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The effect of geometric frustration on some

correlated electron systems

Synopsis

The notion of geometric frustration emerged originally in the context of Ising
spins with antiferromagnetic nearest neighbour interaction on a triangular lattice.
The classic solution by Wannier clarified how long range order is suppressed by
frustration in this case. One can generalise the situation to frustrated structures
in higher dimensions, e.g, the pyrochlore or the face centered cubic (FCC) lattices,
where neighbouring spins live on a tetrahedral motif. Such models, and their classical
and quantum Heisenberg versions, have been intensely studied.

Correlation physics, on the other hand, grew out of the continuing study of many
body systems over the last several decades, with a fresh impetus given by the discov-
ery of high Tc superconductivity in the doped Mott insulator La2−xSrxCuO4. This
thrust the Mott transition and the doped Mott insulator centerstage. It quickly be-
came apparent that a large family of oxides, including the magnetoresistive mangan-
ites, the high thermopower cobaltates, etc, owed their exotic properties to electron
correlation. The development of powerful tools like dynamical mean field theory
(DMFT) and its combination with ab initio methods has clarified many aspects of
correlation physics over the last two decades.

Correlated systems involve metals systems with itinerant electrons, while tradi-
tional frustrated systems are insulating magnets with localised electrons. There are
broadly two situations where they intersect:

� One may have a ‘two species’ system, of electrons and local moments, where
the local moments live on a frustrated structure and are Kondo (or Hund’s)
coupled to itinerant electrons.

� We could have a Mott insulator in a frustrated structure and the consider its
metallisation, due to decreasing interaction.

The first situation arises in Kondo lattice like, or ‘double exchange’, models, while
the second is described by the Hubbard model. In both cases the ideal frustrated
situation arises in the absence of itinerant electrons. The interest is in clarifying how
the presence of electrons in the Kondo lattice, or the approach to the insulator-metal
transition in Mott-Hubbard systems modifies the physics. The ‘two species’ descrip-
tion is appropriate for the pyrochlores (iridates, etc) and double perovskites, while
the Hubbard model is relevant for materials like the cluster compound GaTa4Se8 and
A3C60.

The thesis addresses the interplay of correlation effects and geometric frustration
in three cases: (i) the metallic double perovskites, (ii) the triangular lattice Hubbard
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model for the κ-BEDT organics, and (iii) the Mott transition in the face centered
cubic (FCC) lattice. It is organised as follows.

Chapter.1 provides a quick review of the twin areas of (i) geometric frustration
in magnets, and (ii) correlation driven phenomena in electron systems. We then
review the intersection of these two in the context of materials like (a) the κ-BEDT
based triangular lattice organics, (b) the FCC based Mott materials like the Ga
cluster compounds, GaTa4Se8, the fullerides A3C60, and the double perovskites, and
(c) the pyrochlore iridates and molybdates. While each family has its peculiarity,
we focus on the following generic features:

� Magnetism: long range order, spin freezing, or a spin liquid state,

� Resistivity and its temperature dependence near the IMT,

� Charge dynamics and spectral weight transfer near the IMT,

� Anomalous Hall response, where relevant.

The experimental summary is followed by a discussion of the minimal models that
are used for the materials above. There are broadly two kinds of models:

HKLM = H0 + J
∑
i

Si.~σi

HHubb = H0 + U
∑
i

ni↑ni↓

In both cases H0 defines the non interacting (band) problem. ~σ is the electron
spin operator. HKLM refers to a Kondo lattice model where the local moments Si
live on a frustrated lattice, while HHubb refers to the Hubbard model with electron
repulsion U . The KLM is a ‘two species’ model, involving spins and fermions, while
the Hubbard model just involves interacting electrons (at half filling in our case).
For the KLM, the usual approach is to use Monte Carlo (assuming the spins to be
classical) while the Hubbard model is solved via variational Monte Carlo, cellular
DMFT, or some form of cluster perturbation theory. We review the major results,
leaving the detailed discussion to later chapters.

Chapter.2 describes the models that we use and the computational strategy.
In the KLM case when the spins Si are treated as classical, their correlations are
controlled by the distribution

P{Si} ∝ Trc,c†e
−βHKLM

This trace is not analytically computable at strong coupling (large J) and we use a
exact diagonalisation based Monte Carlo to sample P{Si}. Electronic properties are
computed by diagonalising HKLM in the equilibrium configurations of P{Si}.

The Hubbard problem looks very different, and, beyond weak coupling, has tradi-
tionally been handled via quantum Monte Carlo and exact diagonalisation. Methods
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like DMFT also ultimately resort to these tools. These methods have a size limita-
tion, despite the enormous increase in computing power over the decades, and are still
not able to access complex magnetic states. We employed a Hubbard-Stratonovich
(HS) transformation to decouple the Hubbard interaction in terms of auxiliary charge
(φi) and spin (mi) fields, retaining full rotation invariance. We neglect the time de-
pendence of these fields, keep the charge field φi at its saddle point value U/2, but
retain the full spatial fluctuations in the mi. The Hubbard problem now looks like:

Heff
Hubb = H0 − U

∑
i

mi · ~σi +
∑
i

m2
i

This can be solved by the same tools as for the KLM. Neglecting time dependence
in the Hubbard case is an approximation and we check its validity against exact
answers wherever available.

Chapter.3 discusses our results on possible non ferromagnetic phases in the
metallic double perovskites. These are materials of the form ABO3.AB’O3 ≡A2BB’O6.
They usually involve a transition metal ion, B, with a large magnetic moment, and
a non magnetic ion B′. While many double perovskites are ferromagnetic, studies
on the underlying model reveal the possibility of antiferromagnetic phases as well
driven by electron delocalisation. We present a comprehensive study of the mag-
netic ground state and Tc scales of the minimal double perovskite model in three
dimensions using a combination of spin-fermion Monte Carlo and variational cal-
culations. In contrast to two dimensions, where the effective magnetic lattice is
bipartite, three dimensions involves a geometrically frustrated face centered cubic
(FCC) lattice. This promotes non-collinear spiral states and ‘flux’ like phases in
addition to collinear anti-ferromagnetic order. We map out the possible magnetic
phases for varying electron density, ‘level separation’ εB − εB′ , and the crucial B′B′

(next neighbour) hopping t′.

Chapter.4 makes a transition to the half-filled Hubbard model in two dimen-
sions, defined on an anisotropic triangular lattice. This structure is like a square
with one diagonal. The hopping along the axes is t, and along the diagonal it is t′.
While we have studied the entire phase diagram in terms of anisotropy, interaction
strength, and temperature, we focus on the anisotropy regime appropriate to the
κ−BEDT based organics. We study the interaction driven crossover, which mimics
the effect of pressure (or composition change) in the organics. We use bandstruc-
ture data and the measured transport gap to determine the electronic parameters
and obtain a consistent description of magnetism and the resistivity. We uncover a
pseudogap phase between the ‘ungapped’ metal and the ‘hard gap’ insulator, predict
the momentum dependence of quasiparticle broadening and pseudogap formation,
and clarify how these features arise from incommensurate magnetic fluctuations in
this frustrated system. Beyond the organic Mott problem, we have mapped out
the metal-insulator transition and pseudogap formation over the entire U − t′ − T
parameter space.

Chapter.5 discusses the Mott transition and magnetic properties of the Hubbard
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model on the FCC lattice. Like triangular motifs in two dimensions, the tetrahedral
motifs on the FCC lattice frustrate Neel order in the Mott insulator. We discover
that the low temperature state is a paramagnetic metal at weak interaction, an
antiferromagnetic insulator (AFI) with flux like order at intermediate interaction,
and an AFI with ‘C type’ order at very strong interaction. Remarkably, there is
a narrow window between the paramagnetic metal and the AFI where the system
exhibits spin glass behaviour arising from the presence of disordered but ‘frozen’ local
moments. The spin glass state is metallic at weaker interaction but shows crossover
to pseudogap behaviour and an insulating resistivity with growing interaction. We
make a qualitative comparison of our results with trends observed in a broad class
of FCC and pyrochlore based materials, and attempt a detailed quantitative match
for the Mott transition in the FCC compound GaTa4Se8.
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1.19 Ground state phase diagram of the Hubbard model on the anisotropic
triangular lattice. Notation for the phases is standard, except TRI:
1200 ordered insulator, and dSC: d wave superconductor. Generated
by extracting data from (a) [95,104] (b) [105,155] and (c) [102,107]. 45

1.20 Finite temperature phase diagrams established by C-DMFT. Left:
t′/t = 0.8 (taken from Ohashi et al [99]) Right: (a) t′ = 0.8t and
(b) t′ = t (taken from Liebsch et al [100]). . . . . . . . . . . . . . . . 46
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1.21 Left: FCC lattice, where green spheres denote the sites. The nearest
neighbours form tetrahedral motif, which is the geometric ingredient
for frustration. Right: pyrochlore lattice, seen as FCC lattice with a
basis of four site tetrahedra (denoted by black, red, green and blue
spheres). The nearest neighbours are connected by blue lines within
the basis, and red lines among neighbouring basis. . . . . . . . . . . 47

1.22 Left: Crystal structure of AM4X8 systems. Right: Molecular orbital
scheme for bonding of M4 clusters for seven electrons per cluster.
Taken from Elmeguid et al [114]. . . . . . . . . . . . . . . . . . . . . 50

1.23 Resistivity (left, taken from Elmeguide et al [114]) and the optical
conductivity (right, taken from Phuoc et al [115]) in AM4X8 systems. 50

2.1 Visualization of the our cluster based update scheme. . . . . . . . . 59
2.2 The ground state phase diagram obtained by different methods on

the anisotropic triangular lattice. (a). Our auxiliary field based (un-
restricted Hartree-Fock) result, (b). Variational Monte Carlo (VMC)
by Luca et al [95, 104], (c). Exact diagonalization (ED) by Clay et
al [105], and (d). Variational cluster perturbation theory (VCPT) by
Sahebsara et al [102, 107]. Within all schemes the ground state is a
paramagnetic metal at weak coupling (and large t′/t), a Neel ordered
antiferromagnetic insulator (AFI) at large U/t and small t′/t. The
detailed character of the large U/t and large t′/t state varies between
the methods [92–95]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.3 Lattice size L dependence of the field magnitude distribution P (m)
for the Hubbard model on triangular lattice with t′/t = 0.8. Four
columns are for four representative values of U = 4, 5, 6, 8, at low
temperature T/t = 0.005 ((a)-(d)) and high temperature T/t = 0.10
((e)-(h)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.4 Lattice size L versus the allowed q values on the given lattice. Points
on the vertical lines are the allowed values of the components (up-to
2π) on L × L lattice. Horizontal lines connect the same q values on
different lattice sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.5 Lattice size L dependence of the structure factor S(q) which describes
the angular correlations of the mi fields, for two representative values
of (a) U = 4, when the ground state is non-magnetic, and (b) U = 8,
when the ground state is in Mott insulating phase. . . . . . . . . . . 65

2.6 Lattice size L dependence of the full structure factor S(q) for U/t =
4, at two temperatures T/t = 0.02 (low temperature, upper row)
and T/t = 0.1 (high temperature, lower panel). qx,qy are along x,y
direction in range [0,2π]. . . . . . . . . . . . . . . . . . . . . . . . . 66

2.7 Lattice size L dependence of the full structure factor S(q) for U/t = 8,
in the same T, L set as figure 2.6. qx,qy are along x,y direction in range
[0,2π]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

11



2.8 Lattice size L dependence of the structure factor S(q) along some well
chosen cuts in in the q space. (a) U/t = 8 and (b) U/t = 4, are for
high temperature with T/t = 0.1, similarly (c) U/t = 8 (d) U/t = 4
are for low temperature with T/t = 0.02. . . . . . . . . . . . . . . . 67

2.9 Lattice size L dependence of the structure factor S(q) peak q from
Monte Carlo and variational minimization, (a). U/t = 8, (b). U/t = 6.
In general the minimising Q would be x̂Qx + ŷQy. Within both the
MC and the VC we get solutions that are roughly of the form x̂Q+ŷQ.
This Q is plotted here, in units of π. . . . . . . . . . . . . . . . . . . 68

3.1 Left: The lattice structure of the ordered double perovskite A2BB′O6.
Right: The same structure with oxygen removed, shows how B-B′ sites
are arranged in rock-salt ordering. If the bottom corner (blue) atom
is B, then its B nearest neighbours (connected by blue lines) are also
nearest neighbours of each other. The triangles preclude Neel order. 70

3.2 Level scheme and schematic band structure for the DP model when
only B-B′ hopping is allowed. The arrows denote localized atomic
levels. Red and blue denote ↑ and ↓ spins respectively. The atomic
level scheme is shown in (a). where the spin degenerate B′ levels are
at εB′ = 0 and the spin split B levels are at εB ± JS/2. We define the
effective B level as ∆ = εB − JS/2. When JS � t, the levels at εB′

and ∆ hybridize to create bands, shown for the FM case in (a), and
for a collinear AF phase in (b). . . . . . . . . . . . . . . . . . . . . . 72

3.3 Core spin order, and corresponding electron delocalization path. (a). ‘A
type’ order: the spins are parallel within the 111 planes (shown) and
anti-parallel between neighbouring planes. (b) The blue and red bonds
show the electron delocalization pathway for up and down spin elec-
trons in the A type phase. The path is effectively two dimensional.
(c) ‘C type’ phase with the spins parallel on alternating 110 planes,
and anti-parallel on neighbouring planes. (d) The delocalization path,
consisting of the 110 planes and the horizontal 001 planes. (e) A typi-
cal spiral phase and (f) the ‘flux’ phase. Since the spin configurations
are non-collinear the electrons delocalize over the whole system. . . . 73

3.4 Magnetic ground state for varying electron density, n, and effective B-
B′ level separation, for the model with only BB′, i.e., nearest neigh-
bour, hopping. The labels are: F (ferromagnet), A (planar phase),
C (line like), FL (‘flux’) and SP (spiral). This figure does not show
the narrow windows of phase separation in the model. The phase dia-
grams are generated via a combination of Monte Carlo and variational
calculations on lattices of size up-to 20× 20× 20. . . . . . . . . . . . 78
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3.5 Temperature dependence of structure factor peaks for three typical
densities and t′ = 0. (a). The ferromagnetic order at n = 0.2 for
∆ = 0, 4, 10. (b). The growth of A type correlations (and the noise
around the principal peak) at n = 0.50. The ordering wave-vector ~q0

is listed in Table-3.1. δ~q0 are ∼ O( 1
L

) (c). ‘Flux’ type correlations at
n = 1.50. The features are at and around the ordering wave-vector in
Table-3.1. Note the scale factors on the y axis in (b) and (c). . . . . 79

3.6 The full S(q) at T = 0 (left column) and T = 0.06t (right column).
The momentum along each axis goes from 0 − π. (a)-(b) is for FM,
(c)-(d) is A-type, and (e)-(f) is for the flux like phase. The densities
correspond to the same values as in Fig 3.5. In these scattered point
plots, the colour and the size of the points at given q scales with
the S(q). The scaling is chosen different for each phase, but same
for two temperatures. Because of the specific colour scheme chosen,
the low values are small white circles, which are essentially invisible,
highlighting only the higher q values. In each case (a)-(f), the three
axes correspond to qx,qy,qz respectively, and are in units of π, ie., they
go from 0 to 2π. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.7 n − Tc diagram for ∆ = 0, 4, 10 (top to bottom rows) as estimated
from the Monte Carlo. Starting from low density (n = 0) towards
high density (n = 1), we find FM with high Tc, thin window of A-
type order with very low Tc compared to FM, followed by the ‘flux’
phase (at ∆ = 0) or ‘spiral’ (at larger ∆). The symbols are the actual
MC estimated Tc, while the smooth lines are fit to the data. . . . . . 81

3.8 Density of states for the F, A, C, FL (‘flux’) and PM (paramagnetic)
phases. (a) ∆ = 0 and (b) ∆ = 6. For both ∆ the bandwidth
decreases in the sequence: F, PM, C, FL, and A (FL and C have
same bandwidth). The plot for ∆ = 6 is split in two parts, with the
region between ε = [0, 6], with zero weight, omitted. The δ function
arises from the localized B′ level. . . . . . . . . . . . . . . . . . . . . 82

3.9 The per site energy difference δE of the variational ground-state and
the paramagnetic phase. This provides a rough estimate of the Tc.
The parameters are (a)∆ = 0, (b)∆ = 4, (c)∆ = 10 and t′ = 0 in all
cases. The sequence of phases from low density to middle is FM, A,
C and ‘flux’ (∆ = 0) or spiral (∆ = 4, 10). The decrease in the ‘Tc’
with ∆ is more drastic in AF phases. . . . . . . . . . . . . . . . . . 83

3.10 Ground state phase diagram in the presence of t′ = ±0.3. . . . . . . 84
3.11 S(q) for t′ = 0.3 and ∆ = 0 at (a): a typical density n ∼ 0.5 for

A-type phase and (b): a typical density n ∼ 1.2 for C type phase. A
demonstration of S(q) with no sub-dominant peaks, unlike at t′ = 0. 85
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3.12 The full S(q) at T = 0 (left column) and T = 0.05t (right column)
(a)-(b) is for A-type, (c)-(d) and is C-type at the same densities as
Fig.3.11. The plotting scheme is same as in Fig.3.12. The scaling
is chosen different for each phase, but same for two temperatures.
The visible points denote the dominant q values. The three axes
correspond to qx,qy,qz respectively, and are in units of π, ie., they go
from 0 to 2π. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.13 Phase diagram obtained via Monte Carlo (left) and from the varia-
tional calculation (right) at t′ = 0.3 and ∆ = 0. . . . . . . . . . . . . 87

3.14 Asymmetric case, the energy difference δE of ground-state and para-
magnetic phase. Top: t′ = 0.3 The trends of δE match with Tc.
Bottom: t′ = −0.3 where FM is stable in the large portion of the
density. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.15 Asymmetric case, lowest eigenvalues plotted as function of ∆ for the
F,A,C and flux phases calculated from the dispersions. (a) t′ = −0.3
and (b) t′ = 0.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.1 Left: The triangular lattice with anisotropic hoppings t and t′. Right:
The equivalent square lattice with the same set of hoppings. . . . . . 93

4.2 Non-interacting magnetic susceptibility χ0(q) for anisotropic triangu-
lar lattice. We have qx, qy on the x and y axes, in units of π for each
plot. The upper panel is for t′ = 0, 0.2, 0.4, 0.6 where the maxima lies
on, or around {π, π}, while in lower panel for t′ = 0.7, 0.8, 0.9, 1 the
maxima has shifted to incommensurate q. . . . . . . . . . . . . . . . 95

4.3 Left: The ground state phase diagram. The blue region denotes the
Neel state characterized by q = (π, π). The thin red strip along t′ = 1
denotes the three sub-lattice 1200 spiral for which q = (2π

3
, 2π

3
). The

pink region represents incommensurate spirals at generic q. A reduced
scale of q−(π, π) shown as green arrows is drawn as illustration in the
spiral region. The black line is the metal insulator boundary based
on gap in the state, so that region below it is gapless/metallic. The
lower white portion gives the non-magnetic m = 0 solution. Right:
The color plot of the optimal m in the U − t′ plane. The contours are
visual guide to constant m. . . . . . . . . . . . . . . . . . . . . . . . 97

4.4 The magnetic instability wave-vector inferred in the weak coupling
limit (panel (a)), the corresponding χ−1

0 ∼ Uc (panel (b)), and the
Heisenberg limit wave-vector (panel (c)). These results set the rough
‘analytic’ limits of the theory. A full optimization based on the MC is
needed at intermediate coupling. χ−1

0 should fall to zero as t′/t → 0,
accessing that requires calculation on much bigger lattices. . . . . . 98

4.5 Density of states of the electron system at T = 0, using the varia-
tionally minimized background (which is roughly consistent with MC
results). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.6 The colour plot of the gap estimated in ground state. . . . . . . . . . 100
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4.7 Finite temperature phase diagram, for four values of t′/t. (a) t′ = 0,
(b) t′ = 0.4, (c) t′ = 0.8, (d) t′ = 1. The phases are paramagnetic
metal (PM), paramagnetic insulator (PI), antiferromagnetic metal
(AFM) and antiferromagnetic insulator (AFI). In (a), and (b) the
AFM and AFI phases are simple Neel ordered, while in (c) and (d)
these are non-collinear phases. PG indicates the pseudogap phase.
Tcorr indicates the temperature at which magnetic correlation length
becomes larger than lattice size. The MIT line defines the crossover
from metallic to insulating character, based on transport. . . . . . . 102

4.8 The U dependence of m̄(T ) for various temperatures, four represen-
tative values of t′. (a) t′ = 0, (b) t′ = 0.4, (c) t′ = 0.8 and (d) t′ = 1. . 103

4.9 The magnitude distribution P (m) at two values of t′ plotted for values
of U typical of weak and strong coupling and three temperatures each. 104

4.10 Snapshots of the auxiliary field magnitude, nearest neighbour angular
correlation (m0.mi), and the structure factor S(q). The left 3 × 3
panel is for t′ = 0 and U = 4 (the square lattice with Neel order) and
the right set is for t′ = 0.8 and U = 6 (anisotropic triangular lattice
with spiral order). Top row in each set is mi, next row is NN m0.mi,
where R0 is a fixed reference site, third row is S(q). Temperatures
(from left to right) are T/t = 0.02, 0.10, 0.20. . . . . . . . . . . . . . 105

4.11 Snapshots of mi fields showing U dependence of magnitude fluctua-
tions and the angular correlation at T = 0.1, U = 2, 3, 4, 5, plotted on
24× 24 lattice. Top row: Site dependent magnitude mi. Bottom row:
αi = mi ·m0, where m0 is field at some reference point. The electrons
see these as typical configurations, as the system evolves from corre-
lated metal with small U to antiferromagnetic insulator with large U .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.12 The structure factor S(q) for t′ = 0.8 plotted for increasing U =
4.2, 4.4, 4.6, 4.8, 5.0 (left to right), at two temperatures T = 0.1 (top
row) and T = 0.06 (bottom row). . . . . . . . . . . . . . . . . . . . . 107

4.13 Temperature dependence of the resistivity ρ(T ) for different U in the
neighbourhood of the MIT, plotted for the same four cross sections
of t′ as chosen in Fig.4.7 (a) t′ = 0, (b) t′ = 0.4, (c) t′ = 0.8 and
(d) t′ = 1. The U values, shown here are chosen around the MIT,
displayed in the legend. . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.14 Temperature evolution of the optical conductivity σ(ω). The left and
right boxes are for U = 4, and U = 5 respectively. The chosen cross
sections of t′ are (a) t′ = 0, (b) t′ = 0.4, (c) t′ = 0.8 and (d) t′ = 1. In
each figure, three temperatures T = 0.06, 0.1, 0.2 are plotted. . . . . 109

4.15 Optical conductivity at (a) T = 0.1, (b) T = 0.2 for U varying across
Uc, for t′ = 0.8. At these temperatures the σ(ω) is non Drude even
in the ‘weakly correlated’ case U ∼ 4.0. The finite frequency peak
evolves into the Hubbard transition at large U . . . . . . . . . . . . . 110
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4.16 Temperature evolution of the DOS N(ω). The left and right boxes
are for U = 4, and U = 5 respectively. The chosen cross sections of t′

are (a) t′ = 0, (b) t′ = 0.4, (c) t′ = 0.8 and (d) t′ = 1. In each figure,
three temperatures T = 0.06, 0.1, 0.2 are plotted. . . . . . . . . . . . 111

4.17 Density of states at T/t = 0.1, 0.2 for U varying across Uc. The dip
in the DOS deepens with increasing T for U/t . 4.8. For larger U/t
the system slowly gains spectral weight with increasing T . t′ = 0.8 . 111

4.18 Map of the N(ω = 0), the DOS at Fermi level, in the U − t′ plane
at four temperatures T = 0.06, 0.1, 0.2, 0.3. The black dotted line
denotes the MIT crossover. The region between red and green dotted
line represents the pseudogap region. . . . . . . . . . . . . . . . . . . 112

4.19 t′ = 0 case. Top: Momentum dependence of the low frequency spectral
weight in the electronic spectral function A(k, ω) at T/t = 0.1. kx, ky
range from [-π, π] in the panels. Note the systematically larger weight
near k = [π/2, π/2] and symmetry related points and smaller weight
in the segments near [π, 0] and [0, π] and symmetry related points.
U/t = 2.0, 2.2, 2.4, 2.6, 2.8, left to right. Bottom: S(q) for the mi

fields for the same set of U/t. The qx, qy range from [0, 2π]. Note
the very weak structure at U/t = 2.0 and the much larger and much
sharper peak at U/t = 2.8. . . . . . . . . . . . . . . . . . . . . . . . 113

4.20 Top: Momentum dependence of the low frequency spectral weight
in the electronic spectral function A(k, ω) at T/t = 0.1. kx, ky range
from [-π, π] in the panels. Note the systematically larger weight near
k = [π/2, π/2] and [−π/2,−π/2] and smaller weight in the segments
near [π, 0] and [0, π]. U/t = 4.2, 4.4, 4.6, 4.8, 5.0, left to right.
Bottom: Magnetic structure factor S(q) for the auxiliary fields mi

for the same set of U/t. The qx, qy range from [0, 2π]. Note the very
weak and diffuse structure at U/t = 4.2 and the much larger and
differentiated structure at U/t = 5.0. . . . . . . . . . . . . . . . . . . 113

4.21 Angle resolved spectral functions and t′/t = 0.8 highlighting the be-
haviour at the ‘hot’ and ‘cold’ spot on the Fermi surface. . . . . . . 114

4.22 Angle resolved spectral functions and t′/t = 0.8 and T/t = 0.04 as
U/t is increased across the Mott transition. . . . . . . . . . . . . . . 115

