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Summary

This thesis contributes to classification of finite p-groups upto isoclinism in
which every element of the commutator subgroup is not a commutator. In the
first part we classify finitc p-groups having the commutator subgroup of order
p! and exponent p. Second part consist of a classification of groups of order
p’. Morcover, we determine that the commutator length of groups in both the

cases, is atmost 2.






Notations

G a group

H<G H is a subgroup of G

[, 9] commutator 2~y Ly for 2,y € G

(@) commutator subgroup of G

D(G) Frattini subgroup of G

7(G) i-th term of the lower central scries of G

Z;(G) i-th term of the upper central series of G

d(G) cardinality of a minimal generating set of a finitely generated group
G

Z(G) center of G

F, Field of order p

[H, K] set of all commutators [h, k], h € H ke K

Ce(X) centralizer of ¥ € G

Q%(G) {z e Gla? =1}

U;(G) {27z € G}

exp(G) exponent of ¢

cd(G) commutator length of G

c(G) nilpotency class of G






]

CHAPTER

Background and Preliminaries

This chapter has three sections. In the first section, we introduce the problem
and present a historical background. In the second section, we introduce the
concept of tsoclinism of finite groups. In the last section of this chapter, we

provide some definitions and results, which are used later in the thesis.

1.1 Background of the problem

Let G be a finite group and K(GQ) := {[a,b] | a,b € G} the set of commutators. It
is well known that K(G) generates the commutator subgroup 72(G). Generally,
a subgroup is not equal to its set of generators; in this respect, the commutator
subgroup is no different.  More preciscly, K(G) # 7(G) in general. In the
literature, the earliest example of a group G in which not every element of
72(G) is a commutator, was given by W. B. Fitc [7]. The order of the group
in this example is 256. In 1980 R. M. Guralnick |10, proved that the smallest
order of such a group G is 96. In fact, there arc two such groups of order 96.
A natural question that has attracted the attention of several mathematicians

over the past one century is whether the commutator subgroup 12(G) is equal

1



2 §1.1. Background of the problem

to K(G) or not for groups G in a given class of groups. In 1899, G. A. Miller [32]
investigated the class of alternating groups A, and proved that K(A,,) = v2(Ay).
for all n > 5. N. Ito [20] and O. Ore [36] reinvented the result of G. A. Miller
in 1951, and O. Orc conjectured that cvery clement of a non abclian finite
simple group is a commutator. The conjecture was finally settled in 2010 by
M. W. Licbeck, ct al.[27]. Tt is also truc that K(G) = 72(G) for most of the
finite quasi-simple groups |28]. Furthermore, the commutator length of all finite
quasi-simplc groups is at most 2. The commutator length of a finite group G,
denoted by cl(G), is the smallest positive integer n such that every elewent of
72(G@) can be written as a product of at most n commutators in G. Thus it is
clear that K(G) = 1»(G) if and only if /(G) = 1.

In the following Theorem, I. M. Issaacs [19] gave a way of constructing cx-

amples of finite groups G in which K(G) # 1 (G).

Theorem 1.1.1 Let G = M N be the wreath product of finite groups M and

N, where M is abelian and N is non-abelian. If

$ (L)[‘“] o b
M| ik

AcA

then K(G) # 1.(G), where A is the set of all maximal abelian subgroups of N.

In particular, this incquality holds whenever |M| > | A|

If we take |[M| = 2 and N non abelian of order 6. then the resulting group
G of order 27.3 is an example such that K(G) # 72(G) but the inequality of
the preceding theorem does not hold. Thus the inequality is not neccessary
condition here. Also the method given by I. M. Isaacs can be used to construct
both solvable as well as perfect groups.

The solution of the above problem for non-perfect groups seems much more

challenging. In 1902, W. B. Fite [7] proved that if a finite p-group G is of
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nilpotency class 2 and G/ Z(G) is minimally generated by three elements, then
K(G) = 72(G). He also gave examples of 2-groups G of nilpotency class 2 with
G/ Z(G) minimally generated by four elements and K(G) # ~2(G). The small-
est such 2-group is of order 28. There do exist such groups of order p® for all
odd primes (see Theorem 3.1.1). In 1953, K. Honda [17] reinvented the famous
character sum formula of F. G. Frobenius, in a slightly different form, for deter-
mining whether a given elewent of a finite group is a commutator or not. This
result was used to prove that if the commutator subgroup 42 (G) of a finite group
G is generated by a commutator, then each generator of ,(G) is a commuta-
tor. In 1963, 1. D. Macdonald [29] studied the groups with cyclic commuatator
subgroups and showed that the commutator subgroup of such groups need not

be generated by a commutator. Macdonald’s result is summarized as follows:

Theorem 1.1.2 Let G be a group such that vo(G) is cyclic and either G is
nilpotent or 4o(G) is infinite. Then vo(G) is generated by a suitable commutator.
Moreover. for any given positive integer n there ecists a group G having cyclic

commutator subgroup and generated by no set of fewer than n commutators.

In 1973, D. M. Rodney [38] generalised the preceding work of Macdonald
and proved that if G has cyclic commutator subgroup and cither G is nilpotent
or 12(G) is infinite, then K(G) = 7,(G). Later in 1977, he proved the following

result:

Theorem 1.1.3 ([39]) If G is finite and v2(G) is elementary abelian of order

p? for any prime intcger p, then K(G) = v (G).

This result was further generalised by R. M. Guralnick [11], where he proved
that if G is a finite group and 42(G) is an abelian p-group minimally generated by
at most 3 elements, where p > 5, then K(G) = 1(G). In 2019, G. A. Ferndndez-

Alcober and I. De las Heras [5] relaxed the condition of commutativity of 72 (G) in
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the result of R. M. Guralnick [11], when d(72(G)) = 2, and proved the following

result.

Theorem 1.1.4 ([5]) Let G be a finite p-group. If vo(G) can be generated by 2

elements, then v2(G) = {[v.g] | ¢ € G} for a suitadle » € G.
L. Dc las Heras [15] proved a more gencral result in 2020, which is as follows:

Theorem 1.1.5 ([15]) Let G be a finite p-group with p > 5. If 4,(G) can be
generated by 3 elements, then K(G) = 72(G).

A generalization of some of these results for commutators of higher weights
has also been studied in the literature. The interested reader may refer to
[3, 12, 13, 16]. If we take order of the group into consideration, then in 2005, L.

C. Kappc and R. F. Morsc [23] proved the following result:

Theorem 1.1.6 ([23]) K(G) = 42(G) for all p-groups of order at most p° and
for all 2-groups of order at most 2°. Moreover, there exist groups of order p°,

p > 2, and 27 such that K(G) # 7:(G).

In the preceding result, counter exainple of the group G of order p%, p > 5, is of
nilpotency class 4 with ¥,(G) 4-generated, and the groups of order 27 and 3% are
of the nilpotency class 3 and 4 respectively, having the commutator subgroup
generated by 3 elements. Examples of groups G of order p® and nilpotency class
2 such that K(G) # 7(G) were constructed by I. D. Macdonald [30, Exercise 5,
Page 78]. The counter examples of groups of order 28 and p® admit elementary
abclian commutator subgroups of order 24 and p* respectively.

Interested reader may refer to [24] for more detailed literature about the

problem discussed above.

Remark 1.1.1 [t is evident that a condition only on the prime p or on the rank

of 72(G) for a finite group G can not ensure that K(G) # 1(G).
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1.2 Isoclinism

The following concept of isoclinism of groups is due to P. Hall [14]. He in-
troduced it while studying the classification of prime power order groups. Let
G be a group. Define a map ax : G/Z(G) x G/ Z(G) — ~2(G) such that
ax(91Z(GQ), g2 Z(G)) = [g1, g2] for (g1. g2) € GxG. This map is well defined, and
called the commutator map. We say two groups G and H are isoclinic if there
exists an isomorphism ¢ of the factor group G = G/ Z(G) onto H = H/Z(H),
and an isomorphism 6 of the subgroup v2(G) outo 12 (H) such that the following

diagram is commutative

Hx H 225 v(H).
The resulting pair (¢, 6) is called an isoclinism of G onto H. Isoclinism is
an equivalence relation among the groups. The equivalence classes under the

isoclinism rclation arc called isoclinism families.

Definition 1.2.1 A p-group G is called cxtra-special, if Z(G) and v2(G) arc

equal, and of order p.

In the following result P. Hall [14], proved the existence of an important

group in each isolclinism class of groups.

Lemma 1.2.1 In the isoclinism family of a group G, therc cxists a group H

such that Z(H) < yo(H).

Such a group H is called a stem group in the isoclinism family of G. The

following result is a straightforward cousequence of the preceding lemma.

Corollary 1.2.2 Let G be a finite p-group such that | (G)| = p. Then G is

tsoclinic to an extra-special p-group.
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Lemma 1.2.2 Let G and H be two isoclinic finite p-groups. Then K(G) =
75(G) if and only if K(H) = 7o(H).

Proof. Since isoclinism is an equivalence relation, it is sufficient to prove one
side implication. So assume that K(G) = 15(G). and the map «g in the above
commutative diagram is surjective. Let u € ¥o(H) be an arbitrary element.
There exists (71, 72) € G x G such that 0(ug(71,§2)) = u. Thus there exists
(h1,hy) € H x H, namely (4(51), $(g2)), such that ag(hy, hy) = u proving that

ay 1s surjective, and the proof is complete. O

1.3 Key Lemmas

In this section, we provide some definitions and lemmas which will be used in

further chapters.

Definition 1.3.1 The Frattini subgroup ®(G) of a group G is the intersection of
all mazimal subgroups of G. If G is a finite p-group, then ®(G) = U1(G)y2(G).

Lemma 1.3.1 Let G be a finite p-group with v2(G) elementary abelian of order
pt. If the nilpotency class of G is at most 3, then U,(G) < Z(G) for all p > 3.

Otherwise the conclusion, in general, holds only for p > 5.

Proof. Since 72(G) is of order p*, the nilpotency class of G is at most 5. Thus,

72(G) being elementary abelian, for all 2,y € G, we have
[, 97) = [, 9.y, 9) B, ., ) Dy gy, 9] = 1

Hence y* € Z(G). O

Remark 1.3.1 If G is a stem group in the isoclinism family of groups satisfying
the hypotheses of Lemma 1.5.1, then ®(G) = 1o(G).
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Lemma 1.3.2 For a finite p-group G of nilpotency class at least 4, Z(G)Nv(G)

cannot be mazimal in 2 (QG).

Proof. Contrarily assume that Z(G) N~2(G) is maximal in 72(G). Thus |12(G) :
Z(G) N y2(G)| = p and therefore the nilpotency class of G/(Z(G) N .(Q@)) is 2,

which is possible only when v3(G) < Z(G), a contradiction. O

Definition 1.3.2 We say that a finite p-group G is of conjugate type {1, p", p*}
if this set constitutes the set of conjugacy class sizes of all elements of G, where

r < s are positive integers.

Definition 1.3.3 [9, p.28] A group G is said to be an amalgamated (internal)
semidirect product of subgroups M by N over K, written G = M xg N, if
M Q9 G, G = MN and MNN = K. In particular, if [M,N] = 1 then

K < Z(G), and we call G the central product of M by N over K, written
G=M XK N.

Lemma 1.3.3 Let a finite group G be a central product of its subgroups M and
N. Then K(G) = 7(G) if and only if K(M) = v2(M) and K(N) = 7(N).

Lemma 1.3.4 Let G be a group of order p” and nilpotency class 4 with |12 (G)| =

p°. Then v9(G) is abelian.

We now mention very elementary but extremely useful observations.

Lemma 1.3.5 Let G be a finite group and H a normal subgroup of G. If
K(G/H) # 1(G/H). then K(G) £ 12(G).

Proof. Let G = G/H, and T € 75(G) be an clement which is not in K(G). Then
its pre-image = ¢ K(G). Hence K(G) # 712(G). O
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Lemma 1.3.6 Let G be a group and H a normal subgroup of G contained in
K(G) such that K(G/H) = v (G/H). Then the commutator length of G is at

most 2.

Lemma 1.3.7 Let G be a finite group and H < ~,(G) N Z(G). If there exist

=1

Ty, Ta, ..., Ty such that vo(G)/H = U[IiH,G/H] and H C n[zni,G], then
i=1

(@) = U [¢:, G].

Proof. Let g € v2(G) be any clement. Then g = [z;,alh for some 1 < i < n
where h = [r;,0] € Z(G) and a,b € G. Therefore g = [x;,b][r;,a] = [v;,ba] €
[z, G]. O

Let G be a p-group of maximal class of order p™, that is, the nilpotency class
of Gisn—1. Then C; := C¢(7i(G)/4i+2(G)) are called two-step centralizers in
G, where 1 <i <n—2. It is clear that 12(G) < C; for all 1 <i <n —2. Also,
all C; are characteristic maximal subgroups of G. An element s € G is said to
be uniform if s ¢ 1_02 C;. It was proved by N. Blackburn [2] that every finite
p-group of maximalzzciass admits uniform elements. The following result follows

from [18, T11.14.23 Satz| (may also scc [31]).
Theorem 1.3.4 Let G be a finite p-group of mazimal class. Then K(G) =
Y(G). More precisely, v:(G) = [s,G] for a uniform element s of G.

The following result is from [6, Theorem 4.7] (also see [18, II1.14.14 Hilfs-
satz]), which also follows from [2, Theorem 3.2] as a special casce.
Theorem 1.3.5 Let G be a p-group of mazimal class of order at most pP+i.

Then exp(G/ Z(G)) = exp(12(G)) = p.

The following basic identities will be used throughout, mostly without any

further reference.
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Lemma 1.3.8 Let x,y, z be elements of a group G and n be a positive integer.
Then the following identities hold in G:

(i) [a,p2] = o, 2]l o

(i) [zy, 2] = [, 2"y, 2],

n

(iii) [x,y"] = [x, y]" whenever y centralizes [z, y].

We will use the Hall-Witt identity extensively, which is as follows:

Lemma 1.3.6 Ifz, y, 2 € G, then
[z, y™, Ply. 27 afffe. 7h gt = 1

We now mention some number theoretic results. For a prime integer p and

d € I, the field of p elements, Legendre symbol, denoted by (%) is defined as

0 d=0,
d
» =41 d is quadratic residue (mod p),
-1 d is non-quadratic residue  (mod p).

Lemma 1.3.9 Let p be an odd prime and f(X, 1) = ar* +bAp+cp? be a binary
quadratic form over F;. If p divides b> —4ac, then f = 0 has a nontrivial solution

29 *
in ]Fp.

Proof. Let u be a fixed element of F;. Then f = a)® + bAp + cp? will be a
quadratic equation in X, whose discriminant (0* — dac)p? is zero in Fp. Thus
A = —byi1/2a is a nontrivial solution of f = 0. O

We say that a binary quadratic form f(\, p) = aA? + bAp + cp? represents
an integer r, if there exist some integers Ny, jip such that f(Xo, ) = r. The

following theorem and its corollary are proved in [33, Chapter 3, Page 153].
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Theorem 1.3.7 Let n # 0 and d be given integers. Then there exist a binary
quadratic form having discriminant d that represents n if and only if the con-

gruence x> = d (mod 4|n|) has a solution.

Corollary 1.3.8 Let p be an odd prime and d =0 or 1 (mod 4). There exists a

binary quadratic form of discriminant d that represents p if and only if (g) =1.

Lemma 1.3.10 Let f(\, 1) = mA 2 +n p—p? and g(A, p) = N +n p—mp?, be
two quadratic forms, where p is an odd prime and m,n € Fy. Then f(A,pu) =0

admnits only a trivial solution in By if and only if g(X\, w) =0 does the same.

Proof. Assume that f(A\, ) = 0 implies A = p = 0 in F,. Let f represent
p; mcaning there cxist \g, o € Z such that f(Xg. o) = p. If both Ay and
Ho are multiple of p, then p? divides p (— mA2 + ndopo — pd), which is not
possible. Hence, it follows that none of \g, o is congruent to zero modulo p.
Thus Ag = ag (mod p) and pg = b (mod p) for some ag, by € Iy such that
f(ag,b9) =0 (mod p). This contradicts our assumption. Therefore f does not
represent p. By our assumption and Lemma 1.3.9, n? +4m € F,, and since
n? +4m = 0,1 (mod 4), it follows from Corollary 1.3.8 that ("h;#) = -1
Hence 22 = n? + 4m (mod p) does not have a solution. Now let g(\, i) = 0
admits a non-trivial solution. Thus g represents ps for some s € F,,, hence by
Theorem 1.3.7 we get 22 = n?+4m (mod 4ps) has a solution. Thus 22 = n%+4m
(mod p) also has a solution, which is not possible. Hence g(A, ;) = 0 has only

trivial solution. Converse also follows on the same lines. O




CHAPTER

Reduction Argument and 2-Groups

In this chapter we provide reduction argument for finite p-groups, p > 2, which
reduces our study to the groups of smaller order. Further we give o classification
of finite 2-groups G with ~2(G) elementary abelian of order 16 such that K(G) #

72(G).

2.1 Reduction argument

We start this scction by defining breadth of an clement.

Definition 2.1.1 For a finite p-group G, the breadth of an element x € G,
denoted by b(x), 1s defined as

@ = |G : Ce(z)],

11



12 §2.1. Reduction argument

and the breadth of G, denoted by b(G), is defined as

b(G) := mazf{b(z) | z € G}.

First we prove reduction theorem for odd primes. In 1999, G. Parmeggiani
and B. Stcllmacher [37] provided a classification of finite p-groups, p > 3, of

breadth 3. They prove the following result.

Corollary 2.1.2 Let p be an odd prime and G a finite p-group. Then b(G) =3
if and only if one of the following holds:

(i) [%(G)| = p* and |G : Z(G)| = p*.

(ii) |[72(G@)] = p* and |G : Z(G)| = p*.

(ili) [12(@)] = p* and there exists a normal subgroup H of G with |H| = p
and |G/H : Z(G/H)| = p*.

We remark that the preceding result was also proved in [8, Corollary 3] for

p>5.

Remark 2.1.3 Let G be a finite p-group with |y2(G)| = p*. Then by [37, Theo-
rem Af it follows that b(G) > 3. We will use this information throughout without

any further refercnce.

