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Synopsis

Title of thesis: Existence of Darboux chart on some Fréchet manifolds.

Name of candidate: Pradip Kumar.

Name of supervisor: Prof. Rukmini Dey.

Affiliation: Harish-Chandra Research Institute, Allahabad.

This thesis contains some of my work on local symplectic geometry of

some Fréchet manifolds during my stay at Harish-Chandra Research Institute

as a research scholar.

1. Loop space and weak symplectic structure

on it

Let (M,ω) be a finite dimensional symplectic manifold. Loop space LM :=

C∞(S1,M) is a Fréchet manifold. For manifold structure on LM we refer

[20],[25]. For γ ∈ LM , TγLM = ΓS1(γ∗TM). As M is oriented, we can

identify ΓS1(γ∗TM) with LRn.

For X, Y ∈ TγLM = ΓS1(γ∗TM), X(t), Y (t) ∈ γ∗(TM), define:

Ωωγ (X, Y ) =

∫ 1

0

ωγ(t)(X(t), Y (t))dt

This is a weak symplectic structure on LM .

Recall, by a weak symplectic form Ω on a Fréchet manifoldM, we mean

that the induced map Ωb : TM→ T ∗M is an injective map and Ω is a closed

2 form. By a strong symplectic form Ω on an infinite dimension manifoldM

(Banach or Fréchet manifold), we mean that the corresponding map Ωb :

TM→ T ∗M is a bundle isomorphism.

We mention here that there does not exist any strong symplectic form

on LM . For example, in the case of LRn, where TγLR
n = LRn but T ∗γLR

n,



the dual space of LRn, is the set of all Rn valued distribution on circle [31].

Therefore TγLR
n can not be topologically isomorphic to T ∗γLR

n. In general if

Ω is a symplectic form on a Fréchet manifold, it can not be strong symplectic.

However it may be weak symplectic (Ωb injective) or quasi symplectic (kernel

of Ωb is finite dimensional).

Let (M, σ) be an infinite dimensional Fréchet manifold with a weak

symplectic structure σ.

Definition. By a Darboux chart around p ∈M, we mean a coordinate chart

{(U,Φ),Φ : U → E} around p such that there exists a bounded alternating

bilinear map F on E for which

σq(v1, v2) = F(dΦq(v1), dΦq(v2))

for every q ∈ U and v1, v2 ∈ TqM. This chart around p is called a Darboux

chart around p.

We say that (M, σ) admits a Darboux chart if for every p ∈ M there

is a Darboux chart around p ∈ M. In [PK2], we proved that the weak

symplectic manifold (LR2n,Ωω) admits a Darboux chart if there is a global

Darboux chart for (R2n, ω).

For the weak symplectic Fréchet manifold (M, σ), Kriegl and Michor

[20] introduced the notion of symplectic cohomology (different from Floer

cohomology). They introduced a subspace C∞σ (M,R) ⊂ C∞(LM,R). We

mention a theorem by Kriegl and Michor:

Theorem (§48.9,[20]). If (M, σ) is a smooth weakly symplectic manifold

which admits smooth partitions of unity in C∞σ (M,R), and which admits

Darboux chart, then the symplectic cohomology equals the De Rham cohomology:

Hk
σ(M) = Hk

DR(M).

In [PK2], we proved that (LR2n,Ωω) admits smooth partitions of unity in

C∞σ (LR
2n,R). This will imply that in the case when there is a global Darboux

chart for (R2n, ω). The inclusion map from the symplectic cohomology (as

defined by Kriegl and Michor [20]) of the loop space over R2n to the De Rham

cohomology of LR2n is an isomorphism.

Let (M,J) be an almost complex manifold, Indranil Biswas and Saikat

Chatterjee in [3] defined an almost complex structure J̃ on the path space



C∞([0, 1],M). Same definition gives an almost complex structure on the loop

space LM . This is defined as following.

For γ ∈ LM and X ∈ TγLM . We can think X a vector field along γ.

Define

J̃ : TLM → TLM ;

J̃γ : TγLM → TγLM by

J̃γ(X)(t) := J(X(γ(t)))

We have J̃2
γ = −IdTγLM because J2 = −Id. We see that J̃ is smooth with a

smooth inverse (For smoothness we need to show if c : R→ TLM is smooth

then J̃ ◦ c : R → TLM should be smooth). Thus J̃ is an almost complex

structure on the loop space LM .

Lempert [21] gave the following definition.

Definition. (Weak integrable in local sense): Let (M, J̃) be an almost

complex manifold (Banach or Fréchet). We say (M, J̃) is weak integrable

in local sense, if for any p ∈ M and any non zero v ∈ TpM, there is

a neighborhood U of p and a J̃-holomorphic function F on U such that

v(F ) �= 0.

In [PK1], we showed that (LM, J̃) is weak integrable in local sense.

2. Projective limit of Banach manifolds

We say M be the projective limit of Banach manifolds (PLB-Manifold)

modeled on a PLB-space E = lim←−Ei if we have the following.

1. There is a projective system of Banach manifolds {Mi, φji}i,j∈N such

that M = lim←−Mi.

2. For each p ∈M , we have p = (pi). pi ∈Mi, and there is a chart (Ui, ψi)

of pi ∈Mi such that

(a) φji(Uj) ⊂ Ui, j ≥ i.



(b) Let {Ei, ρji}i,j∈N be a projective systems of Banach spaces, where

each ρji is inclusion map and the diagram

Uj
ψj

−−−→ ψj(Uj)⏐⏐�φji
⏐⏐�ρji

Ui
ψi−−−→ ψi(Ui)

commutes.

(c) lim←−ψi(Ui) is open in E and lim←−Ui is open in M with the inverse

limit topology.

The space M satisfying above properties has a natural Fréchet manifold

structure. The differential structure on M is determined by the co-ordinate

map ψ : U = lim←−Ui → ψ(U) = lim←−ψi(Ui). Therefore a smooth structure on

these type of manifolds is completely determined by the smooth structure

on the sequence. George Galanis in [10, 11, 12, 13] has studied this type of

manifolds and smooth structures on them.

G. Galanis, in a series of articles [10, 11, 12, 13] discussed various properties

of PLB-manifolds.

Suppose M is endowed with a weak symplectic structure σ and each Mi

is endowed with corresponding weak symplectic structures σi.

In 1969, for the case of a strong symplectic Banach manifold (M, σ),

Weinstein [32] proved that (M, σ) admits Darboux chart. In 1972, Marsden

[24] showed that the Darboux theorem fails for a weak symplectic Banach

manifold. In 1999 Bambusi [2] gave a necessary and sufficient condition for

existence of Darboux charts for a weak symplectic Banach manifold (in the

case when the model space is reflexive).

In [PK3], we defined the notion of a compatible weak symplectic structure

σ on the PLB manifold with the projective system and we proved a version

of a Darboux theorem which is explained below.

Suppose {Ei, φji}i,j∈N and {Fi, ρji}i,j∈N be the projective system of Banach

spaces and E = lim←−Ei and F = lim←−Fi. E and F are Fréchet space.

Definition. [Projective system of mapping]. We say {fi : Ei → Fi}i∈N is a



projective system of mapping if the following diagram commutes.

Ej
fj

−−−→ Fj⏐⏐�φji
⏐⏐�ρji

Ei
fi−−−→ Fi.

We denote the canonical mapping of E → Ei by ei and F → Fi by e
′
i.

Definition. We say f : E → F is the projective limit of a system {fi : Ei →

Fi}i∈N if for each i, the following diagram commutes.

Ei
fi−−−→ Fi⏐⏐�ei

⏐⏐�e′i
E

f
−−−→ F.

We define the map lim←− fi as the following.

If {fi} is the projective system of mappings then we see that for any

x = (xi) ∈ lim←−Ei, (fi(xi)) ∈ lim←−Fi. We define (lim←− fi)(x) = (fi(xi)) ∈ F . If

f be the projective limit of system {fi} then we have

f(x) = (fi(xi)).

We denote the projective limit of system {fi} by lim←− fi. Also
(
lim←− fi

)
(x) =

(fi(xi)) = f(x).

We will need a notion of Lipsctiz map.

Definition (Projective μ-Lipschitz map). Let E = lim←−Ei be a Fréchet space.

A mapping φ : E → E is called projective μ-Lipschitz (μ, a positive real

number) if there are φi : Ei → Ei such that φ = lim←−φi and for every i, φi is

a μ Lipschitz map on each Ei.

Suppose M and N be PLB manifolds modeled over a PLB space E. We

say φ : M → N is locally μ-Lipsctiz map if there exists a coordinate chart

around p and f(p) such that on that chart φ is projective μ-Lipscitz.

In some other co-ordinate chart φ may not be locally μ Lipscitz.

Basics about weak symplectic structure

LetM be a PLB manifold and {Mi, φji}i,j∈N be a projective system of Banach

manifolds with M = lim←−Mi. Suppose each Mi is modeled over a reflexive

Banach space Ei and each Mi has a weak symplectic structure σ
i.



Let x ∈ M , we have x = (xi) where φji(xj) = xi. For each xi, following

[2], we define a norm on TxiMi, for X ∈ TxiMi,

‖X‖Fxi
:= sup

‖Y ‖i=1

|σixi(X, Y )|

where ‖.‖i is the norm on the Banach space TxiMi. Let Fxi be the

completion of TxiMi with respect to the ‖.‖Fxi
norm. As each TxiMi is a

reflexive Banach space, we have that the induced map (Lemma 2.8,[2]),

(σixi)
b : TxiMi → F∗xi; X → σixi(X, .)

is a topological isomorphism.

Define for each i, j ∈ N j ≥ i and given x = (xi) ∈ lim←−Mi =M ,

ψji : F
∗
xj
→ F∗xi by

ψji = (σixi)
b ◦ Txjφji ◦ ((σ

j
xj
)b)−1 (0.0.1)

where Txjφji is the differential of φji : Mj → Mi at xj . We see that

{F∗xi, ψji}i,j∈N is a projective system of Banach spaces and smooth maps

(since for any k ≥ j ≥ i, we have ψki = ψkj ◦ ψji). We see that {(σixi)
b :

TxiMi → F∗xi} is a projective system of mappings because

(σjxj )
b ◦ ψji = Txjφji ◦ (σ

i
xi
)b.

Fix some point p = (pi) ∈ M . We know that for a fixed p = (pi) ∈ M ,

{TpjMj , Tpjφji}i,j∈N is a projective system of Banach spaces. In section 1.3.3

we saw that TpM 
 lim←−TpjMj . Let hp be the isomorphism from TpM →

lim←−TpjMj as defined in [14].

For some coordinate neighborhood U = lim←−Ui around p, let σp := σ|x=p

be the constant symplectic structure on U with a natural parallelism TU 


U×E where E 
 TpM is a Fréchet space. On each Ui we have a corresponding

constant symplectic structure σipi with the natural parallelism.

For t ∈ [−1, 1] we define σt := σ+ t(σ − σp) similarly (σi)t := σi + t(σi −

σipi). Suppose for some q = (qi) ∈ M and for some t ∈ [−1, 1], ((σq)tb)−1

and (((σiqi))
tb)−1 exist for each i. Then {(((σiqi))

tb)−1 : F∗tqi → TqiMi} is a

projective system of map. Here F∗tqi is defined in the same way as F
∗
qi
above.

Where F∗qi are spaces corresponding to σi, F∗tqi are spaces corresponding

to weak symplectic structure (σi)t. Also for fixed t corresponding to the



ψji maps, we have the maps ψ
t
ji (for the weak symplectic structure (σi)t).

Therefore we see that for each t, the collections {(((σiqi))
tb)−1 : F∗tqi → TqiMi}

are a projective system of mappings.