4.23 Temperature dependence of resistivity, ρ(T ) for interaction U in a
narrow window around Uc ∼ 4.3t. The values of U are displayed
besides the curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.24 : Temperature dependence of the DOS at three typical interaction
strengths. Top: monotonic suppression of the low energy DOS with
increasing temperature in the metal at U = 4.2t. Middle: non mono-
tonic behaviour of the low energy DOS with T at U = 4.5t, in the
insulator-metal-insulator crossover window. Bottom: monotonic in-
crease in the low energy DOS with increasing T ‘deep’ in the insulator
at U = 5.4t. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
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4.25 (a) Temperature dependence of the density of states at the Fermi level,
N(0), for varying U/t. (b) Nav(T ): the average of the density of states
N(ω, T ) over the low frequency window ±T around ω = 0. Since the
DOS has a sharp frequency dependence in the re-entrance window we
think the low frequency average, rather than just N(0), provides a
better correspondence with transport. . . . . . . . . . . . . . . . . . 118

4.26 Left: Phase diagram emphasizing the re-entrant feature near Uc. The
MIT line, TMIT (U), is the locus dρ(T,U)

dT
= 0. In the lower part, it

indicates thermally driven IM crossover, which matches the Tpeak(U)
(blue squares) reasonably (see text). Its upper part, indicates a MI
crossover. Right: a colour plot of N(0, T, U), with the TMIT (U) line
superposed. There is reasonable match between the shapes of constant
contour N(0, T, U) and that of TMIT (U). . . . . . . . . . . . . . . . 119

4.27 Left: P (m) distribution at U=4.2 (metal), 4.5 (re-entrance window)
and 5.4 (insulator) and T=0,0.06,0.1,0.2 . Right: The structure factor
S(q) arising from the spatial correlation of the mi at same U values
and T=0.1,0.2 . The qx, qy axes in the color plots are in range [0,2π],
so the center is (π,π). . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.28 Comparison of the experimental and fitted Mott gap. . . . . . . . . 122
4.29 Comparison of the experimental and theoretical optical conductivity

near the Mott transition. The experimental data at x ∼ 0.73 is ex-
tracted from Fig.3 of Dumm et al [87]. . . . . . . . . . . . . . . . . . 123

4.30 Comparison of the estimated Tcorr and experimental Tc. . . . . . . . 124
4.31 Comparison of the phase diagram with experiment. . . . . . . . . . . 125

5.1 Two dimensional cross sections of the structure factor data S(q) at
low temperature, T = 0.01 for: top row: U = 5 in the spin-glass
region, middle row: U = 7 for flux like order, and bottom: U = 20
for C type order. Each row has color plots of S(q) in the qx, qy with
selected qz = 0, π, π

2
, π, 3π

2
.. . . . . . . . . . . . . . . . . . . . . . . . . 133

5.2 Low temperature behaviour: The left panel shows the distribution
P (m) of the magnitude of the moments. Right: the electronic DOS
in the corresponding backgrounds. Notice the broad distribution with
a small mean that arises at intermediate U , and the much sharper
(ideally δ function) P (m) at larger values of U . The DOS shows a
pseudogap in the glassy phase. . . . . . . . . . . . . . . . . . . . . . 134

5.3 2D cross sections of tight binding susceptibility χ0(q) for (Top) the
FCC lattice and (Bottom) the simple cubic lattice. The figures are in
qx, qy planes, for selected qz values shown in the figures in the range
[0, 2π]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.4 The mi configuration in the flux state (left) and the C-type state
(right). The FCC lattice points Xi are shown by green spheres, and
the mi fields by red arrows. . . . . . . . . . . . . . . . . . . . . . . . 136
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5.5 The U − T phase diagram. In ground state, upon increasing U/t, the
system goes from PM (with no local moments) to successively, spin
glass SGM, SGI (with disordered local moments), then to ordered
AFI. At finite temperature the system also has a paramagnetic (Mott)
insulating (PI) phase. The magnetic transition temperature Tc, and
the spin glass freezing temperature TSG (see text), are indicated. We
show the extrapolation of the Tc ∼ 0.6 t

2

U
asymptote, that describes

the U/t � 1 transition, to highlight the large deviation from the
short range Heisenberg result. The PG region involves a pseudogap
in the density of states. . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.6 U dependence of the P (m) distribution at (a) T=0.03t showing weak
m̄, and broad distribution around it in the correlated metal to, pro-
gressively stronger m̄, and sharper distribution in the AFI with in-
creasing U . (b) The same for T=0.2t, where all the U have progres-
sively become broader and with higher m̄, as compared to those in
(a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.7 Temperature dependence of the P (m) distribution at three fixed U in
the SG window. (a) U = 5.2t, (b) U=6.2t and (c) U=6.7t. . . . . . . 139

5.8 Temperature dependence of τav(T, U), and S(q) at qflux. (a) U = 6
where, S(q) shows no growth, down to T = 0 for any q, while τav
starts growing around T ∼ 0.03. (b)-(d) for U = 7, 8, 9 respectively,
where S(q) and τav both grow at the same temperature (Tc = TSG). 140

5.9 U dependence of density of states N(ω) at (a) T=0.03t showing the
crossover from correlated metal to AFI through a wide pseudogap
window, and (b) T=0.2t, where the crossover is between the PM and
a PI through a much wider pseudogap window. . . . . . . . . . . . . 141

5.10 Temperature dependence of density of states N(ω) at three fixed U in
the SG window. See the thermally induced PG at weak U = 5.2t (a),
the presence of the PG at T = 0 itself for (b) U=6.2t and (c) U=6.7t. 141

5.11 (a) T and U dependence of the resistivity, calculated in units of
ρ0= ~a0

πe2
, a0 being the lattice spacing (for a0 ∼ 3Å, ρ0 ∼ 60µΩcm).

The PM window (U<Uc1) is metallic and the T=0 resistivity ρ(0)
vanishes. In the SGM phase (Uc1<U<Uc) is metallic, but ρ(0) is
finite. In the SGI phase (Uc<U<Uc2) ρ(0) is finite, insulating and
rapidly grows with U . For U>Uc2 the ground state has ‘flux’ order
and a gapped spectrum (insulating), ρ(0) is infinite. For the weakly
insulating ground states ((U − Uc)/Uc � 1) increasing T leads to a
crossover to metallic state. (b) The variation of the ρ(0) with U/t.
(c) The same for average moment m at T = 0. . . . . . . . . . . . . 142

5.12 Optical conductivity σ(ω) in units of σ0= 1
ρ0

, on the same U ,T set as

Fig.5.9(a)-(b). On increasing U/t, at low T (a) the response evolves
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CHAPTER1
INTRODUCTION

1.1 Overview of frustration and correlation

Geometric frustration in magnetism is best understood in the context of the nearest

neighbour Ising antiferromagnet on a triangular lattice. Variants of this, involving

triangular motifs in higher dimensions, quantum spins, and more complex interac-

tions, define this well explored field. All these systems are ‘insulators’, with no

relevant charge degrees of freedom, and the nature of spin-spin interaction is prede-

fined (otherwise the notion of frustration itself becomes ambiguous).

Correlated systems, as we will use the term in the thesis, involve itinerant elec-

trons. The magnetic degrees of freedom, independently present or self generated,

couple to these electrons. For us the magnetic degrees of freedom will reside on a

traditional ‘frustrated’ structure, but the interaction between them is not necessar-

ily short range antiferromagnetic. In fact when the electron system is ungapped the

magnetic interaction is effectively long range.

For us, the frustrated lattice mainly serves to rule out Neel order. We generally

do not know the spin-spin interaction, and need to solve the electron problem ‘ab

initio’ to infer the magnetic state. This is where the focus of the present thesis differs

from the mainstream of frustrated magnetism.

In what follows we review, successively, some of the general features associated

with frustration, correlation effects, the combination of the two, and then aspects of

double perovskite and Mott phenomenology relevant for us.
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(a) (b)

Figure 1.1: (a) The square lattice is bipartite as we can divide it into two sub-lattices,
say blue and green, where neighbours of blue are only green (and vice versa). (b) In
the triangular lattice such division is not possible.

1.1.1 Geometric frustration

To introduce the notion of geometric frustration let us start with the model of Ising

spins (σi = ±1) on a lattice with nearest neighbour (NN) coupling J . The Hamil-

tonian is given by E = J
∑

ij∈NN σiσj. If J < 0 the ground state corresponds to

all spins parallel, with total energy E = −Nz|J |
2

, N being the number of lattice sites

and z the number of nearest neighbours. Since Nz
2

is also simply the number of pair

interactions, one says that in this ferromagnetic case all pairwise interactions are

satisfied in the ground state.

When J > 0, one may naively expect that the ground state would correspond

to all NN pairs being anti-parallel. However, in contrast to a ferromagnet, such an

antiferromagnetic state may not exist for a given lattice. The existence of such a

state in a lattice, with all pairwise interactions satisfied, is possible only when the

lattice sites can be divided into two disjoint subsets (or sub-lattices) such that all

neighbours of a site in one set belong to the other set. This is a geometric property

of the lattice, and when it is satisfied we call the lattice bipartite. The nearest

neighbours of a given site in such a lattice are not themselves nearest neighbours

of each other, so a spin arrangement exists in which all NN pairs are anti-parallel.

This state is the Neel antiferromagnet. It can occur, for example, on a square lattice

(Fig.1.1(a)), and a simple cubic lattice.

A contrast is provided by the triangular lattice (Fig.1.1(b)), where the nearest

neighbours of a given site are also themselves nearest neighbours. This prevents

division of the lattice into two sub-lattices, the lattice is non-bipartite. Additional

examples are the face centered cubic (FCC) lattice and pyrochlore lattice. On such

a lattice, it is geometrically impossible to satisfy all the pairwise interactions, i.e., to

have a Neel state. This situation where not all pairwise interactions can be satisfied,
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Figure 1.2: Possible anti-parallel arrangements in a three spin system. The sites are
denoted by green circles, and spins by arrows. Each configuration has two satisfied
bonds (gray line) and one unsatisfied bond (thick red lines).

due to lattice geometry, is called geometric frustration.

If not the “saturated” state, what kind of low energy magnetic configurations are

available in a geometrically frustrated system? While this is a difficult question for

an infinite lattice, let us look at the toy problem of three Ising spins with J > 0,

Fig.1.2. There are six possible configurations with the lowest energy E = −J , shown

in the figure, and in each of them one pair has parallel spins. With all bonds satisfied

the lowest energy would have been E = −3J , instead of −J . Besides, the three site

system has 6 fold degeneracy. The degeneracy of the ground state grows with system

size. The classic solution of the Ising model on a triangular lattice, by Wannier [1]

in 1950, clarified the following

1. The ground state energy of the antiferromagnetic triangular lattice Ising model

is one third of the ferromagnetic case.

2. There is no singularity in the temperature derivative of the energy, i.e., specific

heat, hence there is no ‘Curie point’.

3. There is no long range order, the system is disordered at all temperatures.

4. The entropy at T = 0 is finite (S(0)
R

= 2
π

∫ π/3
0

ln(2 cosω)dω = 0.3383).

Three years later, Kano et al [2], showed similar results for Ising spins on a

Kagome lattice. In Fig.1.3 the total energy as function of temperature, calculated

by Wannier is shown for the triangular lattice (left), while the right panel shows

the Kagome result. For the ferromagnetic case, there is sharp decrease in the total

energy, near a ‘Curie point’ Tc where the derivative, i.e., the specific heat has a

singularity. For the antiferromagnetic case, however, the energy varies slowly, so the

specific heat has a broad maximum instead of any singularity.

The phase diagram of the Ising model with nearest neighbour (J1) and next

neighbour (J2) couplings, on the centered square lattice [3] and the Kagome lattice
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Figure 1.3: Temperature dependence of total energy for Ising systems. Left: Tri-
angular lattice, from Wannier [1]. The lower(upper) curve is for ferromagnetic (an-
tiferromagnetic) case. Right: Kagome lattice from Kano et al [2]. The solid set of
lower(upper) curve is for ferromagnetic (antiferromagnetic) case, while the dotted
curves are corresponding triangular lattice results.

Figure 1.4: The tetrahedral unit, building block of the FCC and pyrochlore lattices.

[4], are shown in Fig.1.5. The centered square lattice shows non-monotonic phase

boundary, where there is a ‘reentrance’ of AF phase between ferromagnetic and

paramagnetic phase. In Kagome lattice, the phase boundary is between ferromagnet

and a partially disordered phase, in which central spins (blue dots) are free, with

bigger reentrance window. The paramagnetic phase in the Kagome lattice also has

two different kind of spatial fluctuations [5] probed via a spin glass order parameter

proposed in [6], where one calculates overlap function qα,β =
∑N

1 〈σi〉α〈σi〉β/N and

probability distribution for q, P (q) =
∑

α,β PαPβδ(q − qα,β). The boundary of these

two disordered phases is shown by the dotted line. This line is referred to as ‘disorder

line’. Reentrance, multiple thermal transition, and the presence of ‘disorder line’ has

been seen in other models too. They are believed to be generic features of frustrated
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J1
J2

Figure 1.5: Temperature versus α (= J2/J1) phase diagram for the antiferromag-
netic Ising model on the centered square lattice [3] (left) and the Kagome lattice [4]
(right). F, AF, P and X are respectively ferromagnet, antiferromagnet, paramagnet
and partially ordered. Taken from Diep, et al [7]. The structure of the lattice are
shown in the bottom.

systems in two and three dimensions. In three dimensions for the pyrochlore or the

face centered cubic (FCC) lattices the neighbouring spins live on a tetrahedral motif

(Fig.1.4) involving four triangular faces.

In case of classical Heisenberg spins (unit vectors) with AF coupling on a frus-

trated structure the total energy may be minimized by non-collinear or non-coplanar

spin arrangements. While the Neel state cannot occur, the angular variables can al-

low other forms of long range order to occur. For example, on the triangular lattice

one finds the well known 1200 arrangement (Fig.1.6), and on the FCC lattice (where

the ground state is actually degenerate) a ‘C-type’ phase is selected by thermal fluc-

tuations. However, in many lattices like Kagome, checkerboard, and pyrochlore [8,9],

the geometric frustration is more severe, and it prevents any long range order of the

AF coupled NN Heisenberg model.

In these cases, when the ground state fails to sustain long range order, it may have

disordered spin arrangements, with short range AF correlations, e.g, spin glasses or

spin liquids. In a spin glass, below a certain temperature referred as ‘glass transition

temperature’ or ‘freezing temperature’, Tg, the relaxation time of the spins diverges,

and the spins are locked in a static random orientation. In the presence of quantum
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Figure 1.6: The non-collinear 1200 phase.

fluctuations these random orientations are no longer static, and result in spin liquid.

In case of pyrochlores even the classical spins have Tg → 0, an unusual state referred

as ‘classical spin liquid’ [8, 9]. These situations, both in their classical and quantum

versions, have been intensely studied [7–11].

While the triangular lattice with classical Heisenberg spins supports an ordered

ground state, Fig.1.6, the Kagome lattice and the pyrochlore lattice, for example, do

not. In these cases the Hamiltonian can be written as a sum of squares of the total

spin, Stot, of individual units (tetrahedron in pyrochlore, and triangles in Kagome),

which share only one vertex. The ground state is obtained by minimizing Stot for

every unit. This fixes relative angles within the unit but not the angles between

neighbouring units, leading to a large ground state degeneracy due to this local

freedom. In the Kagome lattice thermal fluctuations select a coplanar configuration

[10,11].

What about quantum effects? For a pair of quantum spins, with AF Heisenberg

coupling, the ground state is anyway not a ‘up-down’ configuration but a singlet, i.e,

a specific linear combination of the ‘up-down’ and ‘down-up’ states. Consider three

quantum spins on a triangle with AF Heisenberg coupling. The ground state is four

fold degenerate, with energy −3
2
J , instead of six fold degenerate as in the classical

Ising case with energy −J . These states are also linear combinations of ‘up-down-up’

states like 1√
2
(| + −+〉 − | − ++〉), 1√

2
(| + −−〉 − | − +−〉) etc. In the context of a

lattice, quantum fluctuations of this kind allow the system to partly overcome the

loss in energy due to classical frustration.

The quantum S=1
2

nearest neighbour Heisenberg antiferromagnet orders (at T =

0) on both the square and triangular lattice [12], though the order parameter is

reduced by 40% and 50% respectively, compared to the classical result. The Kagome

lattice is more frustrated than the triangular lattice [12–16].
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Figure 1.7: Cartoon of a valence bond crystal on the triangular lattice. (a) A regular
arrangement of singlet bonds where blue ellipses denote the singlets. An RVB state
is a superposition of many configurations of bond, which could be among (b) near
neighbours, or (c) long distance apart. (From Balents [78])

Unusual ground states may also arise. The simplest object is a valence bond

crystal (VBC), consisting of product of pairwise singlets of neighbouring spins (shown

as cartoon in Fig.1.7.):

|(a, b)〉 =
1√
2

(|a+〉|b−〉 − |a−〉|b+〉)

In a valence bond two spins are maximally entangled. In the VBC, the state

consists of static localized valence bonds, in which each spin is entangled with only

one other. Several materials exhibit a VBC state [17–19], and are interesting as they

provide an experimental way of studying Bose-Einstein condensation of magnons

(which are triplet excitations of the singlet valence bonds) in the solid state. When

these valence bonds are allowed to undergo quantum fluctuations, the ground state

is a superposition of different pairings of spins into valence bonds (Fig.1.7(c)). If

the distribution of these partitionings is broad, then there is no preference for any

specific valence bond and the state can be regarded as a valence-bond ‘liquid’ rather

than a crystal. This is generally called a resonating valence-bond (RVB) state [20].

The quantum Heisenberg antiferromagnet on checkerboard lattice shows long

range plaquette order [21–23] at isotropic coupling while the Kagome antiferromag-

netic is a spin liquid [12–16].
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1.1.2 Electronic correlation

Electrons in a solid interact with each other and with the lattice vibrations. In

case of narrow band materials, where a tight binding approximation is appropriate,

short range repulsion between electrons may have important effects on electronic

properties, producing magnetic moments and metal-insulator transition.

Early understanding and classification of materials in terms of their electrical

character was based on band theory, where a completely filled or empty band re-

sults in insulating behaviour, while partially filled bands lead to metallic behaviour.

However, it was found that several compound (e.g., NiO) do not respect this classifi-

cation [24]. Some materials, which are nominally at ‘half-filling’ behave as insulators.

Peierls [25] suggested that an insulating state could arise due to lattice period dou-

bling which can arise from electron-phonon coupling induced dimerization. This

could open a gap at the Fermi level.

In 1949 it was argued by Mott [26] that strong electron-electron interaction could

prevent electron delocalisation, and lead to an insulating state, if the bandwidth fell

below a critical value. This was the scenario for a Mott transition, made concrete

later in terms of a minimal lattice model by Hubbard, etc..

The Hubbard model [27] (also independently conceived by Gutzwiller [28] and

Kanamori [29]) describes electron delocalisation in the presence of local repulsion.

Originally introduced to address itinerant ferromagnetism [27] in transition metals,

its usefulness now extends to describing metal-insulator transitions, antiferromag-

netic order, and possibly d-wave superconductivity. Hubbard’s several papers [30–34]

worked out various limits of the model, and an approximate description of the Mott

transition.

Although continuously studied since its introduction, the Hubbard model and

the Mott insulator gained prominence with the discovery of high temperature su-

perconductivity in the doped cuprate La2−xSrxCuO4 [35, 36]. This thrust the Mott

transition and the doped Mott insulator center-stage.

It quickly became apparent that a large family of transition metal oxides, includ-

ing the ‘colossal’ magnetoresistance manganites (AxA
′
1−xMnO3) [37, 38], the high

thermopower cobaltates (NaxCoO2) [39], etc, owed their exotic properties to elec-

tron correlation [40–43]. The development of powerful tools like dynamical mean

field theory (DMFT) and its combination with ab initio methods has clarified many

aspects of correlation physics over the last two decades [44].

Important characteristics of these materials include: (i) the existence of sev-

eral competing states, a typical example is the high Tc phase diagram in Fig.1.8,
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Figure 1.8: Phase diagram of the electron and hole doped superconductors, show-
ing superconducting (SC), antiferromagnetic (AF), pseudogap, and normal metal
regions. x = 0 is the half filled Mott insulating phase. (taken from Damascelli [36])

(ii) strong sensitivity to perturbations like doping change, applied fields, disorder,

and temperature, and (iii) the occurrence of spontaneous nanoscale inhomogeneity.

1.1.3 Itinerancy and frustration

Correlation physics involves metallic systems with itinerant electrons, while tradi-

tional frustrated systems are insulating magnets with localized electrons. There are

broadly two situations where they intersect:

� One may have a ‘two species’ system, of electrons and local moments, where

the local moments live on a frustrated structure and are Kondo (or Hund’s)

coupled to itinerant electrons.

� We could have a Mott insulator in a frustrated structure and the consider its

metalization, due to increasing bandwidth.

The first situation arises in Kondo lattice like, or ‘double exchange’, models, while

the second is described by the Hubbard model. In both cases the ideal frustrated

situation arises in the absence of itinerant electrons. The interest is in clarifying

how the presence of electrons in the Kondo lattice, or the approach to the insulator-

metal transition in Mott-Hubbard systems modifies the physics. The ‘two species’

description is appropriate for the pyrochlores A2B2O7 (iridates, etc) and double

perovskites A2BB′O6, while the Hubbard model is relevant for materials like the

cluster compound GaTa4Se8 and A3C60. We review these quickly in the following

sections.
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1.2 Double perovskites

1.2.1 General introduction

The double perovskites (DP) constitute a large family of materials with the molecular

formula A2BB′O6, where A is a large electro-positive element, B and B′ are typically

transition metals and O stands for Oxygen. They can be thought of as two units

of perovskites, i.e., ABO3·AB′O3. In most cases, they crystallize in alternating BO6

and B′O6 octahedra arranged in the rock-salt manner, as shown in Fig.1.9. The

physical properties of double perovskites depend on

(a) The chemical combination B and B′, and

(b) The ionic radius and valence of A.

Figure 1.9: Left: The ordered double perovskite A2BB′O6 crystal structure, which
consists of alternating pattern of BO6, and B′O6 octahedra, in rock-salt manner.
Right: In the rock-salt B-B′ arrangement, each sub-lattice is FCC.

They exhibit a number of magnetic and electronic states, for example high

Tc ferromagnetic half-metal in Sr2FeMoO6 [45], high Tc ferromagnetic insulator

in Sr2CrOsO6 [46], and frustrated antiferromagnetic insulators in La2LiRuO6 [47].

There are also exotic magnetic states like spin glass (Ba2YReO6 [48]) and valence

bond glass Ba2YMoO6 [49].

1.2.2 Experimental results

Although studied for decades [50,51] it was the discovery of high Tc ferromagnetism

and half-metallicity in Sr2FeMoO6 [52] (SFMO) that led to renewed interest in the

double perovskites. They display a wide variety of properties.
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(a) SFMO is a high Tc half metallic ferromagnet with moderate low field magne-

toresistance. Could be useful for spintronic and switching applications.

(b) La2NiMnO6 [53, 54], is a ferromagnetic insulator with Tc = 270K, and shows

large magneto-dielectric response over a window ∼ 100− 300K [55].

(c) Sr2CrOsO6 [46] is a ferromagnetic insulator with Tc = 725K, with one of the

highest transition temperature reported.

Table 1.1: List of double perovskite materials
Perovskite Crystal structure Magnetism Tc,TN Transport
Sr2FeMoO6 Tetragonal FM 420K Half metal
Ba2FeMoO6 Cubic FM 345K Half metal
Sr2FeReO6 Cubic FM 400K Half metal
Sr2CrReO6 Cubic FM 635K Half-metal
Sr2CrOsO6 – FM 725K Insulator
Ca2CrReO6 Monoclinic FM 360K Insulator
Ca2FeReO6 Monoclinic FM 520K Insulator
La2NiMnO6 Monoclinic FM 280K Insulator
Sr2FeWO6 – AF 40K Insulator
Sr2FeCoO6 Tetragonal SG 75K Insulator
Ba2YMoO6 – VBG 0K Insulator

The magnetism in the DP’s arises from a combination of (i) Hund’s coupling

on the B, B′ ions and (ii) electron delocalisation. While there are important DP’s

where both B and B′ are magnetic ions e.g., La2NiMnO6, we will focus on materials

where only one ion, say ‘B’, is magnetic. In this category, there are insulating

DP’s [47–49,56,57], which are mostly in the category of Mott insulators, and metallic

DPs, for example Sr2FeMoO6 (SFMO).

Let us focus on metallic systems, where the effect of magnetic frustration is more

interesting and much less explored. A good starting point is the SFMO, where the

B atom (Fe) is magnetic while B′ (Mo) is non-magnetic. The ferromagnetism, and

its applications in SFMO is well explored [58–62], but much less is known about

the antiferromagnetism. Recent theoretical studies predicted that upon electron

doping, SFMO should show a transition to a metallic antiferromagnetic state [63,

64]. The synthesis of lanthanum doped (LaxSr2−xFeMoO6) compounds have revealed

signatures of antiferromagnetism at high doping [65].

The electronic structure of SFMO is shown in Fig. 1.10. The octahedral oxygen

coordination splits the five d-orbitals into a threefold degenerate lower manifold t2g
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Figure 1.10: The relevant electronic levels of Sr2FeMoO6.

and the twofold degenerate higher energy eg levels. The large Hund’s splitting in Fe

leads to high spin configurations, while for Mo, due to negligible Hund’s splitting

the level remain almost spin degenerate. SFMO exists in the mixed valent state

involving (a) Fe3+-Mo5+ in which Fe has 5 electrons filled in the lower, say up spin,

orbitals and Mo has 1 electron in the lowest t2g level, and (b) Fe2+-Mo6+, in which

Fe has 5 electrons in the lower up spin levels, and one electron on the next higher

‘down’ t2g level, and Mo levels are empty.

Based on the electronic structure established by Sarma et al [66], the lower t2g

and eg band of Fe lie well below the Fermi level and contribute localized S = 5
2

spin

at each Fe site, while the the upper t2g of Fe hybridize with the corresponding t2g

of Mo. The electron hopping amplitude t between the Fe, and Mo t2g level, and the

level difference ∆ are the crucial ingredients that decide the band structure of the

system. The next section discusses the origin of magnetic order.