Using Theorem 2.1.2 we prove the following reduction theorem for finite p-
groups, p > 3, which reduces our study mainly to the groups of small orders,

mainly upto p°.

Theorem 2.1.4 Let L be a finite p-group of breadth 3 such that Z(L) < vo(L)
and 5(L) is elementary abelian of order p*. If the nilpotency class of L is 3 and
p >3, then one of the following holds:

(i) There exists a 2-generator subgroup G of L of order p® having the same

nilpotency class as that of L such that v (G) = v (L). Moreover, if |L| > pT, then
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L is an amalgamated semidirect product of G and a subgroup K with |3 (K)| < p.
Furthermore, if K is non-abelian, then it is soclinic to an cxtraspecial p-group.

(ii) There cxists a 2-gencrator subgroup G of L of order p° having the same
nilpotency class as that of L such that y2(G) < v2(L). Moreover, |L| > pT and
L is a central product of G and a subgroup K of nilpotency class 2, which is
isoclinic to an extraspecial p-group.

(ili) There exists a 3-generator subgroup G of L of order p™ having the same
nilpotency class as that of L such that vo(G) = ya(L). Moreover, if |L| > p%, then
L is an amalgamated semidirect product of G and a subgroup K with |(K)| < p.
Furthermore, if K is non-abelian, then it is isoclinic to an extraspecial p-group.

If the nilpotency class of L is 4 and p > 3, then only (i) holds.

Proof. Since b(L) = 3, it follows from Theorem 2.1.2 that either |L : Z(L)| = p*
or L admits a subgroup H of order p such that |L/H : Z(L/H)| = p?. First let
|L : Z(L)] = p*. Since the nilpotency class of L is at least 3 and Z(L) < v»(L),
it follows that | Z(L)| < p3. Also Z(L) can not be of order p, otherwise L will
be order p®, which is not possible. If Z(L) is of order p?, then clearly L is a
2-generator group of order pb. If Z(L) is of order p?, then it follows from Lemma
1.3.1 that L is a 3-generator group of order p”. Moreover, when L is a 3-generator
group of order p’, then it follows from Lemma 1.3.2 that the nilpotency class
of L is 3. Now cousider the secoud case, which we divide into two subcases,
depending on the nilpotency class of L.

First assume that the nilpotency class of L is 3. Then H = v3(L), H < 3(L)
or H £ ~3(L). We consider these possibilities one by one. If H = ~3(L), then
the nilpotency class of L/H is 2 and |L/H : Z(L/H)| = p*, and therefore, using
Lemma 1.3.1, it follows that except three generators a, b, ¢ (say) of L, all other
generators i, T, ..., Ty, k > 0, are such that [z;, L] < H. Since Z(L) < y(L),

we can, more precisely, say that [z;, L] = H for all 1 <4 < k. So it follows that
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v2(L)/H = v.(G)H/H is of order p*, where G := (a, b, ¢) is a subgroup of L. We
claim that H < 42(G). As obscrved above [z;, L] = H is of order p, it follows
that, for all 1 <7 < k, Cr(x;) is maximal in L, and therefore contains ~y,(L).

Thus any gencrator h of H, which lics in y3(L) = [y2(L), L], can be written as

b= [ws wywy®, a® by k] = [witwsrws®, a® b2 e®) € 43(@),

where wy H, woH, w3H generate vo(G)H/H. The nice presentation of & in the
preceding statement is possible because H < Z(L) and 7(L) < Cr(z;). Hence
our claim follows, which, in turn, implies that 72(G) = 42(L). Thus G is of
order p” and nilpotency class 3. Let K := (zy,...,x;) be a subgroup of L. Since
[, L] = H for 1 <i <k, we have 1 (I) < H, which shows that the nilpotency
class of K is at most 2. Since y,(L) < G, K acts on G by conjugation. Hence
L takes the desired form. If K is non-abelian, then, in view of Corollary 1.2.2,
K is isoclinic to an extraspecial p-group.

If H < 73(L), then the nilpotency class of L/H is3and |L/H : Z(L/H)| = p®.
Hence by the given hypothesis and Lemma 1.3.1, we conclude that L can be
generated by {a,b,x1,...,2;} such that [z;,L] = H. Now, using the same
arguments as in the preceding case, the assertion follows by assuming G := (a, b)
and K := (71,...,7s), where |G| = p°.

Finally, if H € ~3(L), then, obviously, H N v3(L) = 1. Thus the nilpo-
tency class of L/H is also 3. Again invoking the given hypothesis and Lemma
1.3.1, we can assume that L is generated by the set {a,b, z1,..., 2} such that
[¢;, L] = H. Let Gy = (a,b). Notice that 1o(G1)H/H = ~»(L)/H is of or-
der p*, |G1H/H| = p°, and G; and L agree on the nilpotency class. Since Gy
is 2-generator, 12(G1)/v3(G1) is cyclic (of order p). Thus G can not contain
H, which implies that |G;| = p°. If G, < Cr(z;), for all 1 < 5 < k, then

K := (z),...,2;) with 1o(K) = H is isoclinic to an extraspecial p-group, and
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therefore L is a central product of G; and K amalgamating some subgroup (pos-
sibly trivial). Hence G = Gy and K arc the desired subgroups. So assume that
Gy £ Cr(z;) for some i. Thus [7;, G1] = H, and the subgroup G := {(a,b, z;)
of L is of order p’. Hence, as argued above, onc can casily sce that G and
K :=(1,....%-1,%1,...,Tr) are the desired subgroups of L.

We now assume that the nilpotency class of L is 4. Theu either H = ~,(L)
or H # v4(L). If H % ~4(L), then the nilpotency class of L/H is 4, which is not
possible as (L/H)/Z(L/H), being of order p*, can have nilpotency class at most
2. So assumc that H = ~4(L). Then the nilpotency class of L/H is 3. Hence, by
the given hypothesis, we conclude that L can be generated by {a,b.21. ..., 2}
such that [z;, L] = H. Since |L/H : Z(L/H)| = p%, it follows that a”, " € ¥2(L).
Now, using the same arguments as above, the assertion follows by assuming
G = {a,b) and K := (z1,...,2;), where |G| = pb. This completes the proof of
the theorem. O

Now we prove reduction theorem for 2-groups. In 2007, B. Wilkens [40] gave

a classification of 2-group of breadth 3. The result is as follows:

Theorem 2.1.5 Let L be a finite 2-group of breadth 3. Then one of the following
holds:

(i) (L)) < 2%

(i) |L: Z(L)| <24,

(iii) [y2(L)| = 2* and there is R, R < Q4(Z(L)), |R| = 2, such that |L/R :
Z(L/R)| < 23.

(iv) |a(L)| = 2% and L is a central product G Cp(G), with Cp(G) is abelian
and G lies in one of the following five classes of groups:

(1) There are i,j € N with G = G/ (z% y¥), where 7,(G) = 1 =

Ua(12(@)) = By (13(G)), and G is free in the category of these groups.
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(2) There are i, j € N with G = G/ (&% 4%, where
é = <.’Ey | [x7y]y = [y CC], [y» QI]Z =1= [y Sx]z = [y7 2I7y] - [y» 3T, y] = [y,4$]> .

(3) There are i,j,k € N with G = é/ (2, y¥, %), G = (2,y,2) has

Y4(G) =1 =0,(13(Q)), and apart from that, is defined by the relations
[o, 9] =1 = [0,y [e, g, 9] = [1.y, 2] = [, 2] = [w.2.2] = [w,2,0] = [v.2.2] = [y,

(4) There are 4,7, k,1 € N with G > G/ <;L‘2",y27'.a2k7t2’>, G = (a,t,2,y)
of nilpotency class 3 with additional relations
[v.a =1 =[z,a,w] = [y, t,w] = [y.1]>. w € {a,t, 7,9}, [2.t] = [y, Y[y, a] =
L[ryl' =1 =[ryd = [z.y,1] = [r,yy]ry? = [zy.2]z.9? [tad €
([=.y1%)-
(5) There are i,j,k,l,m € N such that G = G/(:lf‘”":"zj,'u]z",'022’,'4'32’"’>,
and G = (a,v,v1,v9,v3) 18 of milpotency class 2 with q)(é) < Z(é) and 1s

otherwise defined by [va, 2] =1 = [v1. 0] = [vs, @[3, 0], [0, 0;] < ([vs. 2]).

Now we present reduction theorem for 2-groups, which reduces our study to
2-groups of nilpotency class 2 and 3, and to groups of order 27 if the nilpotency

class is 3.

Theorem 2.1.6 Let L be a finite 2-group such that Z(L) < (L), v2(L) is
clementary abelian of order 2* and b(L) = 3. Then

(1) The nilpotency class of L is either 2 or 3.

(i) If the milpotency class of L is 2, then |L| > 2.

(iii) If the nilpotency class of L is 3. then there exists a 3-generator subgroup
G of L of order 27 having the same nilpotency class as that of L such that

Y (G) = v(L). Moreover, if |L| > 2%, then L is an amalgamated semidirect
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product of G and a subgroup K with |y2(K)| = 2. If K is non-abelian, then it

is isoclinic to an extraspecial 2-group.

Proof. For the given group L, one of the assertions (ii) - (iv) of Theorem 2.1.5
holds true. We start by noting that |L| > 27. Also, if Theorem 2.1.5(iv) holds,
then L is isomorphic to a group in class (3) of Theorem 2.1.5(iv), which consists
of groups of nilpotency class 2. So we only need to take into consideration the
assertions (ii) - (iii) of Theorem 2.1.5. Let the nilpotency class of L be at least 4.
Then, by Lemma 1.3.2, Z(L) can not be maximal in 42(L). So in the case when
Theorem 2.1.5(ii) holds, we must get |y2(L)/ Z(L)| > 4. Since L is non-abclian,
it follows that |L| < 2% which is not possible as observed above. Now assume
that Theorem 2.1.5(iii) holds. Then there exists a central subgroup R of order
2 such that |L/R : Z(L/R)| < 8. Also the nilpotency class of L/R is at least 3.
This is possible only when |[v(L/R) : v2(L/R)NZ(L/R)| = 2, which, by Lemma
1.3.2, implies that the nilpotency class of L/R is 3. Thus (L/R)/Z(L/R) is
non-abelian, which is not possible as shown in the next paragraph. Hence the
nilpotency class of L is either 2 or 3. Let the nilpotency class of L be 2 and
|L| = 27. Then L is generated by at most three elements, which is not possible.
Hence |L| > 28 in this case.

Now we assune that the nilpotency class of L is 3. If Theorem 2.1.5(ii) holds,
then, by the given hypotheses, it follows that |v2(L)/ Z(L)| = 2. Henee L itsclf
is a 3-generator group of order 27. Next assume that Theorem 2.1.5(iii) holds.
Thus there exists a central subgroup R of order 2 such that |L/R : Z(L/R)| < 8.
In our case, it is easy to deduce that |L/R : Z(L/R)| = 8. Set L = L/R. We
claim that L/Z(L) is abelian. Contrarily assume that L/Z(L) is non-abelian.
Then the nilpotency class of L is 3 and L = <6; b. Z(E)) for some «,b € L, where
T denotes R for z € L. Since the exponent of L/ Z(L) can not be 2, it follows

that [@,b] = (a“b%)? modulo Z(L), where ¢; € Fy. Hence Cz([a,b]) is maximal
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in L. This implies that [[@,5], L] is of order 2, which contradicts the fact that
|%2(L)| = 8. The claim is now scttled. Thus the nilpotency class of I is 2. If the
exponent, of L/ Z(L) is 4, then L = <71, b, Z(i)> for some a,b € L. This implies
that |yo(L)| = 2, which again contradicts the fact that |yo(L)| = 8. Hence the
exponent of L/ Z(L) is 2, and therefore L = (a, b, Z(L)) for some a,b,c € L.
Let G := (a,b,¢). As proved in the reduction theorem for p odd case, 12(G) =
42(L), and therefore |G| = 27. Let |L| > 2. Then L = (a,b,¢,xy,...,y) for
some integer k£ > 1. Let K := (zy,...,73). Then [z;, K] = R. It now follows

that G and K are the desired subgroups, which completes the proof. O

2.2 2-Groups with |%(G)| =16 and exp(y2(G)) = 2

Recall that in Theorem 1.1.6, L. C. Kappe and R. F. Morse proved that K(G) =
v2(G) for all 2-groups of order at most 26. They also constructed example of
group G of order 27 having the nilpotency class 3 and commutator subgroup
generated by 3 clements such that K(G) # 742(G). The counter cxamples of
order 2® admit elementary abelian commutator subgroup of order 2'. The groups
of order p” will be investigated in the Chapter 4., in this scction we provide a
classification of finite 2-groups G (up to isoclinism) having v2(G) elementary

abclian of order 16 such that K(G) # 12(G). We start by the following definition:

Definition 2.2.1 We say that o finite p-group G is of conjugate type {1, p", p°}
if this set constitutes the set of conjugacy class sizes of all elements of G. where
r < s are positive tntegers.

Here is the main theorem of this section.

Theorem 2.2.1 Let G be a finite 2-group such that Z(G) < (G) and 1(G)
is elementary abelian of order 16. Then K(G) # v2(G) if and only if one of the

following holds :
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(1) G s isoclimic to the following special 2-group of order 2° presented as:

(Ul,wﬂ's,m,@a | [vl;v2] = [1'2,1'3] = [03»1)1] = [1)4, 1)2] = [v5:v1] =1, [v37v4]

= [vg, 5], [w,y, 2] = 1 for all w,y, 2 € {or,..., v}, 0] = 1 (1 <i <5)).

(2) G is of order 28 and nilpotency class 2 along with one of the following:

(2a) G admits a non-central element whose centralizer in G is a
maximal subgroup.
(2b) G is of conjugate type {1,4,8} and admits no generating sct

{1, 19, w5, 04} such that [v1,19] =1 = [x3,2].

Moreover, if K(G) # v2(G), then the commutator length of G is 2.

We deduce the following result using GAP |4]. A theoretical proof goes on

the lines of Lemma 3.4.1 in Chapter 3.

Lemma 2.2.2 Let G be a group of order 27 with b(G) = 3 such that Z(G) <

72(G) and y2(G) clementary abelian of order 2*. Then K(G) = v(G).

We again use GAD to establish the following two lemmas, whose theoretical
proofs can be written on the lines of corresponding results of Section 3.2 for odd

primes.

Lemma 2.2.3 Let G be a finite p-group of order 28 having the nilpotency class
2 such that v, (G) is clementary abelian of order 2*. If G is not of conjugate type
{1,23} or {1,22,2°}, then K(G) # 12(G). Moreover, the commutator length of

G 18 2.

Lemma 2.2.4 Let G be a group of order 28, nilpotency class 2 and conjugate

type {1,23} such that o(G) is elementary abelian of order 2*. Then K(G) =




20 §2.2. 2-Groups with |12(G)| = 16 and exp(12(G)) =2

Remark 2.2.2 In the preceding lemma we first use [3/, Theorem 1.3] and then

the proof goes on similar lines as proof of Lemma 3.2.3 in Chapter 3.

Lemma 2.2.5 Let G be a group of order 2%, nilpotency class 2 and conjugate
type {1,2%,23} such that v2(G) is elementary abelian of order 2'. Then K(G) =
Y(G) if and only if G admits a generating set {a,b, c,d} such that [a,b] =1 =
[e,d]. Moreover, if K(G) # v2(G), then the commutator length of G is 2.

Proof. Let G admit a gencrating sct {a,b,c,d} such that [a,b] = 1 = [c.d].
Then 72(G) = ([a, ], [b,¢], [a,d], [b,d]). Given £, X, 1,1 € Fy, a straightforward

computation shows that

[a, cf[b. ) Ma, d][b, d]" = [a®'b°2¢, o' bP2d) (2.2.2)

for f) = —¢, fa = -, a; = p, az =1. Thus K(G) = %(G).

For the converse part we provide a contrapositive proof. We assume that G
admits no gencrating sct {zy, zo, 23, 4} such that [z, x25] = 1 = [r3,14. By
the given hypothesis, we can always choose a generating set {a,b.c,d} for G
such that [a,c] = 1 and nonc of the other basic commutators of weight two in

generators is trivial. So we can assume that

fe.d] = [a, B b, b, d]*[a, )

where t; € Fy and 1 < i < 4, and therefore v,(G) = ([a, ], [b, c], [b, d]. [a, d]).

We can write the preceding cquation as

[b,a 1 c2d][d, a ] = 1. (2.2.3)
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We claim that 3 = 0. If 3 = 1, then replacing d by d’ := a " c™d and a
proper substitution reduces (2.2.3) to [d',b7ta %c] = 1. Now rcplacing b by
b = b~la "¢, we get a generating set {a,V',c,d'} for G such that 1 (G) =
([a, 0], [V, ], [V, d],[c,d]) and [a,c] =1 = [V, d], which contradicts our hypoth-

esis. Our claim is now settled.

So now onwards we assuwe that ¢3 = 0. Hence from (2.2.3) we get

b, a ™t (:tz] [d, (:<17t4] =1.

Now replace ¢ by ¢ := ca™ in the preceding equation and simple computation
gives

[b,a 2] = [b,a” ()] = [b. a2 ).

Thus (2.2.3) reduces to

[, a™2 712 [d, ] = 1. (2.2.4)

We claim that t4ts—t; # 0. Contrarily assume that t4¢5—¢; = 0. Then (2.2.4)
takes the form [b, ¢2][d, /] = 1, which gives [®2d, /] = 1. Now replacing d by
d' = b™2d, we get a generating sct {a,b, ¢, d'} of G such that [a,d] =1=[d', ],
which gives that the size of the conjugacy class of ¢’ in G is 2. a contradiction

to the given hypothesis. This settles our claim.

So we now assume #t, —t; = 1. Then replacing a by o’ := ac’*?

, We get a new
generating sct {a’, b. ¢, d} such that y2(G) = ([d’, ], [b, ], [b,d], [, d]), [«/, ] =
1 and, by (2.2.4), [o/,b] = [¢/.d]. Now we claim that [a’, b][b, ¢][d’,d] ¢ K(G).