For a weak symplectic structure σ on a PLB manifold M as discussed

above, we have for each p = (pi), σ
b
p is a map on TpM that is σbp : TpM →

T ∗pM . Let hp : TpM → lim←−TpjMj be an isomorphism [14]. With this

identification we can consider σbp as a map defined on lim←− TpjMj .

Now we are in a position to define a compatible symplectic structure.

Compatible symplectic structure

We say that a weak symplectic structure σ on M is compatible with the

projective system if the following is satisfied:

1. Suppose there are weak symplectic structure σi on Mi such that for

every x ∈M , σbx := lim←−(σ
i
xi
)b.

2. If for some p ∈ M , there exists a 1 - form α such that for each x ∈ M ,

αx = (αixi) ∈ lim←−F
∗
xi
, we must have hx((σx)

tb)−1(αx) =
(
((σixi)

tb)−1(αixi)
)

whenever defined.

3. For such α as in above, whenever Y i
t (xi) := [

(
xi, ((σ

i
xi
)tb)−1(αixi)

)
] is

defined on some open set Ui of Mi, it is defined on whole Mi. Each Y
i
t

is locally projective μ-Lipschitz smooth map for some fixed positive real

μ > 0.

Main theorem

For a fixed x, we define Hx := {σx(X, .) : X ∈ E}. For compatible σ, as

set, we have lim←−F
∗
xi
= Hx. With the projective limit topology, Hx becomes a

Fréchet space. We state the theorem for some open neighborhood of 0 ∈ E.

Theorem. Suppose

1. There exists a neighborhood W of 0 ∈ E, such that all Hx are identical

and σtbx : E → H is an isomorphism for each t and for each x ∈ W.

2. There exists a vector field X = (Xi) on E such that onW, LXσ = σ−σ0.

3. For every i and t ∈ [−1, 1], Xi(xi) as element on Ei is bounded by
M

‖((σixi )
tb)−1‖op

for some positive real M .



then there exists a coordinate chart (V,Φ) around zero such that Φ∗σ = σ0.

Proof of above theorem uses the Moser trick.
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1.1.3 Dual of a Fréchet space . . . . . . . . . . . . . . . . . . . . . . . . 3
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Chapter 1

Fréchet manifolds

In this chapter we will give some basic definitions and results that will be used in this

thesis in subsequent chapters. Our discussion will be more geometric rather function

analytic. Most of the definitions and other functional treatment of global analysis in the

non-Banach setting, we refer to the interesting monograph [20]. Content of this chapter

is influenced by [20], [15], [31], [10] and includes basic calculations of my articles [17],

[18] and [19].

1.1 Fréchet space

1.1.1 Definition of Fréchet space and examples

Definition 1.1.1 (Frechet Space). A Fréchet space is a complete Hausdorff metrizable

locally convex topological vector space.

The topology on a locally convex space is metrizable if and only if it can be derived

from countable semi-norms. Therefore if E is a Fréchet space, we have countable semi-

norms {ρn : n ∈ N} which generate topology on E.

Example 1.1.1. Trivial example is a Banach space.

Example 1.1.2. Loop space LR := C∞(S1,R). For each γ ∈ LR and k ∈ N ∪ {0},

define

‖γ‖k :=
k∑
i=0

sup
t∈S1

|γ(i)(t)|.

where γ(i)(t) denotes the i-th derivative of γ at t. Each ‖.‖k is a semi-norm on LR

(in-fact it is a norm). This countable collection gives the locally convex topology on LR.
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This topology is metrizable and complete (§1.46, [29]). Therefore LR is a Fréchet space.

It is worth mentioning here that LR is not normable [29].

Similarly LRn := C∞(S1,Rn) is also a Fréchet space. Identify S1 with [0, 1]/ ∼ and

elements of I = [0, 1] by t. In this thesis we will use this identification frequently.

Example 1.1.3. Projective limit of Banach space: Suppose {Ei, ρji}i,j∈N be the pro-

jective system of Banach space. Let E = lim←−Ei. The projective limit topology on E is

given as following.

For each n ∈ N, define a seminorm on E by ‖(xi)‖n := ‖xn‖n. This countable

collection of seminorms on E makes E a Fréchet space. It is worth mentioning here that

the projective limit topology of countable collection is always complete [30].

In fact other way is also true. Suppose E is a Fréchet space. Topology on E can be

realized by an increasing countable family of semi-norms [30].

ρ1 ≤ ρ2 ≤ ....

E can then be realized up to topological isomorphism as the projective limit of pro-

jective system {Ei; ρji}i,j∈N, where Ei is the completion of the quotient E/ker(ρi) and

connecting morphism ρji(j ≥ i) are given by

ρji([x+ ker(ρj)]j) = [x+ ker(ρi)]i.

Here bracket denotes the corresponding equivalence classes.

In the sequel each point x of E will be considered as (xi)i∈N of its projections onto

the Banach factors of the limit, with respect to the canonical mappings fi : E → Ei. If

norms on each Ei is denoted by ‖.‖i. The construction allows us to consider each fi as

an isometry in the sense that

ρi(x) = ‖fi(x)‖i x ∈ E

Remark 1.1.1. Here we fix the symbol i and j for the natural numbers. In the next

whenever we will use i and j together we will mean by natural numbers j ≥ i.

1.1.2 Bornology

Let (E, τ) be a locally convex topological vector space with the locally convex topology

τ . Bornology of E is the the collection of all bounded set of E. The topology can vary

considerably without changing the bornology. In the next section, we will see that it is

not the topology but the bornology on which smoothness of a map depends.



Chapter 1. Fréchet manifolds 3

The bornologification [30] Eborn of a locally convex space (E, τ) is the finest locally

convex topology τ ∗ on E having the same bornology.

A locally convex space is called bornological if it is stable under the bornologification.

We have the following equivalent criterion for the bornological locally convex space.

1. A locally convex spaces E is bornological if and only if every convex balanced set

V in E which absorbs every bounded set B (that is B ⊂ tV, for some t > 0) is a 0

- neighborhood.

2. A locally convex spaces E is bornological if and only if each semi-norm on E that

is bounded on bounded sets, is continuous.

Every normed space is bornological since any set which absorbs the unit ball must

contain the ball of some positive radius. It is a fact that inductive limit of a family of

bornological space is bornological [30]. Thus a Fréchet space topology is bornological.

1.1.3 Dual of a Fréchet space

Let E be a Fréchet space. Dual of E is the set of all bounded linear map from E → R

with the topology of uniform convergence on bounded sets in E. It is a well known fact

that the dual of a Fréchet is the Fréchet space if and only if Fréchet space is the Banach

space.

Example 1.1.4. Dual of loop space LRn defined as in Example 1.1.2 is the space of

Rn-valued distributions on the circle (§4.5 [31]).

1.2 Smooth map on Fréchet space

When one strays outside the realm of Banach spaces there are a lot of way to define

the derivative. Even in Fréchet space there are three inequivalent way to define the

derivative [20]. Therefore choice of the calculus is required to be fixed.

Let E be a not normable locally convex space (for example the Fréchet space as in

example 1.1.2) define

F : E ′ × E → R

(f, e)→ f(e) (1.2.1)

where E ′ is the strong dual of E as define in section 1.1.3. F is not continuous when

E ′ × E is given product topology [31]. In most of the applications (at least in our
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situation) we want that this map to be a smooth map. So the problem is to define the

suitable notion of smoothness.

Also the definition the smoothness in Fréchet space or even in a locally convex space

should agree with the definition of smooth maps in Banach space situation and fits very

well in our application.

Kriegl and Michor in [20] starts by defining the smooth curve in a locally convex

space. Following [20], we can define the smoothness of a curve in the same way as in

Banach space (§1.2,[20]). In this way, we have the collection of smooth curves on any

Fréchet space.

For the locally convex space E, we have the following theorems.

Theorem 1.2.1 (Theorem 2.14(4),[20]). The curve c : R → E is smooth if and only if

the curves l ◦ c : R→ R are smooth for all l ∈ E∗, continuous dual of E.

Theorem 1.2.2 (Corollary 2.11, [20]). A linear map l : E → F between two locally

convex vector spaces is bounded if and only if it maps smooth curves in E to smooth

curves in F .

Now following [20], we give the definition of a smooth map.

Definition 1.2.1. [§3.11,[20]] A function f : U(⊂ E)→ F defined on an open subset U

of E is smooth if it takes smooth curves in U to smooth curves in F .

Remark 1.2.1. With this definition, with the product topology on E ′×E, the evaluation

map F in equation 1.2.1 (being linear and bounded) is a smooth function, but it is not

continuous in the product topology.

Therefore we see that smoothness of a map does not depend upon the topology of

the space but it depends upon the bornology. For the Fréchet space the bornologificaton

of Fréchet space is the same as Fréchet space topology. Therefore in the case of Fréchet

spaces, with the above definition of a smooth curve and a smooth map, smooth map is

always a continuous map. In the case of E ′ × E, the product topology on E ′ × E does

not make E ′ ×E a Fréchet space.

The main benefit of the definition of smooth map as above, is having the crucial tool

as following.

Theorem 1.2.3 (Exponential law, Theorem 3.12 [20]). Let U ⊂ E be a open subset of

Fréchet space then C∞(U1 × U2, F ) ≈ C∞(U1, C
∞(U2, F )).

The derivative is given explicity by following theorem.
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Theorem 1.2.4 (Theorem 3.18,[20]). Let E and F be Fréchet space and U ⊂ E be open

set then the differential operator

d : C∞(U, F )→ C∞(U, L(E, F ))

df(x)(v) := lim
t→0

f(x+ tv)− f(x)

t

exists and bounded(smooth). Also the chain rule holds

d(f ◦ g)(x)(v) = df(g(x))dg(x)v

Remark 1.2.2. In above theorem space L(E, F ) denote the space of all bounded linear

mappings from E to F . It is closed linear subspace of C∞(E, F ). Following (§3.17

,[20]), a mapping f : U → L(E, F ) is smooth if and only if the composite mapping

U → L(E, F )→ C∞(E, F ) is smooth.

In the following, we will discuss the smoothness for particular cases of Fréchet spaces.

1.2.1 Smooth maps on loop space LRn

Suppose f : U ⊂ LRn → E be a map from open subset of LRn to a Fréchet space.

Suppose we know the collection C∞(R, LRn), then by the definition 1.2.1, f is smooth

if and only f ◦ c is smooth.

Let c : R→ LRn be a smooth curve, define c∨ : R× S1 → Rn, by

c∨(t, s) := c(t)(s)

c∨ is called the adjoint of c. By theorem 1.2.3, we have the following theorem for the

loop space which is a particular case of the exponential law.

Theorem 1.2.5 (proposition 3.7, [31]). A curve c : R → LRn is smooth if and only if

its adjoint c∨ : R× S1 → Rn is smooth.

This is an easy criterion for checking smooth curve in the loop space and which will

help to determine the smoothness of a map.

In chapter 2, we will use above theorem in proving smoothness of some particular

maps.
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1.2.2 Smooth maps on PLB space

Suppose {Ei, φji}i,j∈N and {Fi, ρji}i,j∈N be the projective system of Banach spaces and

E = lim←−Ei and F = lim←−Fi. E and F are Fréchet spaces.

Definition 1.2.2. [Projective system of mapping]. We say {fi : Ei → Fi}i∈N is a

projective system of mapping if the following diagram commutes.

Ej
fj
−−−→ Fj⏐⏐�φji

⏐⏐�ρji
Ei

fi−−−→ Fi.

We denote the canonical mapping of E → Ei by ei and F → Fi by e
′
i.