1.2.3 Theoretical background

There have been several attempts at a theoretical understanding of the magnetism

in these materials. These consist of (i) ab initio electronic structure calculations,

and (ii) model Hamiltonian based approaches.

The ab initio calculations provide material specific information about the elec-

tronic structure [67], relevant energy scales and couplings like the hopping t, Hunds

splitting and level difference ∆ [64], and allow a rough mean field estimate of the

Tc [68]. Unfortunately, these calculations are rather complicated for non-collinear

magnetic phases that are likely in a frustrated magnetic lattice, which is the case

for SFMO, where the localized moments lie on the FCC ‘B’ site sub-lattice. In such

situations model Hamiltonian studies can provide some insight on possible ordered

states.
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Figure 1.11: Variation of magnetic Tc with band filling n. Left:(Millis [58]) in the
J → ρ limit, for different values of J − ∆ and WAA/WAB = 0.6, WBB = 0. Right:
(Brey [61]) for J −∆ = 0.3eV , tFeMo = 0.3eV , and tMoMo = 0.15.

The band theory for DPs like SFMO is described as sum of three two-dimensional

(2D) tight binding models, involving xy yz and zx planes, respectively, due to three

t2g bands. On the B sites the electrons are coupled to the localized spin. Since

the three bands do not hybridize with themselves, and the hopping is planar for

each band, the tight binding model has interesting two dimensionality. With this

as the starting point and DMFT as the tool the Tc and window of stability for fer-

romagnetism was estimated by Millis et al [58, 59]. and Brey et al [61]. Another

approach was variational mean field approach by Alonso et al [60] on a two dimen-

sional single band model, and a finite temperature phase diagram was constructed

between the ferromagnetic and the antiferromagnetic (AF) phase, highlighting the

phase separation. However the nature of the AF phase was not mentioned.

Each of these efforts establish the stability window of ferromagnetic phase, be-

yond which AF phase was a possibility. The occurrence of non-ferromagnetic phases

in spin-fermion problems has been known, and work based on the classical Kondo

lattice [69–72] had revealed that variation in carrier density can lead to a wide variety

of magnetically ordered phases.

Motivated by this a one band ‘double perovskite’ model had been studied in two

dimensions [63].

H = εB
∑
i∈B

f †iσfiσ + εB′

∑
i∈B′

m†iσmiσ − t
∑
〈ij〉

f †iσmjσ + J
∑
i∈B

Si · f †iα~σαβfiβ (1.1)

The f † and m† denote respectively the creation operators on the magnetic B site

(say Fe) and the non-magnetic B′ sites (say Mo) with the ‘on-site’ energies εB and

εB′ . t denotes the nearest neighbour hopping between the B-B′ sites. The Si are
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Figure 1.12: Schematic of the density of states in (a). the ferromagnetic, and (b). the
antiferromagnetic ground states.

classical localized spins on the B site coupled to electronic spins through coupling

J � t. Recalling the level scheme of SFMO in Fig.1.10, the effective level difference

between B and B sites will be ∆ = εB−J S2 −εB′ . One assumes J →∞ limit, keeping

∆ finite. The parameter space for the problem includes the level difference ∆/t,

electron density n, and and the temperature T/t. A schematic of the level scheme

and the generic density of states (DOS) in the ferromagnetic and antiferromagnetic

case is shown in Fig.1.12.

In the two dimensional model Sanyal et al [63] confirmed the existence of antifer-

romagnetic (AF) metallic, albeit collinear, phases. The magnetic phases are shown

in Fig. 1.13. Ab initio calculations [64] in the full 3D situation have since confirmed

the possibility of collinear antiferromagnetic metallic phases [64].

In three dimensions, however, the magnetic lattice becomes FCC! The frustrated

character raises the intriguing possibility of doping driven non collinear antiferro-

magnetic phases. Part of this thesis will explore this issue in detail.

0 1 2 3
n

0

2

4

6

8

10

∆

F A G A F

Figure 1.13: Left: The magnetic phase diagram of two dimensional model of ordered
double perovskite, in electron density n and level difference ∆. Right: The snapshot
of the magnetic phases, ferromagnet (F), A-type and G-type antiferromagnet.

36



1.3 Frustrated Mott systems

The Mott metal-insulator transition (MIT), and the proximity to a Mott insulator in

doped systems, are crucial issues in correlated electron systems [73–76]. Correlated

electronic systems involve strong short-range repulsion. At integer filling, the pri-

mary effect of correlation is the emergence of an insulating state where band theory

predicts a metal. The nature of this insulating state is also different from the band

insulator and involves non trivial magnetic correlations.

1.3.1 General introduction

Figure 1.14: Schematic of the Mott metal insulator transition, showing the filling
controlled (FC) transition and the bandwidth controlled (BC) transition. We will
focus on the BC scenario in this chapter.

Understanding the transition from a metal to the Mott insulator, and the effect

of doping the Mott state, are classic problems in quantum many-body physics. A

minimal description is provided by the single band Hubbard model.

H =
∑
ij,σ

[
tijc
†
iσcjσ + h.c.

]
︸ ︷︷ ︸

HTB

+U
∑
i

ni↑ni↓︸ ︷︷ ︸
HU

(1.2)

The first term (say HTB) denotes the kinetic energy involving the hopping amplitudes

tij, usually restricted to nearest neighbours. A given lattice and choices of tij defines

the density of states and bandwidth of the non-interacting systems. The second term,

HU , in equation (1.2) represents the interaction between electrons on the same site.

Whether the model has a metallic or insulating ground state depends on the relative

strength of interaction U/t and the electron density. A metal-insulator transition
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Figure 1.15: Schematics of the density of states (upper panel) and electron hoppings
(lower panel) for: (a) square lattice with nearest neighbour hopping t, (b) square
lattice with next nearest neighbour hopping t′ too, and (c) triangular lattice with
hoppings t,t′. The Fermi level at half filling is set to ω = 0.

(MIT) can be caused, see Fig. 1.14, either by (a) filling control: varying the electron

density towards n = 1 in a large U/t system, or (b) bandwidth control: increasing

U/t staying at n = 1. In the present thesis we will explore only the bandwidth

controlled transition.

While it is large U/t that is ultimately responsible for the Mott phase, the detailed

behaviour of the system depends crucially on the symmetry of the underlying lattice,

and the hopping parameters tij. This happens because weak coupling magnetic

instabilities depend on nesting features in the Fermi surface, and the magnetism in

the Mott phase depends on the lattice geometry. We set down simple features of a

few tight binding systems to address the weak coupling physics.

(a) Square lattice with nearest neighbour hopping (t)

(b) Square lattice with nearest (t) and next nearest hopping (t′)

(c) Triangular lattice, with anisotropic hoppings (t, t′)

Fig.1.15 shows the schematics of hopping amplitudes tij and and corresponding

density of states (DOS) N(ω) for the above three cases. Their dispersion relations

and bandwidth are listed in table below.
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Lattice Hopping Dispersion εk Bandwidth W

Square lattice with nearest t −2t(cos kx + cos ky) 8t

neighbour hopping

Square lattice with next t, t′ −2t(cos kx + cos ky) 12t (t′ = t)

nearest neighbour hopping −4t′(cos kx cos ky)

Anisotropic triangular lattice t, t′ −2t(cos kx + cos ky) 9t (t′ = t)

−2t′ cos(kx + ky)

Certain features of the DOS are noteworthy. All the systems (a)-(c) have a

logarithmic singularity in DOS. Case (a) has particle-hole symmetry, absent in the

other two. The location of the singularity, in terms of band filling, also differs

between the three cases. We will see in the chapter 4, that large DOS near Fermi

level results in stronger features in the Lindhard susceptibility, which in turn triggers

magnetic/charge instabilities in the presence of interactions.

To highlight the basic energy balance involved in the Mott transition we consider

the following. The ground state of this tight binding system is the Fermi sea

|FS〉 =

εk≤0∏
k

c†k↑c
†
k↓|0〉 (1.3)

This by definition is uncorrelated, i.e., occupation of ↑-spin electron on a given site

is independent of the occupation of ↓-spin electron on the same site. This means the

|FS〉 has a lot of charge fluctuations and double occupancy. The expectation value

of the interaction term HU in the Fermi sea can be calculated as

EU = 〈FS|HU |FS〉 = 〈FS|U
∑
i

ni↑ni↓|FS〉 =
1

4
NU (1.4)

N being the number of lattice sites. The tight binding energy is just the sum of

eigenvalues in the occupied part of the band, upto half filling. Assuming just nearest

hopping t, we have εk = −tε̃k, where ε̃k is just a number, we have

ETB = 〈FS|HU |FS〉 = 2
∑
εk≤0

εk = −t×
(

2
∑
ε̃k≤0

ε̃k

)
= −Nαt (1.5)

where, α is a number of order 1, which depends on the lattice geometry. The total

energy per site, in the uncorrelated ground state is thus

1

N
〈FS|H|FS〉 =

1

4
U − αt (1.6)
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Now consider the state |LOC〉 which represents a one electron localized at every

site, as would be appropriate deep in the Mott phase. The energy of this state is

simply 〈LOC|H|LOC〉 = 0. If we consider only the two limiting cases, |FS〉 and

|LOC〉 the energies become equal at a U/t|c = 4α.

In reality, the metal suppresses double occupancy with increasing U , so it com-

petes better with the localized state. This tends to push Uc higher, as observed in

DMFT estimates. Intersite magnetic correlations, on the other hand, stabilize the

insulator and tend to reduce Uc below DMFT estimates. So, while the argument for

a Mott state at large U/t is quite general, the actual MIT and associated magnetic

correlations are very lattice specific.

On a bipartite lattice the Mott transition is well understood in terms of mag-

netism and transport but the presence of triangular or tetrahedral motifs in the

lattice brings in geometric frustration [77,78]. This disfavours long range order, and

promotes complex electronic states with non-collinear, or incommensurate magnetic

character. Their nature, and impact on the MIT, remain an outstanding problem.

Such effects have seen some exploration in two dimensions, but hardly any in three

dimensions. Below we briefly discuss some key experiments and existing theory in

both these cases.

1.3.2 Two dimensional systems

1.3.2.1 Experiments

In two dimensions, a class of organic compounds provide a concrete testing ground for

studying the effects of frustration on the metal-insulator transition [79,80]. These or-

ganics are quasi two dimensional (2D) materials, with molecular formula κ−(BEDT-

TTF)2X, where κ-(BEDT-TTF) (also known as κ-ET) is an organosulfer molecule

(Fig.1.16 left), and ‘X’ is a halide like anion. The structural information is shown in

Fig.1.16 (right box), where (a) shows that the crystal consists of alternating layers

of the BEDT-TTF, and the same of halide X ions. In (b) we see the top view of

the single layer consisting only of BEDT molecules, which are dimerized, so that the

actual ’intra-dimer’ distances are small compared to ‘inter-dimer’ distance. X being

halide, each dimer has deficiency of electron, or a ‘hole’ carrier. If we imagine the

dimer as a single ‘site’, then this structure lies on a triangular lattice (Fig.1.16(c)).

From ab initio calculations, the dimer site is known to be correlated, as the large

lattice spacing, ∼ 11Å, leads to a low bandwidth, enhancing electron correlation

effects. The inter-dimer hoppings are anisotropic in general, with one of the three
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Figure 1.16: Left: Molecular structure of BEDT-TTF. Right: The crystal structure
of the κ−BEDT compounds: (a) in plane view, (b) top view are shown. Assuming
each dimer as a ‘site’ they lie on (c) a triangular lattice with anisotropic hoppings
t,t′. Taken from Kanoda et al [79].

nearest neighbour differing from other two [81]. If we ignore the weak inter-layer

coupling the low energy physics can be described by the single band Hubbard model

in two dimensions on the anisotropic triangular lattice [81,82].

In table 1.2 a material phase diagram is shown, constructed via ab initio methods

[82] in which compounds are placed in U/t−t′/t plane. The parameters are estimated

with extended Huckel (EH) and density functional theory (DFT) calculations. A

large number of these compounds are close to Mott transition, i.e., can be metalized

with moderate pressure. To give a few examples, materials like κ−Cl [83] and κ−CN

[84], which are Mott insulators, undergo an insulator-metal transition (IMT) on

hydrostatic pressure of order 20 Mpa. κ-Cl1−xBrx shows an IMT as x increases

above ∼ 0.75 [85].

X
A Cu2(CN)3

B Cu[N(CN)2]Cl
C Cu[N(CN)2]Br
D Cu(CN)[N(CN)2]
E Cu(NCS)2

F Ag(CN)2H2O
G I3

H k-(ET)4Hg2.89Br8

I k-(ET)4Hg2.89Cl8

Table 1.2: Open circle: Extended Huckel (EH) calculations (120K), Closed circle:
EH calculations (290K), Triangle: DFT calculations (taken from Shimizu et al [82])
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Figure 1.17: Top: The experimental phase diagram with pressure (Kanoda et al
[79]), and doping (Yasin et al [85]). Bottom: Corresponding transport measurement
as function of temperature (Left figure taken from Limelette et al [83]). In the
second figure (taken from Yasin et al [85]), the data from top to bottom are for
x=0.2,0.4,0.7,0.8,0.85,0.9 and, the absolute values of resistivity are multiplied by
10, 102, 103, 104 and 105 respectively.

Fig.1.17 shows the experimental ‘pressure-temperature’ phase diagram of the κ-

Cl with pressure and chemical doping, where the MIT boundary is estimated from

conductivity measurements. The salient points about the experiments are:

� The metallic state is very incoherent above T ∼ 50K, with ρ & 100 mΩcm [85].

� The optical conductivity [86, 87] shows transfer of spectral weight from high

frequency, ∼ U , towards zero frequency and has non Drude character over a

pressure window.

� The MIT boundary is non-monotonic, i.e, there is reentrance of insulating

phase at higher temperature [84,87]. See Fig.1.17 top row.

� NMR experiments suggests the presence of a pseudogap (PG) [88] in the single

particle density of states near the MIT.
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Figure 1.18: (a) Temperature dependence of the spin susceptibility for κ-CN, and
κ-Cl. (b) 1H-NMR spectra for single crystals of κ-CN, and κ-Cl under magnetic field
applied perpendicular to dimer layer. Taken from Kanoda et al [84].

� The NMR also provides some insight into the magnetic correlations in the

material [88–91].

The information about the detailed magnetic state is limited. In Fig.1.18 (a) shows

the magnetic susceptibility at ambient pressure for κ-CN, and κ-Cl (b) 1H-NMR spec-

tra of single crystals of the same. Fitting the susceptibilities of these two to Heisen-

berg model yields exchanges J=240K and 250K. The splitting of the lineshapes of

the NMR spectra with lowering temperature indicates the onset of magnetic order-

ing, which is seen at rather low temperature T = 27K in κ-Cl compared to exchange

J , however the exact nature of magnetic order is not known. On the other hand, for

κ-CN no change is observed down to T = 32mK despite of rather large exchange J ,

suggesting the suppression of long range order because of (greater) frustration.

These unusual magnetic states would result in unique transport, optical, and

spectral features. Our aim is to uncover the possible magnetic ground state on

the frustrated structure and examine the impact of the finite temperature magnetic

fluctuations on electronic spectra and transport.

1.3.2.2 Theoretical background

The single band Hubbard model is the starting point for approaching Mott physics.

On the triangular lattice, specifically, there have been several studies [83,92–103] to

model organic physics. We quickly review these.
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Method VMC
[95,104]

ED
[105,
155]

PIRG
[106]

VCPT
[102,
107]

DMFT
[83, 96,
97]

CDMFT
[98–101]

t′ − U Ground
state

Yes Yes Yes Yes Not yet Not yet

Finite T No No No No Yes Yes
Density of states No Yes No No Yes Yes
Transport/Optics No No No No Yes No*
Spatial correla-
tions

Yes No No No No limited

Table 1.3: Comparison of available many body methods to capture the Mott transi-
tion in the 2D triangular lattice. The left most column lists the indicators that we
may wish to access to understand the system.

1.3.2.2.1 Ground state methods Variational Monte Carlo (VMC) minimizes

the energy by optimizing the parameters in a variational wave function. The min-

imization of the energy is done via Monte Carlo sampling. This is a real space

approach, limited however to small lattice sizes N = 10 × 10. The reliability of

these calculations crucially depend on the quality of trial wave functions. Luca et

al [95] employed the VMC scheme optimizing two sets of wave functions derived from

(a) a mean field Hamiltonian with AF correlations, and (b) BCS Hamiltonian. They

concluded that for t′/t = 0.85 the MIT occurs at Uc/t ∼ 7.5, and the insulating

phase is a spin-liquid. Very recently [104] they have improved the variational set by

taking spiral states. This results in qualitative change in the phase diagram, where

at moderate insulating U the spin liquid was replaced by spiral antiferromagnets.

Exact diagonalization (ED) As the name suggest, involves numerical diagonal-

ization of the many-body Hamiltonian, using Lanczos algorithm for large sparse

matrices. The only limitation is that only lattices with a few sites (of order 16) can

be studied. Clay et al [105] studied the Hubbard model at half filling, for all t/t′

values on a 4× 4 size, and established a phase diagram. They studied the nature of

the states and concluded that the model does not exhibit superconducting state.

Path integral renormalization group (PIRG) method (Imada et al [106]) constructs

an optimized ground state wave function |Φ〉 as a linear combination |Φ〉 =
∑

l cl|φl〉
within the allowed dimension L, of the Hilbert space in a numerically chosen basis

{|φl〉}. The ground state is projected out after successive renormalization process in

the path integral, in a manner in which both the coefficients cl and the basis |φl〉 is

optimized.
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Figure 1.19: Ground state phase diagram of the Hubbard model on the anisotropic
triangular lattice. Notation for the phases is standard, except TRI: 1200 ordered
insulator, and dSC: d wave superconductor. Generated by extracting data from
(a) [95,104] (b) [105,155] and (c) [102,107].

Variational cluster perturbation theory (VCPT) divides the lattice into identical

clusters of size N (say) with the inter-cluster hoppings, and evaluates one particle

Green’s function within the cluster numerically with open boundary conditions. The

inter-cluster hoppings are treated perturbatively to recover the full Green’s function

G(k, ω). Depending on the size N , short range correlations can be accessed in the

system.(Sahebsara et al [102,107]).

To have a feel on how some of these method compare when accessing the ground

state, we show, in Fig.2.2 the ground state phase diagram using four different meth-

ods. (a) VMC by Luca et al [95, 104], (b) ED by Clay et al [105], and (c) VCPT by

Sahebsara et al [102,107].

1.3.2.2.2 Access to finite temperature has been usually with dynamical mean

field theory (DMFT). It has been the method of choice [83, 96, 97], mapping the

many body lattice problem to a many body local problem, supplemented by a self-

consistency condition [108]. Some spatial correlations can be included via cluster

DMFT [98–101]. Fig.1.20 shows phase diagram for anisotropic triangular lattice

established by (a) Ohashi et al [99] for t′ = 0.8t using 4 site cluster based C-DMFT,

and by (b) Liebsch et al [100] using 3 site cluster. They use the double occupancy

Di = 〈ni↑ni↓〉 to characterize the Mott transition.

Though the method captures the reentrance in MIT, as the Fig.1.20 shows, the

understanding of its origin isn’t present. Besides they present it in a limited window

of t′/t.
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Figure 1.20: Finite temperature phase diagrams established by C-DMFT. Left:
t′/t = 0.8 (taken from Ohashi et al [99]) Right: (a) t′ = 0.8t and (b) t′ = t (taken
from Liebsch et al [100]).

We summarize below the results of the above methods, skipping the detailed

discussion for later in chapter 4. On triangular motif, the results in general depend on

the degree of frustration and the specific method, but broadly suggest the following:

1. The ground state is a paramagnetic Fermi liquid at weak coupling, a ‘spin

liquid’ or para-insulator at intermediate coupling, and an antiferromagnetic

insulator at large coupling [92–95].

2. The qualitative features in optics [86] and transport [83] are recovered.

3. There could be a reentrant insulator-metal-insulator transition with increasing

temperature for a certain window of frustration [99,100].

4. A low temperature superconducting state could emerge [109–111], although

Clay et al [105] deny this possibility.

The following are the open issues

� Most of the real space techniques are for T = 0, except DMFT which ignores

spatial fluctuations. CDMFT does capture short range correlations but has

not been generalized to handle complex magnetic states [99].

� There is very limited data on transport [83, 86], obtained mainly via DMFT.

These do not capture the effect of magnetic correlations close to the Mott

transition.

� Similarly, there is no study of the angular anisotropy of the pseudogap and its

connection to magnetic correlations close to Mott transition.
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Figure 1.21: Left: FCC lattice, where green spheres denote the sites. The nearest
neighbours form tetrahedral motif, which is the geometric ingredient for frustration.
Right: pyrochlore lattice, seen as FCC lattice with a basis of four site tetrahedra (de-
noted by black, red, green and blue spheres). The nearest neighbours are connected
by blue lines within the basis, and red lines among neighbouring basis.

We use a real space approach that is complementary to DMFT, handles spa-

tial fluctuations and inhomogeneity well at finite temperature, and can provide a

comprehensive answer to these questions.

1.3.3 Three dimensional systems

Three dimensional frustrated systems usually have tetrahedral connections. Exam-

ples are FCC and pyrochlore lattice (see Fig.1.21). Below we review the experimental

literature, and theoretical development of these three dimensional frustrated corre-

lated systems.

1.3.3.1 Experiments

While there has been intense exploration of frustration effects in two dimensions,

as we saw in the last section, there is no organized body of work probing the inter-

play of geometric frustration and Mott physics in three dimensions. The systems

with geometric frustration in 3D are realized on (a) the FCC lattice and (b) the py-

rochlore lattice. In Fig.1.21, the lattice structure with nearest neighbour connection

is shown for (a) the FCC lattice, which consists of edge sharing tetrahedra, and (b)

the pyrochlore lattice, which consists of corner sharing tetrahedra.

There are, however, intriguing experiments on rather disparate systems whose

common features do not seem to have been noticed, and no theoretical effort to
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connect them. The FCC examples include

1. Cluster compounds (CC) of formula AM4X8 [112–115], where A is usually

Ga or Ge, M is transition metal and X is S or Se. In these compounds the

electronically active units are the ‘cluster’ M4, which have one unpaired electron

per cluster.

2. Some alkali fullerides of the form A3C60 [116, 118, 119, 151], which have C3−
60

ions on FCC lattice. Cs3C60 [118] for example, is magnetic insulator at am-

bient pressure, and becomes superconducting under pressure. It exists in two

crystalline forms, one in which the anion is FCC, the other in which its BCC.

At ambient pressure, the frustrated FCC polymorph has much lower Neel tem-

perature TN = 2.2K, compared to the BCC polymorph (TN = 46K).

3. The site ‘B’ ordered double insulating perovskites, e.g., Sr2InReO6 [57]. Many

of these do not show long range order but spin-glass [47,48,56], or valence bond

glass [49] character instead.

The pyrochlore examples include the molybdates R2Mo2O7 [120–122], and iri-

dates Eu2Ir2O7 [123–126]. Most of these materials are insulators close to a Mott

transition. They exhibit complex magnetic order, including a ‘spin frozen’ state,

and have unusual Hall response [127] indicative of non coplanar order. They show

unusual temperature dependence in the resistivity - larger in metallic state at high

temperature than the insulating state.

Let us focus on the FCC cluster compounds which seem amenable to modeling

within the single band Hubbard description.

1.3.3.2 AM4X8 compounds

The crystal structure of the AM4X8 compounds, is shown in Fig.1.22 (left). The

electronic correlation arise due to the large distance between M4 clusters, dc >

4Å, compared to the intra-cluster distances. According to molecular orbital (MO)

calculations, the d orbitals hybridize to form MOs which consist of three different

bonding states (a) a non degenerate level a1 followed by (b) two fold e and (c) three

fold t2 levels (see Fig.1.22 right panel). For A=Ga, we have 7 electron per cluster for

M=V,Nb,Ta and 11 electrons for M=Mo. In both cases, the occupation of cluster

levels corresponds to one unpaired electron per cluster. This is at the heart of the

single band Hubbard description.
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Compound GaM4Se8 A3C60 A2BB′O6 R2M2O7

Structure FCC [112] FCC,
A15 [151]

FCC Pyrochlore

Pressure stud-
ies

Hydrostatic Hydrostatic,
doping [116]

None Hydrostatic
[122,126]

Reference
state

Mott insulator Mott insulator Mott insulator
or metal

Mott insulator
or metal

Measurements Resistivity,
optical con-
ductivity,
Susceptibility

NMR [119] Susceptibility
[47,48,56,57]

Resistivity
[122,126], Hall
effect [127],
Susceptibil-
ity [121]

Magnetic state Glassy [112],
Flux [113]

Supercond
(FCC), AF
(A15)

Spin glass [47,
48,56,57],VBS
[49]

Spin glass
[120–122]

Table 1.4: Summary of experimental results available on three dimensional frustrated
compounds potentially close to a Mott transition.

� Early measurements [114] on GaNb4Se8 and GaTa4Se8 revealed a pressure

driven IMT at moderate pressure (∼ 10GPa).

� At ambient pressure the materials are insulating with gaps∼ 0.14eV and 0.1eV,

respectively.

� Increasing pressure (∼ 10GPa) leads to a phase with large but finite resistivity

at T=0, and dρ/dT < 0. This persists over a pressure window beyond which

they behave like conventional metals (see Fig.1.23 left panel).

� A very recent optical conductivity measurement on GaTa4Se8 (Fig.1.23 right

panel) indicates that the pressure driven transition involves large transfer of

low frequency weight and should be thought of as a Mott transition.

� Few magnetic measurements on GaNb4Se8 [112] suggest a large Curie-Weiss

constant (θCW ∼ −300K), but difficult to detect, suppressed non-collinear ‘flux’

like order [113].