Contrarily assumec that [a/, b][b, ¢][¢’, d] € K(G). Thus

[@,b][b, ]|d, d] = a2 d%, a/P1b%2 P P,
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for some «;, 3; € Fy, 1 <4, 5 < 4. Expanding the right hand side and comparing

powecrs both side, we get

B+ B = 1, (2.2.5)
By + by = 0, (2.2.6)
Qafly 3By = 1, (2.2.7)
a1+ aod) + asfy + agbs = 1. (2.2.8)

First assume that o, = 0. Then from (2.2.7) we get oy = f$, = 1, and
hence from (2.2.6) we get oy = 0, which using (2.2.5) gives a; = 8, = 1. But
these values contradict (2.2.8). So assume that o, = 1. If 3, = 0, then (2.2.6)
gives 3y = 0 and (2.2.7) gives 3 = 1. Substituting 34 = 0 in (2.2.5) we get
oy = 1 = 1, which contradict (2.2.8). Hence 3, # 0.

Finally assume that «y = 3, = 1. Therefore above equations reduces to

o+t = 1, (2.2.9)

Bi+ay = 0, (2.2.10)

Bs+a; = 1, (2.2.11)

o+ Bt agB+ oy = 1. (2.2.12)

As, by (2.2.10), ag = 4, from (2.2.9) we get ay = 1 = a; + 3. Now
putting oy = 84 = 1 in (2.2.12) and using (2.2.11), we get ay + 1 = 0, which
is not possible. Hence [/, b][b, ¢][a/, d] ¢ K(G). The final asscrtion follows from

Theorem 1.1.3 and Lemma 1.3.6. This cowpletes the proof. O

Lemma 2.2.6 Let G be a finite 2-group of nilpotency class 2 and order at least
29 such that Z(G) = v.(G), Theorem 2.1.5(ii1) holds and v,(G) is elementary
abelian of order 2*. Then K(G) = 1(G).
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Proof. If b(G) = 4, then we are done. So assume that H(G) = 3. By the
given hypothesis there esixts a normal subgroup H of G of order 2 such that
|G/H : Z(G/H)| = 2°. Thus, using the fact that the exponent of G/ Z(G) is 2

(which follows from the given hypothesis), we can assume that

G = (a,b.c,31, .., 26),

where k > 2 and [2;,G] = H for 1 < i < k. Let S := (a,b, ¢) be the subgroup
of G generated by a,b,c. Notice that |S| = 25, therefore K(S) = ~.(S). If
S < Cg(z;) for all 1 < ¢ < k. then, since Z(G) = 12(G), G can written as a
central product of S and a k-generator group isoclinic to an extraspecial p-groups
generated by {zy,...,xr}. Now using Lemma 1.3.3, we have K(G) = 12(G).
So assume that [7;,.5] = H for some ¢ € {1,...,k}. By reordering the set
{z1,..., 2}, if nccessary, we can assume that ¢t = 1. For simplicity of notation,
we set d := z;. Since Cg(d) is a maximal subgroup of G, we can modify the
generators a, b, ¢ such that v(G) = ([a.b], [a,d], [b,d], [c,d]), [a,d] = [b,d] = 1
and H = ([¢,d]). We can also assue, by suitable modification of a;, that

[e,z;]=1forall 2 <i<k.

Let a; € Fy for 1 <4 < 4. If any clement of 15(G) involves [a, ], then the

following identity holds:

[a, c][a. b]* b, ¢]*2[c. d]*® = [cb®t, ab™*2d"3],

and hence that element is a commutator. Now, if [, ¢] is involved in any element

of (@), then for any ap, az € Fy we have

b, clla, b} e, ™ = [bd " a""d].
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So, it only remains to show that [a, b][c, d] is a commutator. If [a, 2] = [¢, d]
for some 2 <7 < k, then

[a,b][e, d] = [a, bx;].

Set A := (u2,...,1%). Now suppose that a € Cg(A), but b € Cg(A4). So there

must exist an x;, 2 < i < k, such that [b, z;] = [¢,d]. Then

[a,b][e, d] = [b, ax;].

Let a,b € Cg(A). It [d, ;] = [, d] for some 2 < i < k, then

[a,][e, d] = [ad, bu;].

So finally assuine that a,b,c¢.d € Cg(A). Notice that, in this case, k > 3 and
y9(A) = H, since [A,G] = H. Hence [z;,z;] = [c,d]” for some 2 < i,j < k, and
therefore we have

[a,b][e, d] = [bz;, az;].

This shows that each element of 72(G) is a commutator, and the proof is com-
plete. ]

Let L be a 2-group of breadth 3 which satisfies Theorem 2.1.5(iv) and v2(L)
be clementary abcelian of order 16. Then, by a carcful inspection, it follows from

Theorem 2.1.5 that L is isoclinic to the group T presented as

T = (01,090,030, 05 | [y, 02] = [05,01] = 1, [01,02) = [0, 04]", (2.2.13)
[va, V3] = [vs, 0], [, v1] = [1'3,1'4]t, [, va] = [1'3,1'5]7%% =1

wivl=1(1<i,7<5),[z,y,2 =1fralzyze {v,...,vs}),

for some positive integers k;'s and some 7, s,t € Fs.
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Lemma 2.2.7 Let G be a finite 2-group of breadth 3 such that Theorem 2.1.5(iv)
holds, Z(G) < v%(G) and %(G) is clementary abelian of order 2*. Then G is
isoclinic to the group T given by (2.2.13) for some r,s,t € Fy and k; = 1,
1 <1: <5, and K(G) # %(G) if and only if r = s = t = 0. Morcover, if
K(G) # 12(G). then the commutator length of G is 2.

Proof. Tt is not difficult to sce that G is isoclinic to the group T given by (2.2.13)
for k; =1, 1 < ¢ <5 and some r,s,t € Fy. We now prove the second assertion.
First assume that 7 = s = ¢ = 0. We claim that [vy, vi][vg, vs][vs, vo] ¢ K(G).

Otherwise, there exist «;, 8; € Fy such that

as

5 B 3
U™ Uyt vf 20 99,5 '03'3"] .

[va, on][va, vs][vs. va] = [vg V520,

Expauding the right side and comparing the powers of commutators, we get

e+ b = 0, (2.2.14)
a1z +asby = 1, (2.2.15)
by + sl = 1, (2.2.16)
s+ oz +ofls +osBy = 1 (2.2.17)

First assume that a; = 0. Then (2.2.15) gives a3 = 1 = 1, hence by (2.2.14)
we get ap = 0, which gives ay = 8 = 1. But these values contradict (2.2.17).
So now assume that a; = 1. If i = 0, then by (2.2.14) and (2.2.15) we get
B2 = 0 and B3 = 1, respectively. As 3 = 0, by (2.2.16) we get ag = S, = 1;
but these values contradict (2.2.17). Finally assume that oy = f; = 1. Then
by (2.2.14) and (2.2.16) we get ap = fo = 1, which again contradict (2.2.17).
Hence [v4, v1][v1, vs][v5, v2] & K(G).

Conversely, assume that at least one of r, s, ¢ is non-zero. We'll show that
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K(G) = 12(G). It is easy to see that except

[va, v1][va, 3] [v5, Vo], [Va; V][va, V1] [v4; V3] [V5, V2],

all elements of 15(G) lie in K(G). We'll first show that [v, v1][vs, vs][vs, v0] €

K(G). If r =1, then [v1, vs] = [vs,v4] = [04. v3], and therefore

[‘047 ’01][0.57 ‘Uz] [’047 U3] = [‘047 ’01][057 ‘Uz] [v1, Uz] = [‘UA'U:,’LW - U1 ‘Uz]-

So let = 0. If £ =1, then for any value of s we have

[?747'57’1;"1772?'3] = [7'477’1][7'177';5] ["57?'2][?'5;"3]["1:7';;] = ["47?'1][?'4;"3]["5:7/'2]-

Ift=0and s =1, then

[v4v5v27v1v2v3] = [114,1)1][1'4,113] [U5,1'2][v5;v3] [v2-,v3] = [v4,v1][v47v3] [v5,v2].

Now we take [vy, vs)[vg, v1][va. v3][vs, va]. First let r = 1. Then

[1141'5017051}11'2] = [@'4,@'5] [1'4,1'1][1'551'2] [01;1'2]-

Next let r=0. If t =1, then

[‘1/4’05’01; Us Ul‘U2’U3] = [’U4< ‘Us] [’04; ’U1] [‘047 ‘03] [057 Uz] [U;'n ’U3] [’017 ’03]

= [’U4A 1}5] [’[}47 ’U1] [U4, U3] [U5, UQ]A

If £t =0 and s = 1, then we finally get

[114@'11'2; 1‘501’03] = [U4> U5][U4> @'1] [1'4,’03] [1'1,1'3] [Uz; 1‘5] = [1'4,1'5][1'4 1‘1][04; 1‘3][057 Uz]<




§2.2. 2-Groups with |y (G)| = 16 and exp(12(G)) =2 27

Hence [v4, v5][v4, v1][01, V3] [05, 1] € K(G).
Notice that ¥ (G) = ([v1.v4], [va, vs]. [Us, va], [va, v5]). For any «; € {0, 1},

1 <17 <4, it is easy to see that

[, 24]° [0, 0522 [05, 04] ¥ [0, v5]™¢ = [V 05305 %4, vy][052, V5]

This proves that every element of 15(G) can be written as a product of at most
two elements from K(G), completing the proof. |
We can now write a proof of Theorem B.
Proof of Theorem B. Let G be a finite 2-groups such that v2(G) is elementary
abelian of order 16. Also let Z(G) < 72(G). As in the case of odd primes, we
have b(G) > 3 in this case too. If b(G) = 4, then K(G) = 1(G). So we assume
that b(G) = 3. Then it follows from Theorem 2.1.6 that the nilpotency class
of G is cither 2 or 3, and |G| > 27. If the nilpotency class of G is 2, then the
assertion follows from Lemmas 2.2.3 - 2.2.7. If the nilpotency class of G is 3,
then the assertion holds from Lemma 2.2.2. If K(G) # v2(G), then, that the
commutator length is 2, follows from Lemma 2.2.3, Lemma 2.2.5 and Lennna

2.2.7. which completes the proof. O







CHAPTER

p-Groups with |y5(G)| = p* and

exp(2(G)) =p, p =3

In this chapter we classify finite p-groups G (up to isoclinism) with the com-

mutator subgroup Y2(G) of order p' and exponent p such that K(G) # 1a(G).

3.1 Imtroduction

Recall that in Theorem 1.1.5, I. De las Heras, proved that if G is a finite p-
group and 2(G) can be gencrated by 3 clements, then K(G) = 42(G). However
K(G) # 12(G) when 72(G) is minimally generated by 4 elements. In the following
theorem we provide a classification of finite p-groups G (up to isoclinism) having

72(G) of order p' and exponent p such that K(G) # 12(G).

Theorem 3.1.1 Let G be a finite p-group with Z(G) < v(G) and (G) of
order p* and cxponent p > 3. Then K(G) # 7 (G) if and only if onc of the
following holds:

(1) G is of order p® and nilpotency class 4 with |Z(G)| = p*.

29
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(2) G is of order pT and nilpotency class 3 with | Z(G)| = p®.

(3) G is of order p* and nilpotency class 2 along with onc of the following:

(3a) G admits a non-central element whose centralizer in G is a mazimal subgroup.
(3b) G is of conjugate type {1,p* p*} and admits no generating set {z,, Ty, x5, T4}

such that [y, @2] = 1 = [w3, x4].

Moreover, if K(G) # 72(G), then the commutator length of G is 2.

3.2  Groups of nilpotency class 2

This scction is devoted to the investigation of the question under consideration

for the groups of nilpoteucy class 2.

Lemma 3.2.1 Let G be a finite p-group of order p® having the nilpotency class
2 such that v:(G) is elementary abelian of order p*. If G is not of conjugate type
{1,p%} or {1,p%,93}, then K(G) # 1(G). Moreover, the commutator length of

G s 2.

Proof. By the given hypothesis it follows that Z(G) = 72(G) and G is min-
imally generated by 4 elements. Since G is minimally generated by 4 ele-
ments, by Remark 2.1.3 we have b(G) = 3. Again by the given hypothe-
sis there exists an element d € G — 72(G) such that Cg(d) is maximal in
G. We can always cxtend {d} to a gencrating sct {a, b, ¢,d} for G such that
Y2(G) = ([a,b], [a, ], [b, c]. [e,d]). We claim that [a, b][c. d] is not in K(G). Con-

trarily assume that [a, b][c,d] € K(G). Thus

[a,b][c. d] = [a®1b°2c*7d%4 | aP1b%2 e 44,
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for some oy, f3; € Fp,, where 1 < i, j < 4. Expanding the right hand side and
comparing the powers of the gencrators of 1o(G), we get the following sct of

equations:

Gay —ofh = 1, (3.2.1)
O3 —azfy = 0, (3.2.2)
Gz01 —azBy = 0, (3.2.3)
Baos —oufls = L. (3.2.4)

First assume that 33 # 0. Then from (3.2.2) and (3.2.3), we get anp =
389337  and o = 3B B3 . Notice that these values of o and ay contradict
(3.2.1). Thus 85 = 0. That ay # 0 follows from (3.2.4) after inserting 33 = 0.
This then implies, along with (3.2.2) and (3.2.3), that 3, = 2 = 0, which
contradicts (3.2.1). Hence the above system of equations has no solution, which
scotles our claim.

Let H be any subgroup of 7,(G) of order p. Then it follows from Theorem
1.1.3 that % (G/H) = K(G/H). Hence by Lemma, 1.3.6, the commutator length
of G is 2, which completes the proof. O

The proof of the following lemma gocs on the lines of the proof of Lemma

2.2.5.

Lemma 3.2.2 Let G be o finite p-group of order p°®, nilpotency class 2 and
conjugate type {1,p?,p*} such that ¥2(G) is elementary abelian of order p*. Then
K(G) = %(G) if and only if G admit o generating set {a,b,c.d} such that
[a,b] =1 = [c,d]. Moreover, if K(G) # v2(G), then the commutator length of G

15 2.

Proof. Let G admit a generating set {a, b, ¢, d} such that [a,b] = 1 = [c.d]. Then

12(G) = ([a,d], [b, |, [a,d],[b.d]). For any given &, \, i, € F,,, a straightforward
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computation shows that
[a, c°[b. ] a, )" [b, d]" = [a™b*2¢, ™ b d] (3.2.5)

for f1 = —¢, 0o = =)\, a1 = i, aa = 0. Hence K(G) = 12(G).

For the converse part we provide a contrapositive proof. Let us assume that
G admits no gencerating sct {z, T2, T3, T4} such that [z, 20) = 1 = [x3,74]. By
the given hypothesis, we can always choose a generating set {a,b,¢,d} for G
such that [a,c] = 1 and nonc of the other basic commutators of weight two in
generators is trivial. If [¢,d] cannot be written as a product of powers of the
remaining basic commutators, then [a, b[e,d] cannot lic in K(G). So we can
assume that

(e, d] = [a.b]""[b,c]"[b, d]*[a,d]",
for some t; € F,, where 1 < i < 4, and therefore 7»(G) = ([a, b], [b, c], [b, d], [a, d]).

We can write the preceding equation as
bya " c?d?][d,a ] = 1. (3.2.6)

We claim that t3 = 0. If t3 # 0, then replacing d by d' := a~%c2d® and a
proper substitution reduces (3.2.6) to [d',b"'a"%% " ¢%'] = 1. Now replacing
bby b = bta e, we get a generating set {a,b,c,d'} for G such that
Y2(G) = ([a, V], [V, ¢, [V, d], [¢c,d]) and [a,¢] = 1 = [V, d'], which contradicts our

hypothesis. Our claim is now settled.

Hence t; = 0, which reduces (3.2.6) to [b,a™""¢][d, ca™™] = 1. Now replace

c by ¢ :=ca™*. A simplc computation gives

[b,a™c?] = [b,a*(da")"2] = [b, a'+27 1112,




§3.2. Groups of nilpotency class 2 33

Thus (3.2.6) reduces to

(b, @™ " d™)d, ] = 1. (3.2.7)

We claim that t4to — t; # 0. If t4¢o — t; = 0, then (3.2.7) takes the form
[b,®2][d, '] = 1, which gives [02d, /| = 1. Now replacing d by d' = b'2d, we
get a gencrating sct {a,b,c’.d'} of G such that [a,d] =1 = [d, ¢], which gives
that the size of the conjugacy class of ¢ in G is p, a contradiction to the given
hypothesis. This settles our claim.

Thus tyty — t; # 0. Now replacing a by o = a2 we get a new
gencrating st {a’,b. ¢, d} such that v(G) = ([a’, V], [b, ], [b,d], [, d]), [«/, ] =
1 and, by (3.2.7), [¢/,0]7" = [¢/, d]. We claim that [b, ¢]M¢/, d]* ¢ K(G) for some
A, i € F;. Contrarily assume that [b, ¢]*d, d]"* € K(G) for all \, i € F};. Thus

[b, CI]A[G,/, d]/:. — [(l,("b”zcmud”',(I,/'Q' bﬂzclﬂu dﬂ/,]7

where i, 85 € Fp, for 1 <4, j < 4. Expanding the right hand side and comparing

powers both side, we get following set of equations:

mpr—auf = p, (3.2.8)

LV2“34 - (1482 == 0, (329)

012,‘33 — 0352 = A\ (3210)

s —wfr —asfitaufly = 0. (3.2.11)

First assume that as = 0. Then from (3.2.10) a3fB; = —), therefore by

(3.29) oy = 0. Now by (3.2.8) @18y = p. Since ¢ and agz are non-zero,
by substituting the value of B, = —Aaz* and 3, = pa;' in (3.2.11), we get

Aozt piaaart = 0. Thus (aazt)? = — A1, which is a contradiction because
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we can choose A, 1 € F; such that —A~"p is non square. Now we assume that
az # 0. If ay = 0, then (3.2.9) implics that 84 = 0, which contradicts (3.2.8).
So finally assume that both v, and a4 are non zero. The augmented matrix of

above system of cquations, with 5;’s as variables, is given by

-y 0 0 o1

0 —Qy 0 Qo 0
M =
0 —w3 a9 0 A
—Q9 [e 5] Qg —Q3 0
Performing row opcrations
(i) R = —a; 'Ry, Ry = —o 'Ry,
(ii) Ry — Ry + aolRy, Ry — Ry + a3RRo,
(lll) R3; — a;le, Ry — Ry — aiRs,
(iv) Ry — R4 — cuRs,
we get
1 00 fuzlugl —pagt
010 —agay? 0
J{l =
00 1 —asag! Aayt
000 0 —posay = Aoy oy

If the above system of equations admits a solution, then prvpay’ 4+ Ay 'y =
0. This gives (asa;')? = —A\p~', which is a contradiction again, because we
can choose X, i € Fy, such that —Ap~" is non square. Thus K(G) # 72(G). The
final asscrtion holds by taking G/H. where H is any subgroup of y2(G) of order
p generated by a commutator, and then using Theorem 1.1.3 and Lemma 1.3.6.