Definition 1.2.3. We say f : E → F is the projective limit of a system {fi : Ei → Fi}i∈N

if for each i, the following diagram commutes.

Ei
fi−−−→ Fi⏐⏐�ei

⏐⏐�e′i
E

f
−−−→ F.

We define the map lim←− fi as following.

If {fi} is the projective system of mappings then we see that for any x = (xi) ∈ lim←−Ei,

(fi(xi)) ∈ lim←−Fi. We define (lim←− fi)(x) = (fi(xi)) ∈ F . If f be the projective limit of

system {fi} then we have

f(x) = (fi(xi)).

We denote the projective limit of system {fi} by lim←− fi. Also
(
lim←− fi

)
(x) = (fi(xi)) =

f(x).

We are interested in knowing the criterion of checking smoothness of the map

f : E → F such that f = lim←− fi.

G. Galanis has given the following criterion.

Theorem 1.2.6 (Lemma 1.2,[10]). Suppose E = lim←−Ei and F = lim←−Fi and {fi : Ei →

Fi}i∈N be a projective system of smooth mapping then the following holds.

1. f is C∞, in the sense of J. Leslie.[22]

2. df(x) = lim←− dfi(xi), x = (xi) ∈ E.
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3. df = lim←− dfi.

Following [20], we already defined a smooth map between Fréchet space (definition

1.2.1). In PLB-space if a map f = lim←− fi (as in theorem 1.2.6) is smooth in the sense of

J. Leslie then it will be smooth in the sense of Kriegl and Michor too. This can be seen

as following.

Let c : R → lim←−Ui ⊂ E be a smooth curve and f := lim←− fi : lim←−Ui → E be a map

which is smooth in the sense of J. Leslie (i.e f satisfies theorem 1.2.6). We can identify

c(t) as c(t) = (ci(t)) where φji(cj(t)) = ci(t). c is smooth if and only each ci is smooth

(here we are using the fact that πi : lim←−Ei → Ei is a smooth map and ci = πi ◦ c).

Now let c̃ : R→ lim←−Ui, defined by c̃(t) = (f ◦ c)(t), we see that

c̃(t) = lim←−(fi ◦ ci)(t)

As each fi◦ci is smooth, the derivative of every order exists. Therefore by theorem 1.2.6,

c̃ is smooth in the sense of J. Leslie. Recall that smoothness of curves is defined by in

the same way by J. Leslie and by Kriegl and Michor. This proves f ◦ c is smooth curve

for every smooth curve c.

Therefore f defined as in theorem 1.2.6 is smooth in the sense of Kriegl and Michor

too.

1.3 Fréchet manifolds

Definition 1.3.1 (Fréchet manifold). A Fréchet manifold is a set M together with a

smooth structure represented by an atlas (Uα, uα)α∈A such that the canonical topology

onM with respect to this structure is Hausdorff.

As usual, charts are bijections from open subsets of M to open subsets of a fixed

Fréchet space. An atlas is maximal cover ofM by charts, where all transition functions

are defined on open subsets and are required to be smooth.

Definition 1.3.2 (Smooth map). A map f :M→N of a Fréchet manifolds is said to

be smooth at p ∈ M if it is smooth in one and hence all pair(s) of charts around p and

f(p). The map is smooth if it is smooth at all points of M.

We have following proposition which helps in checking smooth map.

Proposition 1.3.1. (§27.2,[20]) f is smooth if and only if f ◦ γ is smooth for every

smooth curve γ : R→M.
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We will require Fréchet manifolds to be smoothly Hausdorff (smooth functions sep-

arate points). One can prove (§16.10, [20]) that each Fréhet manifold is smoothly para-

compact, that is, each open cover admits a smooth partition of unity subordinated to it.

We will discuss more about smooth partition of unity in chapter 2.

In next sections, the symbol M is fixed for infinite dimension manifold (Banach or

Fréchet).

1.3.1 Loop space as Fréchet manifold

Loop space LRn is a Fréchet space and we discussed the space of smooth curve C∞(R, LRn)

in section 1.2.1. In this section we will give a manifold structure on the loop space LM ,

where M is a finite dimension oriented manifold.

In this thesis whenever we will discuss about the loop space, we will mean by loop

space over a finite dimension smooth manifold.

We start with a proposition.

Proposition 1.3.2. Any oriented vector bundle over S1 is trivial.

The main point is that up to isomorphism, every real vector bundle over the circle is

either trivial or the Whitney sum of a trivial bundle with the Mobius bundle. The latter

is not orientable.

Definition 1.3.3 (Local addition). A local addition on M consists of a smooth map

η : TM →M such that

1. The composition of η with the zero section is the identity on M .

2. There exists an open neighborhood of V of the diagonal of M × M such that

π × η : TM → M × M is diffeomorphism onto V . Here π : TM → M is the

projection map.

For any [(p, v)] ∈ TM , π × η([(p, v)]) = (π([(p, v)]), η([(p, v)]) = (p, η([(p, v)]). We

have following proposition.

Proposition 1.3.3 ([25],[31]). For any finite dimension smooth manifold M , local ad-

dition always exits.

Let η : TM → M be a local addition. Let V ⊂ M ×M be the image of the map

π × η : TM → M ×M , where V is an open neighborhood of diagonal in M . By the

definition of local addition π × η is a diffeomorphism on to V .
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Suppose α ∈ LM , we define (Uα,Ψα) as a coordinate chart around α, where Uα is

defined as following:

Uα := {β ∈ LM : (α, β) ∈ LV } ⊂ LM

The pre-image of {α} × Uα under π × ηL is naturally identified with Γs1(α
∗TM).

Ψα : ΓS1(α∗TM) → Uα is defined as following. Let β ∈ ΓS1(α∗TM) and β̃ be the

corresponding loop in TM, so β(t) = (t, β̃(t)). Then we have (π × η)L(β̃) = (α, ηL(β̃)).

Now define

Ψα := ηL(β̃)

This gives a chart for loop space around α ∈ LM .

For the full discussion we refer to various article [20],[25] etc.

Proposition 1.3.4 ([31]). With the atlas consisting charts as above and with the man-

ifold topology on the loop space LM , LM is Hausdorff, regular, second countable and

paracompact.

Thus the loop space LM is a Fréchet manifold.

1.3.2 PLB manifold

We say M is the projective limit of Banach manifolds (PLB-Manifold) modeled on a

PLB-space E = lim←−Ei if we have followings.

1. There is a projective system of Banach manifolds {Mi, φji}i,j∈N such that M =

lim←−Mi.

2. For each p ∈M , we have p = (pi). pi ∈ Mi, and there is a chart (Ui, ψi) of pi ∈Mi

such that

(a) φji(Uj) ⊂ Ui, j ≥ i.

(b) Let {Ei, ρji}i,j∈N be a projective systems of Banach spaces, where each ρji is

inclusion map and the diagram

Uj
ψj

−−−→ ψj(Uj)⏐⏐�φji
⏐⏐�ρji

Ui
ψi−−−→ ψi(Ui)

commutes.
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(c) lim←−ψi(Ui) is open in E and lim←−Ui is open inM with the inverse limit topology.

The space M satisfying the above properties has a natural Fréchet manifold structure.

The differential structure on M is determined by the co-ordinate map ψ : U = lim←−Ui →

ψ(U) = lim←−ψi(Ui). Therefore a smooth structure on these type of manifolds is completely

determined by the smooth structure on the sequence. George Galanis in [10, 11, 12, 13]

has studied this type of manifolds and smooth structure on it.

G. Galanis, in a series of articles [10, 11, 12, 13] discussed various properties of PLB-

manifolds. H.Omri [27] discussed the ILB-manifolds (similar to PLB manifolds) and

ILB-normal manifolds (here ILB stands for inverse limit of Banach). A PLB-manifold is

the projective limit of Banach manifolds in general not only modeled over ILB space in

contrary Omri-strong ILB-manifolds

In view of discussion in section 1.2.2, we see that the calculus on PLB-manifolds

agrees with the Kriegl and Michor calculus.

In particular we have the following proposition.

Proposition 1.3.5. Let E be a Fréchet space and E = lim←−Ei, Eis are Banach spaces.

The co-ordinate map ψi as defined above, ψi : U = lim←−Ui → ψ(U) = lim←−ψi(Ui) is smooth

in the sense of Kriegl and Michor [20].

Proof. We have to check that c : R → lim←−Ui is smooth if and only if c̃ : R → lim←−Ei

defined by

c̃(t) := (lim←−ψi) ◦ c(t) = lim←−(ψi ◦ ci)(t)

is smooth. But this follows by the remark after theorem 1.2.6.

Summarizing above, PLB manifolds are Fréchet manifolds and fit with Kriegl and

Michor calculus.

1.3.3 Tangent bundle

Let p ∈ E be a point in a Fréchet space E. The kinematic tangent space TpE of E at

p is the set of all pairs (p,X) with X ∈ E. Equivalently, TpE is the set of equivalence

classes of smooth curves through p, where γ1 ∼ γ2 if both have the same derivative

at p. Each tangent vector X ∈ TpE yields a continuous (hence bounded) derivation

X : C∞(E ⊃ {p},R)→ R on the germs of smooth functions at p.

In the general Fréchet space, it is not true that each such derivation comes from a

tangent vector. However if E is a nuclear Fréchet reflexive space (§28.7, [20]), TpE does

coincide with the set derivations on the stalk C∞(E ⊃ {p},R).
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If Fréchet manifold is not modeled over nuclear Fréchet space then there are two

notion of vector which may not agree. We call the space of tangent vector at a point p

as Kinematic tangent space. We call the set of all derivation at a point as Operational

tangent space.

LetM be the Fréchet manifold with a smooth atlas (M⊃ Uα −→ uα)α∈A. We define

the kinematic tangent bundle TM of a Fréchet manifoldM. to be the quotient of the

disjoint union
⋃
α{α} × Uα × E by the equivalence relation

(α, p,X) (β, q, Y )⇔ p = q, d(uαβ)(uβ(p))(Y ) = X,

where the uα : M ⊃ Uα → E denote the charts, and uαβ = uα ◦ u
−1
β transition function

of the manifold.

We will denote the kinematic tangent bundle of a Fréchet manifold M by TM.

Kriegl and Michor defined the operational tangent bundle DM in (§28.12, [20]). In our

application (see section 1.4.4) we will need only kinematic tangent bundle therefore in

next, by tangent bundle we will mean by kinematic tangent bundle.

Tangent bundle of the loop space

ΓS1(γ∗(TM)) seems trivially the tangent space at γ because chart map at γ identifies

it. But this is not the case. There are many possibility of chart maps because of various

choices of local addition. Hence we do not have a canonical choice for the tangent space.

Andrew Stacey in [31] showed that the tangent bundle TLM of the loop space LM

has the structure of a bundle of LR-modules (§4.1, [31]). Using this fact further he

proved in [31] that TLM and LTM are diffeomorphic, covering the identity on LM

(§4.1,[31]). This proves that the tangent space (kinematic tangent space) at the point

γ ∈ LM

TγLM ≈ ΓS1(γ∗(TM)) ≡ LRn.

Tangent bundle of a PLB manifold

We will follow [14],[1] for the following discussion on the tangent bundle of a PLB man-

ifold. If {Mi, φji} be a projective system of Banach manifolds and M = lim←−Mi is the

PLB manifold for this projective system. For p ∈ M = lim←−Mi, we have p = (pi). We

observe that {TpjMj , Tpjφji} is a projective system of Banach spaces (Tpjφji is the usual

Banach space derivative of φji at point pj). The identification TpM � lim←−TpiMi is given

by the mapping h := lim←−Tpφi, where φi are the canonical projection of M . We refer to

[14] or [1] for the proof.