1.3.3.3 Theoretical background

One can understand the pressure driven Mott transition in the cluster compound,

in terms of single band Hubbard model defined on the FCC lattice at half filling,

where the M4 clusters are mapped to a correlated site with Hubbard repulsion U
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Figure 1.22: Left: Crystal structure of AM4X8 systems. Right: Molecular or-
bital scheme for bonding of M4 clusters for seven electrons per cluster. Taken from
Elmeguid et al [114].

and nearest neighbour electron hopping t. Qn the FCC lattice, surprisingly, there

is hardly any theoretical work, except very early attempts using conventional static

mean field theory [128]. A very recent paper, Phuoc et al [115], does present a

DMFT based phase diagram, but there is no discussion about the nature of spatial

fluctuations, which could play a crucial role in the frustrated system.

Figure 1.23: Resistivity (left, taken from Elmeguide et al [114]) and the optical
conductivity (right, taken from Phuoc et al [115]) in AM4X8 systems.
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1.4 Agenda of the thesis

We have briefly reviewed the experimental background and theoretical progress in

two situations:

(a) double exchange driven magnetism in double perovskites, and

(b) pressure driven metalization of frustrated Mott insulators.

In both cases, the nature of magnetism has been a puzzle due to the frustrated

lattice geometry. Establishing the nature of magnetic correlations and possible long

range order, driven by electron delocalisation, defines the first task in the problems

above.

The nature of the magnetic background affects the electronic spectrum and trans-

port, quantifying this defines the second task. In particular, the metal-insulator

transition in the ground state, and a possible pseudo-gapped phase in the vicinity of

the MIT, is one important issue. In addition, thermal fluctuations have a dramatic

effect on the low frequency density of states, the angle resolved spectrum, the resis-

tivity, and the optics. Establishing the behaviour of these indicators in our models,

and comparing with available experimental data will be the major task.

There is a wealth of data in two dimensions from the organics, and some scattered

data in three dimensional frustrated materials close to the Mott transition. We will

use a Hubbard-Stratonovich decomposition to construct a ‘lattice field theory’ of

electrons coupled to auxiliary moments and try to provide a qualitative overview and

a detailed quantitative description of Mott physics in these systems, and compare in

detail with available experimental data.
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CHAPTER2
MODELS AND METHOD

In this chapter we discuss the tools we have used for solving the two models that

are relevant for us. These are, broadly, Kondo lattice type models relevant for the

double perovskites, and the Hubbard model for the Mott transition. The first section

introduces the models. This is followed by a discussion of the approximations we use

to set up a tractable numerical problem. The section after discusses the numerical

methods used. In the last section we describe the benchmarks against which we have

tested our results.

2.1 Models

We consider two kinds of models:

HKLM =
∑
〈ij〉σ

tij

[
c†iσcjσ + h.c.

]
+ J

∑
i

Si.~σi (2.1)

HHubb =
∑
〈ij〉σ

tij

[
c†iσcjσ + h.c.

]
+ U

∑
i

ni↑ni↓ (2.2)

In both cases the first term (say H0) defines the non-interacting (band) problem,

~σ is the electron spin operator. HKLM refers to a Kondo lattice model where the

local moments Si live on a frustrated lattice, while HHubb refers to the Hubbard

model with electron repulsion U . The KLM is a ‘two species’ model, involving

spins and fermions, while the Hubbard model involves interacting electrons (at half

filling in our case). For the KLM, the usual approach is to use a variant of classical

Monte Carlo (assuming that the spins can be treated as classical) while the Hubbard

model is solved via quantum Monte Carlo, cluster DMFT, or some form of cluster
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perturbation theory. We discuss the KLM problem first in the next section, and then

describe our approach to the Hubbard problem.

2.1.1 Kondo lattice systems

The Kondo lattice is a ‘two-species’ model, in which electrons delocalize on an un-

derlying lattice, via hoppings tij, and couple locally to core spins Si. The core spins

are supposed to arise from high spin states of electrons well below the Fermi level.

The coupling between the electrons and spins, J , would be large in our system.

HKLM =
∑
〈ij〉σ

tij

[
c†iσcjσ + h.c.

]
+ J

∑
i

Si.~σi (2.3)

The electronic properties emerge as a function of spatial arrangements of spins. The

probability P{Si} of a spin configuration is decided by the electron free energy in

that background.

P{Si} =
Trc,c†e

−βHKLM∫
DS Trc,c†e−βHKLM

(2.4)

To obtain P{Si}, one has to evaluate the trace over the fermions. This is ana-

lytically computable only in limiting cases, and in general one has to resort to some

numerical scheme. We use an exact diagonalization based Monte Carlo (ED-MC) to

sample the distribution P{Si}. The electronic properties are computed by diagonal-

izing HKLM in the equilibrium configurations of the sampled P{Si}. The detailed

procedure is discussed in Section 2.3.1.

2.1.2 The Hubbard model

The Hubbard model describes interacting electrons on a lattice, and is defined by

H =
∑
〈ij〉σ

tij

[
c†iσcjσ + h.c.

]
− µ

∑
i

n̂i + U
∑
i

n̂i↑n̂i↓ (2.5)

tij is the hopping amplitude, usually taken to be non-zero only between nearest

neighbours 〈ij〉 on a given lattice. It can be non-zero for further neighbours as well

and for a specific material should be determined via ab initio calculation.

The Hubbard problem looks very different from the classical spin Kondo lattice.

Beyond weak coupling it has been traditionally handled via quantum Monte Carlo

and exact diagonalization tools. Approximate schemes like DMFT also ultimately
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resort to these tools. These methods have a serious size limitation, despite the

enormous increase in computing power over the last two decades, and are still not

able to access complex magnetic states.

We use a new approach, discussed in the next section, which focuses on spatial

order and its fluctuations and allows us to access large lattice sizes. It is approximate

in nature, and maps the Hubbard problem at half filling to an effective Kondo lattice

like problem.

2.2 Approximations

2.2.1 ‘Classical’ approximation in the Kondo lattice

The model for that we will use for the double perovskites involves two sets of spatially

alternating electronic levels connected by a hopping amplitude, with the electrons

on one of these sites coupling to a core spin. This model involves two simplifications

with respect to the real material.

(a) The conduction states in reality are orbitally degenerate.

(b) The core spin is a quantum degree of freedom.

In a material like SFMO the bands near the Fermi level are formed by 3 t2g (xy,

yz, zx) orbitals which delocalize in x− y, y − z, z − x planes respectively. Multiple

orbitals could, in principle, have a qualitative effect on the physics, as it does in the

manganites via the Jahn-Teller distortion. The double perovskites do not seem to

involve strong lattice effects and the orbital degeneracy survives. In this situation a

single band model can describe the qualitative physics. In addition, a comparison to

ab initio results, which include the full electronic structure, confirms the usefulness

of the single band approach.

The local moment in SFMO has magnitude S = 5/2. So, while the original

Kondo lattice model of S = 1/2 moments coupled to electrons essentially involves

quantum dynamics of the spins, the double perovskite case can be approximated by

treating the core spins as classical. The quantum effects can be built in later via a

1/S expansion [129].

2.2.2 Static approximation in the Hubbard model

The presence of two body interaction requires the use of approximations, or numerical

tools, when studying the large U behaviour of the Hubbard model. We opt for an
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auxiliary field decomposition that captures the mean field ground state but retains all

thermal fluctuations. We use a Hubbard-Stratonovich (HS) transformation, below,

to decouple the interaction in terms of auxiliary fields φi and mi which couple to

charge and spin densities respectively. The specific form of the decomposition was

suggested by Hubbard [130,131] and explored further by Schulz [132]. It is motivated

by the need to capture Hartree-Fock theory at saddle point, and retain the correct

spin rotation invariance (and Goldstone modes). In terms of the Grassmann field

ψiσ(τ), we have:

exp

[
U
∑
i

ψ̄i↑ψi↑ψ̄i↓ψi↓

]
=

∫ ∏
i

dφidmi

4π2U
exp

[
φ2
i

U
+ iφiρi +

m2
i

U
− 2mi · si

]
(2.6)

where charge and spin densities are defined as,

ρi =
∑
σ

ψ̄iσψiσ, and si =
1

2

∑
a,b

ψ̄ia~σabψib (2.7)

The partition function is now written as

Z =

∫ ∏
i

dψ̄iσdψiσdφidmi

4π2U
exp[−

∫ β

0

L(τ)]

where, the Lagrangian L(τ) is (all operators have τ dependence)

L(τ) =
∑
iσ

ψ̄iσ∂τψiσ +H0(τ) +
∑
i

[
φ2
i

U
+ (iφi − µ)ρi +

m2
i

U
− 2mi · ~si

]
(2.8)

At half filling (n = 1), we make the following two approximations:

(a) We freeze the φi to its saddle point value (U/2)〈ni〉 = U/2. This is motivated by

the large U , which in the half-filled situation would penalize charge fluctuations.

It is worth noting that away from half filling there would be φi fluctuations

even at large U .

(b) We neglect the τ dependence of mi(τ) field but retain its full spatial depen-

dence. This allows unbiased choice of the T = 0 magnetic state, and retains

the thermal spin fluctuations on that state.

These two approximations lead to a model of electrons coupled to a the spatially

fluctuating classical field mi. After making mi dimensionless, by simple scaling
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mi → U
2
mi, the half filled Hubbard model is mapped to the following effective

Hamiltonian.

H =
∑
〈ij〉σ

tij

[
c†iσcjσ + hc

]
+
∑
iσ

(
U

2
− µ)niσ −

U

2

∑
i

mi · ~σi +
U

4

∑
i

m2
i (2.9)

where ~σi =
∑

a,b c
†
ia~σabcib = 2si. This model (equation (2.9)) has a classical part Hcl,

and electronic part Hel describing electrons coupled to mi fields, where -

Hel =
∑
〈ij〉σ

tij

[
c†iσcjσ + hc

]
+
∑
iσ

(
U

2
− µ)niσ −

U

2

∑
i

mi · ~σi (2.10)

Hcl =
U

4

∑
i

m2
i (2.11)

This resembles the KLM, with the crucial difference that the mi are not of fixed

magnitude. Nevertheless, the Kondo lattice like model for the double perovskites,

and the approximate model derived from Hubbard, can be solved by the same tools.

Neglecting time dependence in the Hubbard case has several physical conse-

quences that we will discuss later. In terms of advantages it allows:

� The access to non trivial magnetic states and captures their Tc scales accurately.

� It can access spectral and transport properties without any need for analytic

continuation.

� It is not tied to long range order, and can describe a spin disordered Mott state

and correlated metal as well.

2.2.3 Consequences of the approximations

The results of the KLM with S = 5/2 are well approximated by treating the spins

as classical. Quantum effects, for example spin waves, can be extracted via a 1/S

expansion [129].

For the Hubbard model, as we mentioned above, and would see in detail in Chap-

ter 4, our approximate scheme allows access to the finite temperature physics rather

well. However, the neglect of quantum dynamics of the auxiliary fields mi results in:

(a) missing the correlation effects in the ground state of the metal, overestimating

its energy and underestimating the critical U/t for metal-insulator transition, and

(b) missing a possible quantum spin liquid insulator [102, 103] at intermediate U/t.

We will discuss these issues in the relevant chapter.
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2.3 Numerical Methods

Both the models, the KLM (equation (2.3)) and effective Hubbard model (equation

(2.9)), have one feature in common. They both describe the motion of electrons

in the presence of spatially fluctuating classical fields, which are localized spins for

KLM, and the auxiliary fields for the effective Hubbard model. Both problems are

to be solved at strong coupling (J/t� 1 for KLM, or U/t� 1 for Hubbard model),

which is well beyond the perturbative regime. In the absence of analytical tools

one resorts to numerical methods. The numerical methods we use are broadly the

following:

(a) Real space Monte Carlo, where one ‘anneals’ the classical fields from high to low

temperature and samples the distribution of the classical field using Metropolis

sampling.

(b) Variational minimization, in which we use a family of spatially periodic con-

figurations of the classical variable and minimize the electronic energy over

them.

As we discussed, the KLM (equation (2.3)) and effective Hubbard model (equation

(2.9)), both describe electron propagation in a classical background of spins {Si} of

fixed magnitude (KLM), or the auxiliary fields {mi} (effective Hubbard model). For

a given configuration {mi} (or {Si}), the electronic Hamiltonian Hel is quadratic in

electronic operators, and one just needs to diagonalize it to get the single particle

eigenvalues. The total energy of the system is sum of (i) the classical part and (ii) the

electronic part which is sum of eigenvalues up to the chemical potential at T = 0, or

the free energy at finite T .

However, the configurations {mi} (or {Si}), themselves have to be determined

from a certain distribution. At finite temperature, the thermal distribution of the

fields is given by P{mi} (or P{Si}):

P{mi} ∝ Trc,c†e
−βHele−βHcl (2.12)

The fermion trace is not analytically calculable when the magnetic coupling term is

comparable to the kinetic energy and we need to converge towards the P{mi} via an

iterative combination of the Metropolis algorithm and exact diagonalization. This

is discussed next.
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Figure 2.1: Visualization of the our cluster based update scheme.

2.3.1 Real space Monte Carlo

We set up the electronic Hamiltonian in real space basis for a given lattice size for

an initial configuration of the classical field and attempt to ‘update’ this configura-

tion. The energy cost of this update has to be computed through the free energy

change of the entire system. The transition probability between configurations is

∝ exp (−β(F ′ − F )), where F ′ and F are free energy in the attempted and initial

configuration respectively. Computing F ′ − F requires diagonalizing Hel. This in-

volves an O(N3) computational cost per update, i.e, the cost per MC sweep would

be N4. This limits the accessible lattice size to N ∼ 100.

To access larger sizes within reasonable time we use a cluster algorithm (TCA) [133]

for estimating the update cost. Here, rather than diagonalize the full Hel for every

attempted update, we compute the update cost by diagonalizing a cluster (of size

Nc ∼ 64, say) around the reference site. This scheme has been extensively bench-

marked [133] and works reasonably unless we are attempting to recover states with

a large spatial period. A cartoon of the cluster scheme is shown in figure 2.1. The

computational cost now scales as NO(N3
c ) which is linear in lattice size N . This lets

us access large lattice sizes (24 × 24 in 2D (with Nc = 82), and 12 × 12 × 12 (with

Nc = 43) in 3D.

Once equilibrium is attained within the Monte Carlo scheme at a given tempera-

ture we use the MC configurations to calculate various properties of interest. Below

we list some of the key indicators that we track in the KLM and Hubbard model.
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2.3.1.1 Auxiliary field properties

� P (m): This describes the magnitude distribution of the mi fields:

P (m) =
1

N

∑
i

〈δ(m− |mi|)〉 (2.13)

The sum is over all the lattice sites, and 〈..〉 denote the average over thermally

sampled field configurations. This quantity is irrelevant for KLM model, as the

spins are fixed magnitude fields. For the Hubbard model it provides crucial

insight into Mott physics.

� Structure factor S(q): The angular correlation is accessed via the thermally

averaged structure factor −

S(q) =
1

N2

∑
ij

〈mi ·mj〉eiq·(Xi−Xj) (2.14)

at each temperature. The onset of rapid growth in S(q) at some q = Q, say,

indicates a magnetic transition. The electronic properties are calculated by

diagonalizing Hel on the full lattice for equilibrium {mi} configurations. The

nature of these correlations is characterized by the q at which the maximum.

2.3.1.2 Electronic properties

� Density of states (DOS) N(ω) at a given temperature is obtained by taking

thermal average of the single configuration DOS over equilibrium mi samples −

N(ω) = (1/N)
∑
α

〈δ(ω − εα)〉 (2.15)

The εα above are the eigenvalues in a single equilibrium configuration.

� Optical Conductivity σ(ω): The conductivity is calculated using the Kubo for-

mula (ref. [134]), which takes the form for a non-interacting disordered system

σxx(ω) =
σ0

N

∑
α,β

nα − nβ
εβ − εα

|〈α|Jx|β〉|2δ(ω − (εβ − εα)) (2.16)
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where the current operator ~J is

~J = −i
∑
i,σ,~δ

[
~δt~δ c

†
Xi,σ

cXi+~δ,σ
− h.c.)

]
(2.17)

The d.c conductivity is the ω → 0 limit of the result above. σ0=πe2

~ in 2D and
πe2

~a0 in 3D (a0 is the lattice spacing in the relevant direction). nα = f(εα) is the

Fermi function, and εα and |α〉 are respectively the single particle eigenvalues

and eigenstates of Heff in a given background {mi}.

� Spectral function A(k, ω): We extract the thermal and spin averaged spectral

function A(k, ω) as follows. The retarded Greens function

Gσ(k, t) = −iθ(t)〈{ckσ(t), c†kσ(0)}〉 (2.18)

can be simplified to the following

Gσ(k, t) = −iθ(t)
∑
α

|〈kσ|α〉|2e−iεαt (2.19)

where {|α〉} are the single particle eigenstates and εα are eigenvalues in a given

{mi} background. Doing the Fourier transform to frequency, one gets

Gσ(k, ω) =
∑
α

|〈kσ|α〉|2
ω − εα + i0+

(2.20)

Then, we have the spectral functions as

Aσ(k, ω) = − 1

π
ImGσ(k, ω) =

∑
α

|〈kσ|α〉|2δ(ω − εα) (2.21)

We average this over the sampled thermal configurations. The low frequency

part of the spectral function Aσ(k, ω = 0) serves to identify the shape of the

Fermi surface, and the hot and cold spot locations.

2.3.2 Variational minimization at T = 0

When the Monte Carlo suggests that the system is heading towards a state with

periodic spatial behaviour, a simple way to access the possible ground state is to try

a family of variational configurations. For simple enough configurations (discussed

further on) the electronic model may be analytically solvable. Even when that is
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not possible, the numerical cost of diagonalizing a system of size N for Ntrial con-

figurations is ∼ NtrialN
3, compared to the NtemprNsweepN

4 cost involved in the MC.

Ntempr is the number of temperature points and Nsweep is the number of MC sweeps

per temperature.

Taking our representation of the Hubbard model (equation (2.9)) and assuming

a set of periodic configurations mi defined by a magnitude m and period q:

mi = m
(

cos q · xi, sin q · xi, 0
)

(2.22)

we have

Hel =
∑
x,~δ,σ

t~δ

[
c†x,σcx+~δ,σ + h.c.

]
− Um

2

∑
x

(
e−iq·xc†x↑cx↓ + eiq·xc†x↓cx↑

)
(2.23)

This can be simplified by doing Fourier transformation to

H =
∑
k

(
c†k,↑ c†k−q,↓

)( εk −Um
2

−Um
2

εk−q

)(
ck,↑

ck−q,↓

)
(2.24)

Where εk is the tight binding dispersion for the lattice. For an anisotropic tri-

angular lattice this is given by εk = −2t(cos kx + cos ky) − 2t′ cos(kx + ky). The

eigenvalues can be readily obtained, and one gets

ε±,k =
1

2

[
εk + εk−q ±

√
(εk − εk−q)2 + U2m2

]
(2.25)

Once we get the dispersion, the total energy is

E(m,q) =
∑

k,α=±

θ(µ− εα,k)εα,k +
U

4
Nm2 (2.26)

To get the ground state, we minimize the total energy E(m,q) with respect to the

magnitude ‘m’ and vector q. On a two dimensional L × L lattice, q can take L2

values, as q = 2π
L

(qx, qy), where qx,qy are integers ranging from 0 to L− 1. One can

discretize m (bounded between [0, 1]) into ∼ 100 intervals. As we will see in the

solution of the 2D Hubbard model this provides some intuition into the nature of

possible magnetic order.
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Figure 2.2: The ground state phase diagram obtained by different methods on the
anisotropic triangular lattice. (a). Our auxiliary field based (unrestricted Hartree-
Fock) result, (b). Variational Monte Carlo (VMC) by Luca et al [95,104], (c). Exact
diagonalization (ED) by Clay et al [105], and (d). Variational cluster perturbation
theory (VCPT) by Sahebsara et al [102, 107]. Within all schemes the ground state
is a paramagnetic metal at weak coupling (and large t′/t), a Neel ordered antiferro-
magnetic insulator (AFI) at large U/t and small t′/t. The detailed character of the
large U/t and large t′/t state varies between the methods [92–95].

2.4 Benchmarks

Here we discuss selected benchmarks for our methods. We first provide a quick

comparison of our results with results from other methods (to be elaborated in

individual chapters later), and then discuss issues of size dependence.

2.4.1 Comparison with other methods

For the double perovskite model in three dimensions there is no other theoretical

effort probing the regime that we explore in this thesis. We will discuss the issue of

size dependence of our results in the appropriate chapter.

For the Hubbard model in 2D, on the anisotropic triangular lattice, there is a

significant body of work. We had summarized these in the first chapter. Here we

provide a quick comparison of these results with the ground state obtained by our

approach. This is to establish the basic usefulness of the auxiliary field approach.

Detailed indicators at finite temperature will be taken up in Chapter.4.

The principal methods for the ground state include variational Monte Carlo

(VMC) used by Luca et al [95, 104], exact diagonalization (ED) by Clay et al [105],

and variational cluster perturbation theory (VCPT) by Sahebsara et al [102,107].

Fig. 2.2 shows the comparison of results from these methods with that from the

auxiliary field based minimization (equivalent at T = 0 to unrestricted Hartree-Fock

(UHF) theory). The qualitative trends in the UHF result match with that in the more
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Figure 2.3: Lattice size L dependence of the field magnitude distribution P (m) for
the Hubbard model on triangular lattice with t′/t = 0.8. Four columns are for four
representative values of U = 4, 5, 6, 8, at low temperature T/t = 0.005 ((a)-(d)) and
high temperature T/t = 0.10 ((e)-(h)).

sophisticated approaches. At finite T , where the wave function based approaches

have limited use, the auxiliary field scheme would have a distinct advantage.

Most of the finite temperature studies have employed dynamical mean field theory

(DMFT) and its cluster variant (C-DMFT). DMFT recovers some of the generic

features in transport [83] and optics [86] but does not capture the impact of magnetic

correlations. C-DMFT has not been employed to explore response functions yet. We

will compare our results to these wherever possible.

On the FCC lattice, there is hardly any theoretical work, except for a very early

attempt using conventional static mean field theory [128]. A recent experimental

paper [115] does present a DMFT based phase diagram but that again does not

retain any of the magnetic correlations that would be important close to the Mott

transition.

2.4.2 Size dependence within the MC

In this section we provide a discussion of the size dependence of our results in the 2D

anisotropic triangular lattice Hubbard model, and establish that the 24× 24 lattice

that we use in Chapter.4 is adequate for most physical properties. This will allow us

to focus on the physics issues there without digressing into questions of finite size.

In what follows we show results on the anisotropic triangular lattice at t′/t = 0.8
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Figure 2.4: Lattice size L versus the allowed q values on the given lattice. Points
on the vertical lines are the allowed values of the components (up-to 2π) on L × L
lattice. Horizontal lines connect the same q values on different lattice sizes.

and focus on the magnetic indicators. Electronic properties are controlled by these.

Fig.2.3 shows the magnitude distribution P (m) of the auxiliary fields mi, at

two temperatures (T/t = 0.1, 0.005) for four representative values, U/t = 4, 5, 6, 8

across the Mott transition, for lattice sizes L× L with L ranging from 8 to 24. The

distribution is broad at high temperature and sharply peaked at low temperature.

The P (m) is practically insensitive to lattice size L at all U at high temperature. At

low temperature and large U the results are again independent of L but at the lowest

U , close to the Mott transition value, the L = 8 data differs from the larger U results.

Beyond L = 12 however even here the results are essentially size independent.
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Figure 2.5: Lattice size L dependence of the structure factor S(q) which describes
the angular correlations of the mi fields, for two representative values of (a) U = 4,
when the ground state is non-magnetic, and (b) U = 8, when the ground state is in
Mott insulating phase.
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Figure 2.6: Lattice size L dependence of the full structure factor S(q) for U/t = 4,
at two temperatures T/t = 0.02 (low temperature, upper row) and T/t = 0.1 (high
temperature, lower panel). qx,qy are along x,y direction in range [0,2π].

Figure 2.7: Lattice size L dependence of the full structure factor S(q) for U/t = 8,
in the same T, L set as figure 2.6. qx,qy are along x,y direction in range [0,2π].

We probed the underlying state more closely in terms of magnetic correlations,

rather than the gross size distribution. The allowed values of momentum change

with system size. On the L × L lattice the allowed q are given by q = 2π( qx
L
, qy
L

)

where qx, qy are integers in the range 0, 1, 2, ...L− 1. In Fig.2.4 we show the qx, say,

that are available for varying lattice size. For each choice of L the points on the

vertical line indicate this.

The next figure shows the temperature dependence of the peak in the magnetic

structure factor for two values of U and a wide range of L. The left panel establishes

that there is no magnetic order (and in fact no magnetic moment) at T = 0 in the

U = 4 problem. The L = 8 case shows a weak correlation, associated with the finite

size effect highlighted for P (m). The strength of correlation at finite temperature
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does depend on L but is reasonably stable by the time L = 24. For U = 8, right panel,

the lower L values give significantly enhanced values, and strong size dependence, in

the S(q) peak, but the results stabilise for L ≥ 20.

The full q dependence of S(q) is quite instructive. Fig.2.6 shows the result at

U/t = 4 and Fig.2.7 at U/t = 8, in each case for two temperatures, T/t = 0.02 and

T/t = 0.1. The panels from left to right are for increasing L as indicated.

For U/t = 4, low T suggests ordering at a wavevector ∼ (0.8π, 0.8π) but this is

systematically diminished with growing size. There are no moments and no order in

the large L system. The higher T result suggests short range correlation and that

pattern is reasonably stable with L. At this U/t we need L ≥ 20 to get a reliable

picture of the ground state.

At larger U , Fig.2.7, the moments are stable but the ordering pattern depends

on L. L = 8 has a peak at (π, π), and weak satellites, suggesting Neel order. With

increasing L however the peak shifts away from Neel order to q ∼ (0.8π, 0.8π), a

spiral state (weak a weaker peak in S(q)). Again for L ≥ 20 the pattern is stable.