The proof of the lemma is now complete. O

Lemma 3.2.3 Let G be a finite p-group of order p®, nilpotency class 2 and

conjugate type {1,p3} such that vo(G) is elementary abelian of order p*. Then
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K(G) = 1(G).

Proof. Using [34, Lemma 3.14], we can assume that the exponent of G is p.

Now, it follows from [34, Theorem 1.2] that G has the following presentation:

G={(abecd|la?=P=c=d =1,[c,d =[a.b]",[a,d] =[b.d] ", [[z,y],z] = 1)

where z,y, 2 € {a,b,¢,d} and r is any non-quadratic residue mod p. We'll show

that for given A, jt, v, &€ € IF,,, there exist ¢y, 6; € F, such that

[a, DML, JP b, d) [a, d)S = [a®rb%2c%? ) aPiP2edPs).

Solving both sides of the preceding equation and comparing the powers, we

get

by —agd —ogfy = A (3.2.12)
afy —azfs = p, (3.2.13)

B — r(an By — azBr) = v (3.2.14)
afs = € (3.2.15)

It is sufficient to show that this system of cquations, ;s as variables, admits a

solution. The augmented matrix for this system of equations is as follows:

—Q [e 5] 0 —Q A
M- 0 —a3 oy 0 nu
rasg 0 —ra o v

Performing row operations

(i) R3 — agRj,
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(ll) R;; — R;; =+ ’I"()/;;Rl,

(lll) R3 — R3 + ‘I‘(V]RQ,

the above matrix transforms to

—Q (03] 0 —Q3 A
—a3z a 0
M, — 3 Q2 M
0 0 0 ug — '/"a§ vag + r\ag + rpoyg
0 0 0 o3 £

It is casy to scc that the above system of cquations admits a solution only if

€(a? —rad) — ai(vas + rhag 4+ ruay) =0,

or cquivalenty

'r';wz% + (vag + rias)a; — f(ug - 'r'ag) =0

Viewing the preceding equation as a quadratic equation in «y, notice that it
has a solution in F,, if its discriminant is zcro or a quadratic residue mod p. The

discriminant, after an easy computation, takes the form

(V* + 4rud)as + 2rdvasas + 17 (AN — 4uf)as. (3.2.16)

Notice that (3.2.16) is of the form fa2 + gasaz + ka3, where f,g.h € F,. For
any fixed az € ), F(x) = fa? + gasa + ha? is a quadratic polynomial with
coeflicients in [F,,. It is well known that there exist a, € F, such that F(ao)
is either zero or a quadratic residue mod p. We can now easily compute aq

such that the system of equations (3.2.12) - (3.2.15) admits a solution. This

completes the proof. O
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The proof of the following lemma goes on the lines of the proof of Lemma

2.2.6.

Lemma 3.2.4 Let G be a finite p-group of order at least p°, p > 3 with nilpo-
tency class 2 such that v»(G) is elementary abelian of order p* and Z(G) =
72(G). Then K(G) = 12(G).

Proof. If b(G) = 4, then we are done. So assume that b(G) = 3. Theorem 2.1.2
now guarantces the existence of a normal subgroup H of G of order p such that
|G/H : Z(G/H)| = p®. By the given hypothesis it follows that the exponent of

G/Z(G) is p, thus we can assume that

G=labczy,....7),

where k > 2 and [2;. G] = H for 1 <i < k. Let S := (a,b. ¢) be the subgroup of
G generated by a,b, c. Notice that |S| = p® and |12(S)| = p?, and therefore by
Lemma 1.1.3 it follows that K(5) = 1 (5). If § < Cg(x;) for all 1 <i <k, then,
since Z(G) = 72(G), G can written as a central product of S and a k-generator
group isoclinic to an extraspecial p-groups generated by {z;. ..., zx}. Now using
Lemma 1.3.3, we have K(G) = 72(G). So assume that § &£ Cg(r;) for some
t € {1,....k}, which implics [z, S] = H. By rcordcring the sct {xy,.... 2}, if
necessary, we can assume that ¢ = 1. For simplicity of notation, we set d := ;.
Since Cg(d) is a maximal subgroup of G, we can modify the gencrators a, b, ¢
such that v (G) = ([a,b], [a.d], [b, c], [e,d]), [a.d] = [b,d] = 1 and H = ([, d]). By

suitable modification of z; we can also assume that [e,z;] =1 for all 2 < ¢ < k.

Let a; € Fy for 1 <4 < 4. If ag # 0, then the following identity holds:

Ja, B8 b1, ] ] = b am b s
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Thus any element of 7,(G) involving [a.c] is a commutator. If ay = 0 and

ay # 0, then for any a;, ay € F, we have
[a, b1 [b, ]2 [c, d]* = [bd 402" gm0,

So, it only remains to show that elements of the form [a, b]* ¢, d]** are com-
mutators, where both o and ay are non-zero in F,,. If [a,2;] = [c,d]? for some

2<i<kandBe€ IF;, then

[a, 8% ¢, d]° = [a, b, ” 04,

Set A := (u2,...,a%). Now suppose that a € Cg(A), but b € Cg(A4). So there

must exist an z;, 2 <7 < k, such that [b, ;] = [c,d]?, for somc 3 € F}. Then

[a,b]“"' [C, d]m. _ [b (lf"'l‘lﬂilm'].

Next assume that a,b € Cg(A). If [d,2;] = [c,d]® for some 2 < i < k and
B e F,, then

[(l,, b]m [C, d]a. _ [(ld bml‘,‘BilM]‘

So finally assumec that a,b,c.d € Ci(A). Notice that, in this case, ¥ > 3 and
12(A) = H, since [A,G] = H. Hence [w;,z;] = [¢,d]? for some 2 <4, j <k and

B e F7, and therefore we have

[(I,, b]tn [C, d]«n — [b.’l?,‘, a—tn‘r‘iw,,ﬁ*l

]

This shows that K(G) = 72(G), and the proof is complete. ]
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3.3 Groups of nilpotency class 4

We start with the groups of order pS. Up to isoclinism, there are only 3 groups
of order p® whose commutator subgroup is elementary abelian of order p*, p > 3

(sce [22]).

Lemma 3.3.1 Let G be a group of order p°, p > 3 with y2(G) elementary
abelian of order p*. Then K(G) = % (G) if and only if | Z(G)| = p. Morcover, if
K(G) # 12(G). then the commutator length of G is 2.

Proof. Tt follows from [22] that up to isoclinism there are only three groups G
of order p%, p > 3, such that ¥,(G) is elementary abelian of order p!. These fall
under isoclinism familics @o3, @40 and @gy. All these groups arc of nilpotency
class 4. For any group G belonging to ¢, we have | Z(G)| = p?* and it can be
casily checked using GAP [4] or Magma [1] that p > 5. Let G be a representative

from ¢e3, which is presented as

G = (v, 00,0500,y | [0, 0] = i, [on, 0] = 7,

o =y, 0P = =" =1(i=1,23)).

7

Notice that G is minimally generated by « and . the exponent of 15(G) is

=

p and [y, [ o4]] = v € Z(G). Hence it follows from [23, Proposition 5.3]
that K(G) # 1(G). More precisely, «yy € K(G). However, considering G/H,
where H = (), and using Theorem 1.1.5 and Lemma 1.3.6, it follows that the
commutator length of G is 2.

For all groups G from the isoclinisin families ¢go and ¢u1, |Z(G)| = p. If
p = 3, then an easy GAP [4] computation shows that K(G) = 7,(G) for such

groups G. So we can assume that p > 5. Let G be a representative from ¢yq,
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which is presented as

G = <a17a27l37/317ﬁ2»7 | [a17a2] = B» [,3?01,-] = ﬁ'l?-, [ﬁhaﬁ] = [ﬁ%al] =7

W =aP =P =Bl =" =1(i=1,2).

Notice that 72(G) = (8, 1, B2,7) aud 1 (G) = (). Let i, 5.k € F,. If j # 0,
then

i1 1—: _
P =0 B By

and modulo v4(G) we have
;3i51j/3§ = [012,{].4411,3%:0422.37'7}

If j =0, then

and modulo v4(G) we have
B0 = laat ™ oy 5 7M.

Thus, for ¢, j,k € F,, it follows that

where &; = a;174(G), @y = azy(G) and 3 = By4(G). Also

74(G) € (m[azkrlalfjlst]) N (m o2~ G)).

J#0

Heuce K(G) = 72(G) by Lemma 1.3.7.
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The group G, as presented below, is a representative from the isoclinism

family ¢4, for p > 5.

G = (a1, 09,8,81. 8.7 | [ar.ao) = B, [B, a4 = 3i. [, B1] =,

[az, 3] =77 =af =P =P =" =1(i =1,2)),

where v denotes the smallest positive integer which is a non-quadratic residuc
(mmod p). As in the preceding case, it is easy to check that v, (G)/74(G) can be
written as the union of the sets [Z, G/v4(G)], where Z runs over the clements of

1—i

the set S := {a’;j*la],? ERTAC [ 4,7 (#0).k € Fp} and 74(G) is contained

in the intersection of the sets [z, G], where Z € S. Hence K(G) = 72(G) by

invoking Lemma 1.3.7 again, which completes the proof. O

Now we take up groups of order p’.

Lemma 3.3.2 Let L be a group of order p” and nilpotency class 4 with b(L) = 3,
Z(L) < v (L) and v:(L) elementary abelian of order p*. Then K(L) = y5(L).

Proof. Tt follows from Lemma 1.3.2 that Z(G) can not be maximal in 7o(G),
thus |Z(L)| < p*. By Theorem 2.1.4, L admits a subgroup G of order p° and
nilpotency class 4 such that 7 (G) = %w(L). If |Z(G)| = p, then by Lemma
3.3.1 we have K(G) = 15(G) = 12(L), and hence K(L) = 42(L). So assuwne that
|Z(G)| = p*. By Theorem 2.1.2, there exists a normal subgroup H of L such
that |[L/H : Z(L/H)| = p*. We can take L = (a,b,¢) such that G = (a,b).
As observed in the proof of Theorem 2.1.4 (last paragraph), it follows that
H = y(L). Thus L := L/H = (a,B, E> is of nilpotency class 3 such that
¢ € Z(L), where # = xH for any z € L. Since ¢ ¢ Z(L), we have [¢, L] = H.
Notice that v2(L) = ([a,b], [a. [a,b]], [b,[a,b]]). Let o, 02,03 € F,. If az # 0.
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then we can write
[a, 01" [b, @, B]" @ [a, ™ = [a b=+ "[a,B] =", [a, b]"].

If a3 = 0, then we can write

@, 5 b fa. 01 = b fa.5 5 a1
Hence. for 4, j € Fp and € = 0,1 such that ¢ and € arc not simultancously zcro,

we have

(L) = | J [a" b'a,b). L.

6
Notice that G lics in the isoclinism family @o3 of [22]. Therefore we can take
H = {([b,75(G)]). Since Cg(e) is maximal, by suitably modifying ¢, we can
assumc that [b.c] = 1 and H = ([a,c]). Then, for all 4,5 € F, and € = 0,1,
it follows that H C [uh[a,b]?, L], where i and e are not simultaneously zero.

Henee K(L) = 2(L) by Lemma 1.3.7. O

3.4 Groups of nilpotency class 3

A group G is said to be a freest p-group of nilpotency class 2 on n generators if G
is minimally generated by n elements, the nilpotency class of G is 2, |12(G)| =
P02 and |G| = p**tY/2. Throughout the remaining of this chapter € €

{0,1}.

Lemma 3.4.1 Let G be a group of order p” and nilpotency class 3 with b(G) =
3, |Z(@)| < p? and 1(G) elementary abelian of order p*. Then K(G) = 72(G).

Proof. Notice that G is a stem group in its isoclinism family. In view of Lemma,

1.3.1, it follows that G is minimally generated by 3 elements a, b, ¢ (say). For
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notational convenience, set C = Cg(72(G)). To enhance the readability of the

proof, we divide it in sceveral steps.

Step 1. If | Z(G)| = p, then C = %(G).

Proof. Since |Z(G)| = p, we have |y3(G)| = p, and therefore no non trivial
element from the subgroup ([a, b], [a, ¢, [b, ]) can lie in 45(G). If | C| = p°, then,
without loss of gencrality, we can assume that b, ¢ € C. By Hall-Witt identity
we have

[[a» b]» C][[C, (l], b][[b C]: a’] =1,

which implies that [b, ¢] € Z(G). As observed above, this is not possible.

If |C| = p°, then, without loss of gencrality, we can assumec that ¢ € C. If
both [a, [a,b]] and [b, [a,]] are trivial, then [u,0] € Z(G), which is not possible.
By symmetry, we can assume that y3(G) = ([a, [a,b]]). Notice, by Hall-Witt
identity, that [a. [b,c]] = [b,[a,¢]]. First we assume that [, [, ]] is trivial. If
[b,[b.c]] or [a, [a, c]] is trivial, then [b, c] or [a, ¢], respectively, lics in Z(G), which
is again not possible. So assuwe that both [0, [b, || and [a, [a, ¢|] are non trivial.
Then [b, [a,b]] = [b, [b,c]]" for some ¢ € F,,. Also [a, [a,b]] = [a, [a,c]]* for some
s € Fx. Hence both [b, [a. U][b. ¢] "] and [a, [a, b][a, ] ~*] are trivial, which implies
that [a, b][a, ] 7*b,c]™" € Z(G), not possible.

Finally assumc that [a, [b, ¢]] is non trivial. Then [b, [a, c]] is also non trivial.
If [b, [, ¢]] is non trivial, theu [u. [b, c]] = [, [b, ¢]]* for some s € [F;, and therefore
[ab=*,[b,c]] = 1. By replacing a by ab™, we get a modified generating set
{a.b. ¢} for G such that ¢ € C and [a. [b,¢]] = 1. Similarly, if [, [¢,¢]] is non
trivial, then we can modify the generating set for G such that [b,[a,c]] = 1.
So, in both cases, we land up in first case, which we have already handled. So
let [b,[b,c]] = [a,]a,c]] = 1. Then [a,][a,b]][a, [b, ]| = 1, which implies that

[a,[a,b][b,c]~°] = 1 for some s € F;. Similarly [b,[a,b][a,c]™] = 1 for some
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t € F,. This implies that [a, b][b, (] ~*[a, ] € Z(G), which is not possible. Thus
C can not have order p°. Hence C = 7,(G).

Step 2. If | Z(G)| = p, then K(G) = 1:(G).

Proof. By Step 1 we have C = 74,(G). Notice that G := G/v3(G) is the 3-
generated freest group of nilpotency class 2 and order p°. Let a; € Fp, 1 <4 < 3.

For a; # 0, we have
[a@,8]"'[b, " [a, g™ = [ac— ", b e,
where T = 273(G) for x € G. Also, for a; =0, we have
[b,E* @, > = [¢,a b ).

Hence for i € F,, we get

72(G) = U [ae’, G].

Since G is the freest group, by symmetry we can interchange a, b, ¢ in the pre-
ceding cquation.

To complete the proof of this step, it is sufficient to show that

(@) () 19, &)
for some x # y in {a,b,c}, where i € F, such that e and ¢ are not simultane-
ously zero. First assume that [a,[a,D]] # 1, and therefore generates v3(G). If
[c, [a,b]] # 1, then [c, [a,b]] = [a, [a, b]]" for some ¢ € F}. Therefore, by modifying

! we get a new generating set {a,b, ¢} for G such that [c,[a,0]] = 1

¢ by ca™
and [a, [a,b]] # 1. So we can always assume that [c, [a,b]] = 1. Since ¢ ¢ C,

either [c, [b,¢c]] or [c, [a,c]] is non trivial. Hence for € = 0,1 and i € F,, not
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simultaneously zero, it is easy to see that 75(G) € [a°c". G].

Now let us assumne that [a,[q,0]] = 1. Then, Zotice that, at least one of
[a,[b,c]] and [a, [, c]] is not trivial. If [b,[a,b]] = 1, then [c. [a,b]] # 1. Hence
for e = 0,1 and i € F, not simultaneously zero, we get 13(G) € [cca®, G]. If
[b,[a,0]] # 1, then 13(G) €N [b°a’, G], where both € and 7 are not siefnultaneously
7€10. "

Step 3. If | Z(G)| = p* and |y3(G)| = p, then |C| = p°.

Proof. 1f | C | = p%, then, without loss of gencrality, we can assume that b, ¢ € C,
and therefore by Hall-Witt identity it follows that [b, ¢| € Z(G). Hence no non-
trivial clement of the form [a. b]"[a, ¢|* can lic in Z(G), where 7, s € F,,. If cither
[a, [a, D] or [a, [a, c]] is trivial, then, 73(G) being of order p, it follows that either
[a.b] or [a, ], respectively, lic in Z(@), which is not possible. If both [a, [a,b]]
and [, [a, ] are non trivial, then [q, [a,b]] = [a, [a, c]]" for some t € F;. Hence
[a,D][a, ] € Z(G), which is again not possible. Hence | C| # pf.