Chapter 1. Fréchet manifolds 12

Galanis proved in [14] that {TMi, Tφji} is a projective system of Banach manifolds

and TM is a PLB manifold and

TM � lim←−TMi by g = lim←−Tφi.

Remark 1.3.1. The strong dual of a Fréchet space need not be metrizable. If we consider

the strong dual of TpM as the cotangent space, we would drop out of the Fréchet space

category. In order to avoid this we will consider tensors not as sections of a certain

bundle, but simply as smooth, fiberwise multilinear maps A : TM ×M ... ×M TM → E

with π ◦ A = id and π : E →M a vector bundle over M .

1.4 Differential geometry on Fréchet manifold

1.4.1 Vector fields

As we discussed in section 1.3.3, for Fréchet spaces in general there are two types of

tangent space, the kinematic tangent space and the operational tangent space. Therefore

vector fields on a general Fréchet manifoldM are of two types.

A kinematic vector field X onM is a smooth section of the kinematic tangent bundle

TM→M. The space of all kinematic vector fields will be denoted by X(M).

By an operational vector field we mean a bounded derivation of the sheaf C∞(.,R).

That is for an open set U ⊂ M we are given bounded derivations XU : C∞(U,R) →

C∞(U,R) commuting with the restriction mappings. This can be identified with the

smooth sections of the operational tangent bundle (§32.2,[20]). Denote the space of all

operational vector fields by Der(C∞(M,R))

For a reflexive nuclear Fréchet space both notion of vector field agrees ([20]). But in

general we have the following proposition:

Proposition 1.4.1 (Lemma 32.3,[20]). There is a natural embedding of convenient vec-

tor spaces

X(M)→ Der(C∞(M,R))

For our purpose (for example while working on 2 form on a Fréchet manifold) we need

only kinematic vector field. For example in section 1.4.4 we will see that for defining the

differential form we need only kinematic vector fields.
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Vector field (kinematic) on the loop space LM

A vector field X over LM is defined as a smooth section of TLM . We denote the

collection of all vector fields on LM by X(LM). There are vector field on the loop space

which arise from the base manifold and there are other type of vector fields which do

not arise in this way.

Following Biswas and Chatterjee [3], we define a special vector field on the loop space

LM as following:

Definition 1.4.1. A vector field ξ on LM is said to be the vector field on LM associated

to a vector field K on M , if

evt∗(ξ(γ)) = (K)γ(t), ∀γ ∈ LM, t ∈ [0, 1] (1.4.1)

where for each t ∈ [0, 1], evt : LM → M , defined by evt(γ) = γ(t), is a smooth map.

Let X′(LM) is a collection of all vector fields ξ on LM such that there is a vector field

K of M and which satisfies 1.4.1.

Many physicists ([3],[6],[7]) use the above collection X′(LM) as a definition of vector

field on the loop space. But below we will see that, in the manifold structure on LM

given as in section 1.3.1, X′(LM) is not same as X(LM).

Example 1.4.1. Define X(γ) = (γ, γ′) from LRn → TLRn = LRn × LRn. This is a

bounded linear map and hence smooth. Thus this is an example of a vector field on

LRn.

For this vector field, it is trivial to see that X /∈ X
′(LRn). Therefore X

′(LM) �

X(LM).

1.4.2 Flow of a vector field

In this section we will discuss the existence of the flow of a kinematic vector field.

Let c : J → M be a smooth curve in a manifold M defined on an interval J . It

will be called an integral curve or flow line of a kinematic vector field X ∈ X(M) if

c′(t) = X(c(t)) holds for all t ∈ J . For a Fréchet manifold, the flow line of a vector field

may not exist (page 330, [20]).

Let X ∈ X(M) be a kinematic vector field. A local flow F for X is smooth mapping

F : U ⊂M× R→M defined on an open neighborhood U ofM×{0} such that

1. U ∩ ({x} × R) is a connected open interval.
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2. If F (s, x) exists then F (t+s, x) exists if and only if F (t, F (s, x)) exits and we have

the equality.

3. For each x ∈ U , γx(t) := F (t, x) is the integral curve of X passing through a point

x at t = 0.

Suppose Y : U → E be a vector field on an open subset U of a Fréchet space E. For

ensuring existence of the flow of a vector field on a Fréchet space we can go either in

direction set by H. Omri as in [27] or we can demand for some kind of tame condition as

in [15]. For a general Fréchet space, the flow of a vector field may not exist for example

see [20].

The situation become simpler while working on some special vector fields on PLB-

manifolds. In rest of this section we will use the notation of example 1.1.3.

Definition 1.4.2 (Projective μ-Lipschitz map). Let E = lim←−Ei be a Fréchet space. A

mapping φ : E → E is called projective μ-Lipschitz (μ, a positive real number) if there

are φi : Ei → Ei such that φ = lim←−φi and for every i, φi is a μ Lipschitz map on each

Ei.

We have a theorem below which will be helpful in determining existence of the flow.

Theorem 1.4.2. Let E = lim←−Ei be a Fréchet space and suppose X : E → E is a

projective μ Lipschitz map such that each Xi is smooth map on Ei and X = lim←−Xi.

Suppose for each i,

M := sup{ρi(X(x)) : i ∈ N, x ∈ E} < +∞

Then there is a unique C∞ curve x(t) defined on R such that

x′(t) = X(x(t)), x(0) = x0. (1.4.2)

Above theorem is a version of theorem proved by G. Galanis (Theorem 3, [13]). The

proof below is motivated from [13].

Proof. {Xi}i∈N be a family of smooth map realizing X. Equation 1.4.2 gives a system

of ordinary differential equations on the Banach spaces Ei defined by

x′i(t) = Xi(xi(t)), xi(0) = xi0 (1.4.3)

where x0 = (xi0). It is given that each Xi is μ - Lipschiz and ‖Xi(xi)‖i < M . Therefore

by (§4.1, [23]), a unique smooth solution can be defined for each equation 1.4.3 on R.
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These solution are related. For any j ≥ i, we have

(ρji ◦ xj)
′(t) = ρji(x

′
j(t)) = ρji(Xj(xj(t))) = Xi(xi(t)).

We refer to (theorem 3, [13]) for the above calculation.

Both ρji ◦ xj and xi emanate from the same initial point. Therefore they coincide,

as a result, the mapping x = lim←−xi is defined on the R. Following (theorem 3, [14]), we

see that x is unique desired solution of the given differential equation 1.4.2. Each xi are

smooth curve, therefore x := lim←−xi is a smooth curve (see 1.2.2).

Theorem 1.4.3. Let X : E → E be a smooth vector field on E as in theorem 1.4.2.

Then for every y ∈ E there is a unique integral curve t→ xy(t) ∈ E defined on R such

that xy(0) = y. Also the map F : R×E → E defined by

F (t, p) := xp(t)

is a smooth map.

Proof given below is taken from [23], [13] and [5].

Proof. Theorem 1.4.2, implies that for every y ∈ E, there exists a unique curve

xy : R→ E such that xy(0) = y.

In fact xy = lim←−x
yi
i (lim←−x

yi
i is well defined as we saw in the theorem 1.4.2, where

xyii : R → Ei be the integral curves passing through yi of corresponding vector fields

Xi).

For each i define Fi : R × Ei → Ei such that Fi(t, pi) = xpii (t) and F : R × E → E

such that F (t, p) = xp(t).

{Fi} makes projective system of map with projective limit F . That is we have

F = lim←−Fi. Authors in [23] showed that each Fi is smooth map. This proves that F is

a smooth map.

1.4.3 Lie Bracket

Let X, Y ∈ X(M) where X(M) is the collection of kinematic vector field. Define a map

f → X(Y (f))− Y (X(f)).

This is a bounded derivation of sheaf C∞(.,R). We denote it by [X, Y ].
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In general Fréchet space where two notions of vector fields (kinematic and opera-

tional) do not agree, it is not obvious that [X, Y ] is a kinematic vector field. Though by

definition [X, Y ] is an operational vector field.

We mention here a theorem in (§32.8 [20]). Theorem states that the bounded deriva-

tion [X, Y ] ∈ X(M) whenever X, Y ∈ X(M). We call this map as Lie bracket of X and

Y .

1.4.4 Differential form and de Rham cohomology

Space of k-differential forms onM is the closed linear subspace of C∞(TM×M ...×M

TM,R) consisting of all fiber-wise k - linear alternating smooth functions in the vector

bundle structure TM⊕ ..⊕ TM. We denote this space by Ωk(M).

For example, a 2-form ω ∈ Ω2(M) is a fiberwise bilinear alternating smooth function

in the vector bundle structrure TM⊕ TM. TM⊕ TM has a vector bundle structure

(§29.4,[20]) as in the case of finite dimension manifold. Therefore for each p ∈ M , ωp (as

a bilinear map) is a bounded map (being smooth map, we refer section 1.2).

As we discussed that there are two types of tangent bundle, kinematic tangent bundle

(TM) and operational tangent bundle (DM). In view of these two types of tangent

bundles there are many ways to define differential forms which agree with the usual

differential form in the finite dimensional case.

Kriegl and Michor (§33, [20]) showed that there are 12 classes of possible differential

form. But out of these there is only one (defined above) which satisfies all the useful

identities as in the finite dimensional case.

With this definition of the differential form all the important mappings are defined

in usual way and smooth:

d : Ωk(M)→ Ωk+1(M)( exterior derivative, §33.12 [20]).

i : X(M)× Ωk(M)→ Ωk−1(M)( insertion operator, §33.10 [20]).

L : X(M)× Ωk(M)→ Ωk(M)( Lie derivative, §33.17 [20]).

f ∗ : Ωk(M)→ Ωk(N )( pull back operator, §33.9 [20]).

Following (§34,[20]), for a Fréchet manifoldM consider a graded algebra

Ω(M) = ⊕∞k=0Ω
k(M)

d(φ ∧ ψ) = dφ ∧ ψ + (−1)deg(φ)φ ∧ dψ. Define

Hk
DR(M) =

{ω ∈ Ωk(M) : dω = 0}

{dφ : φ ∈ Ωk−1(M)}
(1.4.4)
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Hk
DR(M) is called the k-th de-Rham cohomology ofM.

1.5 Symplectic geometry on a Fréchet manifold

1.5.1 Weak symplectic structure

Definition 1.5.1. A 2 form σ ∈ Ω2(M) is called a weak symplectic form onM if it is

closed (dσ = 0) and if the associated vector bundle homomorphism σb : TM→ T ∗M is

injective.

Definition 1.5.2. A 2 form σ on a Banach manifold is called a strong symplectic if it

is closed (dσ = 0) and its associated vector bundle homomorphism σb : TM→ T ∗M is

invertible with smooth inverse.

In the case of strong symplectic Banach manifold, the vector bundle TM has reflexive

fibers TxM. For a Fréchet manifold with the strong topology T ∗xM is not topologically

isomorphic to TxM. Hence for our situation that is for the case of the loop space and for

the case of PLB manifold, there is only weak symplectic structure. There are no strong

symplectic structure on these.

We will discuss a symplectic structure on the loop space in chapter 2. In chapter 3,

we will discuss a weak symplectic structure on the PLB manifold.

1.5.2 Symplectic cohomology defined by Kriegl and Michor

By the symplectic cohomology, we mean the definition given by Kriegl and Michor in [20].

We will follow notations and definitions of section 48 of [20]. For sake of completeness,

below we will define the required terms.