Accessing the correct ground state even deep in the Mott window requires fairly

large L. The high temperature data has a q dependence that is similar at all L,

and is quantitatively stable for L ≥ 20. Fig.2.8 shows the same L dependence of the
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Figure 2.8: Lattice size L dependence of the structure factor S(q) along some well
chosen cuts in in the q space. (a) U/t = 8 and (b) U/t = 4, are for high temperature
with T/t = 0.1, similarly (c) U/t = 8 (d) U/t = 4 are for low temperature with
T/t = 0.02.
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Figure 2.9: Lattice size L dependence of the structure factor S(q) peak q from
Monte Carlo and variational minimization, (a). U/t = 8, (b). U/t = 6. In general
the minimising Q would be x̂Qx + ŷQy. Within both the MC and the VC we get
solutions that are roughly of the form x̂Q + ŷQ. This Q is plotted here, in units of
π.

structure factor, but along some well chosen cuts in the q space, specifically along

the line connecting (0, 0) to (π, π), to (π, 0) to (0, 0) itself.

Overall, conclusions about the magnetic ground state and fluctuations can depend

strongly on system size, but for L = 24 that we employ in 2D in most of the

calculations the results are free of finite size artifacts.

Variational minimization also involves a size dependence and we discover that

for L ≥ 20 the VC results are reasonably stable and the Monte Carlo and VC

based estimates are mutually consistent. Fig.2.9 compares the L dependence of the

ordering wavevector at two U values and suggests that for L = 24 the conclusions

are similar. Most of our MC results are at L = 24 but we have checked some data

points at L = 30 as well.

The checks above will allow us to focus on the physics that emerges from our

calculation without having to check for finite size artifacts frequently.
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CHAPTER3
NON-COLLINEAR MAGNETIC ORDER IN

THE DOUBLE PEROVSKITE

3.1 Introduction

In this chapter we discuss magnetism in the metallic double perovskites A2BB′O6.

These involve a transition metal ion B, with a large magnetic moment, and a non

magnetic ion B′. While many double perovskites (DP) in this category are ferromag-

netic there are hints of antiferromagnetic phases at higher electron doping. These

are driven by electron delocalization, instead of the short range super-exchange seen

in magnetic insulators.

We will present a comprehensive study of the magnetic ground state and Tc scales

of the minimal double perovskite model in three dimensions, using a combination

of spin-fermion Monte Carlo and variational calculations. The model is defined on

the three dimensional cubic lattice, where B and B′ sites are in a rock salt pattern

(Fig.3.1). The sub-lattice of the magnetic B atoms is face centered cubic (FCC) and

geometrically disallows a Neel state. As a result, the antiferromagnetic tendency

manifests itself as spiral order, or non-coplanar ‘flux’ like phases. We will map

out the possible magnetic phases for varying electron density, the level separation

between the B and B’ ions, and the crucial B′-B′ (next neighbour) hopping t′.

Previous study of double perovskites in two dimensions [63] revealed three collinear

phases, namely ferromagnet (FM), a diagonal stripe phase (FM lines coupled antifer-

romagnetically) and a ‘G type’ phase (up spin surrounded by down and vice versa).

In 2D the B sub-lattice is square and bipartite, so there is no frustration. If we had

a 3D simple cubic B lattice the counterparts of the 2D phases would be FM, A type
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Figure 3.1: Left: The lattice structure of the ordered double perovskite A2BB′O6.
Right: The same structure with oxygen removed, shows how B-B′ sites are arranged
in rock-salt ordering. If the bottom corner (blue) atom is B, then its B nearest
neighbours (connected by blue lines) are also nearest neighbours of each other. The
triangles preclude Neel order.

(planar), C type (line like) and G type (Neel). The B ion lattice in 3D is FCC, so,

while the FM and planar (A type) phases can exist, the C type phase is modified

and the G type phase is disallowed.

Fig.3.1(right) indicates why it is impossible to have an ‘up’ (↑) B ion to be sur-

rounded by only ‘down’ (↓) B ions, i.e., the G type arrangement. Two B neighbours

of a B ion are also neighbours of each other, frustrating G type order. The suppres-

sion of the G type phase, which occupies a wide window in 2D, requires us to move

beyond collinear phases in constructing the phase diagram for 3D. We will discuss

the variational family in Section 3.1.1.

Using a combination of Monte Carlo and variational minimization, our main

results are the following:

� We map out the magnetic ground state at large Hund’s coupling for varying

electron density and B-B′ level separation. In addition to FM, and collinear

A and C type order, the phase diagram includes large regions of non-collinear

‘flux’ and spiral phases and windows of phase separation.

� Modest B′B′ hopping leads to significant shift in the phase boundaries, and

“particle-hole asymmetry”.

� We provide an estimate of the Tc of these phases from the Monte Carlo where

possible, or make a rough estimate based an energy difference calculation.

This chapter is organized as follows. In section 3.1.1 we define the effective single

band model for the metallic double perovskites and describe the methods we use.
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Section 3.2 discusses our results on the particle-hole symmetric model, and section 3.3

describes the effect of a introducing electron hopping t′ between the non-magnetic

sites. Section 3.4 discusses some issues of modeling the real double perovskites. We

summarize and conclude the chapter in section 3.5.

3.1.1 Effective single band model

The alternating arrangement of B and B′ ions in the ordered cubic double perovskites

is shown in Fig.3.1. We use the following one band model on that structure:

H = εB
∑
i∈B

f †iσfiσ + εB′

∑
i∈B′

m†iσmiσ − µN̂

−t
∑
〈ij〉

[
f †iσmjσ + hc

]
+ J

∑
i∈B

Si · f †iα~σαβfiβ (3.1)

The f † correspond to the B ions and the m† to the B′. εB and εB′ are ‘on-site’

energy on the B and B′ sites respectively, e.g., the t2g level energy of Fe and Mo

in SFMO. µ is the chemical potential and N̂ =
∑

iσ(f †iσfiσ + m†iσmiσ) is the total

electron number operator. t is the hopping amplitude between nearest neighbour B

and B′ ions. We augment this model later to study first neighbour B′−B′ hopping t′

as well (−t′∑〈ij〉∈B′ [m
†
iσmjσ+hc]). J arises from the Hund’s coupling on the d shell.

The Hund’s coupling itself keeps the 5 core electrons polarised into a S = 5/2 state,

and the exclusion principle forces the conduction electron spin to be antiparallel to

this core spin. We will use |Si| = 1, and absorb the magnitude of S in J . σµαβ are

the Pauli matrices.

The model has parameters J , εB, εB′ , and µ (or n). Since only the level difference

matters, we set εB′ = 0. We have set t = 1, and use J/t� 1 so that the conduction

electron spin at the B site is slaved to the core spin orientation. The B site levels

are shifted to εB ± J/2 due to the strong on site coupling. To keep the difference

between the lower B level and the B′ level finite we set the parameter εB = ∆ +J/2,

where ∆ remains finite even as J/t→∞. We explore the phases as a function of n

and ∆/t. We will present results for

(a) the nearest neighbour hopping model (t′/t = 0) and

(b) when a non-zero B′-B′ hopping t′/t = ±0.3 is introduced.

A schematic for the on-site levels, and how they hybridize, is shown in Fig.3.2.

The structural unit cell of the system has 2 atoms (one B, one B′), which amounts
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B

Figure 3.2: Level scheme and schematic band structure for the DP model when
only B-B′ hopping is allowed. The arrows denote localized atomic levels. Red and
blue denote ↑ and ↓ spins respectively. The atomic level scheme is shown in (a).
where the spin degenerate B′ levels are at εB′ = 0 and the spin split B levels are at
εB ± JS/2. We define the effective B level as ∆ = εB − JS/2. When JS � t, the
levels at εB′ and ∆ hybridize to create bands, shown for the FM case in (a), and for
a collinear AF phase in (b).

to 4 atomic levels (2 up spin, 2 down spin). The two spin levels at the B site are

separated by JS and overlap with 2 spin degenerate levels of the B′ site at εB′ = 0.

We take ∆ in the range (0-10). One B band become centered at ∆ and second goes

to JS+∆. In this situation the down spin B and two B′ bands overlap while up spin

B band is always empty. The accessible electron density window includes the lowest

three bands, so our electron density will be in the range [0, 3] per formula unit.

To get a general feel of the band structure of the particle hole symmetric case,

we notice that we have three levels (excluding the highest f↑ level at JS + ∆ which

remains empty and is redundant for our purpose) in atomic limit. These include one

spin slaved f↓ level at ∆, and the two m↑, m↓, levels which overlap with the f↓ levels

depending on the spin configurations. This overlap leads to electron delocalization

and band formation.

In the ferromagnetic case, Fig.3.2.(a), only one spin channel (say m↓) gets to

delocalize through f sites and forms two bands, separated by a band gap of ∆, while

other spin state (say m↑) is localized at 0.

For collinear AF configurations, the rough band scheme is as shown in Fig.3.2.(b).

The conduction path gets divided into two sub-lattices, such that each spin channel

gets to delocalize in one sub-lattice (in which all the core spins point in same direc-

tion, making the sub-lattice ferromagnetic.) See Fig.3.3(a)-(b), and Fig.3.3(c)-(d)

for the details of the conduction path. In one such sub-lattice, only one of the ↑
or ↓ delocalized, the other remains localized. The roles of ↑ and ↓ are reversed in
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Figure 3.3: Core spin order, and corresponding electron delocalization path. (a). ‘A
type’ order: the spins are parallel within the 111 planes (shown) and anti-parallel
between neighbouring planes. (b) The blue and red bonds show the electron delo-
calization pathway for up and down spin electrons in the A type phase. The path is
effectively two dimensional. (c) ‘C type’ phase with the spins parallel on alternating
110 planes, and anti-parallel on neighbouring planes. (d) The delocalization path,
consisting of the 110 planes and the horizontal 001 planes. (e) A typical spiral phase
and (f) the ‘flux’ phase. Since the spin configurations are non-collinear the electrons
delocalize over the whole system.
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going from one sub-lattice to other, as a result one gets spin-degenerate localized

and dispersive bands for AF phases.

3.1.2 Methods of solution

3.1.2.1 Monte Carlo

The model involves spins and fermions, and if the spins are ‘large’, 2S � 1, they

can be approximated as classical. This should be reasonable in materials like SFMO

where S = 5/2. Even in the classical limit these spins are annealed variables and their

ground state or thermal fluctuations have to be accessed via iterative diagonalization

of the electronic Hamiltonian. As mentioned in chapter 2, we use a cluster based

Monte Carlo (MC) method where the cost of a spin update is estimated via a small

cluster Hamiltonian instead of diagonalizing the whole system [174]. We typically

use a 12× 12× 12 system with the energy cost of a move estimated via a 4× 4× 4

cluster built around the reference site.

We principally track the magnetic structure factor to explore the nature of mag-

netic order

S(q) =
1

N2

∑
r,r′

〈Sr.Sr′〉eiq·(r−r
′) (3.2)

where 〈...〉 denote thermal average. Although the magnetic lattice is FCC, the elec-

trons delocalize on the combined B-B′ system which is a cubic lattice. Hence we de-

fine our wavenumbers q with respect to the full B-B′ lattice. As a result even a simple

state like the ferromagnet corresponds to peaks at q = (0, 0, 0) and q = (π, π, π) and

not just q = (0, 0, 0). This is because the spin field is also defined on B′ sites and it

has to have zeros value on these sites.

The possibility of complex order in the ground state the Monte Carlo may require

large annealing time, and involve noisy data. So, to complement the MC results we

have also used a variational scheme discussed below.

3.1.2.2 Variational scheme

We now move to the variational approach. The variational states that we consider

here are more complicated than that discussed in the last chapter, and are O(N2)

in number, so we need some caution in implementing the scheme. We compute the

energy for periodic configurations where,

Sr = pr (x̂ sin θr cosφr + ŷ sin θr sinφr + ẑ cos θr) (3.3)
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with θr = qθ · r and φr = qφ · r with pr = 1 if r ∈ B and pr = 0 if r ∈ B′. x̂, etc.,

are unit vectors in the corresponding directions.

The vector field Sr is characterized by the two wave-vectors qθ and qφ. For a

periodic configuration, these should be qθ = 2π
L

(q1, q2, q3) and qφ = 2π
L

(p1, p2, p3),

where qi’s and pi’s are integers, each of which take L values in {0, 1, 2, 3, ...L − 1}.
There are ∼ L6 ordered magnetic configurations possible, within this family, on a

simple cubic lattice of linear dimension L.

The use of symmetries, e.g., permuting components of qθ, etc., reduces the num-

ber of candidates somewhat, but they still scale as ∼ L6. For a general combination

of qθ,qφ the eigenvalues of H cannot be analytically obtained because of the non

trivial mixing of electronic momentum states. We have to resort to a real space

diagonalization. The Hamiltonian matrix size is 2N × 2N (where N = 2L3) and the

diagonalization cost is ∼ N3. So, an exhaustive comparison of energies based on real

space diagonalization costs ∼ N5, possible only for N ≤ 83.

We have adopted two strategies: (i) we have pushed this ‘qθ,qφ’ scheme to large

sizes via a selection process described below, and (ii) for a few collinear configu-

rations, where Fourier transformation leads to a small matrix, we have compared

energies on sizes ∼ 1003.

First, scheme (i). For L = 8 we compare the energies of all possible phases, to

locate the optimal pair {qθ,qφ}min for each µ. We then consider a larger system with

a set of states in the neighbourhood of {qθ,qφ}min. If we consider ±π/L variation

about each component of qθ,min, etc, that involves 36 states. The shortcoming of this

method is that it explores only a restricted neighbourhood, dictated by the small

size result. We have used L = 12, 16, 20 within this scheme.

The phases that emerge as a result of the above process are (i) FM, (ii) A-

type, (iii) C-type, (iv) ‘flux’, and (v) three spirals SP1, SP2, SP3. A-type consists

of (1, 1, 1) FM planes with alternate planes having opposite spin orientation (see

Fig.3.3(a) left panel). If we convert each of these planes to alternating FM lines, so

that the overall spin texture is alternating FM lines in all directions, we get C-type

phase (see Fig.3.3(c)).

The ‘flux’ phase is different from the spiral families described using period vec-

tors qθ,qφ. It is the augmented version of ‘flux’ phase used in cubic lattice double

exchange model by Alonso et al (Table-I of ref. [71]). It has spin-ice like structure,

and is described by

S(r) =
p(r)√

3
((−1)y+z, (−1)z+x, (−1)x+y)
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Phase Peak location in S(q)
FM (0,0,0),(π,π,π)

A-type (π
2
,π

2
,π

2
),(3π

2
,3π

2
,3π

2
)

C-type (0,0,π),(π,π,0)
Flux (π, 0, 0), (0, π, 0), (0, 0, π)

(π, π, 0), (π, 0, π), (0, π, π)
↑↑↓↓ phase (π

2
, 0, 0), (3π

2
, 0, 0), (π

2
, π, π), (3π

2
, π, π)

SP1:qθ = (0, π
2
, π),qφ = 0 (0, π

2
, π), (π, π

2
, 0), (0, 3π

2
, π), (π, 3π

2
, 0)

SP2:qθ = (0, π
2
, π) (0, π

2
, π), (π, π

2
, 0), (0, 3π

2
, π), (π, 3π

2
, 0)

qφ = (0, π
2
, 0) (0, 0, π), (π, 0, 0) + (π, π, 0) + (0, π, π)

SP3:qθ = (0, π
2
, π) (0, π

2
, π), (π, π

2
, 0), (0, 3π

2
, π), (π, 3π

2
, 0)

qφ = (π
2
, 0, π

2
) (π

2
, π

2
, 3π

2
), (3π

2
, 3π

2
, π

2
), (π

2
, 3π

2
, 3π

2
), (3π

2
, π

2
, π

2
)

Table 3.1: Candidate phases, the associated qθ,qφ, for the spirals, and the peak
locations in the structure factor S(q). All the q components have the same saturation
value, given by 1

2Np
, where Np is the number of non-zero q peaks in the S(q). Np = 2

for FM, A and C, Np = 4 for ↑↑↓↓ and SP1,Np = 6 for flux and Np = 8 for SP2 and
SP3. The factor of 1

2
comes as we have half the spins at zero value, which halves the

normalization.

The spiral SPn phases are characterized by commensurate values of qθ,qφ (See Ta-

ble 3.1 for details of periods and the S(q) peaks).

The simplest, SP1 can be viewed as π
2
-angle pitch in the (110),(101) and (011)

directions. The other two spirals SP2 and SP3 are respectively C-type and A-type

modulations upon SP1. Just as flipping alternate 1, 1, 1 planes in a FM leads to the

A type phase, flipping the spins in the (111) planes alternatively in SP1, leads to SP3.

Analogously, flipping FM lines in a FM and leads to C-type order - and a similar

exercise on SP1 leads to SP2. This modulation is also seen in the S(q) peaks of SP2

and SP3. See the Table 3.1, where all the three spirals have 4 S(q) peaks common,

and SP2 and SP3 possess extra S(q) peaks of the A-type and C-type correlations.

In scheme (ii) we take collinear phases that occur in the phase diagram and

compare their energy on very large lattices. This does not require real space diago-

nalization. The simple periodicity of these phases leads to coupling between only a

few |k〉 states. The resulting small matrix can be diagonalized and the eigenvalues

summed numerically. We also included the ‘flux’ phase in this comparison. The

details of this calculation, and the the magnetic phase diagram from comparison of

FM, A, C and flux phases on large lattice size is discussed in Appendix A.

Particle hole symmetry in the model: The electrons move on the cubic lattice

divided into two FCC sub-lattices each of consists of only B or B′ sites. For each

of these sub-lattice, one can define particle-hole transformation [40] as fi → f †i and
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miσ → −m†iσ. This transforms the Hamiltonian as

Hparticle(∆, t, t
′)− µN −→ Hhole(−∆, t,−t′)− (µ−∆)N

When t′ = 0, this simplifies to

H(∆, t)− µN −→ H(−∆, t)− (µ−∆)N

This symmetry reflects in the phase diagram as the repetition of the phases after half-

filling. Introducing the t′ hopping destroys this symmetry, but a reduced symmetry

still remains, which relates

(∆, t, t′) −→ (−∆, t,−t′)

This is reflected in the phase diagrams of particle-hole asymmetric case.

3.2 Results: nearest neighbour model

We now discuss the results in the particle-hole symmetric case, i.e, t′ = 0. The

t′ 6= 0 situation is discussed in the next section. For each of these cases we first

discuss the ground state phase diagram, then the nature of magnetic correlations at

finite temperature, and finally the estimate of Tc.

Although the MC approach is ‘unbiased’, the results are are affected by finite

size and the use of single spin based update. We use MC results to establish the

dominant magnetic correlations in a parameter window and then explore these more

carefully using the variational scheme. The MC based Tc estimate is also checked

against a rough energy difference calculation that be implemented on the variational

ground state.

3.2.1 Monte Carlo

We studied a N = 12× 12× 12 system using the cluster based update scheme. We

used a large but finite J to avoid explicitly projecting out any electronic states [175],

since that complicates the Hamiltonian matrix but allows only a small increase in

system size. The magnetic phases were explored for ∆ = 0, 4 and 10.

In Fig.3.4, the magnetic ground state is shown, obtained via a combination of

Monte Carlo and variational calculations. We see that the phase diagram is sym-
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Figure 3.4: Magnetic ground state for varying electron density, n, and effective
B-B′ level separation, for the model with only BB′, i.e., nearest neighbour, hopping.
The labels are: F (ferromagnet), A (planar phase), C (line like), FL (‘flux’) and SP
(spiral). This figure does not show the narrow windows of phase separation in the
model. The phase diagrams are generated via a combination of Monte Carlo and
variational calculations on lattices of size up-to 20× 20× 20.

metric in density. For small ∆, in the range 0− 4, we have FM, followed by A-type,

C-type, and ‘flux’ phase. The order reverses as we go in the other half of the density

window. The G-type phase which was largest stable phase in 2D (Fig.2 and Fig.5 in

Ref. [63]) is almost taken over by the ‘flux’ phase. The stability of the ‘flux’ phase

decreases with ∆ and it does not show up for ∆ > 4. The phases that dominate the

phase diagram are listed in table 3.1.

Two complications arise in the Monte Carlo approach in the present model.

(i) Additional degeneracy of some AF phases: In addition to the usual spin rotation

symmetry, the A-type and C-type phases have four fold degeneracy. The A-type

phase for example can arise from planes that are normal to any of the four body

diagonals (not just (111)). This leads to growth of domains with different orientation

as the system is cooled and multiple peaks in the structure, table 3.2.

(ii) Geometrical frustration leads to the presence of multiple minima with similar

energy and increases the equilibration time.

Phase Plane normal S(q)
A1 ( 1, 1, 1) (π

2
,π

2
,π

2
)+(3π

2
,3π

2
,3π

2
)

A2 ( 1,-1, 1) (π
2
,3π

2
,π

2
)+(3π

2
,π

2
,3π

2
)

A3 ( 1, 1,-1) (π
2
,π

2
,3π

2
)+(3π

2
,3π

2
,π

2
)

A4 (-1, 1, 1) (3π
2

,π
2
,π

2
)+(π

2
,3π

2
,3π

2
)

Table 3.2: Peak location in the structure factors S(q) for the four A-type phases
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Figure 3.5: Temperature dependence of structure factor peaks for three typical
densities and t′ = 0. (a). The ferromagnetic order at n = 0.2 for ∆ = 0, 4, 10.
(b). The growth of A type correlations (and the noise around the principal peak)
at n = 0.50. The ordering wave-vector ~q0 is listed in Table-3.1. δ~q0 are ∼ O( 1

L
)

(c). ‘Flux’ type correlations at n = 1.50. The features are at and around the ordering
wave-vector in Table-3.1. Note the scale factors on the y axis in (b) and (c).

An illustrative plot of peak features in S(q) as function of temperature T , is shown

in Fig.3.5 for some typical densities. For FM, S(qFM) shows monotonic decrease of Tc

with increasing ∆. For A-type and ‘flux’ phase, the S(q) data shows a number of sub-

dominant q peaks whose number keeps increasing as we move to more complicated

phases with increasing density. These sub-dominant peaks arise due to a combination

of (a) geometrical frustration and (b) our cluster based update.

In Fig.3.6 we show the full structure factor in the the three phases, namely FM,

A-type and flux like. The data is visualized in following scheme. At every q, a sphere

is drawn, whose size, and colour scales with the value of S(q). The colour scheme

has white colour for the low values of S(q), so that in the present scheme, only the

most prominent q are displayed, and the smaller ones are essentially invisible.

For FM (Fig.3.6(a)-(b)), we see two bright spots at (0, 0, 0) and (π, π, π) at low

temperature, which correspond to the q values for ideal ferromagnet (see table 3.1).

At higher temperature T = 0.06t, its weight goes down, but other q are still negli-

gible, as the temperature is lower than Tc.

The A-type phase should ideally have peaks at (π
2
, π

2
, π

2
), and (3π

2
, 3π

2
, 3π

2
), or one

of its symmetry related qs (table 3.2). However, at low temperature, as in Fig.3.6(c)

it has comparable weights corresponding to A1 and A4, and few subdominant neigh-

bouring qs. These weight quickly diminish with increasing temperature (Fig.3.6(d)).

The Fig.3.6(e) shows the structure factor at density where we expect the flux

phase. Here the maximum weight lies close to q values corresponding to flux phase

(table 3.1), but the weight is more dispersed, and there are a lot of sub-dominant
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Figure 3.6: The full S(q) at T = 0 (left column) and T = 0.06t (right column).
The momentum along each axis goes from 0−π. (a)-(b) is for FM, (c)-(d) is A-type,
and (e)-(f) is for the flux like phase. The densities correspond to the same values as
in Fig 3.5. In these scattered point plots, the colour and the size of the points at
given q scales with the S(q). The scaling is chosen different for each phase, but same
for two temperatures. Because of the specific colour scheme chosen, the low values
are small white circles, which are essentially invisible, highlighting only the higher q
values. In each case (a)-(f), the three axes correspond to qx,qy,qz respectively, and
are in units of π, ie., they go from 0 to 2π.

qs. With increasing temperature, they diminish quickly.

Using the structure factor data, we establish the n − Tc phase diagram for ∆ =
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Figure 3.7: n−Tc diagram for ∆ = 0, 4, 10 (top to bottom rows) as estimated from
the Monte Carlo. Starting from low density (n = 0) towards high density (n = 1),
we find FM with high Tc, thin window of A-type order with very low Tc compared
to FM, followed by the ‘flux’ phase (at ∆ = 0) or ‘spiral’ (at larger ∆). The symbols
are the actual MC estimated Tc, while the smooth lines are fit to the data.

0, 4, 10 that is plotted in Fig.3.7. The Monte Carlo captures mainly three collinear

phases, namely FM, A-type, and a ↑↑↓↓ phase. The ↑↑↓↓ phase corresponds to two

FM up planes followed by two FM down planes and so forth. As the carrier density

is increased by increasing µ, we find a FM phase followed by the A-type AF. A ↑↑↓↓
phase appears in a thin window surrounded by FM itself. We suspected that this

as a finite size effect, and a comparison with the energy of the FM on larger lattices

(203), shows that the FM is indeed the ground state in the thermodynamic limit,

and so we consider FM and ↑↑↓↓ collectively as FM only, and presence of ↑↑↓↓ is

not indicated in the phase diagram.

The FM is stable at the ends of the density window, and its region of occurrence

is slowly enhanced as we increase ∆, see Fig.3.4 as well. The Tc however decreases

with increasing ∆ since the degree of B-B′ mixing (and kinetic energy) decreases.

With increase in n the 2D system is known to make a transition to a line-like

phase, and then a ‘G type’ phase (up spin surrounded by down, etc). The equivalent

in 3D would be a progression from FM to a ‘planar’ (A type) phase, then a ‘line like’

(C type) phase and finally to a G type phase if possible. Numerical complexity and

the geometric constraint modify the picture as below.