If | C| = p?, then C = 4,(G). By a suitable modification in the generating set
for G, we can assume that [b.c¢] € Z(G). Indeed, if onc of [a,b], [a,d] and [b, ]
is in Z(G), then, after suitably renaming the generators, we can assume that
[b,c] € Z(G@). If not, then, after renaming the generators, if necessary, we can
assume that [0, ¢] = [a,0]"[a, ¢]* modulo Z(G) for some r, s € F,. This implies
that, modulo Z(G), [ba™*,ca”] = 1. Thus the new generating st {a,ba™*, ca”}
has the required property. Ouce [b,¢] € Z(G), notice that both [a, [a. D] and
[a, [a, ]] can not be trivial; otherwise @ will lie in C, which can not happen. By
symetry, we can assumue that [a.[a,b]] is non trivial and therefore generates
v3(G). By Hall-Witt identity we have [c,[a,b]] = [b,[a,c]]. We first assume
that [c, [6.D]] is trivial. Then none of the two elements [c, [a,¢]] and [b, [a, D]
can be trivial. Indeed, if [z,[a,z]] = 1, then z € C for = b,¢, which is

not the case. Then [q,[a,c]] = [c,[a,c]]” for some r € F,, which implies that
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T

[ac™"[a,c]] = 1. Replacing a by ac™", we get a generating set {a' = ac™" b, c}
such that % (G) = ([@/, ], [/, ], [b, ¢]. [@, [@', b]]). A straightforward computation
shows that [b,c] € Z(G) and [b, [a’. c]] = [¢, [a’.b]] =1 = [, [d/, c]]; but [, [ c]]
and [b, [a/, b]] arc non trivial. Now [a/, [a',0]] = [b, [@',0]]* for some ¢ € F}, which
implies that a’b~" lies in C, which is not possible.

Now we claim that when at least one the two elements [b, [¢, b]] and [c, [¢, ¢]] is
non trivial, then we can modify the generating set for G such that [c, [a, b]] = 1,
but [b, [a,0]] and [c, [a, ¢]] are both non trivial, and hence we fall in the preceding
case. If [b,[a,d]] is non trivial, then [c, [a,b]] = [b,[a,b]]" for some ¢ € F,. Re-
placing ¢ by b7%¢, we get the required generating set. If [c, [a, ¢]] is non trivial,
then [b, [a,d]] = [¢, [, c]]" for some r € F,. Now replacing b by ¢~"b, we again
get the required generating set.

Finally assumec that [b,[a,c]] = [e, [a,b]] is non trivial, and [b, [a,d]] and
[, [a, ]] are both trivial. Then [a, o, ¢]] = [b, [a, ¢]]” for some r € F,, which gives
[ab~",[a,c]] = 1. Replacing a by ab™", we get a gencrating sct {a@’ = ab™", b, ¢}
for G such that v (G) = ([o’. 0], [d',d]. [b, ], [d, [, D]), with [D,¢] € Z(G) and
[a', [, c]] = 1. Notice that [, [@’,b]] = [a, [a.b]] and [, [@/, b]] = [c, [a, b]], both of
which are non trivial. Hence [, [@, b]] = [c. [¢/, b]]* for some t € T}, which gives
[@'c™ [d.b]] = 1. Since [¢,[¢/, c]] = [, [a. c]] = 1, it follows that [a'c7, [@/, c]] = 1.
Hence o’'c™t € C, which is not possible. We have handled all the cases, and the

proof of this step is complete.

Step 4. If | Z(G)| = p* and |y3(G)| = p, then K(G) = 12(G).

Proof. By Step 3, we know that |C| = p°. Without loss of generality we can
assume that ¢ € C. We consider three different cases, namely [b,c] € Z(G),

[a,c] € Z(G) and otherwise. Since G := G/v3(G) is the freest group, then, as
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explained in Step 2, for proving K(G) = 42(G), it is sufficient to show that
%(@) € =Y, Gl

for some z # y in {a, b, c}, where € = 0,1 and ¢ € F, such that € and ¢ arc not
simultaneously zero.

Case (1). Let [b,c] € Z(G). Notice that all [a.[b, c]], [¢,[a,b] and [b, [a, c]]
arc trivial. Then none of the two clements [a, [a, ¢]] and [b, [a, b]] can be trivial.
Thus for any 7.7 € F,, we have [a, [a, c]]' = [ab’,[a, c]"] and [b, [a, b]]" = [, [a, b]'].

which implics that
(@) = [ lat', (@) € () [ab'. G,

where € and 7 are not simultaneously zero. Hence K(G) = 7,(G) by Lemma
1.3.7.

Case (ii). Next assume that [a, ¢] € Z(G). This is symmetric to Case (i), so
the proof is omitted.

Case (u1). Let neither [b, c] nor [a, c] lie in Z(G). We can assume that none
of the two elements [b, ¢] and [a,¢| can be a power of the other. For, if [b,¢] =
[a, c]’, for some ¢ € F;, then we can take a generating set {a,ba™",c} such that
[ba™t, ¢] € Z(G), and we fall in Case (i). We now modify the generating set for G
to {a, ¥, ¢} such that [a’, V'] € Z(G) and ¢ € C. If [a,b] € Z(G), then obviously
we take {a’ = a,b' = b,c}. It not, then, modulo Z(G), [a,b] = [a,d]"[b, ] for
some 7, s € F,. This implies that, modulo Z(G), [ac’, be™"] = 1. Thus if we take
{a’ =ac®, b =bc™", ¢} as a gencrating sct for G, then [df, V] € Z(G) and c still
lies in C.

First assume that [@/,[d¢/,c]] = [0/, [V,c]] = 1. Since «’,b' ¢ C, we have

[d.[V.d] = [V,[d.c]] £ 1. For any t,i € F, we have [, [V, ]| = [a'V", [V, c]']
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and [V, [a/,c]]" = [V, [a’,c]"]. Thus for € = 0,1 and 7 € F,, not simultaneously
7CT0, we get

7(G) =[] [0, 22(G)] < (] [aV'. G,

Now assume that [V, [',¢]] or [@/,[a’,c]] is non trivial. We only present
the proof when [0, [V, ¢]] # 1. The other case goes on similar lines.  With-
out loss of generality, we can assume [d’.[V.c]] = [V',[d/,c]] = 1. Indeed, if
[/, [d', c]] = L. then nothing to be done. Otherwise (o, [V, ¢]] = [0/, [V, ¢]]®, which
gives [a'b'° [V, ¢]] = 1. Replacing a’ by a'b'"*, we get the required generat-
ing sct {a = V"V, ¢} for which [V, [a,c]] = [a,[V,c]] = 1, [a, V] € Z(G),
¢ € C and [a,[a,d] # 1. For any t,i € F, we have [d, [a, ]| = [aV’, [a, ]'] and
W, [V, ]t =[V,[¥,c]"]. Thus for e = 0,1 and ¢ € F,. not simultancously zcro, we
get.

%(G) = ¥, %(G)] <) b G

Hencee K(G) = 72(G), which completes the proof of Step 4.

It only remains to handle the situation when |Z(G)| = |y(G)| = p*. We
claim that b(G) = 4 in this casc. Contrarily assume that d(G) = 3. Then
by Theorem 2.1.2 there exists a normal subgroup H of G such that |G/H :
Z(G/H)| = p*. Since Z(G) = 13(G) is of order p?, the nilpotency class of G/H
is 3. So we can assume that ¢H € Z(G/H). Notice that |y2(G/H)/v3(G/H)|
must be p?, which is not possible as G/H admits only two non-central generators.
Hence the claim follows, and the proof of the lemna is complete O

‘We now prove

Lemma 3.4.2 Let G be a group of order p” and nilpotency class 3 with b(G) =
3, |Z(G)| = p* and v2(G) elementary abelian of order p*, where p is an odd

prime. Then K(G) # 1(G). Moreover, the commutator length of G is 2.

Proof. We start by noticing that [y3(G)| < p*. Let G = (a,b,c). Then v (G) =
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([a, 0], [b. c], [a, c], v3(G)). Without loss of generality we can assume that Z(G) =
([b. ], [a. c], 73(G)). Indced, modulo Z(G), we can assume that ¢ commutes with
a and b. This, by Hall-Witt identity, implies that ¢ € Cg(72(G)). Now we

consider two cases, namely, |v3(G)| is p or p?.

First assume |y3(G)| = p. By suitably modifying the gencrating sct {a, b, ¢},
if necessary, we can assume that [a, [a,0]] # 1 and [b, [¢,0]] = 1. Hence v3(G) =
([, [a,b]]). Now we claim that [b, c|[a, [a,]] is not a commutator. Contrarily

assume that

b, dla, [a, V] = [a® 1% ™ [a, D)™, a® 0P2c% [a. D]%4).

for some «;.3; € Fp, where 1 < i, j < 4 . After solving and comparing the

powcrs, we get

Boag — g3y = 0, (3.4.1)
Bsap —azdy = 1, (3.4.2)
Bson —agB = 0, (3.4.3)
@ (él) — b (C?) + o —agh = L (3.4.4)

If ap = 0, then from (3.4.2), we get ag, B2 arc non zero. So (3.4.1) gives a; = 0,
which in turn, using (3.4.3) gives 8; = 0. But these values contradict (3.4.4).
Now let ag # 0. Then from (3.4.1), 8 = Beajap~t. Substituting 3, in (3.4.4),
we get

o1 (B4 03 ' Ba((arde — anfa) /2 — ag)) = 1:

hence ap # 0. Substituting By in (3.4.3), we get ap(8; — azfBean™t) = 0. Hence

B3 = azPacry™ ", which contradicts (3.4.2). Our claim is now settled.

Now we assume |y3(G)| = p?. Thus 73(G) = ([a, [a, b]], [b, [a, b]]). Notice that
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if neither [a,c] nor [b. ] lies in 45(G), then one of them will be a power of the
other modulo v3(G). Then we can modify the gencrating set {a, b, ¢} such that
[a, c] € v5(G), without disturbing other setup. Let [a. c] = [a, [a, b]]" [, [a, b]]"* for
some ¢,y € Fp. Then [a, cla, b)) = [b, [a, b]]*2. By replacing ¢ with c[a, b7,
we get a modified generating set for G, which we still call {a,b, c}, such that
la,c] = [b,[a,b]]"* and ¢ € Ca(12(G)). it =0, then [a, c] = 1, otherwisc we can

-1
replace ¢ by ¢2 | and assune that o = 1; hence [a, ¢] = [b, [a, D]].

Let us assume that for given \, v € F, there exist a;, 6; € F, such that
b, c]*a, [a, b)) = [a" 0" [a, ], a” 07 [0, 0]].
After solving and comparing the powers on both sides, we get

UQO{l - O{Q,Ul =0 (345)

By —azfo= A (3.4.6)

Biacrz = nasfy — (3;) + (“22> + (Bsmn — asfh)
+B0n —ayfa= 0 (347)
az(/;) —- 5 ((;1> + B —ab = v, (348

Using (3.4.5) in (3.4.7) and (3.4.8), we, respectively, get

(BiBacg — a1aaf)/2 + (Bscq — azfBh) + Baca —aufy = 0 (3.4.9)

(P1Baoy — arvef31) /2 + Bron — vy = v. (3.4.10)

We proceed in two different cases, namely, [a,c] = 1 and [a, ] = [b, [a, D]].

Case(1). Let [a, ] = 1. Then (3.4.9) reduces to

(,6)1,820’2 - 0’1012“32)/2 + ,840’2 - 014“32 =0. (3411)
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If oy = 0, then by (3.4.6), we get 35 # 0, which using, (3.4.5), gives oy = 0.
Hence by (3.4.11), ay = 0, which contradicts (3.4.10). If ap # 0 and a; = 0,
then by (3.4.5) /31 = 0, which contradicts (3.4.10). Hence, cvy # 0 implies oy # 0.
By symmectry we can take both 3; and 3 non zero. Hence we can assume that

a1, (v, B, Be are all nonzero.

Computing the value of « from (3.4.11) and substituting in (3.4.10), we get

(,3],62(1] - (1](126])/2 + /64(1] — ((8] Qo — ()12)/2 + “34(12,6271)61 = .

Using (3.4.5), it is casy to sce that the left hand side of the preceding equation is
zero, which contradicts the choice of v. Hence for any A, v € I, [b,c]*[a, [a. b]]*
is not a commutator.

Casc(2). Let [a,c] = [b,[a,b]]. If ap = 0, then by (3.4.5), a; = 0, and the

equations (3.4.6), (3.4.9) and (3.4.10), respectively, reduces to

(}’3‘32 = —A
azf+agd = 0
afy = —u.
Solving this we get (817" 82)2 = —Av~1, which is not possiblc for a choice of A

-1

and g such that —Av~" is a non-quadratic residue mod p. Hence for any such
A v e F;, [bcd*a, [a, b]]” is not a commutator. If ay # 0 and q = 0, then by
(3.4.5) 1 = 0, which contradicts (3.4.10). Hence, «g # 0 hnplies oy # 0. By

symmetry we can take both (; and [, non zero. Hence we can assume that

a1, e, B, o are all nonzero.

Using (3.4.5) in (3.4.9) and (3.4.10), we, respectively, get

ay = (Bioe — 1) /2 + 3o (Bsar — a3Bi) + Bacn 3o
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and

Qg = (,dzal — ala‘g)/Q + 540[1,0)171 - 1/;51714

Equating these cquations and using (3.4.5), we get (fza1 — a0y) = —uB1 " Bs.
Multiply both sides by 3,73, and using (3.4.5) and (3.4.6), we further get
("dli]ﬁg)z = — M\~ Hence, as above, for A and v such that —\v~! is a non-
quadratic residue mod p, [b, ¢ a, [¢,b]]” is not a connnutator. The proof is now
complete by taking G/H, where H is any subgroup of Z(G) of order p contained
in K(G), and using Theorem 1.1.5 and Lemma 1.3.6. ]

Lemma 3.4.3 Let L be o finite p-group of order at least p* and nilpotency class
3 with b(L) = 3, |Z(L)| = p*. Z(L) < 4(L) and ~2(L) elementary abelian of
order p*. Then K(L) = v (L).

Proof. Notice that |y3(L)| < p?. We first assumc that |v3(L)] = p. Then
by Theorem 2.1.2 there exists a normal subgroup H of L such that |L/H :
Z(L/H)| =p*. If H # (L), then it follows from Theorem 2.1.4 that L admits
a 2-generator subgroup G such that 72(G) = 72(L), which is not possible as
|va(L) /7 (L)| = p*. Henee H = ~3(L), and therefore, again by Theorem 2.1.4,
L admits a 3-generator subgroup G of order p” such that 7,(G) = 7o(L).

If |[L| = p®, then L = (a,b,c,d) such that G = {a,b,c) and [d.G] = H.
If |L| > p° then, for some integer k > 2, L = (a,b,c.xy,..., 1) such that
G = {a,b,c) with 72(G) = 12(L) and [x;, L] = H for 1 < i < k. First assume
that [z;, G] = H for some 1 < < k. Then the subgroup M := {(a, b, ¢, d), where
d = z;, is of order p® such that [d,G] = H and 74(M) = ~y,(L). Hence it is
sufficient to work with M. So this casc reduces to the preceding situation when
L] =

It now follows from the proof of Lemma 3.4.2 that we can modify the

generating set for G such that 12(L) = %(G) = ([a,b],[a.d,[b,d],[a, [a,b]])
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and [e,[a,b]] = 1. Notice that L/H is of nilpotency class 2, and therefore
y(L/H) = {[a.b], [a,d,[b,e]), where & = xH for all z € L. Also notice that
de7Z(L/H).

If [a,d] = [a,[a,]]" for some ¢ € F,, then [a.d[a.b]!] = 1. Replacing d by
d[a,b]™", we can assume that [a,d] = 1. If [c,d] # 1, then [c,d] = [a, [a. b]]" for

some r € Fy. Let o € Fy, 1 <i <4 If ) # 0, then we can write
b b, 2, = a2 he)

modulo A and

[, [a, 8] = [ac™ " [0, B]"].

If ; = 0, then we can write
[b, C]wz [a,c]"’d — [c’a—tv;gb—tvg]

modulo H and

la, [a, 0] = [¢,d™" ).

Thus for i € Fp and € = 0, 1, we get

w(L)/H =] [a¢. L]

€i

and

HC m Jacct, L],

where ¥ = vH for x € L, and 7 and € are not simultaneously zero. Hence, by
Lemma 1.3.7, K(L) = ~42(L). Finally, if [¢,d] = 1, then [b,d] # 1. The asscrtion

now follows on the same lines as above.

Now we consider the remaining case for the group L with |L| > p? i.e.,
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[%;,G] = 1 for all 1 < i < k. Then L is a central product of G and K :=
(@1,...,2) amalgamating H. Since Z(L) < (L), I¥ can not be abelian. Thus
H = ([r;,x;]) for some 1 < i < j < k. Then the subgroup N := (a.b,c,d,e),

where d = x; and ¢ = z, is of order p® such that (V) = 12(L). Now on the

lines of the preceding case, for 7 € F,, it is not difficult to see that

w(N)/H =] [acd, N] | J [ed, N]

i
and

H < () lacid, N () [ed, N,
where Z = zH for x € N. Hence, again by Lemma 1.3.7, K(N) = y,(N).

Now assume that |13(L)| = p®. As in the above case, we can show that
H & v3(L). Then, by Theorem 2.1.4, either (i) L admits a 2-generator subgroup
G of order p° and nilpotency class 3 such that L is a central product of G and
subgroup K with |y2(R’)| = p or (ii) L admits a 3-generator subgroup G of order
p” and nilpotency class 3 such that ¥(G) = v2(L) and L is an amalgamated
semidirect product of G and a subgroup A of nilpotency class at most 2. In
case (i), it follows from Lemma 1.3.3 that K(L) = 1»(L). So assume (ii).

If [L| = p8, then L = (a,b,c,d) such that G = (a.b,c) and ([d,G]) = H.
If |L| > p° then, for some integer k > 2, L = (a,b,c.z,...,w;) such that
G = (a,b,c) and ([r;, L]) = H for 1 < i < k. First assume that [z;, G] = H for
some 1 < ¢ < k. Then the subgroup M := {(a,b, ¢, d), where d = z;, is of order
p® such that [d,G] = H and v,(M) = v.(L). As observed above, it is sufficient

to work with the situation when |L| = pb.

As explained in the proof of Lemma 3.4.2, we can assume that H = ([b, c]),

’\/'3<G) = <[a? [CL, b]]? [b? [(1,, b”> b
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[a.c] € 15(G) and ¢ € Cu(12(G)). If [b,d] = [b,c]" for some ¢ € F,, then
[b,dc™] =1. Sct &' =dc™". If [c,d'] = [b,c]* for some s € Fp, then [c, d'b*] = 1.
Replacing d by d'b*, we can assume that [b,d] = [c,d] = 1. Let [a,d] = [b, ¢]" for

some r € IF‘;. Let o, aq, a3, a4 € Fy. If a3 # 0, then we can write
[a, b1 [b, [, ], 0, )" = [ab™* " [a,b] =, %[0, b]*"]

modulo A and

1

[b, co¢ = [ab®2s ' [q,b] =T, doer

I

If oy = 0, then we can write
[0, b, [a, 0]°2 = [bla, b=, 0" [a, b]°]

modulo H and

o

b, o = [bfa, b5, .