Let (M, σ) be a weak symplectic Fréchet manifold. Let T σxM denotes the real linear

subspace T σxM = σbx(TxM) ⊂ T ∗x (M). These vector space fit to form a sub bundle of

T ∗M and σb : TM → T σM is bundle isomorphism (§48.4,[20]). Define C∞σ (M,R) ⊂

C∞(M,R) to be the linear subspace consisting of all smooth functions f :M→ R such

that df :M→ T ∗M factors to a smooth mappingM→ T σM.

In other words, f ∈ C∞σ (M,R) if there exists a smooth σ-gradient gradσf ∈ X(M)

such that for given p ∈ M and Y ∈ TpM we have dfp(Y ) = σp(grad
σf |p, Y ). Detailed

description of these spaces and analysis of weak symplectic manifold is given in (§48,[20]).

Let C∞(Lkalt(TM,R)σ) be the space of smooth sections of a vector bundle with fiber

Lkalt(TxM,R)σx consisting of all bounded skew symmetric forms ω with ω(., X2, ..., Xk) ∈
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T σxM. Let

Ωkσ(M) := {ω ∈ C∞(Lkalt(TM,R)σ) : dω ∈ C∞(Lk+1
alt (TM,R)σ)}.

d2 = 0 and the wedge product of σ dual forms is again a σ- dual form (see page 527

of [20]). We have a graded differential subalgebra (Ωσ(M), d), whose cohomology is

called the symplectic cohomology and will be denoted by Hk
σ(M). We mention that

this definition of the symplectic cohomology is not same as the symplectic cohomology

defined by Floer.

1.5.3 Darboux chart

Let E be a Fréchet space. We have TE = E×E. Let F be a bounded, skew symmetric,

non singular, bilinear map F : E×E → R. F defines a 2-form ω on E by the following:

ωx : TxE × TxE → R

ωx(v, w) := F(ṽ, w̃)

where TxE is identified with E and ṽ and w̃ corresponds to v, w ∈ TxE.

Example 1.5.1. Let E = LRn, then we have TE = LRn×LRn. Define F : LRn×LRn →

R by

F(X, Y ) :=

∫ 1

0

〈X ′(t), Y (t)〉dt

Then F is a skew symmetric bilinear map. F defines a symplectic structure on LRn as

following: For γ ∈ LRn and X, Y ∈ TγLRn, define:

ωγ(X, Y ) :=

∫ 1

0

〈X̃ ′(t), Ỹ (t)〉dt.

Now we will proceed to define a Darboux chart:

For a general infinite dimensional smooth manifoldM, we have the following defini-

tion:

By a Darboux chart around p ∈M, we mean a coordinate chart {(U,Φ),Φ : U→ E}

around p such that there exists a bounded alternating bilinear map F on E for which,

for v1, v2 ∈ TqM and for every q ∈ U

σq(v1, v2) = F(dΦq(v1), dΦq(v2))

This chart around p is called a Darboux chart around p. We say that (M, σ) admits

Darboux chart if for every p ∈M there is a Darboux chart around p ∈M.
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In the case of finite dimensional manifoldM , Darboux theorem states that every point

inM has a coordinate neighborhoodN with coordinate functions (x1, .., xn, y1, .., yn) such

that σ =
∑n

i=1 dxi ∧ dyi on N .



Chapter 2

Weak symplectic structure on a loop

space over R2n

For a finite dimensional symplectic manifold (M,ω) with a symplectic form ω the cor-

responding loop space (LM = C∞(S1,M)) is a (nuclear) Fréchet manifold modeled on

LR2n (see section 1.3.1). It admits a weak symplectic form Ωω. We prove that the loop

space over R2n admits a Darboux chart for the weak symplectic structure Ωω if there is

a global Darboux chart for (R2n, ω).

As a corollary of existence of Darboux chart, we will see that the inclusion map from

the symplectic cohomology (as we discussed in section 1.5.2) of the loop space over R2n

to the de Rham cohomology (section 1.4.4) of the loop space is an isomorphism. We will

make a remark for the general loop space LM in place of LR2n.

Further we will discuss about an almost complex structure J̃ on the loop space LM

which is compatible with the weak symplectic structure Ωω. We will see that J̃ is weak

integrable in the local sense (a notion defined by L. Lempert [21]).

2.1 Symplectic structure Ω
ω on the loop space

For γ ∈ LM , we know that TγLM = ΓS1(γ∗TM). As M is oriented, we can identify

ΓS1(γ∗TM) with LRn.

For X, Y ∈ TγLM = ΓS1(γ∗TM), X(t), Y (t) ∈ γ∗(TM). Define

Ωωγ (X, Y ) =

∫ 1

0

ωγ(t)(X(t), Y (t))dt (2.1.1)

This is a weak symplectic form on LM . Dr. Saikat Chatterjee introduced the sym-

plectic structure Ωω on the path space C∞([0, 1],M) as defined in equation 2.1.1 in his



Chapter 2. Weak symplectic structure on a loop space over R2n 21

work (with Prof. Indranil Biswas and Prof. Rukmini Dey) on pre-quantization of the

path space. They proved that Ωω is a weak symplectic structure.

2.2 Darboux chart on the loop space LR2n

In this section we will see that for some symplectic structure ω on R2n, the corresponding

weak symplectic structure Ωω on LR2n admits a Darboux chart.

2.2.1 Isotopy on loop space

We start by defining isotopy on the loop space LRn. We will give an example of isotopy

which we will use in later section.

Definition 2.2.1. Smooth map φ : R× LRn → LRn is called an isotopy if each

φs : LR
n → LRn

is a diffeomorphism and φ0 = IdLRn.

We restate the checking criterion of smoothness of a map for the case of loop space

as discussed in section 1.2.1. A curve c : R → LRn is smooth if and only if its adjoint

c∨ : R× S1 → Rn is smooth. A map φ : U ⊂ LRn → LRn is smooth if it takes a smooth

curve to a smooth curve.

Let φ : R× Rn → Rn be an isotopy. Define

φL : R× LRn → LRn; φL(s, γ) = (t→ φs(γ(t))). (2.2.1)

Proposition 2.2.1. φL as defined above is an isotopy on LRn. For X ∈ TγLR
n ≈

C∞(S1,Rn), the derivative of φLs at γ is given by dφLs (γ)(X) = (t→ dφs(γ(t))(X(t))) .

Proof. Let c be a smooth curve on R× LRn.

c : R→ R× LRn, c(u) = (c1(u), c2(u)).

Then

c̃ : R→ LRn is defined by:

c̃(u) = φL ◦ c(u) = φL(c1(u), c2(u))

c̃(u) =
(
t→ φc1(u)(c2(u)(t))

)
.
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By the definition of a smooth map in LRn, c̃ is smooth if and only if c̃∨ : R× S1 → Rn

defined by c̃∨(u, t) → φ(c1(u), c2(u)(t)) is smooth. As φ and c1, c2 smooth map, this

shows that c̃∨ is a smooth map and therefore c̃ is smooth.

This shows that for every c : R→ R× LRn, we have φL ◦ c is smooth. This implies

that φL is a smooth map.

For s ∈ R, φs is a diffeomorphism. Let ψs be the inverse of φs. ψLs , defined in a

similar way as above, will be the smooth inverse of φLs . Therefore we see that for each

s, φLs is a diffeomorphism. We also have φL0 = IdLRn. This proves that φL is an isotopy

of LRn.

Now we will calculate the derivative of the map φLs for a fixed s ∈ R.

φLs : LR
n → LRn; φLs (γ)(t) = φs(γ(t)).

Let γ ∈ LRn, then dφLs (γ) : TγLR
n → TφLs (γ)LR

n. Take X ∈ TγLR
n = ΓS1(γ∗TRn) �

C∞(S1,Rn). dφLs (γ)(X) is a vector field along φLs (γ). The derivative is determined by

the directional derivative (see theorem 1.2.4).

dφLs (γ)(X) is an element of TφLs (γ)LR
n ≈ C∞(S1,Rn) which is the limit of the follow-

ing net indexed by u ∈ R+: {
φLs (γ + uX)− φL(γ)

u

}
.

Evaluation at time t is a continuous linear map LRn → R which takes this net to{
φLs (γ + uX)(t)− φLs (γ)(t)

u

}

=

{
φs(γ(t) + uX(t))− φs(γ(t))

u

}

This is the differential quotient which tends to dφs(γ(t))(X(t)). Since a loop is completely

determined by its values at each time, therefore we have

dφLs (γ)(X) = (t→ dφs(γ(t))(X(t))) (2.2.2)

We will need the following function in next few sections. Let us define a map (sug-

gested by Dr. Saikat chatterjee) on the loop space corresponding to a map on the base

manifold. If f : Rn → R be a C∞ function then define

f̃ : LRn → R by (2.2.3)

f̃(γ) =

∫ 1

0

f(γ(t))dt
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Then using the same argument as above, we have for γ ∈ LRn, X ∈ Tγ(LR
n) ≈

C∞(S1,Rn),

df̃γ(X) =

∫ 1

0

dfγ(t)(X(t))dt (2.2.4)

2.2.2 (LR2n,Ωω) admits a Darboux chart.

Let ω0 be the standard symplectic structure on R
2n. With the natural identification of

TLR2n with LR2n × LR2n, for X, Y ∈ TγLR
2n � LR2n, we have

Ωω0
γ (X, Y ) :=

∫ 1

0

ω0(X(t), Y (t))dt

Suppose there is a weak symplectic structure Ωω on LR2n defined as equation 2.1.1.

We want to prove that there exists a change of co-ordinate such that Ωω changes to Ωω0 .

Let ωs be a 1 parameter family of 2 form on R2n. Denote Ωs := Ωωs for the corre-

sponding 1 parameter family of 2 form on LR2n. We have the following theorem.

Theorem 2.2.2. Suppose there is an isotopy φ on R2n such that φ∗s(ωs) = ω0, then with

the corresponding isotopy φL on loop space we have (φLs )
∗(Ωs) = Ω0

Proof. We have given an isotopy φ : R× R2n → R2n such that (φs)∗(ωs) = ω0. Define

φL : R× LR2n → LR2n

by φLs (γ) = (t→ φs(γ(t)));

we have already seen that by equation 2.2.2, dφLs (γ)(X) = (t→ dφs(γ(t))(X(t))). There-

fore we have

(φLs )
∗(Ωs)γ(X, Y ) = ΩsφLs (γ)(dφ

L
s (γ)(X), dφ

L
s (γ)(Y ))

=

∫
ωsφs(γ(t))(dφs(γ(t))(X(t)), dφs(γ(t))(Y (t)))dt

=

∫
ω0
γ(t)(X(t), Y (t))dt

= Ω0
γ(X, Y )

Therefore if (R2n, ω) admits Darboux charts then above theorem 2.2.2 concludes that

corresponding weak symplectic manifold (LR2n,Ωω) admits Darboux chart.
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2.3 Partition of unity on LM

LetM be a Fréchet manifold and S ⊂ C(M,R) be a subalgebra.

Definition 2.3.1. A S-partition of unity on the spaceM is a set F of functions f ∈ S

which satisfy the following conditions.

1. For all f ∈ F and x ∈ X one has f(x) ≥ 0.

2. The set {supp(f) : f ∈ F} of all supports is a locally finite covering of X .

3. The sum
∑

f∈F f(x) equals 1 for all x ∈ X .

The partition of unity is called subordinate to an open covering U ofM if for every

f ∈ F , there exists an U ∈ U with supp(f) ⊂ U .

Definition 2.3.2. We say that M is S-paracompact if every open cover U admits a

S-partition of unity subordinate to it.

Remark 2.3.1. LRn is a Fréchet space and therefore LRn admits C(LRn,R)-partition of

unity. LM is smoothly embedded in LRn for some n. Therefore LM admits a C(LM,R)

partition of unity.

