solid curve shows b(k) for the

values of Mmin and Mmax shown in Table 5.1. The dashed line shows b(k) when we use the

reference value for Mmax but increase Mmin to twice the reference value. The dot-dashed

curve shows b(k) when Mmax is chosen to be higher: 1011.9 M�, while Mmin is kept at the

reference alue. We see that as the characteristic mass of haloes with HI increases, b(k)

increases. All curves are for z = 3.34 and have been computed with the simulation with

Lbox = 51.2 h−1Mpc.
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Figure 5.10: This figure shows a scatter plot of δHI smoothed at a scale of 3h−1Mpc with

spherical top hat window, plotted as a function of δDM smoothed at the same scale. The

figure shows a random subset of points from the simulation with Lbox = 51.2 h−1Mpc at

z = 3.34.
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Figure 5.11: Left : Evolution of the HI powerspectrum ∆2
HI

(k). Solid, dashed, dot-dashed

lines are for redshifts z = 5.04, 3.34, 1.33 respectively. Right : Evolution of the HI linear

bias.

if we smooth the density distribution at much larger scales.

Similar results concerning the effect of non-linear gravitational clustering and bias

are obtained for other redshifts. We concentrate on the evolution of bias and the power

spectrum rather than go into a very detailed discussion of the HI distribution at each

redshift. We discuss simulated maps in the following subsection.

Figure 5.11 (left panel) shows the evolution of the redshift space power spectrum

for the HI distribution. Curves show the ∆2
HI(k) as a function of k for z = 5.1 (solid

line), z = 3.34 (dashed line) and z = 1.3 (dot-dashed line). Unlike the power spectrum in

real space, the enhancement at very small scales is less strong and this is due to velocity

dispersion within haloes at smaller scales. Power at larger scales is enhanced due to the

Kaiser effect (Kaiser, 1987), leading to a relatively stronger enhancement at larger scales.

Even though the amplitude of density perturbations increases with time, we see that the

amplitude of brightness temperature fluctuations decreases instead. This is a manifestation

of the decreasing correlation function, see, e.g., Bagla (1998b); Roukema & Valls-Gabaud
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Figure 5.12: This figure shows shows mock radio maps, the left panel is for z = 3.34 and

the right panel is for z = 1.3. The pixel size is chosen to be the resolution of the central

square of the GMRT. The bandwidth of the map is 0.5MHz and 1.0MHz for z = 3.34, 1.33

respectively. The corresponding contours mark regions with signal (9.2, 5.75 ,1.15) µJy

and (16.8, 10.5, 2.1) µJy for z = 3.34 and 1.33 respectively. The mock maps show the

brightest regions from the simulation. As we can see, these regions have a large angular

extent this fact may be used to enhance prospects of detection.

(1998).

The evolution of bias at large scales, denoted as blin(k) to emphasise that it refers to

scales where clustering is still in the linear regime, is shown in the right panel of Figure 5.11.

We see that this decreases from around 2.5 at z = 5.1 to 1.2 at z = 1.3, the variation is

slightly steeper than (1 + z)1/2 and hence the gradual lowering of the amplitude of the

brightness temperature power spectrum.
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5.3.2 Radio Maps

Figure 5.12 shows the simulated radio maps and spectra. The top row shows simulated

radio maps, the left panel is for z = 3.34 and the right panel is for z = 1.3. The pixel size is

chosen to be the same as the resolution of the central square of the GMRT. The bandwidth

of the map is 0.5MHz and 1.0MHz for z = 3.34, 1.33 respectively. The corresponding

contours mark regions with signal (9.2, 5.75, 1.15) µJy for z = 3.34 and (16.8, 10.5,

2.1) µJy for z = 1.33. As we can see in these maps, bright regions have a large angular

extent this fact may be used to enhance prospects of detection.