We do access the A type phase with some difficulty but our Monte Carlo cannot
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sequence: F, PM, C, FL, and A (FL and C have same bandwidth). The plot for
∆ = 6 is split in two parts, with the region between ε = [0, 6], with zero weight,
omitted. The δ function arises from the localized B′ level.

access the long range ordered C type phase. However, we see clear evidence of C

type correlations in the structure factor. Comparing the energy of the ideal C type

phase with the short range correlated phase that emerges from the MC we infer that

C type order is indeed preferred over a parameter window. However, we cannot

estimate a reliable Tc scale. In the next section we will see the variational results on

the C type phase and get a rough estimate of the Tc.

The G type phase is geometrically disallowed on the B sub-lattice due to its FCC

structure. An examination of the structure factor in the density window n = [1, 2]

suggests ‘flux’ like correlations at small ∆ which evolves into a spiral at larger ∆.

The frustration reduces the Tc of the phases in this density window compared to

that of the FM. We can calculate the energy difference between a fully random spin

configuration and the variational ground state. This δE serves as a crude measure

of the Tc of the phase.

When t′ = 0, the electron delocalization happens through B-B′-B paths only (see

the conduction paths, for example of collinear phases A and C in Fig.3.3(b) and 3.3

(d) respectively). In this case all the phases have an atomic level located at εB′(= 0)

in the limit J → ∞. This is directly seen in the density of states (DOS) of these

phase. In Fig.3.8 we show the DOS for the F, A, C, ‘flux’ and paramagnet phases.

This dispersion-less level gives constant Tc in density region n = [1, 2]. This feature,

and several others, are modified by finite B′-B′ hopping, which leads to broadening of

this level. It makes the DOS of the various magnetic phases asymmetric (in energy)

and also destroys the particle-hole symmetry in the phase diagram.
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Figure 3.9: The per site energy difference δE of the variational ground-state and
the paramagnetic phase. This provides a rough estimate of the Tc. The parameters
are (a)∆ = 0, (b)∆ = 4, (c)∆ = 10 and t′ = 0 in all cases. The sequence of phases
from low density to middle is FM, A, C and ‘flux’ (∆ = 0) or spiral (∆ = 4, 10).
The decrease in the ‘Tc’ with ∆ is more drastic in AF phases.

3.2.2 Variational scheme

Using the variational scheme discussed earlier one can establish a ground state phase

diagram. This is consistent, overall, with correlations that we see in the Monte Carlo,

and now allows us to compare candidate phases on large sizes. This establishes the

window of existence of the collinear phases, FM, A and C.

For the middle part of the density window no simple phase is suggested by the

Monte Carlo. The variational scheme suggests the phases to be SP1, SP2, SP3, and

‘flux’. See the configurations in Fig.3.3(e)-(f) and S(q) details from Table 3.1.

The variational scheme also allows a rough estimate of the Tc scale of the ordered

state. Ideally, one should compute the energy of ‘spin wave’ configurations about

the non trivial ground state, fit these to an effective Heisenberg model, and then

work out the Tc of that model. Here we simply compute the ‘binding energy’ of each

ordered phase, i.e, its energy gain with respect to the paramagnetic phase at the

same electron density, and use the size normalized value as an estimate of Tc.

δE = (1/N)(EV C(n)− Epara(n))

where EV C corresponds to the variational minimum and Epara to the paramagnet.

This calculation is no substitute for the full MC, and is only meant to supplement

the MC based Tc information and provide a rough estimate where MC is noise limited.
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3.3 Results: next neighbour hopping

The model with only ‘nearest neighbour’ (BB′) hopping has a rich phase diagram.

However, this has the artificial feature of a non dispersive level. In reality all materials

have some degree of B′B′ [64] hopping due to larger size of B′ ion, and we wish to

illustrate the qualitative difference that results from this hopping. We explored two

cases, t′ = 0.3 and t′ = −0.3 for these particle-hole asymmetric cases.

The n−∆ ground state phase diagram for t′ = ±0.3, obtained by a combination of

MC, and variational calculation, is shown in Fig.3.10. Turning on t′ has a significant

effect on the phase diagram, compare with the t′ = 0 case, Fig.3.4. The particle

hole symmetry (n → 3 − n) is destroyed but a reduced symmetry (n, ∆, t′) →
(3−n,−∆,−t′) still holds. The phase diagram is richer in the middle of the density

window where crossing among various phases occurs at different densities. Due to

the symmetry mentioned above it is enough to discuss the ∆ > 0 case with t′ = ±0.3.

The A-type phase becomes very thin in the left, but unaffected by ∆, while in

right side it widens up in the low ∆ and gets replaced by the spiral quickly as we

go up in ∆. ‘flux’ and C-type both become stable for high ∆ with a gradual shift

in the high density. For t′ = −0.3, at very small ∆ in the left and the middle part

A-type and the spiral are major candidates with small window for C-AF and ‘flux’.

The behaviour in this part is not very sensitive to sign of t′.

Focusing on t′ = −0.3, as go up from ∆ = 0 to ∆ ∼ 5 the AF phases become

less and less stable and are almost wiped out from the left part of the density, and

FM becomes stable there. The largest stability window of FM occurs roughly near
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of S(q) with no sub-dominant peaks, unlike at t′ = 0.

∆ ∼ 5, where its stable up-to n ∼ 1.8. Going further with higher ∆, FM looses its

stability, from C type, ‘flux’ and spirals. However, there is very thin strip of stability

of the FM in the band edge in the left part, and towards the middle density, there is

re-entrance of the FM phase. In the right part of the density window we have FM,

A type and spiral. Increasing ∆ reduces the stability of A type to FM, making it

vanish near ∆ ∼ 7, while FM window keeps increasing with ∆.

Overall, t′∆ > 0, shows a rich set of antiferromagnetic phases, while t′∆ < 0,

gives a ferromagnetic window, suppressing antiferromagnetic phases.

3.3.1 Monte Carlo

In Fig.3.11(a),(b) we show the structure factor data at two densities, for (a) A type

and (b) C type phases, to demonstrate one remarkable difference from the particle-

hole symmetric case. Fig.3.12 shows the full structure factor at low (T=0) and some

high temperature (T = 0.05t) at the same densities for A and C type phases.

As we saw earlier in Fig.3.5 (temperature dependence) and Fig.3.6 (full S(q))

for t′ = 0 the structure factor data were very noisy for AF phases, with many sub-

dominant q peaks around the central peak. The saturation value for the A-type peak

in the symmetric case was ∼ 10−2, while now it is ∼ 0.2, close to the ideal value of

0.25! This is also evident for the full structure factor. Fig.3.12(a) shows clean peak

at (3π
2
, π

2
, π

2
) and (π

2
, 3π

2
, 3π

2
), with other qs essentially zero. The largest weights of

C-type (Fig.3.12(c)) are close to (π, 0, 0) and (0, π, π), with very few subdominent

qs (recall table 3.1 for q values of clean phases).

The sharp change in the structure factor makes the identification of the Tc scale

more reliable. Although inclusion of t′ does not remove the noise completely, it is
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Figure 3.12: The full S(q) at T = 0 (left column) and T = 0.05t (right column)
(a)-(b) is for A-type, (c)-(d) and is C-type at the same densities as Fig.3.11. The
plotting scheme is same as in Fig.3.12. The scaling is chosen different for each phase,
but same for two temperatures. The visible points denote the dominant q values.
The three axes correspond to qx,qy,qz respectively, and are in units of π, ie., they go
from 0 to 2π.

reduced over a reasonable part of the phase diagram.

Fig.3.13(a) presents the n− Tc phase diagram for t′ = 0.3 and ∆ = 0 established

from Monte Carlo, along with the δE from the variational approach (Fig.3.13(b)). In

this case, the phases that appear as a function of density n are FM, A type, spiral,

C type, A type and FM again. For FM, the window of stability gets reduced in

the left (low density) part but enhanced in the right (high density) part. The ↑↑↓↓
phase appears again, but being a finite size artifact, is absorbed in the FM (and not

shown).

The Tc is usually reduced, from the symmetric (t′ = 0) case, as BB′ hopping

provides conduction paths that are non-magnetic. There is a wider space with mod-

erate Tc for A type phase, located asymmetrically in density. It is more stable, in

the right window, than left window. The correlations of spiral and C type phases

are also captured with relatively less noise, see Fig.3.11(b) for example of C-type
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Figure 3.13: Phase diagram obtained via Monte Carlo (left) and from the variational
calculation (right) at t′ = 0.3 and ∆ = 0.

correlation. The n − T phase diagram for t′ = −0.3 and ∆ = 0, can be obtained

from transformation n −→ 3− n, i.e., reversing the density axis of Fig.3.13(a),(b).

3.3.2 Variational scheme

We also used the variational scheme to get an independent feel for the ground state

and the δE for t′ = ±0.3. For t′ = 0.3 the trends from MC are well reproduced

by the variational scheme on large (203) systems at ∆ = 0. We observe reduced

stability of FM at low density and enhancement at high density.

Note that the overall correspondence between the Monte Carlo and the variational

approach is much better here than in the t′ = 0 case, Fig.3.7 and the Fig.3.9.

In Fig.3.14 we have shown the δE(n) calculated for 203 size, for t′ = ±0.3.

For t′ = 0.3 and ∆ = 0, 4, 10 (Fig.3.14(a)-(c)) shows asymmetric δE (or Tc), for

ferromagnet. The stability windows of the A type is enhanced, the large window of

flux phase that was for t′ = 0, is reduced in competition to spiral and C type. For the

t′ = −0.3, ∆ = 0 (Fig.3.14(d)) is just density reversed due to symmetry. However,

the intermediate ∆ = 4 (Fig.3.14(e)) has a large stability window of ferromagnet.

Here, though the ∆ and t′ are non-zero, due to unusually large stability window,

the δE(or Tc) is large. For larger ∆ = 10 (Fig.3.14(f)), the ferromagnet appears in

the middle and right with moderately reduced δE (or Tc), while the same is heavily

suppressed for antiferromagnetic phases.

To summarize, from the MC and variational data we learn that, apart from

asymmetry in the phase diagram, collinear FM and A type phases become stable

in wide density window. Their Tc however is slightly reduced than the symmetric

case. The S(q) data showing less noise for A, C type and spirals indicates that the

energy landscape become ‘smoother’ by t′ so that annealing process becomes easier
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Figure 3.14: Asymmetric case, the energy difference δE of ground-state and para-
magnetic phase. Top: t′ = 0.3 The trends of δE match with Tc. Bottom: t′ = −0.3
where FM is stable in the large portion of the density.

to get to the ground state. The energy differences δE as well as MC estimated

Tcs show overall decrease with t′. This is understandable as, by introducing t′ we

allow electrons to more on the ‘non-magnetic’ sub-lattice B′. Now the energy of any

phase, depends on the energy gain via the hopping process. From the nearest f −m
hopping, this gain scales as t2

∆
subject to spin configurations, while the from the next

nearest m − m hopping, this gain simply scales as t′, and doesn’t care upon spin

configurations. So more we increase t′ and ∆, the more we are making the energy of

the system insensitive to spin-configurations. The asymptotic limit of this is t2

∆
→ 0

when every phase has same energy as paramagnet.

In the couple of paragraphs below we try to create an understanding of how the

phase diagram is affected by t′. Unfortunately we do not understand the effects over

the entire density window yet.

For t′ = −0.3, the FM loses its stability to AF phases even at low n. That is

puzzling since one would expect the FM phase to have the largest bandwidth. We

recall that in the t′ = 0 case, there is a localized band coming from B′ level for all

the phases. The dispersion of this previously localized level causes the m and f to

have a k dependent separation, which was ∆ for all k in the symmetric case. The

separation for these levels in the asymmetric case is ∆k = ∆− ε′k, which varies from

∆ − 12|t′|, to ∆ + 12|t′| in 3D. In 2D it varies from from ∆ − 4|t′|, to ∆ + 4|t′|.
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Figure 3.15: Asymmetric case, lowest eigenvalues plotted as function of ∆ for the
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Fig.3.15 shows the lowest eigenvalues of F,A,C and flux phases with ∆ for t′ = ±0.3

and we see how a crossing occurs at t′ = −0.3.

We make a general observation about the change in the ‘energy landscape’ of

the model, in the space of spin configurations, with changing t′. If t′ � t then the

electrons could delocalize on the wide t′ based band populating the non magnetic

sites only. Magnetic order would make little difference to electronic energies and

the energy landscape would be featureless. There are no ordered states as minimum

in this landscape. Contrast to t′ = 0, where delocalization takes place necessarily

through the magnetic sites and deep minima in in the landscape represent ordered

states in real space. There are presumably shallow metastable states possible too.

At intermediate t′ the ordered states are shallower, since the gain from magnetic

ordering is lower, but the metastable seem to be affected even more, if the relative

ease of Monte Carlo annealing is any indicator.

3.4 Discussion

The real double perovskites are multi-band materials, involving additional interaction

effects and antisite disorder beyond what we have considered here. Nevertheless, we

feel it is necessary to understand in detail the phase diagram of the ‘simple’ model

we have studied, and then move to more realistic situations. In what follows, we first

provide a qualitative comparison of the trends we observe with experimental data,

and then move to a discussion of issues that are ignored in the present model.
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3.4.1 Comparison with experiments

There is limited experimental signature [65] of metallic AF phases driven by the kind

of mechanism that we have discussed. So, the comparison to experiments is, at the

moment, confined to the Tc scales [177,178] etc, of the ferromagnetic DP’s.

From the ab initio calculations [64] the sign t′/t ∼ 0.4 > 0 and ∆ > 0, so one can

compare the right panel of Fig.3.4 qualitatively with experiments.

In a material like SFMO the electron density can be increased by doping La for

Sr, i.e, compositions like Sr2−xLaxFeMoO6. This was tried [177] and the Tc increased

from 420K at x = 0 to ∼ 490K at x = 1. SFMO has threefold degeneracy of the

active, t2g, orbitals while we have considered a one band model. When we create

a correspondence by dividing the electron count by the maximum possible per unit

cell (3 in our case, 9 in the real material), in our units x = 0 corresponds to n = 0.33

and x = 1 to n = 0.66.

When t′ = 0, as a function of n the Tc peaks around n = 0.2, Fig.3.7, quite far

from the experimental value. However, in the presence of t′ = −0.3 and ∆ = 4,

Fig.3.14(e), the peak occurs above n = 1. So, modest t′ can generate the ferromag-

netic window that is observed, and produce a Tc ∼ 0.1t. For t ∼ 0.5eV, this is in the

right ballpark.

Ray et al experimentally estimate the onset of AF order upon La doping to be

x ∼ 1.1− 1.5, which corresponds to n ∼ 2.1− 2.5. Our onset of AF order, for ∆ in

[0-10], is n ∼ 0.5− 0.75, which for SFMO would be n ∼ 1.5− 2.1. This is quite close

to experiments. However, inclusion of finite t′/t > 0, pushes this to lower values.

3.4.2 Additions to the model

(i) Effect of orbital variables: Apart from renormalization of the electron count,

multiple orbitals could, in principle, have a qualitative effect. If the local orbital

degeneracy is lifted by Jahn-Teller effect then the resulting ‘orbital moment’ could

order in some situations. This orbital ordered (OO) background can modify electron

propagation and the magnetic state. This is known to happen at some dopings in

the manganites. Even there, however, the broad sequence of magnetic phases is

consistent with predictions from a one band model. The double perovskites do not

seem to involve strong lattice effects, the orbital degeneracy survives, and there is

no orbital order. This suggests that there is even better chance of a one band model

being qualitatively correct here, compared to the manganites.

Had there been strong OO effects, the spin-spin coupling in that background may
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have picked up strong directionality, and the geometric frustration could have been

irrelevant. This does not seem to happen in most double perovskites. Indeed, there

are experiments on the insulating DP’s Sr2CaReO6 (S = 1
2
) [180], La2LiReO6 and

Ba2YReO6 (S = 1) [181], and La2LiRuO6 and Ba2YRuO6 (S = 3
2
) [182], which are

multiple orbital systems (ones with spin S = 1, 3
2
). In such systems, it seems that

orbital ordering does not occur. As a result, the equality of the magnetic exchange in

different directions is not removed, and the magnetic degeneracy is not lifted. Thus

the geometric frustration of the FCC lattice leads to a non trivial magnetic state in

such systems, unrelieved by the presence of multiple orbitals.

We of course expect that the phase boundaries and Tc scales that we calculate

would be affected by the orbital degeneracy. However, the trends in the phase

diagram with increasing density simply reflect a growing AF tendency and the non

coplanar phases emerge due to the impossibility of Neel order.

(ii) Antisite disorder: Attempts to increase n via A site substitution also brings

in greater antisite disorder (B-B′ interchange) and even the possibility of newer

patterns of A site ordering (!) complicating the analysis. For example, one would

try compositions of the form: A2−xA
′
xBB′O6, where A and A′ have different valence

in an attempt to change n. The assumption is that the A′ only changes n without

affecting other electronic parameters, i.e, A′ ions do not order and remain in an

alloy pattern. This may not be true. In fact, at x = 1, the material AA′BB′O6 may

have a specific A-A′-B-B′ ordering pattern that affects electronic parameters in a non

trivial way and one cannot understand this material as a perturbation on A2BB′O6.

In such a situation one needs guidance from experiments and ab initio theory to fix

electronic parameters as x is varied. All this before one even considers the inevitable

antisite (B-B′) disorder and its impact on magnetism [179].

3.5 Conclusions

We have studied a one band model of double perovskites in three dimensions in the

limit of strong electron-spin coupling on the magnetic site. The magnetic lattice in

the cubic double perovskites is FCC and increasing the electron density leads from

the ferromagnet, through A and C type collinear antiferromagnets, to spiral or ‘flux’

phases close to half-filling. We estimate the Tc of these phases, via Monte Carlo

and variational calculation. The introduction of B′B′ hopping t′/t ∼ 0.3 significantly

alters the phase diagram and Tc scales and creates a closer correspondence to the

experimental situation on DP ferromagnets.
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CHAPTER4
MOTT TRANSITION ON THE

ANISOTROPIC TRIANGULAR LATTICE

In chapter 1 we qualitatively described the emergence of a Mott insulating state due

to increasing interaction in the half-filled Hubbard model. This chapter discusses the

Mott transition on the anisotropic triangular lattice in detail. The lattice we use is

shown in the Fig.4.1. In terms of electron hopping it is equivalent to a square lattice

with nearest neighbour hopping t, and next neighbour hopping t′ along the (1,1)

direction only. t′ = 0 leads to the usual square lattice, while t′ = t is the isotropic

triangular lattice. t′/t defines the degree of hopping anisotropy in the triangular

lattice.

4.1 Background

The Mott transition from a metal to an insulator, with increasing interaction strength,

U , occurs at ‘integer’ filling in electron systems [73]. In the absence of magnetic in-
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Figure 4.1: Left: The triangular lattice with anisotropic hoppings t and t′. Right:
The equivalent square lattice with the same set of hoppings.
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stabilities this should occur when the interaction strength becomes comparable to the

bare bandwidth. In most cases, however, this strong coupling effect is pre-empted by

a magnetic instability, which occurs when the magnetic susceptibility χ(q) diverges.

Within the random phase approximation (RPA), which arises naturally in the static

Hubbard-Stratanovich scheme, the magnetic susceptibility is given by

χ(q) =
χ0(q)

1− Uχ0(q)
(4.1)

If χ0(q) has a peak at q = Q, then RPA predicts an instability at this wave-vector

at Uc = 1/χ0(Q). If the predicted Uc is large then RPA may not be a good guide to

the susceptibility of the interacting electron system. Also, if χ0(q) is featureless in

terms of its q dependence the instability argument is not useful.

The simplest case of a square lattice with nearest neighbour hopping t is well

understood. There χ0 diverges at q = (π, π) at T = 0 due to perfect nesting of the

Fermi surface. As a result the magnetic instability occurs for infinitesimal U to a

Q = (π, π) spin density wave state. The large U problem on this lattice also favours

Q = (π, π) (Neel) order. The ground state turns out to be an antiferromagnetic

insulator at all U , with the magnitude of the moment, and the single particle gap,

increasing monotonically with U/t.

The presence of t′ as in Fig.4.1, has the following effects:

� There is no longer any divergence in χ0(q).

� For t′/t in the range t′/t = 0 − 0.7, the peak in χ0(q) is still at Q = (π, π)

(Fig.4.2 upper panel) and the system still prefers Neel order but beyond Uc =

1/χ0(Q).

� For for t′ > 0.7t, however, the maximum shifts significantly away from Q =

(π, π) (Fig.4.2 lower panel), so, as we will discover, the system may exhibit

spiral order.

� At strong coupling U/t � 1, the Mott localized phase is described by a S =

1/2 Heisenberg model. On the square lattice the resulting order is again at

(π, π). With growing t′/t the progressively more frustrated structure reduces

the stability of the Neel state. A spiral state may emerge at large t′/t.

� At a given t′/, the weak coupling and strong coupling wave-vectors are in

general not the same.
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Figure 4.2: Non-interacting magnetic susceptibility χ0(q) for anisotropic triangular
lattice. We have qx, qy on the x and y axes, in units of π for each plot. The upper
panel is for t′ = 0, 0.2, 0.4, 0.6 where the maxima lies on, or around {π, π}, while in
lower panel for t′ = 0.7, 0.8, 0.9, 1 the maxima has shifted to incommensurate q.

So, in contrast to the bipartite case, the dominant magnetic wave vector Q evolves

from Q0 to Q∞ as U/t changes at finite t′. When Q is typically incommensurate,

as we will see later, it generates smaller gap compared to Neel order (for moments

of the same size). This leads to the possibility of a magnetic metal at intermediate

coupling.

In a two dimensional system thermal fluctuations prevent long range order at

finite temperature, and quantum fluctuations could suppress order even at T = 0.

Nevertheless an approximate solution of the magnetic problem, retaining classical

thermal fluctuations can lead to valuable insight. In the present chapter we provide

a comprehensive study of the Hubbard model in the anisotropic triangular lattice in

the full t′/t range of [0-1] over a wide range of U/t.

We use a real space new approach to the Mott transition, using auxiliary fields,

that emphasizes the role of spatial correlations near the metal-insulator transition

(MIT). Our principal results, based on a combination of Monte Carlo (MC) on large

lattices and variational minimization, are the following.

� We establish a ground state magnetic phase diagram in the U/t − t′/t plane,

and explore the finite temperature Mott transition by calculating transport and

spectral functions at four representative cross sections of t′/t = 0, 0.4, 0.8, 1.

� The U−T phase diagram is established for selected choice of t′/t. For t′/t = 0.8,
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relevant for the κ-BEDT compounds, our results bear a strong resemblance to

properties measured in these organics.

� At intermediate temperature, in the magnetically disordered regime, we obtain

a strongly non Drude optical response in the metal, and predict a pseudogap

(PG) phase over a wide interaction and temperature window.

� The electronic spectral function A(k, ω) is anisotropic on the Fermi surface,

with both the damping rate and PG formation showing a clear angular depen-

dence arising from coupling to incommensurate magnetic fluctuations.

We start with the Hubbard model defined on the anisotropic triangular lattice,

defined as in Fig.4.1 and use the square lattice geometry with anisotropic hopping t

for nearest neighbours and t′ for the next nearest neighbours. As discussed in section

2.1.2, we used Hubbard Stratonovich transformation to decouple the interaction

term, and after a sets of approximation, we have the following effective Hamiltonian

equivalent to equation (2.9) for the given hoppings:

Heff = −t
∑
〈ij〉σ

[
c†iσcjσ + h.c.

]
− t′

∑
(ij)σ

[
c†iσcjσ + h.c.

]
+
∑
iσ

(
U

2
− µ)niσ −

U

2

∑
i

mi · ~σi +
U

4

∑
i

m2
i (4.2)

We will set t = 1 as the reference energy scale. t′ = 0 corresponds to the square

lattice, and t′ = t to the isotropic triangular lattice. The first two terms are just the

tight binding parts for the anisotropic triangular lattice. Third term has constant

shift of on-site energy. The last two terms are of crucial importance, in which the

first term couples the electrons to the classical fields mi with coupling U/2, and splits

the on-site energy for two spins state by ±U |mi|
2

. The magnitude of the mi field is

controlled by the last term. µ controls the electron density, which we maintain at

half-filling, n = 1. U > 0 is the Hubbard repulsion.

4.2 Ground state phase diagram

First, let study the ground state (T=0) behaviour of the system for generic value of

U/t, and t′/t. As mentioned in the section 2.3.2, in order to get the ground state,

one has to minimize the total energy at half filling E{mi} = Eel{mi}+Ecl{mi} with

respect to the mi fields. In a brute force minimization, for N site lattice, this would
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Figure 4.3: Left: The ground state phase diagram. The blue region denotes the
Neel state characterized by q = (π, π). The thin red strip along t′ = 1 denotes
the three sub-lattice 1200 spiral for which q = (2π

3
, 2π

3
). The pink region represents

incommensurate spirals at generic q. A reduced scale of q − (π, π) shown as green
arrows is drawn as illustration in the spiral region. The black line is the metal insu-
lator boundary based on gap in the state, so that region below it is gapless/metallic.
The lower white portion gives the non-magnetic m = 0 solution. Right: The color
plot of the optimal m in the U − t′ plane. The contours are visual guide to constant
m.

result in minimizing a function of 3N variable, which is an N-P hard problem, not to

mention that calculation of the energy would involve numerical diagonalization for

each mi field. However, If we look for periodic solutions, the number of parameter

to minimize with, becomes small and independent of system size N . Motivated

by the simplicity to solve and generality, we chose the variational set described by

mi = m(cos q ·xi, sin q ·xi, 0) which describes a periodic field configuration, in which

the magnitude of the field at each lattice site is m, and its angular direction have

periodicity of the period vector q. Once we restrict to this set, the total energy

becomes the function of the magnitude m and the period q, i.e., E = E(m,q).

Besides its calculation is fairly easy and we discussed it in section 2.3.2. For a given

(U/t, t′/t), one gets the optimal (m,q) after minimizing the total energy, which

characterizes the electronic nature of the state.