We have the following proposition.

Proposition 2.3.1 (§42.3, [20]). For finite dimensional second countable manifolds M ,

N the smooth manifold C∞(M,N) is smoothly paracompact.

The above proposition implies that LM is smoothly paracompact, which means that

it admits smooth partition of unity subordinate to any open cover.

For a weak symplectic Fréchet manifold (M, σ), in section 1.4, we defined the space

C∞σ (M,R). We are interested in looking at the question whether for σ = Ωω, weak

symplectic manifold (LM, σ) admits C∞σ (LM,R) partition of unity.

2.3.1 C∞
σ
(LM,R) partition of unity on LM for σ = Ωω

For the weak symplectic Fréchet manifold (LM,Ωω), we have the following proposition.

Proposition 2.3.2. (LM, σ) admits smooth partition of unity in C∞σ (LM,R).
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Proof. As we discussed earlier LM admits a smooth partition of unity in C∞(LM,R)

but we are required to show that LM admits a smooth partition of unity in C∞σ (LM,R).

Let {Uα} be a covering of LM . For each Uα, identify S1 with [0, 1]/ ∼ and elements

of I = [0, 1] by t and define:

Uα := {p = γ(t) for some γ ∈ Uα and for some t ∈ S
1}

For the loop space LM , evt : LM → M is an open map for any fixed t (see [31]).

Therefore Uα is an open subset of M and this collection covers M . Let {fα} be the

partition of unity subordinate to the covering {Uα}. For each α, as in equation 2.2.3,

define

f̂α(γ) =

∫ 1

0

fα(γ(t))dt

We see that the support of f̂α ⊂ Uα since the support of fα ⊂ Uα.

For each fα there is a vector field Xα on M such that dfα = ω(Xα, .). Let X̂α be

a vector field on LM defined by X̂α(γ)(t) := Xα(γ(t)). Call this vector field on LM a

vector field associated with Xα.

From equation 2.2.4 we have for X ∈ TγLM ,

(df̂α)γ(X) =

∫ 1

0

dfγ(t)(X(t))dt.

This gives

(df̂α)γ(X) =

∫ 1

0

ωγ(t)(Xα(γ(t)), X(t))dt

That is

(df̂α)γ(X) = Ωωγ (X̂α(γ), X)

This proves

f̂α ⊂ C∞σ (LM,R)

Also
∑

α f̂α = 1. Hence the collection {f̂α} is the required partition of unity.

2.4 Symplectic cohomology and de-Rham cohomol-

ogy of loop space

In section 1.4.4 we defined the de Rham cohomology of a Fréchet manifold. In section

1.5.2 we defined the symplectic cohomology of a weak symplectic Fréchet manifold.
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It is worth mentioning that for a strong symplectic manifold, both the cohomology

groups will be the same. For a weak symplectic manifold, we have the following theorem

by Kriegl and Michor.

Theorem 2.4.1 (§48.9,[20]). If (M,σ) is a smooth weakly symplectic manifold which

admits smooth partitions of unity in C∞σ (M,R), and which admits Darboux chart, then

the symplectic cohomology equals the De Rham cohomology: Hk
σ(M) = Hk

DR(M).

We have following theorem.

Theorem 2.4.2. If there is a global Darboux chart for (R2n, ω) then for (LR2n,Ωω), we

have for every k ∈ {0} ∪ N,

Hk
DR(LR

2n) � Hk
Ωω(LR2n).

Proof. Combining theorem 2.4.1 with proposition 2.3.2 and theorem 2.2.2 we conclude

the result.

Remark 2.4.1. Proposition 2.3.2 is not only true for (LR2n,Ωω) but it is true for any

(LM,Ωω). But in calculating the derivative of φLs in proposition 2.2.2 and proving that

(LR2n,Ωω) admits a Darboux chart 2.2.2, we used that R2n admits a global Darboux

chart for any symplectic form ω. For general loop space LM in place of LR2n, the proof

given in section 2, 4 will not work.

We believe that (LM,Ωω) may admit Darboux chart for most symplectic manifolds

(M,ω). Some work in this direction is discussed in chapter 3. As there exists a PLB

manifold structure on loop space LM ([20], in chapter 3, we studied a general class

of Fréchet manifolds, called PLB manifold and necessary conditions for existence of

Darboux chart on weak symplectic PLB (projective limit of Banach) manifolds.

2.5 Almost complex structure J̃ on the loop space

Let (M,J) be an almost complex manifold. Indranil Biswas and Saikat Chatterjee in

[3] defined an almost complex structure J̃ on the path space C∞([0, 1],M). the same

definition gives an almost complex structure on the loop space LM .

For γ ∈ LM and X ∈ TγLM . Then X a vector field on M along γ. Define

J̃ : TLM → TLM ;

J̃γ : TγLM → TγLM by

J̃γ(X)(t) := J(X(γ(t)))
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We have J̃2
γ = −IdTγLM because J2 = −Id. Using the definition of smoothness (if

c : R → TLM is smooth then J̃ ◦ c : R → TLM should be smooth) we see that J̃ is

smooth with a smooth inverse.

This proves that J̃ is an almost complex structure on the loop space LM .

2.5.1 J̃ is compatible with Ωω whenever J is compatible with ω

Here we define a metric (inner product) on the loop space LM of a finite dimensional

Riemannian manifold (M, g). The metric g̃ on the tangent space LM is a symmetric

fiberwise bilinear map TLM ×M TLM → R with the property that the induced map

g̃∨ : TLM → T ∗LM satisfies g̃∨(v)v > 0 for v �= 0.

There is a lot of literature which deal with metrics on LM . For example we can see

[4], [3] etc. Following these articles, we have a metric g̃ on the loop space defined as

following.

For γ ∈ LM and X, Y ∈ TγLM . X, Y ∈ ΓS1(γ∗TM). We define

g̃γ(X, Y ) :=

∫ 1

0

gγ(t)(X(t), Y (t))dt. (2.5.1)

g̃ is a weak metric on LM . By a weak metric, we mean that the induced map by

the metric g̃ from the tangent bundle of LM to the cotangent bundle T ∗LM is not a

topological isomorphism. In fact there does not exist any strong metric on any Fréchet

manifold.

For a symplectic form ω on M , we have the corresponding symplectic structure

Ωω as defined in the equation 2.1.1. Ωω is given as following. For X, Y ∈ TγLM �

ΓS1(γ∗(TM)) we have

Ωωγ (X, Y ) =

∫ 1

0

ωγ(t)(X(t), Y (t))dt (2.5.2)

Also the almost complex structure is given by

J̃γ(X)(t) := Jγ(t)(X(t)) (2.5.3)

where we have X ∈ TγLM that is X : S1 → γ∗(TM).

Suppose for a smooth manifold (M, g), symplectic structure ω on M and almost

complex structure J are compatible. This means we have

g(u, v) = ω(u, Jv).

then, g̃(X, Y ) = Ωω(X, J̃Y ).
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2.5.2 J̃ is formally integrable

Let (LM, J̃) be the almost complex Fréchet manifold defined as in section 2.5. For given

two vector fields X and Y ∈ X(LM), define the Nijenhuis-tensor as

NJ̃(X, Y ) := [J̃(X), J̃(Y )]− [X, Y ]− J̃([X, J̃Y ])− J̃([J̃X, Y ]).

In [4], Brylinski defined and used this tensor in the case of the loop space. We say

that (LM, J̃) is formally integrable if the Nijenhuis tensor vanishes identically. Indranil

Biswas and Saikat Chaterjee in [3] showed that (PM, J̃) is formally integrable. The same

proof shows that (LM, J̃) is formally integrable.

Integrability of (LM, J̃) is not known. J.-L. Brylinski in [4] introduced an almost

complex structure on a loop space which contains only immersion (We call it the Brylinski

loop space). The almost complex structure on the Brylinski loop space turns out to be

formally integrable. But Lempert [21] proved that this almost complex structure on the

Brylinski loop space is not integrable.

Lempert [21] defined the notion of weak integrability in local sense for infinite di-

mensional manifolds. In next section we will discuss about the weak integrability of

(LM, J̃).

2.5.3 J̃ is weak integrable in local sense when J is integrable

Definition 2.5.1. (Weak integrable in local sense) Let (M,J) be an almost complex

manifold (Banach or Fréchet). We say (M,J) is weak integrable in local sense, if for any

p ∈M and any non zero v ∈ TpM , there is a neighborhood U of p and a J-holomorphic

function F on U such that v(F ) �= 0.

We recall the following definition.

Definition 2.5.2. If (M,J) and (M ′, J ′) be almost complex manifolds. A map

f : (M,J)→ (M ′, J ′)

is said to to pseudo-holomorphic or simply holomorphic if

(f∗)J = J ′(f∗)

If f : (M,J) → C, then pseudo-holomorphic functions are sometimes called J-

holomophic. When J and J ′ are integrable, then f is pseudo- holomorphic if and only
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if f is holomorphic. Following we will define the notion of a neighborhood of γ ∈ LM

associated to chart (U, φ) of M .

Given γ ∈ LM and for some fixed t, let (U, φ) be a coordinate chart of M around

γ(t) ∈M . Let U be a neighborhood of γ ∈ LM . Define

U
t
γ := {α ∈ U : α(t) ∈ U}

γ ∈ Utγ . As for fixed t ∈ [0, 1], evt : LM → M is a continuous map, we have Utγ =

ev−1t (U) ∩ U �= φ. Hence Utγ is open set for each t. We say Utγ is an open neighborhood

of γ associated with the chart (U, φ) at time t.

Now we will give an example of a holomorphic (J̃- holomorphic) function.

Proposition 2.5.1. If M be a complex manifold, for given γ ∈ LM and fixed t, let Utγ

be an open set associated with the chart (U, φ = (φ1, ...φn)). For each t ∈ [0, 1], define

F t
i : U

t
γ → C; γ → φi ◦ evt(γ) (2.5.4)

Then F t
i is J̃ − holomorpic map on some neighborhood of γ ∈ LM .

Proof. Corollary 2.3 of [3] proves that evt is J̃-holomorphic and φi is a coordinate map of

a complex manifoldM and hence φi is holomorphic. This gives F
t
γ is J̃-holomorphic.

Hence for each γ ∈ LM there is a neighborhood of γ at time t, U
t
γ and a J̃-

holomorphic function F t
i defined on this neighborhood. This will work as a possible

candidate in proving the weak integrability (local sense ) of (LM, J̃).

If M is a complex manifold, we have the following proposition.

Theorem 2.5.2. (LM, J̃) is weak integrable in local sense.

Proof. Let X �= 0 and X ∈ TγLM . We have X ∈ C∞(S1, γ∗(LM)) and there is some t0

such that X(t0) �= 0. Let (U, (φ1, ..φn)) be a coordinate neighborhood of γ(t0).

As X(t0) ∈ Tγ(t0)M , suppose locally (in some neighborhood of t0)

X(t) =
n∑
j=1

Xj(t)
∂

∂zj
|γ(t).

If X(t0) �= 0 then there exists some j such that Xj(t0) �= 0. Now take F t0
j as defined in

Proposition 2.5.1. F t0
j will suffice our purpose.

For fixed t, we have:

F t
i∗
(γ)(X) = dφi(γ(t)) ◦ evt∗(γ)(X)

= dφi(γ(t))(X(t)) = X i(t)
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(
dφiγ(t)(X(t)) = dφiγ(t)(

∑n

j=1X
j(t) ∂

∂zj
) = X i(t)

)
.

That is for t = t0, we have XF
t0
j = Xj(t0) �= 0

Hence for X �= 0, X ∈ TγLM , we have a holomorphic function F t0
j defined on Ut0γ ⊂

LM such that XF t0
j �= 0

This proves that (LM, J̃) is weak integrable in local sense.