Figure 5.13 shows spectra from the mock radio maps. These spectra have been plotted

for regions that are the size of the resolution of the central square of the GMRT. We have

chosen to plot the spectrum through the brightest region in the simulation. The left panel

corresponds to z = 3.34 and the right panel shows the spectrum for z = 1.3. The peak flux

is around 0.025 mJy and the FWHM of the line is close to 300 MHz. The strength of the

signal for z = 3.34 is comparable to what we found in an earlier study, although the line

width is much smaller. The reason for a smaller line width is likely to be the supression of

the HI fraction in very massive haloes. Considering the peak for which the spectrum has

been plotted here, it may be possible to make a 2 σ detection with about 2× 103 hours of

observations with the central square of the GMRT. Given that the GMRT observes a much

larger volume at these redshifts that the simulation volume, it is highly probable that even

rarer peaks in the HI distribution will be observed in a generic pointing.

The strentgh of the predicted signal at z = 1.3 is or the order of 0.05 mJy, with an

FWHM of around 1 MHz. The best rms sensitivity achieved in this band at the GMRT is

0.02 mJy. This has been achieved with a bandwidth ' 32 MHz6. Thus direct detection of

“clusters” of HI at z ' 1.3 is well within reach for the GMRT. Indeed, a simple estimate

of noise in image suggests that a 2σ detection of such a rare peak in the HI distribution

should be possible with around 400 hours of observation with the GMRT. As we shall show,

it is possible to make a 2σ statistical detection of the redshifted 21 cm radiation from this

epoch with about 103 hours of observations with the GMRT.

Detection of rare peaks in the HI distribution offers exciting possibilities. The size

6See http://www.gmrt.ncra.tifr.res.in/gmrt hpage/Users/doc/GMRT specs June09.pdf
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of the region represented in these rare peaks is fairly large, and it should be possible to

establish the mass contained in these regions using observations in other wavebands. This

will allow us to estimate ΩHI in emission, and hence provide and independent measurement

of the amount of cold gas.

The time required for detection of HI at high redshifts with the GMRT increases

rapidly as we go to higher redshifts. This trend continues as we move to z ' 5.1 and

therefore we do not discuss those results in detail here.

Upcoming instruments like the MWA can, however, detect signal from the HI distri-

bution at high redshifts. The angular resolution of the MWA is fairly poor and hence the

effects of non-linear clustering and scale dependant bias do not make a significant impact

on predictions. We shall discuss the prospects for detection with the GMRT and the MWA

in detail in the following chapter.

5.4 Discussion

Several attempts have been made in recent years to model the HI distribution in the post-

reionization universe (Scott & Rees, 1990; Subramanian & Padmanabhan, 1993; Kumar,

Padmanabhan, & Subramanian, 1995; Bagla, Nath, & Padmanabhan, 1997; Bharadwaj,

Nath, & Sethi, 2001; Bharadwaj & Sethi, 2001; Bagla & White, 2003; Bharadwaj & Srikant,

2004; Bharadwaj & Ali, 2005; Loeb & Wyithe, 2008; Wyithe, Loeb, & Geil, 2008; Pritchard

& Loeb, 2008), with the recent resurgence in interest being due to upcoming radio telescopes

and arrays. In this paper we have revisited the issue using dark matter simulations and an

ansatze for assigning HI to dark matter haloes. This is amongst the few attempts made

using simulations where the smallest haloes that may contain significant amount of HI are

resolved, and, the simulations are large enough to limit errors caused by a finite box size.

Our key conclusions may be summarized as follows:

• We have demonstrated that changes in the HI assignment schemes do not lead to

significant variations in the statistics of the resulting HI distribution at large scales.

• We have shown that the finite box size effects are not important in even the smallest
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Figure 5.13: This figure shows spectra from the mock radio maps. These spectra have been

plotted for regions that are the size of the resolution of the central square of the GMRT

for z = 3.34 and twice the resolution of the central square of GMRT for z = 1.33. We

chose to plot the spectrum through the brightest region in the simulation. The left panel

corresponds to z = 3.34 and the right panel shows the spectrum for z = 1.3. The strength

of the signal for z = 3.34 is comparable to what we found in an earlier study. The strentgh

of the predicted signal at z = 1.3 is or the order of 0.05 mJy, with an FWHM of around

1 MHz. The best rms sensitivity achieved in this band at the GMRT is 0.02 mJy. This

has been achieved with a bandwidth ' 32 MHz.
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simulation we have used here.