Thus, for ¢.j € F, and € = 0,1 such that ¢ and € arc not simultancously zcro,
we get

w@VH:UﬁWMWI]

and

H < () [ab]a,0), L],

()

where Z = 2 H for € L. Hence K(L) = ~»(L).

Finally assume that [z;,G] = 1 for all 1 <4 < k. In this case, L is a central
product of G and K := (x1,...,2;) amalgamating some subgroup containing

H. Since Z(L) < #5(L), K can not be abelian. Thus H = ([z;, z,]) for some

1 <4< j <k. Then the subgroup N := (a,b,c.d,e), where d = z; and € = z;,
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is of order p? such that v,(N) = 4»(L). For i € F,, it is again easy to see that

%(N)/H = [abid [, =, ] | [bod [a, 075, V]

2

and

1—

= N] () [vd [, 0]~

ol

HC () [ab'd [a.1] = N,

where Z = zH for x € N. Thus K(N) = 72(V), and the proof is complete. O

3.5 Proof of Theorem 3.1.1

We are now ready to provide Proof of Theorem 8.1.1. Let G be a finite p-group
such that v»(G) is of order p* and exponent p. Also let Z(G) < 7(G). Notice
that the nilpotency class of G is at most 5 and |G| > pb. If b(G) = 4, then
K(G) = 72(G). So by Remark 2.1.3 we can assume that b(G) = 3. If the
nilpotency class of G is at most 3, then 1(G) is abelian. When the nilpotency
class of G is 2, the assertion follows from Lemmas 3.2.1 - 3.2.4. Now let the
nilpotency class of G be 3. It follows from [22]| that there is no such group
of order p° and nilpotency class 3 which satisfies the given hypothesis. Hence
|G| > p". If | Z(G)| < p?, then K(G) = ¥ (G) by Lemma 3.4.1. So assume that
|Z(G)| = p*. Now if |G| = p7, then by Lemma 3.4.2, we have K(G) # 72(G),
otherwise by Lemma 3.4.3, we have K(G) = 7(G). Now it only rcmains to
handle the cases when the nilpotency class of G is 4 or 5.

First let the nilpotency class of G be 4 and b(G) = 3. If |G| = p®, then,
72(G)/73(G) being cyclic, [12(G),72(G)] = [12(G). 13(G)] = 1; therefore 12(G)
is abelian. It now follows from Lemma 3.3.1 that K(G) = % (G) if and only
if |Z(G)] = p. So assume that |G| > p’. By Lemma 1.3.2 Z(G) can not be
maximal in 7,(G), therfore | Z(G)| < p*. It follows from Theorem 2.1.2 that G

admits a normal subgroup H of order p such that |G/H : Z(G/H)| = p®. In
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this case the only choice for H is v4(G). If not, then G/H will be of nilpotency
class 4, which is not possible as (G/H)/Z(G/H) can have nilpotency class at
most 2. Thus G/H has nilpotency class 3. Since v,(G/H) # Z(G/H), it follows
that vo(G/H) Z(G/H) has index p? in G/H, and thercfore vo(G/H) /v3(G/H) is
cyclic. Since H = v4(G), we also have that 7,(G)/73(G) is cyclic, which, in the
present case, implics that v9(G) is abelian. Now invoking Theorem 2.1.4, there
exists a 2-generator subgroup I of G such that [T = p®, 72(T) = 72(G) aud G
is an amalgamated semidirect product of 7' and a subgroup K with |y2(K)| < p.
Also K = (x1,...,xx), for some k > 1 such that [2;,G] = H for 1 < i < k.
If [;,T] = H for some 1 < ¢ < k, then the subgroup M := {a,b,c), where
¢ = w; is of order p” such that y5(M) = 1(G). Hence it follows from Lemina
3.3.2 that K(G) = 12(G). Now assume that [z;, 7] = 1 for all 1 <4 < k. Since
Z(G) < 12(G), it follows that A is non-abelian. Thus G is a central product of T
and K amalgamating a subgroup containing H. If | Z(G)| = p, then | Z(T)| = p,
and therefore by Lemina 3.3.1 we have K(T) = 7»(T). Hence K(G) = 7(G).
Now we take the case when | Z(G)| = p®. Notice that ,(K) = H, and therefore
there exists x;,xr; € K such that H = {[z;, z;]) for some 1 < i < j < k. Let
N = (a,b,c,d), where ¢ = z; and d = 7;. Then 7,(G) = 12(N). Set N = N/H.

As obscrved in the proof of Lemma 3.3.2,
12 (V) = ([a. b, [a [a, U]], [b. [a. 0]]) -
It is now not difficult to see that for i, j € F, we have
»(N) = @'z, N1.
ij

An easy computation also shows that H C [a'bic, N] for all 4,5 € F,. Hence

K(N) = 72(N) by Lemma 1.3.7, and therefore we have K(G) = 1,(G).
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Finally let the nilpotency class of G be 5. We claim that b(G) = 4. Contrarily
assume that b(G) = 3. Since the nilpotency class of G/ Z(G) is 4 and Z(G) <
7(G), we have | Z(G)| = p. Hence, in view of Theorem 2.1.2, the only choice
for normal subgroup H of G such that |G/H : Z(G/H)| = p* is Z(G). Thus
|G/ Z(G) : Zs(R)] Z(G)| = p*, which implies that |G/ Z,(G)| = p*, where Z,(G)
denotes the sccond center of G This contradicts the fact that the nilpotency
class of G/Zy(G) is 3. Our claim is now settled. If K(G) # 72(G), then it
follows from Lemma 3.2.1, Lemma 3.2.2, Lemma 3.3.1 and Lemma 3.4.2 that

the commutator length of G is 2. The proof of the theorem is now complete. [J

3.6 Examples

In this scction we present various examples of groups, which occurred in this
chapter and this shows that no class of groups considered in Theorem 3.1.1 is
void. These examples arc constructed from the structural information of the
groups obtained in our proofs, and have been verified for p = 3,5, 7 usiug GAP
[4]. For notational convenicnce, we use long gencrating sct instcad of minimal
one.

Groups of class 2. Let F be the freest p-group of nilpotency class 2 and
expouent p on 4 generators, a, b, ¢,d (say), where p is an odd prime. Let R :=
([b.d],[a,d]). Then G := F/R is a group of nilpotency class 2 and order p® such
that K(G) # 7(G). If we take Ry := {([a,D][c,d], [a.d][b.d]"), where r is any
fixed non-square integer modulo p. Then it follows from [34, Theorem 1.2] that
Gy = F/Ry is a group of order p®, nilpotency class 2 and conjugate type {1,p*}.
For p-groups G, p odd, of nilpotency class 2 and order at least p°, we know that
K(G) = 7(G). Such examples of order > p'9 can be constructed by taking a
central product of the group G := F/R and any finite extraspecial p-group K

amalgamating ([¢.d]) = 72(K). Constructing such examples of order p° is also
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easy, as explained in the proof of Lemma 3.2.4.

Groups of class 3. We present five types of p-group of nilpotency class 3 and

order p7, where p is an odd prime. Consider the group presented as

G = <(~V1a(\’2;(~\’37(~v47(\’5:(~\’677 [ g, n] = auy, [, cn] = a5, [ag, ] = ag,
(g, o] = 7. [as, as] = 7, [as. o] = 7, [ag. o] = 7, 0" =1,

af =~ =1 (2§@'§6)>.

Notice that |Z(G@)| = p and K(G) = 12(G).

The following group G is such that |Z(G)| = p* = |13(G)| and K(G) = 12(G)

G = <al,a2,a3,a4,a5,aq,7 [ [ow, 1] = airo, [as, a1] =7,

aipzwp:1(1§i§6)>.

The next group G is such that | Z(G)| = p?, |13(G)| = p and K(G) = 1%(G) :

G = <a1,a2,a3,a4,a5,a6,v | [ag, 0n] = ay, [as, 1] = a5, [az, as] = as,

[y, 0] = 7. Jas, 03] = 7,00 =v,0P =47 =1 (2<i < 6)>.

We now present a group G such that |Z(G)| = p®, |73(G)| = p and K(G) #

12(G) :

G = <a1,u27u3,a4,u57u6,'\,’ | [Ulzﬂ)h] = (4, [053»&1] = Ws,

[a3:a2] = Qg, [04;0.’1] - 7»ai1, = /}/p =1 (1 <i< 6)>

Finally we present a group G such that |Z(G)| = p?, |13(G)| = p* and
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K(G) # 72(G) :

G = <0(‘1»02-,0¢3»0“4»a570‘677 [ [ag, a1] = ay, [a3, a1] = as,

[(147(1]] = (g. [(147(12] = 7,()[2‘10 = ’}’p =1 (1 S i S 6)>

Groups of class 4. We present two types of p-groups of nilpotency class 4 and

order p?, where p is an odd prime. Consider the group presented as

G = <a1,a2,ag,a4,a5, Qg, Y | [a27a1] = Quy, [a47a1] = Qs, [abo‘ﬁ] = O,

g, 3] = [, ] = [, o] = v, [, on] =7, 0P =P =1 (2 < <6)).
/ I 2l

For this group |Z(G)| = p and K(G) = 12(G).
The following is a group G such that |Z(G)| = p? and K(G) = 1 (G) :

G = <041>az;043)a4)05;046>”/ | [z, 0] = ay, [y, o] = 0, [ay, as] = ag,

[ag, 0] = [as,u] = v, 00" =7, =" =1(2<i < 6)>




ot

CHAPTER

Groups of order p’

In this chapter we giwe classification of groups G of order p7 such that not

cevery clement of the commutator subgroup v2(G) is a commutator.

4.1 Introduction

In Theorem 1.1.6, L. C. Kappe and R. F. Morse proved that K(G) = 72(G) for
all p-groups G of order at most p®, p > 3, and for all 2-groups G of order at most
25, They also exhibited groups of order 27 for which K(G) # 72(G). If G is of
order p%, then order of 2(G) is at most p* and it is minimally generated by at
most 4 elements. Thus a classification of groups G of order pb, p > 3, such that
K(G) # 42(G) follows from Theorem 1.1.5 and Theorem 3.1.1. To have some
clarity on the larger perspectives of this problew, it is desirable to study specific
and some more classes of p-groups. With this motive, our target in this chapter
is to study groups G of order p” such that K(G) # 75(G). The main result of

this chapter is as follows.

Theorem 4.1.1 Let G be a group of order p*, p > 5. Then the following

61
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statements hold:

(1) If d(2(@)) < 3 or the nilpotency class of G 1is 6, then K(G) = 7o(G).

(2) If 195(G)| = p* and d(15(G)) = 4, then K(G) # 1(G) if and only if the
nilpotency class of G is either 3 or 4 and | Z(G)| = p*.

(3) If |2(G)| = p°. d(12(G)) = 4, exp(12(Q)) = p* and the nilpotency class
of G is 5, then K(G) # 7(G).

(4) If |72(@)] = p°, d(%2(G)) > 4 and the nilpotency class of G is 4, then
K(G) # 12(G) if and only if there ewists a subgroup H < Z(G) of order p such
that | Z(G/H)| = p*.

(5) If v2(G) is elementary of order p® and the nilpotency class of G is 5, then
K(G) # (G).

(6) If v(G) is mon-abelian of order p°, czponent p and the nilpotency class
of G is 5, then K(G) # 72(G) if and only if |v5(G)| = p and | Z(G/5(G))| = p*.

Moreover, the commutator length of G is at most 2.

Now we restate Theorem 4.1.1 in a slightly different way as follows:

Theorem 4.1.2 Let G be a group of order p’, p > 5. Then K(G) # 12(G), if
and only if one of the following holds:

(a) |7(G)| = p*, d(v2(G)) = 4 and the nilpotency class of G is either 3 or 4
and | Z(@)| = p*.

() F(G)] = 17, d(12(C)) > 4 and there exists o subgrowp H < Z(C) of
order p such that |Z(G/H)| = p*.

Moreover, if K(G) # 72(G), then the commutator length of G is 2.

The proofs of Propositions 4.2.1, 4.2.2, 4.2.3 and 4.3.1 imply that conditions
(3-6) in Theorem 4.1.1 are equivalent to condition (b) in Theorem 4.1.2. Thus
Theorem 4.1.1 and Theorem 4.1.2 are equivalent. We remark that if Theorem

4.1.2(b) holds, then |G/H| = pS and further using Lemma 1.3.5 and Theo-
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rem 3.1.1(a) we get K(G) # (G). If K(G) # 1(G) with | (G)| = p° and
d(72(G)) > 4, then it follows from the proofs of Propositions 4.2.1, 4.2.2, 4.2.3
and 4.3.1 that there exists an H with the desired property. While proving The-
orem 4.1.1, we obtain many intcresting structural results on groups of order p”.
We use GAP |4] for handling the remaining cases of p, that is, 2 and 3, and

derive the following conclusion.

Theorem 4.1.3 For a group G of order 27, K(G) # v2(G) if and only if G is
of nilpotency class 3, v2(G) is a 3-gencrated abelian subgroup of order 2* and
|Z(G)| =22

Let G be a group of order 37. Then K(G) # 1(G) if and only if one of the
following holds:

(i) The nilpotency class of G is 5, va(G) is a 3-generated subgroup of order
3% and | Z5(G)| = 33.

(it) The nilpotency class of G is 4, v(G) is a 3-generated subgroup of order
3t and | Z(G)| = 33.

(ili) The nilpotency class of G is 4, v2(G) is a 4-generated subgroup of order

wW
<

(iv) The nilpotency class of G is 3, 12(G) is a 4-generated subgroup and
|Z(G)| = 3°.

Moreover, the commutator length of G is at most 2.

‘We conclude this section by setting some notations for this particular chapter.
For a finite p-group G, minimally generated by two elements, say a; and «g,
the following notations for commutators will be used throughout: 3 = [aq, as),

B = 8. au]. mi; = [3i, ;] and i, = i35, ], where 4,5,k € {1,2}.
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4.2 Groups of nilpotency class 5

In this section we deal with groups G of order p” and nilpotency class 5 with

d(12(G)) > 4. As we will see, for most of these groups G, K(G) # 12(G).

Lemma 4.2.1 Let G be a group of order p™, p > 3 such that v(G) is a 4
generated subgroup of order p° and exponent p*. Then exp(13(G)) = p and

BP £ 1, where (8 is as defined in the introduction.

Proof. By the given hypothesis we can assume that G is generated by 2 elements,
say aj, g, and hence the nilpotency class of G is at least 4. First we claim that
v3(G) is abelian. If the nilpotency class of G is 4 or 5, then [v3(G),v3(G)] <
Y%(G) = 1, and hence y3(G) is abelian. If the nilpotency class of G is 6, then
[%(@)/7i+1(G)| = p for 2 < i < 5. Now being 15(G)/v4(G) of order p, and
[73(@),74(G)] = 1, we get 43(G) is abelian, and our claim is scttled.  Since
d(12(G)) = 4, it now follows that |®(7.(G))| = p, which further implies that
P(2(G)) < Z(GQ). Recall that 8 = [ay, as]. Thus for any = € G, we get

1=[p"z]=[6,z]7,

which implies that the exponent of 3(G) is p. Now if g? = 1, then for any
x € 73(G) we get (Bx)? = prar = ¢ = 1, and hence exp(y»(G)) = p, which is

not possible. Thus P £ 1 and the proof is complete. O

Proposition 4.2.1 Let G be a group of order p’, p > 5, having nilpotency class
5 such that v (G) is a 4-generated subgroup of order p® and exponent p*. Then
the following statements hold:

(1) 15(G)| =p,

(ii) | Z(G/7(G))| = p* and | Z,(G)| = p°,

(i) K(G) # 72(G),
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(i) The commutator length of G is 2.

Proof. We start by noticing that |v5(G)| < p?. For the first assertion, contrarily

assumc that the order of 75(G) is p?. Thus 73(G) = Z(G) and v;(G) /711 (G) is of
order p for every 7 € {2,3,4}. By the given hypothesis we can assume that G is
gencrated by 2 clements, say ap, ap. Recall that 3 = [ay, as]. Since d(12(G)) =
4, it follows that |®(12(G))| = p, which further implies that ®(12(G)) < 15(G).
Let H be a complement of ®(75(G)) in v5(G). Then the quotient group G :=
G/H is a p-group of maxial class and order p®. By Lemma 4.2.1 we get P # 1;
hence cxp(72(G)) = p?, which is not possible by Theorem 1.3.5. Hence 75(G)
cannot be of order p?, which estalishes assertion (i).

Now we prove assertion (ii). By assertion (i) we have |y(G)| = p. It
then follows from [2, Theorem 2.12] that |[v4(G)/75(G)| = p, and therefore
[13(G)/va(G)| = p* If | Z(G)| = p?, then obviously | Zy(G)| = p* and, since
1(G)/75(G) < Z(G/5(G)), it follows that | Z(G/v5(G))| = p?. So assume that
Z(G) = 3(G). Obviously |Zy(G)/Z(G)| < p*. Again by Lemma 4.2.1 we get

exp(73(G)) = p, and hence a regular computation shows that

[a7, as] = [a1, ao]" = [ay, af].

We claim that both of, of ¢ v5(G). Otherwise, if af € v5(G), then [of, as] =
6 = 1; not true. Hence of ¢ v5(G), and using symmetry for ws, we get ao ¢
75(G). If both of, o}y € v4(G), then, 14(G)/v5(G) being of order p, of = (a})"
modulo 75(G) for some r € Fy, which implies that both of and of are central;
not possible as just shown. Hence at least one of af and o} lies outside 14(G).
Since [, ag] = [a1, )P = B? € Z(G), it follows that of € Zy(G). Similarly
ob € 7,(G). Hence (v(G),of, o) < Z,(G), and therefore | Z2(G)/ Z(G)| > p?,

which proves assertion (ii).
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Assertion (iii) is now clear from assertion (ii), Lemma 3.3.1 and Lemma 1.3.5.