4.2.1 Magnetic phases

In Fig.4.3 (left) we have shown the ground state phase diagram, which summarizes

the magnetic nature of the states in the U − t′ plane. The primary phases are

collinear Neel order (G-type), incommensurate spiral (SP) and three sub-lattice 1200
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Figure 4.4: The magnetic instability wave-vector inferred in the weak coupling
limit (panel (a)), the corresponding χ−1

0 ∼ Uc (panel (b)), and the Heisenberg limit
wave-vector (panel (c)). These results set the rough ‘analytic’ limits of the theory.
A full optimization based on the MC is needed at intermediate coupling. χ−1

0 should
fall to zero as t′/t→ 0, accessing that requires calculation on much bigger lattices.

(at t′ = 1), which have non zero m and q solutions. At lower U and larger t′ one

gets m = 0 solutions giving uncorrelated metallic (non-magnetic) state. The t′ = 0

line stays at Neel order (G-type) for all U/t values upto U/t = 0, which continuously

shrinks from the low U side following the MIT line, and eventually is destabilized

against spirals at t′ ≈ 0.7. Beyond t′ ≈ 0.7, we have spiral whose period q gradually

shifts from q = (π, π) to q = (2π
3
, 2π

3
), which is the ground state for large U limit for

triangular lattice t′ = 1. In fact, at large U it shifts along straight line connecting

(π, π) and (2π
3
, 2π

3
). The right panel of the figure we have shown the optimal m in

the U − t′ plane. At lower U , the m stays constant in the Neel region, and starts

decreasing once in the spiral region, and eventually vanishes. Thus in general, spiral

phases have lower m as compared to Neel phase at given moderate U .

A quick understanding can be obtained by examining the weak coupling and

strong coupling limits. Within the RPA scheme the peak in χ0(q) decides the in-

stability, as we have discussed before. Panel (a) in Fig.4.4 shows this wave-vector

Q0(t′/t). Notice that it stays close to (π, π) for t′/t . 0.6 and then shifts quickly.

The corresponding χ−1
0 ∼ Uc is shown in panel (b). These decide the weak U in-

stability and magnetic phase. For U/t � 1, deep in the Mott phase the system is

a ‘J − J ′ Heisenberg model, and the wave-vector for that, labelled Q∞ is shown in

panel (c). Remember that J ′/J = (t′/t)2.

The band susceptibility was calculated on sizes upto 200 × 200, but capturing

the divergence of χ as t′/t→ 0 requires much bigger lattices.
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Figure 4.5: Density of states of the electron system at T = 0, using the variationally
minimized background (which is roughly consistent with MC results).

4.2.2 Density of states

Recalling the tight binding dispersion εk = −2t(cos kx + cos ky) − 2t′ cos(kx + ky),

and the dispersion, we had for generic spiral state for given Q and m,

ε±,k =
1

2

[
εk + εk−Q ±

√
(εk − εk−Q)2 + U2m2

]
one can easily see that, for Q = (π, π) (the Neel phase) εk + εk−Q = 0 when t′ = 0.

Thus eigenvalues get divided into two sets with ε+,k = −ε−,k, so that the gap at half

filling has a lower bound of Um (which is also the gap). Thus the Neel phase always

has a gap for any nonzero value of m.

Given the optimized values of Q and m at a given U/t and t′/t the density of

states can be readily generated. We show such results in Fig.4.5 for four values of

t′/t, and U/t = 3, 4, 6, 8 in all four cases. It shows an insulating (gapped) state

at all U when t′ = 0, and the presence of a metal - with crossover to an insulating

state at the larger t′ cases.

While the specific band-structure here arises from the presence of long range order

in the background, the survival of the large U insulator at finite T is not related to

order at all. The finite temperature discussion will highlight this.

A word about the gap. The expression (min{ε+,k} - max{ε−,k}) whenever greater
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Figure 4.6: The colour plot of the gap estimated in ground state.

than zero, gives the gap at half filling, but is difficult to calculate analytically for

general value of t′ and Q. We have hence numerically calculated the gap for the

ground state, which is shown in Fig.4.6. This suggests that spiral, which have lower

m values compared to Neel phase, tend to have smaller gap, as a result the metal

insulator boundary (shown as black line in the phase diagram in Fig.4.3) which is

the locus of zero gap, has a positive slope with t′. Thus increasing t′/t reduces the

insulating character, and if U/t is moderate, carries the system across the insulator

to metal transition.

This summarizes the discussion of the ground state. As mentioned in the section

2.2.2, the effective model we used, reduces to unrestricted Hartree-Fock at T = 0,

but with no assumption about the translational symmetry. It supports only static

moment phases, usually either long range ordered, or non-magnetic (m = 0). How-

ever, when we raise the temperature from T = 0, the exact inclusion of the thermal

fluctuations generated via the classical mi fields, quickly improves the accuracy of

the method with increasing temperature. In the next section we discuss the effect

of the thermal fluctuations at finite temperature, on the mi and their impact on

electronic properties.

4.3 Finite temperature properties

We accessed the finite temperature physics of the effective model using the real space

Monte Carlo sampling discussed in section 2.3.1, on N = 24×24 lattice. The system

was annealed from high enough temperature T/t > 0.2, to T = 0 in discretized

intervals. At each temperature, large number of samples of mi were generated from
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the equilibrium distribution.

P{mi} =
Trc,c†e

−βHele−βHcl∫
DmTrc,c†e−βHele−βHcl

These were used to analyze the spatial correlation and the ordering tendency of

the fields. The electronic properties like density of states, optical conductivity, DC

resistivity, spectral function etc., were calculated by taking the thermal average over

each of these individual mi configurations. The system was studied for different

degree of hopping anisotropy t′ in the entire range of [0-1], and based the results of

magnetic correlations, electronic properties and transport, we mapped out U − T

phase diagram.

4.3.1 Phase diagrams

Below, we first summarize our results using U − T phase diagram. Then, we discuss

in detail the spatial correlations of the fields in section 4.3.2. Then in the following

sections we show how these correlations affect the electronic properties, specifically

electronic density of states (section 4.3.4), transport (section 4.3.3), the spectral

function and its anisotropy (4.3.5).

In Fig.4.7, we have shown the interaction(U)-temperature(T ) phase diagram,

drawn at four representative values of t′ = 0, 0.4, 0.8, 1. The low temperature result

is equivalent to UHF, and leads to a transition from an uncorrelated paramagnetic

metal (PM) to an antiferromagnetic metal (AFM) at some U = Uc1, followed by

antiferromagnetic insulator (AFI) at some U = Uc2 > Uc1 (except when t′ = 0).

For t′ = 0 and t′ = 0.4, the AFI and AFM (for t′ = 0.4) is simple Neel ordered,

while for t′ = 0.8 and t′ = 1, its non-collinear phase with q ≈ (0.85π, 0.85π), and

q = (0.67π, 0.67π) respectively. At t′ = 0, the AFI survives down to U/t = 0,

with decreasing moment, and there is Uc1, and no AFM phase. The magnitude mi

is small in the AFM phase, and grows as U/t increases in the insulating (Mott)

phase. The window of AFM slowly grows upon increasing t′ as seen in the ground

state variational phase diagram. However, the existence of the AFM, and the nature

of order in the intermediate U/t Mott phase, could be affected by the neglected

quantum fluctuations of the mi.

Finite temperature brings into play the low energy fluctuations of the mi. The

effective model has the O(3) symmetry of the parent Hubbard model so it cannot

sustain true long range order at finite T . However, our annealing results suggest
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Figure 4.7: Finite temperature phase diagram, for four values of t′/t. (a) t′ = 0,
(b) t′ = 0.4, (c) t′ = 0.8, (d) t′ = 1. The phases are paramagnetic metal (PM),
paramagnetic insulator (PI), antiferromagnetic metal (AFM) and antiferromagnetic
insulator (AFI). In (a), and (b) the AFM and AFI phases are simple Neel ordered,
while in (c) and (d) these are non-collinear phases. PG indicates the pseudogap
phase. Tcorr indicates the temperature at which magnetic correlation length becomes
larger than lattice size. The MIT line defines the crossover from metallic to insulating
character, based on transport.

that magnetic correlations grow rapidly below a temperature Tcorr, and weak inter-

planar coupling would stabilize in plane order below Tcorr (we have checked this

explicitly). This scale increases from zero at U = Uc1, reaches a peak at some

Umax/t, and falls beyond as the virtual kinetic energy gain reduces with increasing

U . The Umax systematically increases with increasing t′/t, while the maximum Tcorr

at Umax systematically goes down.

We classify the finite T phases as metal or insulator based on the dρ/dT , the

temperature derivative of the resistivity. The dotted line indicating the MIT corre-

sponds to the locus dρ(T, U)/dT = 0. In addition to the magnetic and transport

classification we also show a window around the MIT line where the electronic den-

sity of states (DOS) has a pseudogap. To the right of this region the DOS has a

‘hard gap’ while to the left it is featureless.
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Figure 4.8: The U dependence of m̄(T ) for various temperatures, four representative
values of t′. (a) t′ = 0, (b) t′ = 0.4, (c) t′ = 0.8 and (d) t′ = 1.

For t′ = 0, the MIT line has a positive slope, which increases with temperature,

and at very high temperature, the line becomes nearly vertical. However, for finite t′

it becomes vertical at some moderately hight temperature Tre, after which the slope

turns negative, showing re-entrant insulator-metal-insulator behavior with increasing

T near U ∼ Uc2. We discuss the details of the re-entrance later.

4.3.2 Auxiliary field correlations

We saw in the section 4.2, that the ground state is either magnetic, with non-zero

fixed m and corresponding q, or non-magnetic with m = 0. At finite temperature,

the thermal excitations would generate fluctuations in the mi configurations. This

happens by allowing (a) differing magnitudes mi of the fields at different sites and

(b) randomized angles of the mi. These fluctuations, generate a variety of interesting

states, as we saw in the last section. We will now try to see some trends in the nature

of these fluctuations, in the U − t′ plane. As we will see in the subsequent sections,

each have a different impact on electronic properties. Thus broadly we have two

kind of fluctuations in the mi:

4.3.2.1 Magnitude distribution

When the ground state had non-zero m, and periodic angular variation given by

q, the excitations would generate states with non-uniform {mi}, which will be dis-

tributed in some form around the average m̄(T ). At very low temperature, m̄(T ) will

be very close to the ground state optimal value m, and systematically will increase

with temperature. The ground state that had m = 0, would now generate non-zero

{mi} distribution with increasing m̄(T ) with temperature. In the Fig.4.8 we have

shown the U dependence of m̄(T ) at different temperatures for the four representa-

tive values of anisotropy t′. There is systematic increase in m with temperature at
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Figure 4.9: The magnitude distribution P (m) at two values of t′ plotted for values
of U typical of weak and strong coupling and three temperatures each.

all U and t′, however the rate of change of m is larger in metallic or low U . At very

high temperature T/t ≥ 0.2, the m becomes nearly independent of U .

The distribution of these mi, denoted by P (m,T, U) (or in short referred to as

P (m)) is defined as following

P (m,T, U) = 〈〈 1

N

∑
i

δ(|mi| −m)〉〉 (4.3)

where δ(x) denotes the Dirac delta function, and 〈〈. . . 〉〉 denotes the thermal average

over equilibrium configurations. Let us see this first for the simplest case of square

lattice t′ = 0. In Fig.4.9 we have shown (a) the temperature dependence of the

P (m) at a fixed U , and (b) the U dependence at a fixed temperature. At T=0,

P (m) will be a delta function peaked at the optimal m. It progressively broadens

around the mean, m̄(T ), which itself increases with T. The U dependence in panel

(b) shows that magnitude fluctuations are larger in lower U , while larger U , or

more insulating systems have smaller magnitude fluctuations. This indicates that

the angular fluctuation are more crucial in insulating systems. Although we have

discussed it in the context of square lattice, these features of magnitude fluctuations

are valid for all t′.
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Figure 4.10: Snapshots of the auxiliary field magnitude, nearest neighbour angular
correlation (m0.mi), and the structure factor S(q). The left 3× 3 panel is for t′ = 0
and U = 4 (the square lattice with Neel order) and the right set is for t′ = 0.8
and U = 6 (anisotropic triangular lattice with spiral order). Top row in each set
is mi, next row is NN m0.mi, where R0 is a fixed reference site, third row is S(q).
Temperatures (from left to right) are T/t = 0.02, 0.10, 0.20.

4.3.2.2 Angular correlations

We calculate the following thermally averaged structure factor to probe angular

correlation:

S(q) =
1

N2

∑
ij

〈〈mi ·mj〉〉eiq·(Xi−Xj) (4.4)

In a state of mi with completely random angles, the structure factor S(q) = O( 1
N2 )

for all q. However, as angles start to get correlated, some of the q increase at the

cost of other, and the maximum value (at some qs) of S(q) starts to increase. Upon

lowering the temperature, when the system goes under the magnetic transition, the

rapid growth of structure factor at some q is observed, whose onset temperature Tcorr

defines magnetic transition temperature.

In Fig.4.10, we have shown the temperature dependence of the structure factor

aided with some snapshots of the mi fields. At very low T = 0.02, the mi magnitudes

almost uniform, their directions alternate in all directions as in Neel state, and the

structure factor is sharply peaked at q = (ππ). Progressively, upon increasing T,

mi is fluctuate, angular correlation weakens and the peak value of structure factor

reduces, spilling its weight to neighbouring q values. The right 3 × 3 panel shows
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Figure 4.11: Snapshots of mi fields showing U dependence of magnitude fluctuations
and the angular correlation at T = 0.1, U = 2, 3, 4, 5, plotted on 24×24 lattice. Top
row: Site dependent magnitude mi. Bottom row: αi = mi ·m0, where m0 is field at
some reference point. The electrons see these as typical configurations, as the system
evolves from correlated metal with small U to antiferromagnetic insulator with large
U .

similar data on the anisotropic case at t′/t = 0.8 where the reference state is now a

spiral.

Next, in Fig.4.11 we have shown the evolution of the snapshots at a fixed temper-

ature for different U at t′ = 0. As the interaction strength increases, one observes the

increase in the typical values of mi and decrease in its fluctuations. Simultaneously,

the angular correlations become stronger with U , evolving from a short range corre-

lation at U = 2 to progressively better antiferromagnetic states at higher interaction

strength (U = 4, 5).

To summarize, based on the results on the known square lattice, we know that,

the fluctuations of the field increase with increasing temperature. The magnitude

fluctuations are stronger at lower U , showing broader P (m) compared to large U .

The angular correlations are stronger in large U systems.

The nature of angular correlation becomes more complex, once we go to larger t′

where the ground state has order at incommensurate q. In Fig.4.12 we show the evo-

lution of the structure factor at two temperatures, one at high temperature, and the

other close to Tcorr. First of all, the peaks are not at (π, π), but at incommensurate

q ≈ (0.85π, 0.85π), which the same q, at which the ground state orders.

Besides, the spread is is larger compared to what we saw in square lattice at the

same temperature. This means stronger angular fluctuations, and lower Tcorr.
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Figure 4.12: The structure factor S(q) for t′ = 0.8 plotted for increasing U =
4.2, 4.4, 4.6, 4.8, 5.0 (left to right), at two temperatures T = 0.1 (top row) and T =
0.06 (bottom row).

4.3.3 Transport and optical response

For the optical conductivity σ(ω, T ), and the resistivity ρ(T ), we used the Kubo

formula for optical conductivity. In Fig.4.13 we show the resistivity ρ(T ) computed

from the Monte Carlo for varying U/t. Our resistivity is in units of ρ0 = ~c0
πe2

, c0

being the lattice spacing.

In a full treatment of the Hubbard model, retaining the quantum fluctuations of

mi, one would expect ρ(T ) ∝ T 2 in the metallic side. This is what DMFT produces,

consistent with the experiments. Our resistivity also vanishes as T → 0, modulo

effects of finite annealing, but is described more by ρ(T ) ∝ T . This is an artifact

of the classical approximation (〈m2
i 〉 ∼ T ). However, as T increases the classical

thermal fluctuations should provide an adequate description of the transport.

In Fig.4.14, we have shown the temperature evolution of the optical conductivity

σ(ω), for for four values of t′, and two values of U , U = 4 (left frame) and U = 5

(right frame). In a Drude metal, the optical conductivity would have maximum at

ω = 0, and quickly loose weight to higher frequency, while in a Mott insulator the

optical conductivity would have a gap at low frequency, after which it would pickup

weight which would have maxima near U . Its easy to see the following trends from

the σ(ω):

� In both frames, (a) and (b) i.e., t′ = 0, 0.4 are insulating with no weight at

low frequency, and the maxima is peaked around ∼ Um̄. At low tempera-

ture, the gap is larger along the peak value. With increasing the temperature,

progressively, the gap is decreased by the transfer of spectral weight at low

frequencies, eventually having small Drude weight at high temperature. One
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Figure 4.13: Temperature dependence of the resistivity ρ(T ) for different U in the
neighbourhood of the MIT, plotted for the same four cross sections of t′ as chosen
in Fig.4.7 (a) t′ = 0, (b) t′ = 0.4, (c) t′ = 0.8 and (d) t′ = 1. The U values, shown
here are chosen around the MIT, displayed in the legend.

can guess that this would correspond to a density of state with weak gap, or

strong pseudogap with very low weight near the Fermi level, and the gap in the

density of states would diminish, progressively with increasing temperature.

� In the left frame (c) and (d), i.e., t′ = 0.8, 1 are metals having large weight

at ω = 0. The peak in σ(ω) is close to ω = 0 in (c) while its exactly at

ω = 0 in (d). With increasing temperature, the Drude weight and the peak

value decreases, and the peak locations moves to higher ω. The response at

higher temperature, thus becomes non-Drude metal. This would correspond

to ‘weakly correlated metal’ whose density of state, has large weight at Fermi

level, which depletes progressively towards higher energies, forming pseudogap.

� In the right frame, (c) and (d) i.e., both have vanishing Drude weight, and
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Figure 4.14: Temperature evolution of the optical conductivity σ(ω). The left and
right boxes are for U = 4, and U = 5 respectively. The chosen cross sections of t′ are
(a) t′ = 0, (b) t′ = 0.4, (c) t′ = 0.8 and (d) t′ = 1. In each figure, three temperatures
T = 0.06, 0.1, 0.2 are plotted.

most of the spectral weight surrounds Um̄ The low frequency weight slowly

increases with higher temperature, and the high ω weight, center around Um̄

disperses. This one would expect very close to MIT, on the insulating side

where the gap is vanishingly small. The density of state in such case would

have very strong dip at Fermi level, with small weight at low energy.

In Fig.4.15, we show the optical conductivity σ(ω) at T = 0.1t and T = 0.2t

as the interaction is varied across the Mott crossover, for t′ = 0.8. Our first ob-

servation is the distinctly non Drude nature of σ(ω) in the metal, U/t . 4.4, with

dσ(ω)/dω|ω→0 > 0. The low frequency hump in the bad metal evolves into the inter-

band Hubbard peak in the Mott phase. The change in the lineshape with increasing

T is more prominent in the metal, with the peak location moving outward, and is

more modest deep in the insulator.

In the next section, we discuss the trends in the density of states (DOS) of

the systems, as function of temperature and the interaction strength, and would

explicitly show the trends we have guessed.

4.3.4 Density of states and pseudogap

In Fig.4.16, we have shown the temperature evolution of the density of state N(ω),

for the same set of parameters as in the Fig.4.14. Its easy to see from the low

temperature DOS, that (i) in both frames, (a) and (b) i.e., t′ = 0, 0.4 are insulating in

the ground state, showing hard gap. (ii) in the left frame (c) and (d), i.e., t′ = 0.8, 1
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Figure 4.15: Optical conductivity at (a) T = 0.1, (b) T = 0.2 for U varying
across Uc, for t′ = 0.8. At these temperatures the σ(ω) is non Drude even in the
‘weakly correlated’ case U ∼ 4.0. The finite frequency peak evolves into the Hubbard
transition at large U .

are good metals, with large DOS at Fermi level. (iii) in the right frame, (c) and

(d) i.e., both have strong dip in the DOS at the Fermi level. Evolution to higher

temperature, increases the low frequency weight at Fermi level of an insulator, which

results in narrowing the gap, and eventually a strong dip pseudogap phase. On the

contrary, heating the uncorrelated metal (left frame (c) (d)), depletes the weight at

Fermi level, thereby inducing a soft dip pseudogap, which becomes stronger at higher

temperature.

At some fixed temperature, when we increase the interaction U , then at some

U = U1(T ), the magnetic fluctuations become strong enough to induce the pseudogap

in the DOS, which deepens progressively with U , and at some U = U2(T ), would

become hard gapped. The local of these U1 and U2 defines the region containing

the pseudogap, shown earlier in the finite T phase diagrams (Fig.4.7). The Fig.4.17

explicitly shows the crossover from the metal to the insulator involving a wide window

of pseudogap, where the pseudogap window widens with increasing temperature.

Here we have taken t′ = 0.8, and chosen the U range across the MIT. One can see,

that at T = 0.1 (Fig.4.17(a)) that U = 4.0 has a small dip at Fermi level (close

to U1), and U = 5.6 is on the verge of hard gap. At higher temperature T = 0.2

(Fig.4.17(b)), the dip in the U = 4.0 has increased, while U = 5.6 has slowly gained

some spectral weight.

In general, in the region between the U1(T ) line and the MIT line, the dip feature

deepens with with T , and we have dN(ω=0)
dT

< 0, while in the region between MIT

and U2(T ) we have weak dN(ω=0)
dT

> 0. The PG arises from the coupling of electrons
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Figure 4.16: Temperature evolution of the DOS N(ω). The left and right boxes
are for U = 4, and U = 5 respectively. The chosen cross sections of t′ are (a)
t′ = 0, (b) t′ = 0.4, (c) t′ = 0.8 and (d) t′ = 1. In each figure, three temperatures
T = 0.06, 0.1, 0.2 are plotted.

to the fluctuating mi. A large mi at all sites would open a Mott gap, independent of

any order among the moments. Weaker mi, thermally generated in the metal near

Uc1 and with only short range correlations, manages to deplete low frequency weight

without opening a gap. Since the typical size 〈mi〉 increases with T in the metal, we

see the dip deepening at U < Uc.

In Fig.4.18, we show the map of DOS at the Fermi level N(ω = 0) over the entire

U − t′ plane, at temperatures T = 0.06, 0.1, 0.2, 0.3, showing the evolution from the

hight DOS in the metal to the vanishing DOS in the Mott phase through low finite

DOS in the PG phase.
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Figure 4.17: Density of states at T/t = 0.1, 0.2 for U varying across Uc. The dip in
the DOS deepens with increasing T for U/t . 4.8. For larger U/t the system slowly
gains spectral weight with increasing T . t′ = 0.8
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Figure 4.18: Map of the N(ω = 0), the DOS at Fermi level, in the U − t′ plane
at four temperatures T = 0.06, 0.1, 0.2, 0.3. The black dotted line denotes the MIT
crossover. The region between red and green dotted line represents the pseudogap
region.

4.3.5 Angle resolved spectral functions

While the size of the mi determine the overall depletion of DOS near ω = 0 and the

opening of the Mott gap, the angular correlations dictate the momentum dependence

of the spin averaged electronic spectral function

A(k, ω) = Im
∑
σ

(
i

π
)

∫ ∞
0

dteiωt〈〈{ckσ(t), c†kσ(0)}〉〉

Within a ‘local self energy’ picture, as in DMFT, A(k, ω) should have no k de-

pendence on the Fermi surface (FS). In that case we should have a k independent

suppression of A(k, 0) with increasing U/t. However, inclusion of spatial fluctuations

would be able to access the k dependence of the spectral function.

Below we first show the evolution of the A(k, 0), across the Mott transition,

in connection with the angular correlations through the structure factor S(q). We

discuss two limiting cases (a) the square lattice t′ = 0 in Fig.4.19, where the angular

fluctuations are strong near (π, π), and (b) t′ = 0.8 in Fig.4.20, where they are at

incommensurate q ≈(0.85π,0.85π). In both figures T = 0.1 data is shown, and U

are chosen near the metal insulator crossover.

In both figures, the top row shows maps of A(k, 0) for kx, ky = [−π, π], as increas-

ing U/t transforms the bad metal to a Mott insulator. The first panel at U/t = 4.2

for (a) and U/t = 2.0 for (b) shows weak anisotropy on the nominal Fermi surface.

The Fermi is square for t′ = 0, while elliptical in shape for t′ = 0.8 with minor axis

along (0, 0) → (π, π) direction. At the next panel, the weak anisotropy is much

amplified and the weight in the (0, 0) → (π, π) direction is distinctly larger. The

actual position of th
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Figure 4.19: t′ = 0 case. Top: Momentum dependence of the low frequency spectral
weight in the electronic spectral function A(k, ω) at T/t = 0.1. kx, ky range from
[-π, π] in the panels. Note the systematically larger weight near k = [π/2, π/2] and
symmetry related points and smaller weight in the segments near [π, 0] and [0, π]
and symmetry related points. U/t = 2.0, 2.2, 2.4, 2.6, 2.8, left to right. Bottom:
S(q) for the mi fields for the same set of U/t. The qx, qy range from [0, 2π]. Note
the very weak structure at U/t = 2.0 and the much larger and much sharper peak
at U/t = 2.8.

Figure 4.20: Top: Momentum dependence of the low frequency spectral weight in
the electronic spectral function A(k, ω) at T/t = 0.1. kx, ky range from [-π, π] in the
panels. Note the systematically larger weight near k = [π/2, π/2] and [−π/2,−π/2]
and smaller weight in the segments near [π, 0] and [0, π]. U/t = 4.2, 4.4, 4.6, 4.8, 5.0,
left to right. Bottom: Magnetic structure factor S(q) for the auxiliary fields mi for
the same set of U/t. The qx, qy range from [0, 2π]. Note the very weak and diffuse
structure at U/t = 4.2 and the much larger and differentiated structure at U/t = 5.0.