• We find that non-linear gravtiational clustering enhances the amplitude of perturba-

tions by a significant amount at small scales.

• HI distribution is strongly biased at high redshifts and this enhances the HI power

spectrum significantly as compared to the dark matter power spectrum. Bias b(k) is

scale independent at large scales k ≤ knl, where knl is the scale of non-linearity.

• Bias decreases sharply from high redshifts towards low redshifts. This leads to a

gradual decrease in the brightness temperature power spectrum. The change in the

amplitude of the brightness temperature power spectrum is slow, being less than a

factor two between z = 5.1 and z = 1.3.

• Brightest regions in the simulated radio maps are found to be extended, with an

angular extent much larger than the resolution of the GMRT. This can be used to

enhance prospects of detection.

• Spectra in the simulated maps appear to have an FWHM of around 1 MHz for z = 1.3

and about half of this for z = 3.34. A comparison with earlier work for z = 3.34

shows that the FWHM is found to be smaller in the present work. We attribute this

to the low HI fraction assigned to the most massive haloes, whereas such haloes were

not excluded in earlier work.

• Signal for the brightest source of redshifted 21 cm radiation from z = 1.3 appears to

be significant, and within reach of an instrument like the GMRT.

• Detection of rare peaks in the HI distribution offers exciting possibilities. The size

of the region represented in these rare peaks is fairly large, and it should be easy to

establish the mass contained in these regions using observations in other wavebands.

This may allow us to estimate ΩHI in emission, and hence provide and independent

measurement of the amount of cold gas.

We use the simulated maps to make estimates for prospects of detection using the

GMRT and the MWA in the following chpater.
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An interesting potential application of the method used here is to make predictions

for z < 1 where detection with the GMRT and ASKAP is likely to be much easier. The

main issue to be addressed there is that the observed volume becomes small and hence

we can expect significant scatter in the observed visibility correlations from one field to

another, and across frequency channels. This is particularly relevant for the GMRT where

the primary beam covers a solid angle that is nearly 14 times smaller than that covered by

ASKAP.

In this work we have used a fairly simple HI assignment scheme while ignoring the

evolution of gas content of haloes. This is an aspect where there is a lot of scope for

improvement.



Chapter 6

HI as a Probe of the Large Scale

Structure in the Post-Reionization

Universe: Visibility Correlations and

Prospects for Detection

Simulated maps of the HI distribution in the post-reionization era are used to study the

prospects for detection with existing and upcoming radio telescopes. We consider detec-

tion in the redshifted radiation from the hyperfine transition with a rest frame frequency of

1420 MHz. Possibility of a statistical detection using visibility correlations is discussed. We

look at prospects for detection with the MWA1 , GMRT2 and the hypothetical upgraded

MWA, the MWA5000, often considered in the literature. The MWA5000 can detect visi-

bility correlations at large angular scales at all redshifts in the post-reionization era. The

GMRT can detect visibility correlations at lower redshifts, specifically there is a strong case

for a survey at z ' 1.3. We also discuss prospects for direct detection of rare peaks in the

HI distribution using the GMRT. We show that direct detection should be possible with

integration time that is comparable to, or even less than, the time required for a statistical

1 The Murchison Widefield Array. See http://www.mwatelescope.org/ for details.
2Giant Meterwave Radio Telescope. See http://gmrt.ncra.tifr.res.in for details.
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Table 6.1: Characteristics of the GMRT, MWA and MWA5000 that have been used for

calculation of the visibility correlation and noise in the visibility correlation as well as noise

in image are listed here. The values of the system parameters for GMRT and MWA were

taken from http://gmrt.ncra.tifr.res.in/ and Bowman (2007) respectively.

Instrument Freq. (MHz) ∆ν (MHz) B (MHz) ∆U θ0 (deg.) Tsys (K) Aeff (m
2)

GMRT 610 1 16 32 0.56 102 1590

330 1 16 17 1.03 106 1590

235 1 16 12 1.45 237 1590

MWA < 300 1 32 2 9 68 5.6

MWA5000 < 235 1 32 1.6 11.49 92 15

detection.