For asscrtion (iv) we consider two different cases, namely, 72(G) is abelian
or not. If %,(G) is non-abelian, then notice that both Cg(f;) and Cg(f3,) can
not be maximal subgroups of G. Otherwise, 72(G) would be abelian. Without
loss of generality we can assue that Cg (/) is not maximal. Hence (4, G] =
Y(G) C K(G). Since K(G/714(G)) = 72(G/74(G)) from Theorem 1.1.6, the
assertion follows froin Lemna 1.3.6 and assertion (iii). Now assume that 75(G)
is abclian. Then it is not difficult to sce that [a;,¥2(G)] arc normal subgroups
of G for i = 1,2. Also. at least one of these subgroups is of order at least p*.
Let H be one with this property. Then, |G/H| being at most p’, it follows from
Theorem 1.1.6 that K(G/H) = v2(G/H). The proof is now complete by Lemina

1.3.6 and assertion (iii). O

Lemma 4.2.2 Let G be a group of order p”, p > 5, such that v,(G) is a 4-
generated abelian subgroup of order p°. Then the following statements hold:
(i) The nilpotency class of G 1is at least 5,

(i) If p > 7, then the nilpotency class of G is cxactly 5.

Proof. By the given hypothesis we can assume that G is generated by 2 elements,
say aq, as. Hence it is clear that the nilpotency class of G can ncither be 2 nor 3.
So let the nilpotency class of G' be 4. Then, 72(G) being abelian, its expouent
is p2. As we know 12(G)/13(G) = (B73(G)). By Lemma 4.2.1, the order of
Bin G is p*, exp(73(@)) = p and O(%(G)) = (BP) < Z(G) is of order p.
Then p < |43(G)/7(G)] < p?; hence p? > |7u(G)] > p?. First assume that
[74(G)| = p*. Let K be a complement of ®(2(G)) in 14(G). Then |K| = p?
and, hence the quotient group G := G//K is a p-group of order p’ having the
maximal class. Notice that the exponent of 75(G) is p?, which is not possible by
Theorem 1.3.5.

Now we assume that |v4(G)| = p?. If | Z(G)| = p?, then u := B785 € Z(G)
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for some r, s € F, not simultaneously zero. If 5 € ~4(G), then, considering H
to be a complement of (67) in v4(G), it follows that G/ (H,u) is a p-group of
maximal class of order p® such that the exponent of its commutator subgroup
is p?, which is not possible by Theorem 1.3.5. If 3P ¢ 74(G), then we choose an
element v € 73(G) — 4(G) such that H := (14(G),v) is a complement of (u)
in 13(G). Now the quotient group G/H is a p-group of maximal class of order
p' such that the exponent of its commutator subgroup is p?, which is again not

possible by Theorem 1.3.5.

Finally assumec that |Z(G)| = p?, that is, 74(G) = Z(G). We claim that
of € 713(G) —(G) for i = 1,2. Contrarily first assuine that of € 72(G) —73(G).

Then of = f'g for some t € F; and g € 73(G). Thus,

1= [O‘!I':al] = [/jtg»al] = [wjfwal][gwal] = /jﬂgw Oq],

which implics that f; € 74(G); not possible. Now assumec that af € 4(G).

Theu, since exp(y3(G)) = p aud p > 5, we obviously get

1= [og, a0?] = oo, )" = 572,

which is not true. The case for ay goes by symmetry, and the claim is settled.

If ay? = (af)" for some 7 € Fy, then

BP = e, 03] = [en, 0] = 1,

which is again not true. Hence of and o are both non-trivial and imdependent.

It is now clear that 14 (G) = ([of, az]) X {[a1,0b]). If 87 € ([of, as]), then
consider G := G/ (o}, [o, c1]). Otherwise consider G == G/ (o}, [, au]). In

both the cases G is a p-group of maximal class of order p® such that the exponent




68 §4.2. Groups of nilpotency class 5

of its commutator subgroup is p?, which is again not possible by Theorem 1.3.5.
Hence the nilpotency class of G is at least 5. This completes the proof of asscrtion
(i)

Since the exponent of 75(G) is p?, thus the assertion (ii) follows from assertion

(i) and Theorem 1.3.5, and the proof is complcte. O

Proposition 4.2.2 Let G be a group of order p*, p > 5, with nilpotency class 5
and v2(G) elementary abelian of order p>. Then the following statements hold:
(1) 175(G)| = p,
(ii) | 2(G ()| = 1# and | Z5(G)| = 1,
(iit) K(G) # 72(G),
() Commautator length of G is 2.

Proof. By the given hypothesis G is minimally generated by 2 elements, say
ay, g, and |vs5(G)| < p?. Contrarily assume that |v5(G)| = p®. Let B, 3;,
n;; and &z be as defined in the introduction (of this chapter). Without loss
of gencrality we can assume that v3(G) = (B1,72(G)) and B2 € 74(G). Thus

M1, a2 € V5(G). Now Hall-Witt identity
[67 aI] ) a‘z]m [O‘i» a;l ) ﬁ]az [a27 /37] ) al]ﬁ = 1»
gives ni2 = 7721{112{1?1- Hence 1 € 75(G), and therefore 74(G) = (M1, 5(G)).
It is now clear that v5(G) = (&111, &112). Again Hall-Witt identity
(B a2t ]2, oy 7L B ey, B ) = 1,

gives 12 = &ia1. Siuce &9 = 1, it follows that v5(G) = (£111), which is absurd.
Hencee |v5(G)| = p, and asscrtion (i) holds.

It now follows from [2, Theorem 2.12] that |,(G)/vs(G)| = p, and therefore
|v3(G)/v4(G)| = p>. By the given hypothesis, it follows that |Z(G)| < p?. If




§4.2. Groups of nilpotency class 5 69

|Z(G)] = p*, then | Z,(G)| = p* and Z(G/5(G)) = (14(G) /45(G)(Z(G) /45(G))
is of order p%, and asscrtion (ii) holds in this casc. So assume that | Z(G)| = p.
Since 7,(G) is elementary abelian, for any x,y € G, we have
2,97 = [, 5L, v, ) O, w0, 9] Ol ., 9.9) &) = 1,

which gives G < Z(G). Thus G := G/45(G) is of order p°, exponent p and
nilpotency class 4 with 75(G) elementary abelian of order p*. It then follows
from [22] that G lies in one of the isoclinism families ®(23),®(40) and ®(41).
We claim that G lies in ®(23).

If G' € ®(40), then, since exp(G) = p and isoclinic groups have same com-

mutator structurc, we may assumec that

G = (a1, 0,351, 02,7 | [an @] = B, [B.ai] = 3, [Br, as] = [B2, a1] =7,

af=fr=p" =7 =1i=12)

=

Since [, @] = 1@, we get [3;, ] € 75(G) for i = 1.2, Hence v(G) =
([B1: @), 75(G)) and [Ba. ] = [Br, ao]l, for some L € Z(G). By Hall-Witt
identity

Bryas L aa]2an. a7 Bi] ™ [, B ao)? =1,
we get [B1, an, aq] = 1. Again using Hall-Witt identity

(B2, 17t @] o, 7L, o] [cn, B! ] = 1,

we get [B2, ap, ao] = 1. Henee G = Ca(74(G)), which is absurd.

If G € ®(41), then using the presentation

G = (0,089,051, 82,7 | [, a) = B, 1B, 8] = B, [, Bi] ™ =[G, 3] =77,

al=3F=p=7"=1i=12),
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one gets the same absurd conclusion as in the preceding case, where v denotes
the quadratic non-residuc mod p. Hence G € ®(23) and thercfore |Z(G)| = p?
by [22], which proves assertion (ii).

Assertion (iii) now follows from assertion (ii), Lemma 3.3.1 and Lemma 1.3.5.
The proof of asscrtion (iv) is exactly the same as the proof of assertion (iv) of

Proposition 4.2.1 for abelian 72(G). The proof is complete. O

Proposition 4.2.3 Let G be a group of order p*, p > 5, having nilpotency class
5 such that v2(G) is non-abelian of order p® and exponent p. Then K(G) # 1(G)
if and only if |75(G)| = p and | Z(G/v5(G))| = p>. Moreover, if K(G) # 72(G),

then the commutator length of G 1is 2.

Proof. By the given hypothesis it follows that |[15(G)| < |Z(G)| < p? and
the commutator subgroup of v2(G) is contained in v5(G). First assume that
5(@)] = p and |Z(G/45(G))] = P Thus K(G) # (G) by Lemma 33.1
and Lemma 1.3.5. Conversely, assume that either |v;(G)| = p? or |5(G)| =
|Z(G)| = p and | Z(G/v5(@))| = p*. Let G = (ay, ) and 3. 3, i and .
where %, j, k € {1,2}, be as defined in the introduction (of this chapter).

Let us first assume that |v5(G)| = | Z(G)| = p®. Then |[7(G) /%1 (G)| = p
for 2 < ¢ < 4. Now without loss of gencrality we can assume that Sy € v4(G)

and y3(G) = (1, 71(G)). Therefore 1. 122 € v5(G). But by Hall-Witt identity
[Br O"I] ’ O'Q]m [CV] ’ 051 ) ﬁ](xz[(yzj .3717 0’113 =1

we get ng = 5112512171772& thus 71, € 75(G)- Hence 74(G) = (7)11> (HlOd Ws(G))
and therefore v5(G) = (111, &112). Again the Hall-Witt identity

[Bro " an]®2fan, an 71 B an, B ) = 1,

gives [B1, 8] = &iro. Let Bo = 11" 11" Erny’ for some 7, s,t € F,, and G := G/H

where H = (£115). Then G is a p-group of maximal class of order p® with v5(G)
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elementary abelian of order p?. Notice that @, is a uniform element of G. It is

now casy to scc that
2(G) = {[as3"Biiits, il | a. b, ¢, d € By} = {[a5B°B5nty. G] | a,b,¢,d € Fp}.
Since &12 = (B, 8] = [mm1, g, it also follows that

HC () a5 85, G,

a,b.c,d

where a,b. ¢, d € F, not all simultancously zcro. Hence by Lemma 1.3.7 we have
K(G) = 72(G).

Now assume that |15(G)| = |Z(G)| = p and |Z(G/5(G))| = p. Let H :=
Z(G) (= v(G)) and L := G/H. Then L is of order p® and nilpotency class 4
such that 44(L) is elementary abelian of order p* and |Z(L)| = p. Hence, by
[22], L lies in the isoclinism family ®(40) or ®(41). By Lemma 3.3.1 we know
that K(L) = 42(L). We provide a detailed explanation when L lies in ®(40).
The other case goes on the same lines. Notice that any two isoclinic groups
admit the same commutator relations. So, if L lies in ©(40), then by [22] L has

the following commutator rclations:
R:={lay,as] = 3, (6, &) = By, [0, @] = [Ba, 1] = 71},

where 74(G)/75(G) = (ny5(G)). It is not difficult to see that af =1 for i = 1,2.

We claim that 4 (L) = {[a53" 372352, L] | ax, as,a3 € F,.e € {0,1}}, where
ay and ay arc not simultancously zcero. To cstablish this claim, we arc going to
show that for given w,v, w,r € Fp, there exist €, a;.b; € F),, where 1 <1 < 3,

1 < j <5 and ay,ay not simultancously zcro, such that

(@157 BBy alp B BB = BB
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After expanding the left hand side and comparing the powers on both sides, we

get

€by = u,

arby — eb3 = v,

D
arby + F(;) =w,

alblbz + (l;)bz + (1,3(71 - fb_r_; = X.

If u # 0, then taking ¢ = 1, ay € F), and b, = 0, we get by = u, by = —v,
a = (w— (;‘))u’l, and b5 = uay — r. The remaining a;’s and b;’s can take
arbitrary values in IF,. Now let v. = 0. Then taking € = 0, the above system of

cquations reduces to

(lel = . (—121)
a1by = w. (4.2.2)
1010y + asby + ashy = k. (4.2.3)

If v = w = 0, then taking a; = a3 = 0 and as # 0, we get by = za; . If v # 0
and w # 0, then we can choose by, by € IF‘; such that a; = vby 1= wby 1. Now
taking a3 = 0 in (4.2.3), we get a, = b? (r — arbihy). If v =0 and w # 0, then
by cquations (4.2.2) and (4.2.1), respectively, we get a; = wby - and by = 0, and
by (4.2.3) we get az = aby. If w = 0 and v # 0, then by equations (4.2.1)
and (4.2.2), respectively, we get a; = vwby! and by = 0, and by (4.2.3) we get
a3 = :L‘l)I] . Thus in all the cases we get the required €, ¢;’s and b;’s, and therefore

it follows that

wl) = |J lapmpeE6s, L.

€.01,02,03

where a; and ay are not simultaneously zero.
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As 15(G) is non-abelian, we can assume that [3, 1] # 1 and [, 5] = 1. For,
if both arc non-trivial, then [§, 81] = [3, fa]" for some ¢ € Fj. Then modifying
By by B3y, we get [B, Ba] = 1. If [3, 31] = 1, then interchanging the role of o

and as works. By Hall-Witt identity

By 007t ] o oo™ B e, fr 7 an]P = 1,
we get &21 = [3, £1]. Again by Hall-Witt identity

[Ba, a1t o] oy an ™, B2 g, Bt ] = 1,

we get Ea19 = 1. Thus as € Ca(74(G)). Therefore we get 75(G) = (€121). Now,
since 73(G) = ([an. 74(G)]) = ([B, B1]). it follows that,

W@ C () [aipm6e5 G,

€,01,a2.03

where a; and ag are not both zero. Hence, again by Lemma 1.3.7, K(G) = 72(G).

If L lies in ®(41), then, on the same lines, one can show that
72(G) = {[098" Bi* 3", G] | ar, as, a5 € Fy. e € {0, 1}}.

That the commutator length of G is 2 follows the same way as proved in Propo-

sition 4.2.1. The proof is now complete. O

4.3 Groups of nilpotency class 4

Let G be a group of nilpotency class 4 and order p” with 45(G) of order p® and
minimally generated by at least 4 elements. By Lemma 1.3.4 we know that
72(G) is abelian. Since the nilpotency class of G is 4, it follows from the proof

of Lemma 4.2.2 that exp(y2(G)) for such groups G can not be p2. So we are left
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with only one possibility, which is elementary abelian ~,5(G), that we will deal

in this scction.

Lemma 4.3.1 Let G be a group of order p* and nilpotency class 4 with 42(Q)

elementary abelian of order p°. Then Z(G) = v4(G) is of order p*.

Proof. We can assume G = {ayi,aq). Let 8, 3; and 75 arc as defined in the
introduction (of this chapter). Then 7.(G)/v5(G) = (Bv3(G)). Obviously
(@) < p. Tf [1(G)| = p’, then 13(G) = (7, 74(G)) for any v € 73(G) —74(G).
This implies that the order of 3(G) /11 (G) will at least be p*. Since 73(G) /74(G)
is generated by at most 2 clements, it follows that its order can be at most p?.

Thus the order of 7,4(G) is precisely p?. Using Hall-Witt identity
(6,07t an)™ (o, a5, Bl [ag, 57 au]’ = 1,

we have 112 = 121.

Contrarily assume that | Z(G)| = p?. Since |4(G)| = p?, we have Z(@) =
(8 B%,’u(G)} for some ¢, j € F), not both zero. If i = 0, then sjpp = 127 = 1, which
implies that 74(G) = (m1); not possible. Soleti € F;. As1 = [3] B, aq] = i,
and 1 = [B163, va] = 1igtfhs, We get n1 = 11290 = 1357, which implies that
the order v4(G) is at most p; not possible. The proof is now complete. O

Let G satisfy the Lhypotheses of Lemmna 4.3.1. Then Z(G) = 1(G) is of order
p?. Assume that 14(G) = (n11,m12) and 120 = 03175, where m, n € F, not both

zero. With this setting we have

Lemma 4.3.2 Let G. m andn be as in the preceding paragraph. Then G admits
a subgroup H < Z(G) of order p such that |Z(G/H)| = p* if and only if the

equation mA2 +n\p — p? =0 has a solution X = N (#0) and p = g in F,.

Proof. First assume that G admits a subgroup H < Z(G) of order p such that

|Z(G/H)| = p*. Obviously H := <7ﬁ1 7](1’2> for some a. b € F), not simultaneously
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zero. Then there exist 4,j € F, not both zero such that [3i3) o] € H for

k = 1.2; mcaning, there exist A. pu € T, such that

s = (i)

and

g itng

mrms = (0 77?2)“-

Obviously A # 0. Comparing powers on both sides in these equations, we get

i—aA=0 (modp), j—bA=0 (mod p),

i+nj—bu=0 (modp), mj—ap=0 (modp).

Solving these equations for 7, j we further get

Ao+ (nA—p)b=0 (mod p).

—pa+mAb=0 (mod p).

Hence, the system of equations

A+ (nA— )y =0 (mod p),

—pr+mAy =0 (mod p).

admits a non-trivial solution z = @ and y = b in F,,. But it is possible only when
the determinant mA2 + nX\j — 12 of the matrix of this system of equations is
zero. Hence the equation mA2 + nAp — p2 = 0, with given cocfficients m and n,

admits a non-trivial solution A = Ay € F, and = jip in F,,.

Conversely, assume that mA2 +nAu — p? = 0 admits a solution A = \g (# 0)
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and j1 = i in Fp,. Consider the matrix

M= /\0 n/\g — Mo

—io MmN
Since the determinant of M is zero modulo p, the system of equations M A" = 0
admits a non-trivial solution, where A?! denotes the transpose of the matrix
A = [a,b] and 0 denotes the 2 x 1 zero-matrix with entries in F,. Let a = ay

and b = by be a non trivial solution of MA* = 0. Thus we get the following

equations:

Aoao + (Ao — pig)by =0 (mod p),

—foto + mAgby =0 (1mod p).

Let H := (n{{n%) and G := G/H. Obviously BB o] = ity = 1g.
Also, using the preceding set of cquations, we get

70360 - 1 —ag=by _ —mbo=ao+nby _ =00k0Ag " —bopoAg T/ _ag—bo\uoAT!
BBy, ao] = 775} n = 30

T2 = Th1 Tha =T 12 M1’ =lg.