Chapter 3

Weak symplectic structure on PLB

manifolds

In chapter 2 we discussed a symplectic structure Ωω on the loop space LM . We proved

very easily that (LR2n,Ωω) admits a Darboux chart. But for the case of (LM,Ωω) it is

not straight forward to see whether it admits Darboux chart.

We denote for i ∈ N ∪ {0}, LiM := C i(S1,M). LiM is a Banach manifold and

LM = lim←−L
iM . For γ ∈ LM , we have γ ∈ LiM for each i. Fix a local addition η for M

and let π×η : TM → V is diffeomorphism on to a open neighborhood V of the diagonal

of M ×M . Define

U i
γ := {α ∈ L

iM : (γ, α) ∈ LiV }

and ψi is an injective map from U i
γ → LRn as defined in the section 1.3.1. We write the

following trivial facts.

1. {LiM,φji = I(inclusion map)} is a projective system of Banach manifolds.

2. {LiRn, ρji = I(inclusion map)} is a projective system of Banach spaces.

3. We see that for γ ∈ LM , φji(U
j
γ) ⊂ U i

γ for every j ≥ i.

4. We have ρji ◦ ψj = ψiφji.

5. lim←−ψi(U
i
γ) = Uγ.

This makes LM a PLB manifold.

In this chapter we will define a weak symplectic structure on a PLB manifold M =

lim←−Mi such that each Mi is modelled on a reflexive Banach space. Further we will prove

that if certain conditions holds then PLB manifold admits a Darboux chart. We will
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start by discussing the case of strong symplectic Banach manifolds. Then we will discuss

weak symplectic Banach manifolds and in the end we will discuss our main object of

study, namely PLB manifold with a particular weak symplectic structure.

Our analysis of PLB manifold does not completely hold for the case of loop space.

This is because, we could find the condition for existence of Darboux chart for the case

of PLB manifold M := lim←−Mi when each Mi is modeled over a reflexive Banach space

Ei. In the case of loop space LM , each LiM is not reflexive space. Therefore a general

discussion on loop space is still lacking.

3.1 Strong symplectic Banach manifolds

Let (M,Ω) be a strong symplectic Banach manifold modeled on a Banach space B. For

ensuring existence of Darboux chart, it is enough to know the existence of Darboux chart

on some open neighborhood of zero in B.

Let Ω be a symplectic structure on a neighborhood of zero in a Banach space B. In

1969, Alan Weinstein proved the following theorem.

Theorem 3.1.1 ([32]). Let Ω1 be the strong symplectic structure on B which is constant

with respect to the natural parallelism on B and equal to Ω at 0. Then there are neigh-

borhoods U and V of 0 and a diffeomorphism f : U → V such that f(0) = 0, f∗(0) is the

identity, and f ∗(Ω1) = Ω.

Ω1 is said to be constant with respect to natural parallelism (TB � B × B) on B,

if there exists a non singular, skew symmetric, bounded bilinear map F on B such that

Ω1(x) := F for every x. Theorem demands existence of Ω1 such that Ω1(0) = Ω(0). This

theorem proves that the local classification of strong symplectic structures on a manifold

modeled on the Banach space B is thus reduced to the classification of non singular,

skew symmetric, bounded bilinear forms on B.

Further if B is the Hilbert space, every such form is equal to
∑

i∈I ζi ∧ ηi for some

basis {ζi} ∪ {ηi} of B∗. Proof of this theorem is completely based on the Moser trick.

This theorem completely solves the problem of existence of Darboux chart on strong

symplectic Banach manifold.

3.2 Weak symplectic structure on Banach manifolds

If Ω is not strong symplectic but only it is a weak symplectic, then Darboux type theorem

fails. In 1972, J. Marsden, has given an example which shows that the weak symplectic
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structure on a Hilbert manifold may not admit Darboux chart [24].

3.2.1 Sufficient condition for the existence of Darboux chart on

weak symplectic Banach manifolds

Dario Bambusi in [2] has given sufficient conditions for existence of Darboux chart on

weak symplectic Banach manifold. In this section we will give a brief review of Bambusi

theorem.

Suppose (M,Ω) is a Banach manifold modeled over a reflexive Banach space E. Since

the Darboux theorem is a local result it is enough to consider the case where M is an

open set U of a Banach space E. Without loss of generality we can assume 0 ∈ E.

We have Ωx : E × E → R. Using Ωx define a norm on E

‖X‖Fx
:= sup

‖Y ‖E=1

|Ωx(X, Y )|

and consider the completion F of E in such a norm. It is clear that Ωx can be extended

to a continuous bilinear form on E × Fx.

Bambusi proved the following theorem:

Theorem 3.2.1. [Theorem 2.1 [2]] Assume that there exists a neighborhood W of 0

such that, for all x ∈ W the spaces Fx coincide and moreover that the map x → Ωx

is differentiable as an application from W to the continuous bilinear forms on F × E,

where F := Fx; then there exists a neighborhood V of 0 and a change of coordinates ψ

defined on V which reduces Ω to the constant two form Ω0 := Ωx|x=0.

A condition given in the theorem assumes that there exists a neighborhood W of 0

such that, for all x ∈ W the spaces Fx. This means for every x, y ∈ W, Banach spaces

Fx and Fy is topologically isomorphic. This condition is a necessary condition for the

existence of Darboux chart. Bambusi proved the following:

Theorem 3.2.2 (Proposition 2.6 [2]). The existence of Darboux chart about 0 in which

the symplectic form is constant implies that there exists a neighborhood of 0 such that

for each x in such a neighborhood there exists an isomorphism between Fx and F0 which

restricts to an isomorphism of Banach space E with itself.

Therefore first condition on the theorem 3.2.1 is a necessary condition.

As Ω is a weak symplectic structure, we have given that as a map Ω : U → L(E×E,R)

is smooth. Second condition of the theorem demands that

Ω : U → L(E × F ,R)
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should be smooth. Bambusi pointed out that this condition is not automatic.

3.3 Weak symplectic structure on PLB manifold

In chapter 1, we defined a PLB manifold. Suppose (M,σ) be a PLB manifold with

a weak symplectic form σ. In this section, we will define the compatibility of σ with

the projective system. Then we will prove a version of Darboux theorem for the PLB

manifold with a weak symplectic structure compatible with the projective system.

Our idea is similar to the idea of Weinstein [32] and Bambusi [2]. We extended the

main ideas of Bambusi [2] in the context of PLB manifold.

We recall that for a Fréchet manifold, there does not exist any strong symplectic

structure because the induced map σbp : TpM → T ∗pM is never a topological isomor-

phism. T ∗pM is not even a Fréchet space with strong dual topology. But there are weak

symplectic structures on Fréchet manifolds.

3.3.1 Basics about weak symplectic structures

LetM be a PLB manifold and {Mi, φji}i,j∈N be a projective system of Banach manifolds

with M = lim←−Mi. Suppose each Mi is modeled over a reflexive Banach space Ei and

each Mi has a weak symplectic structure σ
i.

Let x ∈M , we have x = (xi) where φji(xj) = xi. For each xi, following [2], we define

a norm on TxiMi, for X ∈ TxiMi,

‖X‖Fxi
:= sup

‖Y ‖i=1

|σixi(X, Y )|

where ‖.‖i is the norm on the Banach space TxiMi. Let Fxi be the completion of

TxiMi with respect to the ‖.‖Fxi
norm. As each TxiMi is a reflexive Banach space, we

have that the induced map (Lemma 2.8,[2]),

(σixi)
b : TxiMi → F

∗
xi
; X → σixi(X, .)

is a topological isomorphism.

Define for each i, j ∈ N j ≥ i and given x = (xi) ∈ lim←−Mi =M ,

ψji : F
∗
xj
→ F∗xi by

ψji = (σixi)
b ◦ Txjφji ◦ ((σ

j
xj
)b)−1 (3.3.1)
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where Txjφji is the differential of φji : Mj → Mi at xj . We see that {F∗xi, ψji}i,j∈N is a

projective system of Banach spaces and smooth maps (since for any k ≥ j ≥ i, we have

ψki = ψkj ◦ ψji). We see that {(σixi)
b : TxiMi → F∗xi} is a projective system of mappings

because

(σjxj )
b ◦ ψji = Txjφji ◦ (σ

i
xi
)b.

Fix some point p = (pi) ∈M . We know that for a fixed p = (pi) ∈ M , {TpjMj , Tpjφji}i,j∈N

is a projective system of Banach spaces. In section 1.3.3 we saw that TpM � lim←−TpjMj.

Let hp be the isomorphism from TpM → lim←−TpjMj as defined in [14].

For some coordinate neighborhood U = lim←−Ui around p, let σp := σ|x=p be the

constant symplectic structure on U with a natural parallelism TU � U × E where

E � TpM is a Fréchet space. On each Ui we have a corresponding constant symplectic

structure σipi with the natural parallelism.

For t ∈ [−1, 1] we define σt := σ+t(σ−σp) similarly (σ
i)t := σi+t(σi−σipi). Suppose

for some q = (qi) ∈M and for some t ∈ [−1, 1], ((σq)tb)−1 and (((σiqi))
tb)−1 exist for each

i. Then {(((σiqi))
tb)−1 : F∗tqi → TqiMi} is a projective system of map. Here F∗tqi is defined

in the same way as F∗qi above. Where F∗qi are spaces corresponding to σ
i, F∗tqi are spaces

corresponding to weak symplectic structure (σi)t. Also for fixed t corresponding to the

ψji maps, we have the maps ψ
t
ji (for the weak symplectic structure (σ

i)t). Therefore we

see that for each t, the collections {(((σiqi))
tb)−1 : F∗tqi → TqiMi} are a projective system

of mappings.

For a weak symplectic structure σ on a PLB manifoldM as discussed above, we have

for each p = (pi), σ
b
p is a map on TpM that is σbp : TpM → T ∗pM . Let hp : TpM →

lim←−TpjMj be an isomorphism [14]. With this identification we can consider σbp as a map

defined on lim←−TpjMj .

Now we are in a position to define a compatible symplectic structure.

3.3.2 Compatible symplectic structure

We say that a weak symplectic structure σ on an open subset U = lim←−Ui of a PLB space

E = lim←−Ei is compatible with the projective system (Ui, σi) (σi are the weak symplectic

structure on Ui) if the following is satisfied:

1. For every x ∈ U , σbx := lim←−(σ
i
xi
)b.

2. If for some p ∈ U , there exists a 1 - form α such that for each x ∈ U , αx = (αixi) ∈

lim←−F
∗
xi
, we must have hx((σx)

tb)−1(αx) =
(
((σixi)

tb)−1(αixi)
)
whenever defined.
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3. For such α as in above, whenever Y i
t (xi) := ((σixi)

tb)−1(αixi) is defined on some open

set Wi of Ui, it is defined on whole Ei. Each Y
i
t is projective μ-Lipschitz smooth

map for some fixed positive real μ > 0.

Remark 3.3.1. In condition 1, lim←−(σ
i
xi
)b make sense because {(σixi)

b} makes projective

system of mapping. σbx as a map σ
b
x : lim←−TxiMi → lim←−F

∗
xi
is the projective limit of the

maps (σixi)
b.

Remark 3.3.2. For every j ≥ i, condition 2 demands

hx((σx)
tb)−1(αx) =

(
((σixi)

tb)−1(αixi)
)
∈ lim←−TxiMi.

This means that we have

Txjφji(((σ
i
xj
)tb)−1(αjxj)) = ((σixi)

tb)−1(αixi).