In the last chapter we studied the evolution of the HI distribution at high redshifts

using N-Body simulations. We used the simulations to compute the power spectrum for

the HI distribution at several redshifts. In this study we use the power spectra to compute

visibility correlations using the relation enunciated by Bharadwaj & Sethi (2001). We

estimate the level of noise for the GMRT and the MWA and compare these with the

expected signal. We also discuss prospects for direct detection of rare peaks in the HI

distribution. The basics theory is reviewed in §6.1. We summarize the simulations results

in §6.2 and proceed to discuss the resulting visibility correlations in §6.2.1 where we also

compare these with the expected noise. The signal expected from rare peaks is discussed in

§6.2.2 along with prospects of direct detection of such peaks. We conclude with a discussion

in §6.3.

6.1 Signal and Noise

In this section we briefly review the relation between the flux from sources and the observ-

able quantities for radio interferometers. We then proceed to a discussion of the sensitivity
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of interferometers and the corresponding limitations arising from that.

6.1.1 Visibility Correlation

The quantity measured in radio-interferometric observations is the visibility V (~U, ν) which

is measured in a number of frequency channels ν − ν∆ν across a frequency bandwidth B

for every pair of antennas in the array. The visibility is related to the sky specific intensity

pattern Iν(~θ) as

V (~U, ν) =

∫
d2~θA(~θ)Iν(~θ)e

2πı~θ·~U . (6.1)

The baseline ~U is ~d/λ where ~d is the antenna separation projected in the plane perpendicular

to the line of sight. ~θ is a two dimensional vector in the plane of the sky with origin at the

center of the field of view, and A(~θ) is the beam pattern of the individual antenna. For the

GMRT this can be well approximated by Gaussian A(~θ) = e−θ
2/θ0

2
. We use θ0 = 0.56◦ at

610 MHz for the GMRT, and it scales as the inverse of frequency.

We next consider the visibility-visibility correlation (hereafter only visibility correla-

tion ) measured at different baselines ~U and ~U + ~∆U , at two frequencies ν and ν + ∆ν.

As argued in Bharadwaj & Ali (2005) the visibilities at baselines U and ~U + ~∆U will be

correlated only if |∆~U | < 1/πθ0. Visibilities at different frequencies are expected to be

correlated only if the flux from sources is correlated. This is certainly true of continuum

radiation. In case of spectral lines, like the redshifted 21 cm line being considered here,

visibilities are expected to be correlated over a range of frequencies comparable to width

of spectral lines. For generic applications, we can take this to be about 1 Mhz though we

can use the simulated radio maps for a more refined model. As a first approximation, the

visibilities at frequencies ν and ν+∆ν can be assumed to be uncorrelated for ∆ν > 1 MHz

(Datta, Choudhury, & Bharadwaj, 2007) for range of baselines of our interest. To calculate

the strength and nature of visibility correlation we consider the visibility correlation at

same baselines and frequencies which can be written as (for details see Bharadwaj & Ali

(2005))

〈V (~U, ν)V ∗(~U, ν)〉 =
Ī2
νθ

2
0

2r2
ν

∫ ∞
0

dk‖PHI(k) (6.2)

where rν is comoving distance corresponds to frequency ν = 1420/ (1 + z). ~k = k‖m̂+ 2π~U
rν

,
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where m̂ is unit vector along the line of sight. We next shift our focus on the redshift space

HI power spectrum PHI(k, z) (Bharadwaj & Ali, 2004). In the post-reionization epoch HI

survives mainly in the inter-stellar medium (ISM) of galaxies. At sufficiently large scales

one can write PHI(k, z) as

PHI(k, z) = x2
HIb

2

[
1 + β(k)

k2
‖

k2

]2

P (k, z). (6.3)

Here xHI is neutral Hydrogen (HI) fraction. b is the scale independent bias at large scales.

β(k) = f/b where f = Ω0.6
nr is the redshift distortion parameter. P (k, z) is matter power

spectrum at redshift z and is dominated by the spatial distribution of dark matter. We

calculate PHI(k, z) from N-Body simulations and put this in eq. 6.2 to calculate the

visibility correlation. As simulations have a finite box size, we patch it with a linearly

extrapolated power spectrum with a constant bias at small k.