Hence 51&°,52b° € Z(@). Tt now easily follows that | Z(G)| = p?, which completes

the proof. O

Proposition 4.3.1 Let G be a group of order p7 having nilpotency class 4 such
that 2(G) clementary abelian of order p°. Then K(G) # 1(G) if and only if
there exist a subgroup H < Z(G) of order p such |Z(G/H)| = p*. Moreover, the

commutator length of G is at most 2.

Proof. Let H < Z(G) be a subgroup of order p such that |Z(G/H)| = p*. Then
it follows from Lemma 3.3.1 and Lemma 1.3.5 that K(G) # 72(G), which proves

the ‘if” part. We provide a contrapositive proof of the ‘only if’ statement. Let
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there do not exist any H < Z(G) of order p such |Z(G/H)| = p*. We assume
G = (v, as). Let 3, f; and 1;; be as defined in the introduction (of this chapter).
Then v5(G)/v3(G) = {f73(G)). By Lemma 4.3.1 we know that Z(G) = v4(G)
is of order p%; hence 13(G)/74(G) = (B174(G), S271(G)) is of order p? too. Also
recall from Lemma 4.3.1 that 2 = 7. It now follows from our assumption
that 711,712,702 arc all non-trivial clements of 74(G). Indeed, for cxample, if
11 = 1, then taking H = (112) we see that |Z(G/H)| = p*, a case which we
arc not considering. Assume that 74(G) = (n11,1m22). Hence n1o = n7m5,, where
r,s € Fy. If r = 0, then taking H = (1)2), we get 7Z(G) = <7_l117.82> is of order
p?; not possible. If s = 0, then taking H = (1), we get the same conclusion.
So let 7,5 € F¥. Then we can take 74(G) = {11, 7n2), and 12 = nfnfy, where
m,n € F,. The same conclusion holds when we take 74(G) = (112,722). Thus
we can always cousider 74 (G) = (111, 712). and 120 = {11, for some m,n € F),
not both zero.

Notice that G satisfies all hypotheses of Lemma 4.3.2. Hence, under our
supposition, the equation mA2 +n\j— ;2 = 0 can only have the trivial solution
modulo p. But, by Lemma 1.3.10, it is possible if and only if the cquation
A2 +nAp—myp? = 0 also has only the trivial solution modulo p. Then, obviously,
m € F,.

We are going to prove that for any given choice of elements u, v, w, z,y € Fp,

there exist clements a;, b; € Fp,, 1 <7 <5, such that
[()/1" 1 qug ﬁudﬁluﬁzas) ()4‘1’)' Ozlrgﬁb;; /7)164/321)3] _ l‘gﬂuﬁlvﬁzwnnmnuy.
Solving both sides and comparing the powers in the preceding equation we get

(l]l)z - uzln = u,

b
(lgbl — (llbg + ((1{4)1) bQ — Qg ({)1) = v,
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2 2

ashy — ar1by + as (g) — (6;1)1)3 + (?)bz — Uy (I;:) +mA

b
(L5b1 + 0,4(72 + a;zble _ alb5 — a2b4 — 0110/2(73 -+ <a22) (21)

a D a b
L)) on(s)or o -

where A = azb, — aybs + a; (lg-’) — (”2‘-’)1)3 + ay (’31) — (”;) by +aq (”’;) by — ayby (l;z) +

b ‘
asby — aghs + a1( z) - <02>b1 + atagby — asbiby = w,

I
&

ayas (b;) — (“;)blbz. We shall call this system of cquations the original system of

equations (OSE) throughout the proof.

Case (i). u# 0. Taking a, = a5 = b =bs =0 and a; = 1 in OSE, we get

Hencee we get

by = m(as (g) + (Z)) -7, a=u(y—n(as <g> - (D))’

which are the required values of a;’s and b;’s.

Case (it). u= 0. Let us fix a; = a» = 0. Then OSE reduces to

a3bl =, agbg = w, (—131)
by by .
agby + ag 9 + m(aghy + ag 9 )=, (4.3.2)

b
0561 + (1,4(72 + agblbg + 71((1,5(72 + as (22)) =Y. (433)
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‘We now consider the following four possible subcases:

Subcase (i). v =w = 0. Taking a3 = by = 0 and by = 1 in (4.3.2) and (4.3.3),
we get s = ¢ and us = y. Notice that b;, 3 < j <5, can take arbitrary values
in IF,.

Subcase (#1). v =0, w # 0. Taking b; = 0 and by = 1 in (4.3.1), (4.3.2) and
(4.3.3), we get ay = w, a5 = xm~ ' and ay = y — nas. Again b;, 3 < j <5, can
take arbitrary values in I,

Subcase (iit). v #0, w = 0. Taking by = 1 and by = 0 in (4.3.1), (4.3.2) and
(4.3.3), we get a3 = v, as = & and a5 = y. Further again b;, 3 < j <5, can take
arbitrary values in [Fp,.

Subcase (iv). v # 0, w 7 0. For this choice, we can choose by, by € IF; such

that as := vb;' = wb;'. Rewriting (4.3.2) and (4.3.3), we get

b b
biay + mboas = fa3(21) fma3<22),

b
bz(ll + (bl + 71])2)(15 =Yy — (l;;blbg — TL(I;;(;) .

Viewing a, and a; as variables, the determinant of the matrix of this system
of equations is D := b? + nb by — mb3. As explained above, in the second para
of this proof, D can not be zero. Hence we can solve the preceding system of
cquations to obtain a4 and as;. Taking b;, 3 < 7 < 5, any arbitrary clements
of Fp, we got the required a;’s and b;’s, and the proof of the main assertion is
complcte.

As we know 81 = [B, 1] and 35 = [B, az] are both non-trivial. Using the
fact that 712 = 721 and |v4(G)| = p?, it follows that a; can not centralise
and 3 both. Then H := [ay,72(G)] € K(G) is a normal subgroup of G having
order at least p?. For, 72(G) being abelian, we have [o1,uv] = [a1,u][as, v]

for all u,v € 7(G). Since |G/H| < p°, it follows from Theorem 1.1.6 that
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K(G/H) = v:(G/H). The proof is now complete by Lemma 1.3.6. O

4.4 Proof of Theorem 4.1.1

So far we have handled groups of order p* with |y (G)| = p® and d(72(G)) > 4,
p > 5. The situation when d(y2(G)) < 3 has already been taken care of by I. de
Las Heras Theorem 1.1.5. So we arc only left with the case when [12(G)| = p*

and d(72(G)) = 4, which we’ll consider now.

Lemma 4.4.1 Let G be a group of order p” with |v2(G)| = p* and d(1:(G)) = 4.
Then K(G) # 72(G) if and only if one of the following holds:

(i) The nilpotency class of G is 3, Z(G) < 1(G) and | Z(G)| = p?,

(ii) The nilpotency class of G is 4, Z(G) £ %(G) and | Z(G)| = p*.

Moreover, the commutator length of G is at most 2.

Proof. By the given hypothesis the exponent of 7»(G) is p. If Z(G) < 1(G),
then the assertion follows from Theorem 3.1.1. So assume that Z(G) £ 72(G).
Thus | Z(G)| > p?. Notice that, in this case, the nilpotency class of G is at least
4. Obviously, d(G) is cither 2 or 3. If d(G) = 2, then there exists a minimal
generating set {ay, a} such that o € Z(G) — 7.(G), but (v’rj € 7(G). Then,
by Lemma 1.2.1, there exists a 2-generated group M of order p® such that M
and G are isoclinic and Z(M) < v(M). Also | Z(G)| = p| Z(DM)|. Tt now follows
from Theorem 3.1.1 that K(M) # ~o(M) if and only if the nilpotency class of
M is 4 and Z(M) is of order p*. This, using Lemma 1.2.2, simply tells that
K(G) # 7»(G) if and only if the nilpotency class of G is 4 and | Z(G)| = p®.

We now assume that d(G) = 3. We can then choose a minimal generating
set {ag, an, a3} for G such that az € Z(G) — 7(G). By the given hypothesis
ol € 15(G). Let M := (ai, az). Then the nilpotency class of M and G are equal,
Y2 (G) = 12(M), |M| = pb, Z(M) < v(M) and | Z(G)/ Z(M)| = p. Notice that
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M and G are isoclinic. Again invoking Theorem 3.1.1, K(M) # ~,(M) if and
only if the nilpotency class of M is 4 and Z(M) is of order p?. Onc can now
easily conclude that K(G) # v»(G) if and only if the nilpotency class of G is 4
and | Z(G)| = p*. That the commutator length of G is at most 2 follows from
3.3.1, which completes the proof. O

We are now ready to prove Theorem 4.1.1.

Proof of Theorem 4.1.1. If d(72(G)) < 3, then K(G) = 72(G) by Theorem 1.1.5.
Also when the nilpotency class of G is 6, then K(G) = 72(G) by Theorem 1.3.4.
This proves assertion (1). So we only need to consider d(72(G)) > 4 and the
nilpotency class of G at most 5. If [15(G)| = p*, then assertion (2) follows from
Lemma 4.4.1. The only case which remains is |2(G)| = p°. Notice that the
nilpotency class of G is at least 4. We now go according to the nilpotency class
of G. If the nilpotency class of G is 4, then v,(G) is abelian by Lemma 1.3.4, and
therefore it is elementary abelian by Lemma 4.2.2. Assertion (4) now follows
from Proposition 4.3.1.

Next assume that the nilpotency class of G is 5. If 72(G) is clementary
abelian, then assertion (5) follows from Proposition 4.2.2. If it is non-abelian
of exponent p, then assertion (6) follows from Proposition 4.2.3. Finally if the
exponent of v5(G) is p?, then assertion (3) follows from Proposition 4.2.1. The

proof is now complete. O

4.5 Examples

In this section we exhibit various examples of groups of order p’ to show that
1o class of groups considered in Theorem 4.1.1 is void. These examples are con-
structed from the structural information of the groups obtained in this chapter,

and have been verified for p = 5,7 using GAP [4]. For notational convenience,
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we use long generating set instead of minimal one.

The following two groups satisfy the hypotheses of Proposition 4.2.1:

G = <a1,u24w3,a4,u5,w6,a7 | [(117062] = a3, [0437011] = (g, [w37<)l2] = a5,
loy. 1] = ag, [ag, a1] = [as, @] = ar = 0‘37 0/1} = as,aé’ = g,

oz.,;”:l(4§i§7)>.

For this group G, 72(G) is abelian of exponent p?, | Z(G)| = p and K(G) # 12(G).

G = <(Vlyﬂ2,ﬂ:;-,(vly(¥5,%;ﬂ7 | [Whﬂz] = Q, [W;;»(Vl] = vy, [”:5-, Wz] = (5,
[vg, cu] = ag, [ag, o] = [eug, z] = o, as] = ar = aé’u’{ = u(;;ug = Qs

af =1 (4§i§7)>.

This is an cxample when 72(G) is non-abcelian of exponent p?, | Z(G)| = p and

K(G) # 22(G).
The next example satisfies the hypotheses of Proposition 4.2.2.

G = <a1»02~0@3’0¢4705,0@6»a7 | [011,0@2] = a3, [O‘Zhal] = Oy, [013,012] = Qz,

[og. 0] = ag, [og, n] = a7, 0P =1 (1 <i < 7)>
For this group G, 7,(G) is elementary abelian, | Z(G)| = p* and K(G) # 1(G).
The following two groups satisfy the hypotheses of Proposition 4.2.3:

G = <011-,042»(13»0¢4-,045,a6»a7 | [oa, o] = as, [as, a1] = ay, [as, as] = as,

[, 0] = g, [org, ] = [ ] = [o, ) = 070 =1 (1 < i < 7)>
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Notice that 75(G) is non-abelian of exponent p, | Z(G)| = p? and K(G) # 1(G)

for this group.

G = <Ut1,012»(1370u7015»u67047 | [011,(12] = Qg, [Ulmth] = Qy4, [usﬂ)ﬁ] = pQ7,

[z, Qo] = a5, [0, Qo] = g, [ag, ou] = [ag, 4] = ar, 0" =1 (1 <0 < 7)>

This is a group with 75(G) non-abclian of exponent p, | Z(G)| = p and K(G) =

72(G).

The following two groups are of nilpotency class 4 and satisfy the hypotheses

of Proposition 4.3.1:

G = <a1,a2,a3,a4,a57a6,a7 | [z, o] = ag, [as, 1] = oy, [ag, as] = as,

[og, on] = g, [og, ] = a0 =1 (1 <i < 7)>

For this group G, we have 7,(G) is elementary abelian, | Z(G)| = p* and K(G) #

72(G).

G = <()[],(,!2,(13,LV4,(15,(,¥(;,LV7 | [ahdz] = (3, [0137(11] = O, [Ulswuz] = Qs,

[as, a1] = [y, aa] = a7, [ag, aq]” = [a5,00] = af,a" =1 (1 <i < 7)>-,

where v is a quadratic non-residue mod p. Notice that 42(G) is abclian, | Z(G)| =

p? and K(G) = 12(G).

Finally we present two examples which satisfy the hypotheses of Lemma,
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4.4.1. These are as follows.

G = <0V1»C¥2-,043,0t‘4»a5-,046’0/7 [ Jou, ao] = ay, [y, 1] = a5, [ag, as] = ag,

[(1(57(1]] = [CV;,,(,VQ] = Q7 = (,l’g,dip =1 (1 S i S 7.4 7é 3)>

Notice that 19(G) is abelian, |Z(G)| = p* , the nilpotency class of G is 4 and

K(G) = %(G).

G = <a1,a2,a3,a4,a5,a6,a7 | Jan, o] = ay, [ay, 1] = a5, [ag, as] = as,

[0, 1] = ap = o, a? = 1 (1§i§7,7‘,7&3)>.

For this group G, 7(G) is abelian, |Z(G)| = p?, the nilpotency class of G is 4
and K(G) # 7(G).

Examples of the groups having nilpotency class 3 and satistying the hypothe-
ses of Lemma 4.4.1 are given in Chapter 3. One might use GAP for many more

cxamples for adequate primes.

4.6 Statistical data

In this concluding section we present some stataistical data on groups of order
p’, p = 2,3,5,7, using GADP [4]. Our motive is to computc the number of
such groups G for each prime such that K(G) # 72(G) according to various
paramcters occured in relevant results in Chapter 3 and the present one.

There are in total 2328 non-isomorphic groups of order 27, which are classified
in 115 isoclinism classes in [21]. It follows from [21] that all groups of order 27
(Theorem 4.1.3) in which K(G) # 72(G), fall in a single isoclinism class. All

such groups. total 52 in number upto isomorphism, lie in the isoclinism class 36
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of [21, Table 1].

It follows from the results occured in thesis that ¢l(G) = 1 or 2, when
G is of order p’. In all the tables that follow. the second last and the last
columns represent the number of groups G such that cl(G) = 1 and cl(G) = 2,
respectively. For want of space, we only display these conditions without the
phrasc ‘the number of groups’. In Table 4.1-4.5 we consider groups of order p’,

p =3.5,7, which occured in this thesis.

AG) @] @ TZG [ ZG)] dG) =1 | dG)=2
3 4 3t 3,32 3t 2821 0
3 4 3! 33 3 0 645
4 3 3* 3,32 | 3334 953 0
4 3 34 33 3* 0 44
4 4 3° 32 33,34 0 15
5 3 3 3 32 21 0
5 3 3° 3,32 3° 0 53

Table 4.1: Groups of order 37
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In Table 4.2 and Table 4.4, v,(G) is a 4-generated subgroup of order 5 and 74,
respectively.

o(G) | |Z(G)| [ Zo(G)]] Ie(G)] | cl(G)=1 (G) =2
3 5,52 5 5,52 15609 0
3 58 55 5,52 0 2085
4 552 | 53 5 5 2630 0
4 55 51 5 0 67
5 5,52 | 52,58 5 215 0

Table 4.2: Groups of order 57

In Table 4.3 and Table 4.5, 75(G) is of order 5° and 7°, respectively.

(@) [ A0 @] U] exp((G] [Zo(G)] [ G [ AG) =1 | cl(G) =2
4 5 52 5 54 52 18 43
5 4 5,52 5 53 £5 280 0
5 4 5,52 5 #53 5 244 0
3 4 5,52 5 53 5 0 101
5 4 5,52 52 59 5 0 55
5 5 5,5 5 58 5 0 98
6 4 5 53 57 5 99 0

Table 4.3: Groups of order 57
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(O [ 120G [ LA hGI ] @ =1 [ @) =2
3 7.7 7 7,7 61227 0
3 7 e 7,77 0 5459
4 7.7 .7 7 6806 0
4 73 4 7 0 93
5 7, 72 72,7 7 257 0

Table 4.4: Groups of order 77

c(G) | d(72(G))| | Z(G)]| exp(2(G))] | Zo(G)] | |7e(G) | (G) =1 | el(G) =2
4 5 72 7 7 72 88 165
5" 4 7,7 7 73 A7 607 0
5" 4 7,7 7 473 7 514 0
5 4 7,7 7 73 7 0 179
5 4 7,7 72 73 7 0 121
5 5 7,7 7 73 7 0 120
5 4,5 7 7 72 7 198 0

Table 4.5: Groups of order 77

We now present the overall data on groups of order p7, (p = 3,5,7) according
to the nilpotency class. Let G be a group of order p” having the nilpotency class
2. Then y5(G) is of order at most p?®, and hence l(G) = 1 by R. M. Guraluick
[11] when p > 5. For the remaining prime p = 2,3, it follows from GAD [4] that
cl(G) = 1. Now if the nilpotency class of G is 6, then ¢/(G) = 1 by Theorem

1.3.4. Data on the remaining classes is presented in Tables 4.6 - 4.8.
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|G| | No. of groups cd(G) =1 cd(G) =2
37 6050 5403 645
57 22652 20567 2085
77 76238 70779 5459

Table 4.6: Groups of nilpotency class 3
|G| | No. of groups cd(G) =1 cd(G) =2
37 1309 1250 59
57 3274 3164 110
77 7890 7632 258
Table 4.7: Groups of nilpotency class 4
|G| | No. of groups d(G)=1 d(G)=2
37 173 120 53
57 1188 934 254
d 2097 1677 420

Table 4.8: Groups of nilpotency class 5

We conclude with the remark that a classification of groups of order p7, p
odd, is given in [35]. Unfortunately we could not use this classification in any
sensible way. But it scems that one may usc this knowledge alongwith our
characterization to obtain a finer classification of groups G of order p” such that

c(G) = 2.
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