Definition 3.3.1 (Compatible symplectic structure). Suppose (M,σ) be a PLB manifold

andM = lim←−Mi. Let σi be the weak symplectic structure onMi. We say σ is compatible

with the projective system if for every point p = (pi) ∈M there is a co-ordinate system

(lim←−Ui, ψ := lim←−ψi) such that each ψi : Ui(⊂ Ei) → Mi is a co-ordinate map around

each pi and weak symplectic structure (U, ψ
∗σ) is compatible with the projective system

(Ui, ψ
∗
i σi).

The definition of compatibility of σ arise while exploring the possibility of existence

of Darboux chart for the case of the loop space (LM,Ωω) discussed in chapter 2. In

the introduction of this chapter we saw that LM := lim←−L
iM is a PLB manifold. We

denote for i ≥ 0, LiM := C i(S1,M). LiM is a Banach manifold and there exists a PLB

manifold structure on LM := lim←−L
iM . For a symplectic structure Ωω defined in chapter

2, if we define Ωωi symplectic structure on L
iM by the exactly same formulae as of Ωω.

Then above condition arise while analyzing the relation of Ωωi and Ω
ω.

3.3.3 A Fréchet space used in the theorem

Since the Darboux theorem is a local result, we will work on some open subset U (con-

taining zero) of a Fréchet space E which is the projective limit of Banach spaces. We have

{Ei, ρji} is the inverse system of Banach spaces (manifolds) Ei and E = lim←−Ei. As E is

a PLB manifold, each ρji is the inclusion map. We can assume that U = lim←−Ui, where

Ui are open subsets of Banach spaces Ei. Let σ be a compatible symplectic structure on

the PLB manifold U .
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As we discussed earlier, for a fixed x = (xi) ∈ E, {TxjEj = Ej , Txjφji = φji}i,j∈N is a

projective system of Banach spaces. In section 1.3.3, we saw that E = TxE = lim←−TxjEj.

If the topology on E is generated by the collection of semi-norms {ρk : k ∈ N} then

for each x ∈ E and k ∈ N, define norms on E as the following. For X ∈ E,

ρxk(X) := sup
ρk(Y )=1

|σx(X, Y )|.

All ρxk are norms on E and collection {ρxk : k ∈ N} generate a topology on E. Let

completion of E with respect to this collection be denoted by Fx. Then Fx is a Fréchet

space.

For a fixed x ∈ U , let Hx := {σx(X, .) : X ∈ E}. We can extend σ as a continuous

bilinear map E × Fx → R.

For x = (xi), in the section 3.3.1 we defined F∗xi. If σ on E is compatible with the

inductive maps, for X ∈ TxE = E

σx(X, .) = (σixi(Xi, .)) ∈ lim←−F
∗
xi

Therefore Hx ⊂ lim←−F
∗
xi
as a set.

We know that each (σixi)
b : TxiEi(= Ei)→ F∗xi is a topological isomorphism. There-

fore a typical element of F∗xi will be given by σ
i
xi
(Xi, .) for some Xi ∈ Ei. Hence typical

element of lim←−F
∗
xi
will be given by (σixi(Xi, .)) where we must have ψji(σ

j
xj
(Xj, .)) =

σixi(Xi, .). This will happen if and only if Txjρji(Xj) = ρji(Xj) = Xi. (since we can

identify (σixi(Xi, .)) = σx(X, .)). This shows as set, lim←−F
∗
xi
⊂ Hx.

Therefore we have, as set, lim←−F
∗
xi
= Hx.

On Hx, we have two possible topology:

1. Projective limit topology when we identify Hx as lim←−F
∗
xi
. Projective limit topology

on Hx given as follows: For i ∈ N, we have ‖σx(X, .)‖i := ‖σixi(Xi, .)‖op. Here on

the right hand side of expression ‖.‖op is the operator norm of σixi(Xi, .) as an

element of F∗xi.

2. The induced topology when we consider Hx as subset of E
∗.

We fix the notation ‖.‖i for norm on Banach space TxiEi = Ei and we recall that ‖.‖Fxi

is the norm on Fxi as defined in section 3.3.1.

We have for X, Y ∈ TxiEi = Ei,

‖X‖i‖Y ‖Fxi
≥ |σixi(X, Y )|. (3.3.2)
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Fix ε > 0, for Y ∈ Fxi we have a sequence (Yn) ∈ Ei such that limn→∞ Yn = Y in Fxi.

This means that there exists a natural number NY ∈ N such that

‖Yn‖Fxi
− ε < ‖Y ‖Fxi

< ‖Yn‖Fxi
+ ε; ∀n ≥ NY . (3.3.3)

Let A = {Y ∈ Fxi : ‖Y ‖Fxi
= 1}. For each Y ∈ A, there exists a sequence (Yn) in Ei

such that equation 3.3.3 is satisfied for some NY . We have a collection call AYε and BY
ε

as follows: For each Y ∈ A, fix a sequence (Yn) ⊂ Ei such that limn→∞ Yn = Y .

AYε := {Yn : n ≥ NY } and BY
ε := {y ∈ Ei : ‖y‖Fxi

− ε < ‖Y ‖Fxi
}.

Let Aε :=
⋃
Y ∈AA

Y
ε and Bε =

⋃
Y ∈AB

Y
ε .

If X ∈ Ei is fixed and f is defined on Ei such that f(Y ) = |σixi(X, Y )| and we have

a continuous extension of f to Fxi. Then we have

sup
Y ∈A

f(Y ) ≤ sup
Y ∈Aε

f(Y )

Also Aε ⊂ Bε, we have

sup
Y ∈A

f(Y ) ≤ sup
Y ∈Bε

f(Y ).

On Bε, that is for X ∈ Ei and Y ∈ Bε, we have |σixi(X, Y )| ≤ (1 + ε)|‖X‖i. Therefore

we have

‖σixi(X, .)‖op = sup
Y ∈A
|σixi(X, Y )|

≤ sup
Y ∈Bε

|σixi(X, Y )|

≤ (1 + ε)‖X‖i.

Since this is true for every ε, we have for X ∈ TxiEi = Ei,

‖σixi(X, .)‖op ≤ ‖X‖i. (3.3.4)

Remark 3.3.3. In above discussion by ‖σixi(X, .)‖op, we mean the operator norm of

σixi(X, .) as an element of F
∗
xi
.

We have the following proposition.

Proposition 3.3.1. σbx : E → Hx is an isomorphism.

Proof. As discussed earlier, for x = (xi), Hx = lim←−F
∗
xi
. For each xi, we know (σixi)

b :

Ei(= TxiEi)→ F ∗xi is an isomorphism (lemma 2.8,[2]). Let the inverse of (σixi)
b is denoted

by J ixi. Define

σbx : E = lim←−TxiEi → lim←−F
∗
xi
; σbx(X) =

(
(σixi)

b(Xi)
)
and

Jx : Hx(= lim←−F
∗
xi
)→ lim←−TxiEi = E is defined as follows.
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If αx ∈ Hx, then Jx can be defined using J
i
xi
= ((σixi)

b)−1.

Jx(αx) := (J ixi(αxi))

As σ is compatible with the inductive limit (J ixi(αxi)) ∈ lim←− TxiEi = E.

Jx is the inverse of σ
b
x and this gives an isomorphism.

Remark 3.3.4. Form above proposition, it is clear that Hx and Hy are topologically

isomorphic.

3.3.4 Condition for the existence of a Darboux chart on weak

symplectic PLB manifolds

We state the theorem for some open neighborhood of 0 ∈ E.

Theorem 3.3.2. Suppose

1. There exists a neighborhood W of 0 ∈ E, such that all Hx are identical and σtbx :

E → H is an isomorphism for each t and for each x ∈ W.

2. There exists a vector field X = (Xi) on E such that on W, LXσ = σ − σ0.

3. For every i and t ∈ [−1, 1], ‖Xi(xi)‖i.‖((σ
i
xi
)tb)−1‖op is bounded by M for some

positive real M .

then there exists a coordinate chart (V,Φ) around zero such that Φ∗σ = σ0.

For the rest of the discussion we denote σ = σ − σ0. σ is defined on W, an open

neighborhood of 0.

Remark 3.3.5. Suppose σ is a weak symplectic structure as defined earlier (compatible

with projective system) and there exists a vector field X on W such that LXσ = σ.

Then we have d(iXσ) = σ. Denote α = iXσ = σb(X). We define

αixi := (σixi)
b(Xi(xi))

We can extend these αixi as α
i
xi
∈ F∗xi. We see that ψji(α

j
xj
) = αixi .

Therefore lim←−α
i
xi
exists and as σ is compatible with inductive maps, we have

αx = lim←−(α
i
xi
)
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Remark 3.3.6. For any xi ∈ Ei, αixi ∈ E
∗
i . As an element of E

∗
i , we have

‖αixi‖op = sup
‖Y ‖i=1

|αixi(Y )|

= sup
‖Y ‖i=1

|σixi(Xi(xi), Y )|

= ‖Xi(xi)‖Fxi

But as an an element of F∗xi, by equation 3.3.4, we have

‖αixi‖op ≤ ‖Xi(xi)‖i

3.3.5 Proof of the theorem

Proof. There is an open neighborhood of 0 ∈ E, W = lim←−Wi. 0 ∈ lim←−Wi is identified

with 0 = (0, 0, ..). On lim←−Wi, define σ = σ0 − σ and σt = σ + tσ for t ∈ [−1, 1, ].

By remark 3.3.5, we have on lim←−Wi, αx = (αixi) and

d(α) = σ.

As α = iXσ, we have α ∈ H . We want to solve for Yt :W → E such that

iYtσ
t = −α

Consider

(σtx)
b : E → H.

For x ∈ lim←−Wi, (σ
t
x)
b is isomorphism for all t. Hence for x ∈ lim←−Wi,

Yt(x) = ((σtx)
b)−1(αx) is well defined.

We define Y i
t : Ui → Ei such that

Y i
t (xi) :=

(
((σixi)

t)b
)−1

(αixi)

As σ is compatible with inductive limits, we have Yt(x) = (Y i
t (xi)), that is to say,

Yt = lim←−Y
i
t for each t. Y

i
t defined on Wi is a smooth map and therefore Yt is a smooth

map.

By the definition of compatibility of σ with the inductive maps, we have that each

Y i
t is μ-Lipscitz map defined on Ei. Therefore Yt is defined on E.

We want to make sure that the isotopy of the time dependent vector field Yt exists.

For this we will use theorems 1.4.2 and 1.4.3. Comparing with the notation of the

theorem 1.4.2, ρi(Yt(x)) := ‖Y i
t (xi)‖i.
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Here ‖.‖i denotes norm on each Ei and we know that topology of E = lim←−Ei is

generated by countable norms {‖.‖i : i ∈ N}.

ρi(Yt(x)) = ‖Y i
t (x)‖i

= ‖(((σixi)
t)b)−1(αxi)‖i

≤ ‖((σixi)
tb)−1‖op.‖α

i
xi
‖op

≤ ‖((σixi)
tb)−1‖op.‖Xi(xi)‖i

≤M.

We define Ỹ (x, t) := (Yt(x),
d
dt
) a vector field on E × R. Vector field Ỹ satisfies the

condition of the theorem 1.4.3. Therefore, flow of time dependent vector field Yt exists.

Each flow is defined for all t ∈ [−1, 1] and there exists an isotopy φt for the time

dependent vector field Yt.

We have:
d

dt
φ∗tσt = φ∗t (LYtσt) + φ∗t

d

dt
σt

= φ∗t (−dα + σ) = 0

Hence we have φ∗1σ1 = φ∗0σ0.

This gives

φ∗1σ = σ0

This proves existence of Darboux chart.
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