6.1.2 System Noise in the Visibility Correlation

The noise rms. in real part in each visibility for single polarization is

Vrms =

√
2kBTsys

Aeff
√

∆ν∆t
(6.4)

where Tsys is the total system temperature, kB is the Boltzmann constant, Aeff is the

effective collecting area of each antenna, ∆ν is the channel width and ∆t is correlator

integration time. This can be written in terms of the antenna sensitivity K =
Aeff
2 kB

as

Vrms =
Tsys

K
√

2∆ν∆t
(6.5)

The noise variance in the visibility correlation is written as (Ali, Bharadwaj, & Chengalur,

2008)

σ2
V V =

8V 4
rms

Np

(6.6)

where Np is number of visibility pairs in a particular U bin and frequency separation less

than ∆ν. The HI signal part remains correlated but the system noise is uncorrelated in

the visibility correlation.
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We next consider how Np is calculated. We consider an elementary grid of area ∆U2

in the u− v plane where the signal remains correlated. Total observation time we consider

is T . We further assume ρ(U, ν) (circularly symmetric) to be the baseline fraction per unit

area per in the baseline range U and U + ∆U . Number of visibility pairs in a given U , ∆ν

bin in the grid is

1

2

[
N(N − 1)

2

T

∆t
∆U2ρ(U, ν)

]2

(6.7)

Note that the baseline fraction function ρ(U, ν) is different for different interferometric

arrays and plays an important role in determining the sensitivity of an array. This function

is also frequency dependent. The signal and the system noise is expected to be isotropic

and only depends on the magnitude of U . We take average over all bins of area ∆U2 in

the circular annulus between U and U + ∆U . Number of independent elementary bins in

a circular annulus between U and U + ∆U is 2πU∆U/∆U2. Moreover there are B/∆ν

independent channels for the total bandwidth B. Combining all these we have

Np =
1

2

[
N(N − 1)

2

T

∆t
∆U2ρ(U, ν)

]2
B

∆ν

2πU∆U

∆U2
(6.8)

The noise rms in the visibility correlation can then be written as

σV V =
4√

2π N(N − 1)

[
Tsys
K

]2
1

T
√

∆νB

1

U0.5∆U1.5ρ(U, ν)
(6.9)

The bin size ∆U is determined by the field of view of the antenna and for a Gaussian

antenna beam pattern A(θ) = e−θ
2/θ20 , one can show that ∆U = 1/πθ0. The equation 6.9

gives the system noise in the visibility correlation for any radio experiment. Note that, the

system noise rms in the visibility correlation scales as ∼ 1/N(N −1)T unlike the noise rms

in the image which scales as ∼ 1/
√
N(N − 1)T .

There are two effects that we ignore in the analysis here.

• At small U , comparable with the inverse of the field of view, cosmic variance also

limits our ability to measure the visibility correlations. As the field of view of the

GMRT is (much) smaller than the MWA, this concern is more relevant in that case.

Cosmic variance is subdominant to the system noise as long as we work with scales
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that are much smaller than the field of view, or work with U that are much larger

than the one that corresponds to the field of view.

• For MWA, the field of view is very large and one needs to take the curvature of sky

into account (McEwen & Scaife, 2008; Ng, 2001, 2005). We ignore this as we are not

estimating the signal at very large angles.

We consider three instruments: the GMRT, MWA and a hypothetical instrument

MWA5000. The GMRT has a hybrid distribution with 14 antennae are distributed ran-

domly in the central core of area 1 km ×1 km and 16 antennae are placed along three

arms (Y shaped). The antennae are parabolic dishes of diameter 45 m. The MWA will

have 500 antennae distributed within a circular region of radius 750 m. The antennae are

expected to follow ρant(r) ∝ 1/r2 distribution with a 20 m flat core. The hypothetical

instrument MWA5000 is almost similar to the MWA but with 5000 antennae. We assume

antennae are distributed as ρant(r) ∝ 1/r2 within 1000 m radius and with a flat core of

radius 80 m (McQuinn et al., 2006). The normalized baseline distribution ρ(U, ν) for fre-

quency ν = 330 MHz is presented in the Figure 6.1 for the three instruments (see Datta et

al. (2007) for details). Table 6.1 lists the wavebands and other instrument parameters for

which analysis is done in this paper. We assume the effective antenna collecting area (Aeff )

to be same as the antenna physical area. We also list parameters used for calculation of

noise in visibility correlations.

We consider three instruments: the GMRT, MWA and a hypothetical instrument

MWA5000. The GMRT has a hybrid distribution with 14 antennae are distributed ran-

domly in the central core of area 1 km ×1 km and 16 antennae are placed along three

arms (Y shaped). The antennae are parabolic dishes of diameter 45 m. The MWA will

have 500 antennae distributed within a circular region of radius 750 m. The antennae are

expected to follow ρant(r) ∝ 1/r2 distribution with a 20 m flat core. The hypothetical

instrument MWA5000 is almost similar to the MWA but with 5000 antennae. We assume

antennae are distributed as ρant(r) ∝ 1/r2 within 1000 m radius and with a flat core of

radius 80 m (McQuinn et al., 2006). The normalized baseline distribution ρ(U, ν) for fre-

quency ν = 330 MHz is presented in the Figure 6.1 for the three instruments (see Datta et

al. (2007) for details). Table 6.1 lists the wavebands and other instrument parameters for
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Figure 6.1: This shows the normalized baseline distribution function ρ(U, ν) as a function

of baseline U for three instruments (GMRT, MWA and MWA5000) for frequency ν =

330 MHz.

which analysis is done in this paper. We assume the effective antenna collecting area (Aeff )

to be same as the antenna physical area. We also list parameters used for calculation of

noise in visibility correlations.

6.1.3 Noise in Images

Observed visibilities are used to construct an image of the sky for each frequency channel.

The size of the image is of the order of the primary beam θ0 and the resolution depends

on the largest baselines used. Both the size of the image and resolution, or the pixel size

depend on the frequency of observation in the same manner.
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Unlike visibilities, that are uncorrelated outside of the small bins, pixels in an image

are not completely uncorrelated. The correlation of pixels in a raw image is similar to the

dirty beam. Therefore the analysis of noise in images as a function of scale is a fairly complex

problem. Scaling of noise with bandwidth is easy as the noise for different frequency

channels is uncorrelated. rms noise for a given pixel can be computed:

σimage =
Tsys
G

1√
∆t∆ν

√
N (N − 1)

(6.10)

Here G is the Gain for each antenna, Tsys is the system temperature, N is the number of

antenna in the interferometer, ∆t is the on source observation time and ∆ν is the bandwidth

for the image. We ignore foregrounds as at most frequencies of interest Tsys � Tsky. This

assumption becomes invalid for redshifted 21 cm radiation from z > 5 and at these redshifts

foregrounds present greater difficulties than the instrumental noise.

We find that for the z = 3.3 window of the GMRT σimage ' 9 µJy for an integration

time of 2000 hours and a bandwidth of 1 MHz. This has been computed for the central

square of the GMRT with N = 14. The corresponding number of z = 1.3 is σimage ' 20 µJy

for an integration time of 400 hours and a bandwidth of 1 MHz.

As a first approximation, we assume that noise in images is uncorrelated and that it

scales as the square root of the number of pixels over which signal is smoothed. This allows

us to estimate signal to noise ratio for extended structures, but it must be noted that this

analysis is approximate.

6.2 Simulated Maps & Signal

In this section we describe results from simulated HI maps. Details of the simulations we

use here and the method used for assigning HI can be found in the previous chapter. We

summarise some key aspects of the simulated HI distribution.

• We use gravity only simulations of the LCDM model with 5123 particles. The simu-

lations are run using the TreePM method (Bagla, 2002; Bagla & Ray, 2003; Khandai

& Bagla, 2009).
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Figure 6.2: This figure shows the expected visibility correlation as a function of U for

GMRT. The expected signal is shown with a solid curve and the expected noise in the

visibility correlation is shows by a dashed curve. Different panels are for different redshifts.

The noise in each panel has been computed assuming 103 hours of integration time and

∆ν = 1 MHz. We have ignored the effect of foregrounds and only the system noise has

been considered. Prospects of detection with the GMRT are encouraging for z = 1.3 where

it should be possible to make a detection for U < 700. It is possible to enhance the signal

to noise ratio by combining data from nearby bins in U , thus detection may be possible in

a shorter time scale as well.
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Figure 6.3: This figure shows the expected visibility correlation as a function of U for MWA

and MWA5000. The expected signal is shown with a solid curve and the expected noise

in the visibility correlation is shows by a dashed curve. Different panels are for different

redshifts. The noise in each panel has been computed assuming 103 hours of integration

time and a bandwidth of 1 MHz. We have ignored the effect of foregrounds and only the

system noise has been considered. We note that the MWA5000 should detect visibility

correlations at U < 500 at z ' 5 and at U < 400 at z ' 3.7. The detection at smaller U

should be possible at a high significance level. It is possible to enhance the signal to noise

ratio by combining data from nearby bins in U , thus detection may be possible in a shorter

time scale as well.
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• We identify haloes in these simulations. HI is assigned to haloes with circular velocity

greater than 30 km/s. Mass resolution of simulations is chosen such that haloes with

this minimum circular velocity contain at least 8 particles.

• HI assignment scheme is chosen to be such that the HI fraction drops rapidly in haloes

with circular velocity greater than 200 km/s. For more massive haloes, the HI mass

goes to a constant.

• It is assumed that particles not contained in these haloes do not have any neutral

Hydrogen.

• Positions, velocities and HI mass of particles is then used to generate simulated

maps, as well as to compute statistical quantities like the power spectrum and scale

dependant bias.

6.2.1 Visibility Correlation

We use the power spectrum of the HI distribution derived from N-Body simulations to

compute the visibility correlations. For large scales, larger than the simulation size, we

patch this with the linearly extrapolated power spectrum with a constant bias. This is the

only input required in Eqn.(6.2) for calculation of visibility correlation.

Visibility correlation for various redshifts is shown in Figures 6.2 and 6.3. We have

also plotted the expected system noise in each of the panels. The expected visibility

correlation is shown as a function of U . The expected signal is shown with a solid curve

and the expected noise in the visibility correlation is shows by a dashed curve. This has

been shown for the instruments: GMRT (figure 6.2) MWA (figure 6.3) and MWA5000.

Different panels in the two columns are for different redshifts. The noise in each panel

has been computed assuming 103 hours of integration time and ∆ν = 1 MHz. We have

ignored the effect of foregrounds and only the system noise has been considered. Important

conclusions that can be drawn from these figure are as follows:

• The MWA in its current design will not be able to detect visibility correlations.
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• The MWA5000 should detect visibility correlations at U < 500 at z ' 5 and at

U < 400 at z ' 3.7.

• The detection at smaller U should be possible at a high significance level.

• Prospects of detection with the GMRT are encouraging for z = 1.3 where it should

be possible to make a detection for U < 700.

It is possible to enhance the signal to noise ratio by combining data from nearby bins

in U , thus detection may be possible in a shorter time scale as well. The GMRT has been

in operation for more than a decade, and its characteristics are well understood. Therefore

it is important to make an effort to observe HI fluctuations at z ' 1.3 with the instrument.

The observations need not pertain to the same field as the region observed by the GMRT

in a single observation is fairly large and we do not expect significant fluctuations in the

HI power spectrum and hence the visibility correlation from one field to another. Thus

good quality archival data for a few fields can be combined, in principle, to detect visibility

correlations.

Detection of visibility correlations in turn gives us a measurement of the power spec-

trum for the HI distribution (Bharadwaj & Sethi, 2001). This can be used to constrain

various cosmological parameters (Bharadwaj, Sethi, & Saini, 2009; Wyithe, Loeb, & Geil,

2008). Recently, it has also been pointed out that the power spectrum can also be used to

estimate the characteristic mass of damped lyman alpha systems (DLAS) (Wyithe, 2008).

6.2.2 Rare Peaks

We now discuss the possibility of directly detecting rare peaks in the HI distribution. This

is an interesting possibility for instruments like the GMRT and ASKAP that can resolve

small angular scales. At such scales, non-linear gravitational clustering and the large bias

for the HI distribution combine to enhance the amplitude of fluctuations significantly. It is

also of interest to see whether this enhancement can make detection of rare peaks as easy

as statistical detection via visibility correlations.

Figure 6.4 shows the expected signal to noise ratio (SNR) for the brightest region in

the simulated maps if it is observed using the central square of the GMRT. The left column
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Figure 6.4: This figure shows the expected signal to noise ratio (SNR) for direct detection

of rare peaks in the HI distribution at high redshifts. All the plots pertain to the GMRT

and we use the expected noise in the image for the central square. The left column is for

z ' 3.3 and the right column is for z ' 1.3. The top row is for variation of the SNR with

bandwidth for one pixel, whereas the lower shows the variation of SNR with the square

root of the solid angle over which signal has been smoothed for a given bandwidth. These

figures show that a 2σ detection of a rare peak is possible in 400 hours for z ' 1.3 and in

2000 hours for z ' 3.3.
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is for z ' 3.3 and the right column is for z ' 1.3. The top row shows variation of the

SNR with bandwidth for one pixel, whereas the lower shows the variation of SNR with the

square root of the solid angle over which signal has been smoothed for a given bandwidth.

In plots of variation of SNR with the bandwidth, the peak is very close to the FWHM of

spectral lines for large structures (see spectra of rare peaks in Bagla & Khandai (2009)).

These figures show that a 2σ detection of a rare peak is possible in 400 hours for

z ' 1.3 and in 2000 hours for z ' 3.3. The time for detection here is comparable to, indeed

slightly less than the time required for a statistical detection. This is a very exciting possi-

bility as it allows us to measure the HI fraction of a fairly large region, potentially leading

to a measurement of ΩHI . However, unlike statistical detection of the HI distribution, the

integration time cannot be divided across different fields for a direct detection.

The volume sampled in observation of one field with the GMRT at z ' 3.3 is much

larger than the volume of the simulation used here. Thus there is a strong possibility of

finding an even brighter region in a random pointing at that redshift. On the other hand,

the volume sampled by the GMRT at z ' 1.3 is comparable to the volume of the simulation

used for making mock maps.

6.3 Discussion

The prospects for detection of the HI distribution at high redshifts are very promising. We

can expect and upgraded form of MWA, the MWA5000, often considered in the literature to

measure visibility correlations at z > 3.7 and provide an estimate of the power spectrum.

The GMRT can be used to measure visibility correlations at z ' 1.3. The integration

time required is not very large. This is very encouraging as no other existing or upcoming

instrument can probe this redshift, though ASKAP will be able to probe the HI distribution

at z < 1. Measurement of visibility correlations, and hence the HI power spectrum can be

used to constrain several cosmological parameters. If we are able to make measurements

at several redshifts then it becomes possible to constrain models of dark energy.

Direct detection of rare peaks in the HI distributions does not require a much longer

integration time as compared to statistical detection. The direct detection at z ' 1.3
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requires only a few hundred hours of observing time with an existing instrument. Unlike

statistical detection of fluctuations that are not dependant on the average HI fraction, such

observations may be used in combination with other observations to constrain ΩHI .

It is obvious that detection of rare peaks of HI with the GMRT may be even easier

at lower redshifts (z ≤ 0.4). However, the field of view of the GMRT for redshift 21 cm

radiation is very small and hence one may need to observe several fields before finding

a very bright object. Or one may need to observe for longer periods of time in order to

observe a not so rare peak.
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Appendix A

Expressions for Cubic Spline Softened Potential and Force Kernels

One can integrate the Poisson equation for a given kernel to obtain the softened two-body

potential kernel. For the case of the cubic spline kernel we have the expression for the

two-body potential kernel φ(u, ε) and the regular two-body force f(u, ε) = −∇uφ:

φ(u, ε) =
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For variable or local smoothing length εi ≡ ε(ri) there will be an additional term given in

eqs.(10-12) for which one needs to compute (∂W/∂ε), (∂W/∂u) and (∂φ/∂ε) For the cubic

spline kernel these expressions are:
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