The next three panels basically show insulating states but without a hard Mott

gap. Overall, the ‘hot spot’ where destruction of the Fermi surface seems to start is
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Figure 4.21: Angle resolved spectral functions and t′/t = 0.8 highlighting the
behaviour at the ‘hot’ and ‘cold’ spot on the Fermi surface.

at (0, π), for the t′ = 0 case, while the same for t′ = 0.8 is near ∼ (0.64π,−0.64π)

It ends near the ‘cold spot’, where the Fermi surface is strongest. The cold spot is

near (π/2, π/2), for t′ = 0, and around ∼ (0.42π, 0.42π) for t′ = 0.8. With increasing

U the PG feature would form at the hot spot while the cold spot would still have a

quasi-particle peak.

The second row in Fig.4.19,4.20 shows the structure factor S(q) of the mi fields

at T/t = 0.1 for the same U/t as in the upper row. For t′ = 0 the system is some

what below Tcorr, as a result magnetic correlation is large, hence the structure factor

is quite sharp, around Q = (π, π), even though the order hasn’t fully developed. For

t′ = 0.8, however, there is no magnetic order as the system is quite above its Tcorr.

Still, we can see the growth of correlations centered around Q ≈ (0.85π, 0.85π) as

U/t increases. The dominant electron scattering would be from k to k + Q, and the

impact would be greatest in regions of the Fermi surface in the proximity of minima

in |∇εk|. The location of the hot spots on the Fermi surface, and the momentum

connecting them, indeed correspond to this scenario.

Fig.4.21 shows the full spectral function at the two points on the Fermi surface

where the ω = 0 spectral weight is either maximum (labelled kmax) or minimum

(labelled kmin). The results are shown for t′/t = 0.8 but are generic as far as crossover
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Figure 4.22: Angle resolved spectral functions and t′/t = 0.8 and T/t = 0.04 as U/t
is increased across the Mott transition.

from a correlated metal to a Mott insulator are concerned. Notice the suppression

of a broad ‘quasiparticle’ feature, visible at low U , as the interaction strength is

increased, and the emergence of a pseudogap. The occurrence of the pseudogap

itself requires a magnetically disordered state, and could have been captured by

a tool like DMFT. The anisotropy on the Fermi surface, however, arises from the

momentum dependence of the self energy and requires a method that retains spatial

correlations.

Fig.4.22 shows the spectral function for a complete momentum sweep across the

Brillouin zone, as the system is taken across the finite temperature Mott crossover.

In the left panel a quasiparticle peak is visible at all k while in the middle panel there

is a pseudogap in the spectral functions (a clear two peak structure) as k crosses the

Fermi level. This gets more prominent in the right panel.

4.3.6 Reentrant metal-insulator transition

In this section, we focus on an unusual reentrant feature in the phase diagram. We

focus on t′ = 0.8 and will comment on other parameter values at the end. Our main

results on this issue are the following:

1. We observe that on the anisotropic triangular lattice there is indeed a window of

interaction strength U , beyond the zero temperature metal-insulator transition
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at Uc,where the resistivity shows an insulator-metal-insulator (I-M-I) crossover

with increasing temperature.

2. The density of states (DOS) at the Fermi level also has non monotonic be-

haviour with temperature, and the two crossover scales TIM(U) and TMI(U) in

the resistivity can be correlated with the behaviour of the DOS.

3. We relate the re-entrance to two competing effects in the underlying model

and observe that re-entrance is absent on the square lattice, and is only weakly

visible in the fully isotropic triangular lattice.

For t′ = 0.8 the primary features are: (i) the transition from a paramagnetic

metal (PM) to an antiferromagnetic metal (AFM) ground state at Uc1/t ∼ 3.9 and

then a transition to an antiferromagnetic insulator (AFI) at Uc2/t = 4.3, (ii) an

increase in the magnetic correlation scale, Tcorr from Uc1 to U ∼ 6t and then a

gradual decrease, and (iii) a wide pseudogap window around the finite temperature

MIT line. Since we are interested in the metal-insulator transition and its salient

features, we will identify Uc2 with Uc and focus on a narrow window around it.
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Figure 4.23: Temperature dependence of resistivity, ρ(T ) for interaction U in a
narrow window around Uc ∼ 4.3t. The values of U are displayed besides the curves.

Fig.4.23 show the resistivity ρ(T ) in the narrow window of U/t near the transition.

We use this as our primary indicator of metallic or insulating behaviour. When

dρ/dT > 0 we call the system metallic, when dρ/dT < 0 we call it insulating.

Beyond the metal-insulator transition at Uc ∼ 4.3t the DOS in the ground state

shows a finite gap. The resistivity ρ(T ) shows the following features:

1. For U . 4.3t the resistivity increases monotonically with increasing T .
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2. For 4.3t . U . 4.7t the resistivity first decreases with increasing T upto the

insulator-metal crossover temperature, TIM , increases from TIM till the metal-

insulator crossover TMI , and then decreases slowly.

3. For U & 4.7t the resistivity decreases monotonically with temperature. The

two scales TIM(U) and TMI(U) are shown further on in the phase diagram.
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Figure 4.24: : Temperature dependence of the DOS at three typical interaction
strengths. Top: monotonic suppression of the low energy DOS with increasing tem-
perature in the metal at U = 4.2t. Middle: non monotonic behaviour of the low
energy DOS with T at U = 4.5t, in the insulator-metal-insulator crossover window.
Bottom: monotonic increase in the low energy DOS with increasing T ‘deep’ in the
insulator at U = 5.4t.

Fig.4.24 shows the temperature dependence of the low energy DOS N(ω) at three

representative interaction strengths.

1. The top panel shows the behaviour at U = 4.2t where the ground state is

metallic. In this case the DOS at the lowest temperature, T = 0.02t is fea-

tureless, but increasing temperature leads to the appearance of a progressively

sharper dip near ω = 0. This is a regime of pseudogap formation due to strong

magnetic fluctuations in metal, but dρ/dT remains positive at all T . The DOS

at the Fermi level falls almost to ∼ 25% of its T = 0 value on raising the

temperature to T = 0.4t.
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Figure 4.25: (a) Temperature dependence of the density of states at the Fermi level,
N(0), for varying U/t. (b) Nav(T ): the average of the density of states N(ω, T ) over
the low frequency window ±T around ω = 0. Since the DOS has a sharp frequency
dependence in the re-entrance window we think the low frequency average, rather
than just N(0), provides a better correspondence with transport.

2. The middle panel shows the DOS at U = 4.5t where the ground state is

insulating and the resistivity shows a thermally driven I-M-I crossover. At the

lowest temperature that we show, T = 0.02t, there is a dip in the low energy

density of states (up from a weak Mott gap at T = 0). The low frequency DOS

gains weight till T ∼ 0.06t, not surprising in a weak insulator, beyond which

there is sustained decrease of low energy weight.

3. The bottom panel shows the behaviour deeper in the insulating regime U =

5.4t. Here the resistivity decreases monotonically with T (the highest U in

Fig.4.23 is 4.8t but the similar behaviour holds at larger U = 5.4t as well). The

system starts with a hard gap at T = 0 which fills up slowly with increasing

T . Even at the highest temperature the DOS is less than 10% of the non-

interacting value.

Fig.4.25.(a) shows N(0) the DOS at the Fermi level for varying interaction

strength and temperature. The two metallic cases, U/t = 4.1 and 4.2 show mono-

tonic decrease of N(0) with T . The insulating cases U/t ≥ 4.3 have N(0) = 0

at T = 0. They gain weight with increasing T , have a peak at some temperature

Tpeak(U) and then decrease as in the metallic cases. For U/t much beyond the re-

entrance window, N(0) would rise (exponentially) slowly and monotonically with T .

We have not shown that regime here.

The principal lesson from Fig.4.24 and Fig.4.25 is the non monotonic temperature

dependence of the low energy density of states, in a manner that complements the
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Figure 4.26: Left: Phase diagram emphasizing the re-entrant feature near Uc. The
MIT line, TMIT (U), is the locus dρ(T,U)

dT
= 0. In the lower part, it indicates thermally

driven IM crossover, which matches the Tpeak(U) (blue squares) reasonably (see
text). Its upper part, indicates a MI crossover. Right: a colour plot of N(0, T, U),
with the TMIT (U) line superposed. There is reasonable match between the shapes
of constant contour N(0, T, U) and that of TMIT (U).

resistivity behaviour. Fig.4.25.(b) shows Nav(T ), the density of states averaged over

temperature dependent low frequency, defined by

Nav(T ) =
1

2T

∫ T

−T
dωN(ω, T )

Since the DOS has a sharp feature near ω = 0, we feel this frequency averaged

quantity, rather than N(0, T ) itself, may have a better correspondence with the

conductivity. In fact, while N(0) falls sharply with T even at T ∼ 0.4, Nav flattens

out, with a hint of increase at high T at large U .

Fig.4.26 shows the metal-insulator phase diagram and the associated thermal

crossover scales. The ground state is an antiferromagnetic (spiral) metal for 4.3 ≥
U/t ≥ 3.9, and an antiferromagnetic insulator for U/t ≥ 4.3. The magnetic ‘tran-

sition temperature’ increases with U/t in the interval shown, and falls again for

U/t ≥ 7. The MIT line has re-entrant character, we label the lower part, with

dT/dU > 0, as TIM(U) and the upper part, with dT/dU < 0, as TMI(U). One can

see the from Fig.4.26 (left) that Tpeak(U) curve matches reasonably with TIM(U),

while from Fig.4.26 (right) we see that TMI(U) more or less follows constant low

frequency DOS contour.

In Fig.4.27, we have shown the distribution P (m) of the magnitude of mi fields

(left) and the structure factor S(q) (right) at few temperatures and three represen-

tative U values 4.2 (in the metal), 4.5 (in the re-entrant region) and 5.4 (in the

insulator). The distribution P (m) shows the growth of the mean value m̄ with U at
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Figure 4.27: Left: P (m) distribution at U=4.2 (metal), 4.5 (re-entrance window)
and 5.4 (insulator) and T=0,0.06,0.1,0.2 . Right: The structure factor S(q) arising
from the spatial correlation of the mi at same U values and T=0.1,0.2 . The qx, qy
axes in the color plots are in range [0,2π], so the center is (π,π).

low T , and as we go to higher T, the distribution becomes more and more broader,

and eventually all U start looking the same at very high temperature. The S(q) plot

demonstrates how angular correlations grow stronger with increasing U , and weaker

with increasing temperature. At low T, S(q) shows peak around q=(0.85π,0.85π)

and its conjugate q, which corresponds to a non-collinear ‘spiral’ AF state. The

closer the peak is to (π,π) (G-type phase), the stronger is the AF nature of the

phase, and the sharper the peak, the stronger is the AF correlation.

In what follows we first try to create an understanding of the re-entrant feature

in terms of the behaviour of the microscopic variables {mi}. We will then compare

our results to CDMFT, and finally with the experimental situation.

The transport behaviour in Fig.4.23 is obviously correlated with the behaviour

of the density of states seen in Fig.4.24 and Fig.4.25. The phase diagram and the

associated contour plot for N(0) in Fig.4.26 makes this correspondence more explicit.

This allows us to shift focus to the behaviour of the low energy DOS, and analyze it

in terms of the mean, variance, and angular correlation of the mi.

We would like to address three questions: (i) why is there a maximum in N(0, T ),

how does it correlate with TIM(U)? (ii) what determines the U dependence and

the downward trend in N(0) beyond TIM(U)?, and (iii) why is there another M-I

crossover at higher temperature?

It can be shown (at least numerically) that

1. When the P (m) is sharply peaked, increasing AF correlations tends to increase
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the gap in the DOS.

2. For given AF configuration, the gap increases with increasing m̄

3. For a given strength of AF correlation, broadening of P (m) tends to vanish

the gap.

Its the competition between these mechanisms, which leads to the re-entrant

behaviour, as we argue below.

Since the moments are AF ordered at low T , this leads to a growing spectral

gap and a stronger insulating state with increasing U . With increasing T the P (m)

broaden and the mean value m̄(T, U) also increase. If the AF pattern had remained

rigid with increasing T this would have strengthened the insulating state. However,

the magnitude fluctuation and the angular randomness lead to a broadening of the

spectrum, weakening of the gap, and growth in N(0).

Beyond T ∼ 0.1t the angular disorder almost saturates and the slow growth of

m̄(T, U) with T , leads to a loss of low energy spectral weight in both in the metallic

and insulating samples. The peak in N(0, T ) therefore arises from a competition

of growing m̄ (tending to suppress N(0)) and growing randomness (that enhances

N(0)).

4.4 Comparison with experiments

We saw in the previous sections, that triangular structure leads to frustrating mag-

netic interaction in the insulating phase. However, even if long range order is lost,

short range spin correlations still have dramatical affect on the electronic proper-

ties near the MIT. The organic salts we mentioned in the section 1.3.2, provide a

concrete test bed for this effect [79, 80]. The κ−(BEDT-TTF)2Cu[N(CN)2]-X salts

are quasi two dimensional (2D) materials where the BEDT-TTF dimers define a

triangular lattice with anisotropic hopping [81]. The large lattice spacing, ∼ 11Å,

leads to a low bandwidth, resulting in large U/t. For the X=Cl1−xBrx family the

frustration is moderate and a magnetically ordered state with Tc ∼ 30K for x = 0

is obtained [154]. The low temperature state is an AFI for x < 0.75 and metallic

for x & 0.75 (with a superconducting (SC) instability at ∼ 10K). The PM state is

very incoherent above T ∼ 50K: the resistivity [85] is large, & 100mΩcm, the optical

response has non Drude character [86, 87], and NMR [88, 89] suggests the presence

of a pseudogap (PG). The detailed spectral features of this unusual state are not

known.
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In this section we attempt to connect the results of the triangular lattice Mott

physics with available experiments on the Cl1−xBrx family. We first, choose the

electronic hopping parameters t, t′ suggested, by ab initio calculations, and earlier

theoretical attempts. We choose primary hopping t ∼ 65meV [81], and t′/t = 0.8.

This would convert temperature expressed in units of t to that in Kelvin.

4.4.1 Parameter estimation

If we pretend, that applying ‘pressure’ or, in the present context, increasing the Br

doping x, only reduces U/t, not t′/t, then we have U/t as function of x. For simplicity

we will now denote U/t as U . The only one unknown now is the dependence of the

interaction U(x) on x. In the Cl1−xBrx family it is observed that the transport gap

can be fitted to ∆(x) ≈ 800 − 1000x Kelvin [85], and for κ-Cl, upon pressure, it

can be fitted to ∆(P ) = 740 − 2Pbar [83]. We match this to the U dependence of

our calculated gap, ∆(U), and infer U |x=0 ∼ 6, where our calculated gap matches

with the experiment. The MIT occurs at xc ∼ 0.75 and for us at U ≈ 4.6. We

used a quadratic polynomial fit for U(x), and found that U(x) = 6− 1.35x− 0.4x2

reproduces the transport gap [85] estimated from the resistivity experiments. A

similar fit is constructed for the hydrostatic pressure. The comparison is shown in

Fig.4.28. The U range in resistivity in Fig.4.13(c) corresponds roughly to x = [0, 1].

Since t = 65meV, T = 0.4t is approximately 300K.
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Figure 4.28: Comparison of the experimental and fitted Mott gap.
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Figure 4.29: Comparison of the experimental and theoretical optical conductivity
near the Mott transition. The experimental data at x ∼ 0.73 is extracted from Fig.3
of Dumm et al [87].

4.4.2 Optical conductivity

The conductivity of the two dimensional system is first calculated as follows (ref.

[134]), using the Kubo formula:

σxx2D(ω) =
σ0

N

∑
α,β

nα − nβ
εβ − εα

|〈α|Jx|β〉|2δ(ω − (εβ − εα))

Where, the current operator Jx is

Jx = −i
∑
i,σ

[
t(c†i,σci+x̂,σ − hc) + t′(c†i,σci+x̂+ŷ,σ − hc)

]

The d.c. conductivity is the ω → 0 limit of the result above. σ0=πe2

~ , the scale

for two dimensional conductivity, has the dimension of conductance. nα = f(εα) is

the Fermi function, and εα and |α〉 are respectively the single particle eigenvalues

and eigenstates of Heff in a given background {mi}.
The experimental results are quoted as resistivity of a three dimensional material.

If we assume that the planes are electronically decoupled then the three dimensional

resistivity ρ3D can be estimated from the resistance of a cube of size L3. If the

2D resistivity is ρ2D = 1/σ2D, the resistance of a L2 sheet is just ρ2D itself. A

stacking of such sheets, with spacing c0 in the third direction, implies that the

resistance of the L3 system would be R3D = ρ2Dc0/L. By definition this also equals

ρ3DL/L
2 = ρ3D/L. Equating the two, ρ3D = ρ2Dc0. Recalling that the normalizing
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Figure 4.30: Comparison of the estimated Tcorr and experimental Tc.

scale for the resistivity was ρ0 = ~c0/πe
2. Using c0 ∼ 29Å, we have ρ0 ∼ 380µΩcm

for the organics.

The absolute magnitude of our metallic resistivity at T ∼ 0.4t is about 60ρ0 ∼
25mΩcm, while the experimental value is & 100mΩcm [85]. The difference could

arise from electron-phonon scattering which is absent in our model. Limelette et

al [83] presented a DMFT based resistivity result that compares favourably with

experiments, but, apparently, involves an arbitrary scale factor.

We showed the U dependence of the optical conductivity in Fig.4.15, at T/t =

0.1, 0.2. For a rough comparison to organics, T/t = 0.1 ≡80K, ω/t = 5 ≡ 2500cm−1,

and σ/σ0 = 0.1 ≡ 265Ω−1cm−1.

In the organics the experimenters have carefully isolated the Mott-Hubbard fea-

tures in the spectrum by removing phononic and intra-dimer effects [87]. Since we

have already fixed our t, t′, U we have no further fitting parameter for σ(ω). The mea-

sured spectrum at x ∼ xc and T ∼ 50−90K has a peak around 1500−2000cm−1. Us-

ing Uc/t ∼ 4.5 and T/t = 0.1 we get ωpeak/t ∼ 3.0, which translates to ∼ 1500cm−1.

The magnitude of our σ(ω) at ωpeak is ∼ 0.1σ0 ∼ 265Ω−1cm−1, since σ0 = 1/ρ0 ∼
2650Ω−1cm−1. This is remarkably close to the measured value, ≈ 280Ω−1cm−1

(Ref. [87] Fig.3). In Fig.4.29, we have shown the temperature evolution of the optical

conductivity near the Mott transition. In the Cl1−xBrx the transition occurs around

x ∼ 0.75, while for us, it occurs around U ∼ 4.6, or x ∼ 0.8.

While the characteristic scales in σ(ω) match well with experiments, the exper-

imental spectrum has weaker dependence on temperature and composition x. This

could arise from the subtraction process and the presence of other interactions in the

real material. Our result differs from DMFT [86], and agrees with the experiments,

in that we do not have any feature at ω = U/2. We have verified the f-sum rule

numerically.
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Figure 4.31: Comparison of the phase diagram with experiment.

4.4.3 Transition temperature

Finite temperature brings into play the low energy fluctuations of the mi. The

effective model has the O(3) symmetry of the parent Hubbard model so it cannot

sustain true long range order at finite T . However, our annealing results suggest that

magnetic correlations grow rapidly below a temperature Tcorr, and weak inter-planar

coupling would stabilize in plane order below Tcorr. This scale increases from zero at

U = Uc1, reaches a peak at U/t ∼ 6.5, and falls beyond as the virtual kinetic energy

gain reduces with increasing U (Fig.4.7(c)).

Since U ∼ 6.0 at x = 0, from our results this would indicate that Tcorr ∼ 0.05,

at x = 0, i.e, Tcorr ∼ 35K, not too far from the NMR inferred Tc ∼ 30K. In Fig.4.30

we show a comparison of the experimental Tc and the Tcorr.

4.4.4 Reentrant M-I transition

In the organics of the κ−(BEDT-TTF)2Cu[N(CN)2]-X family in particular one ob-

serves an insulator-metal transition (IMT) in the ground state of the X=Cl1−xBrx

family at x ∼ 0.75, and also a pressure driven IMT when X=Cl [79, 80]. While the

increase in bandwidth, and so a decrease in the effective interaction, with increasing

the ‘pressure’ is not unexpected, finite temperature brings to life an unusual re-

entrance [83, 85]. Over a narrow pressure window (∼10Mpa), the insulating ground

state ‘metallises’ with increasing temperature and then crosses over again to insu-

lating behaviour at a higher temperature. In Fig.4.31, we show a comparison of the

theory reentrance window with that of Kanoda et al [79]. For metals or insulators far

from the critical interaction the behaviour is monotonic: metals show an increasing

resistivity, while insulators show a decreasing resistivity with increasing temperature.
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Cellular dynamical mean field theory (C-DMFT) studies suggest that geometric

frustration could be responsible for the re-entrance effect that is observed [99, 100].

The specific predictions about interaction and temperature window, however, seem

to vary widely with choice of the DMFT solver, and most of conclusions are based

on the behaviour of the ‘double occupancy’ rather than the measurable transport

and spectral features.

Our re-entrant window δU = 0.4t near Uc, inferred from thermally driven I-M-I

crossover, is equivalent to δx = 0.2. This is consistent with δx ∼ 0.2 in the Cl1−xBrx

family [85]. The C-DMFT estimates of the re-entrant window varies widely, from

δU ∼ 0.3t [100] to ∼ 1.2t [99].

4.4.5 Density of states

We saw, in section 4.3.4 that, the crossover from the bad metal to the insulator

involves a wide window with a pseudogap in the electronic DOS, N(ω). One may

have guessed this from the depleting low frequency weight in σ(ω), Fig.4.17 makes

this feature explicit. We are not aware of tunneling studies in the organics, but

the presence of a pseudogap has been inferred from NMR measurements [88]. Our

results indicate a wide window, U/t ∼ [4, 5.3], where there is a distinct pseudogap in

the global DOS. This suggests that the entire x ∼ [1.0, 0.35] window in the organics

should have a PG. For U/t . 4.6 the dip feature deepens with increasing T , we have

dN(0)/dT < 0 (compare panels (a) and (b), Fig.4.17), while for U/t & 4.6 we have a

weak dN(0)/dT > 0. The PG arises from the coupling of electrons to the fluctuating

mi. A large mi at all sites would open a Mott gap, independent of any order among

the moments. Weaker mi, thermally generated in the metal near Uc1 and with only

short range correlations, manages to deplete low frequency weight without opening

a gap. Since the typical size 〈mi〉 increases with T in the metal, we see the dip

deepening at U < Uc.

4.5 Conclusions

We have explored in detail a method which retains the spatial correlations that are

crucial near the Mott transition on a frustrated lattice. Using electronic parameters

that describe the κ-BEDT based organics we obtain a magnetic Tc, metal-insulator

phase diagram, and optical response that reproduces the key experimental scales.

We uncover a wide pseudogap regime near the MIT, and predict distinct signatures
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of the incommensurate magnetic fluctuations in the angle resolved photoemission

spectrum.

While the ‘higher temperature’ results are likely to be a good approximant to

the full quantum treatment, future work would involve a check on the stability of

the unusual magnetic ground states to quantum fluctuations. The absolute value of

Uc is also likely to be renormalized upward somewhat if further quantum effects are

incorporated.
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CHAPTER5
MOTT PHYSICS AND GLASSINESS ON

THE FCC LATTICE

In the previous chapter we saw how geometrical frustration in the triangular lattice

disfavours Neel order and promotes complex non-collinear states. There are several

families of compounds based on three dimensional frustrated lattices. The complexity

of the these structures has prevented a detailed exploration of Mott physics and the

possible magnetic phases.

5.1 Background

Unlike in two dimensions (2D), there is no organized body of work probing the

interplay of geometric frustration and Mott physics in three dimensions (3D). In 3D

there are intriguing experimental results on disparate systems [47–49,56,57,112–116,

118–127, 151], whose common features do not seem to have been noticed. The 3D

frustrated Mott systems are realized on face centered cubic (FCC) and pyrochlore

lattices. They both involve connected tetrahedra, disallowing Neel order in the

insulating phase. The FCC examples include the Ga cluster compounds [112–115],

alkali fullerides, A3C60 [116,118,119,151], and the double perovskites [47–49,56,57].

The pyrochlore examples include the rare earth molybdates [120–122] and iridates

[123–127]. Most of these materials, at ambient pressure [160], are insulators close to

a Mott insulator-metal transition (IMT). Despite the wide chemical variety, several

striking features seem to be common:

1. Magnetic state: The Mott phase often has no long range magnetic order down

to the lowest temperature, only short range antiferromagnetic correlations and
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sometimes a hint of ‘spin freezing’ [47–49, 57, 120, 121]. However, many of

these systems have large Weiss constant θCW (see table 5.1), suggesting strong

antiferromagnetic exchange. This indicates a high degree of frustration in such

systems.

Compound Structure θCW (K) Reference
GaNb4Se8 FCC 300 [112,113]
Cs3C60 FCC 105 [118]
Ba2YRuO6 FCC 571 [47]
Sr2InReO6 FCC 182 [57]
Ba2YMoO6 FCC 160 [49]
Y2Mo2O7 Pyrochlore 200 [121]

Table 5.1: Curie constants θCW of some of the FCC and pyrochlore compounds.

2. Unusual metal: The Mott insulator can be driven metallic by applying pressure.

The resulting state is a ‘non Fermi liquid’ - with anomalously large low tem-

perature resistivity and a negative temperature coefficient [114, 122, 125, 126].

At high pressure ‘normal’ metallic behaviour is observed.

3. Anomalous Hall: Several of these systems have non-coplanar antiferromagnetic

correlation. For example GaNb4Se8 [113] exhibits long range non-coplanar

antiferromagnetic order with Tc ∼ 30K. This can lead to anomalous Hall

response, as already observed in the pyrochlore iridate Pr2Ir2O7 [127].

4. Spectral weight transfer: The optical conductivity [115,125] indicates that the

insulator to metal transition involves transfer of spectral weight over a wide

frequency window.

5. Superconductivity: Some of these systems, e.g, the cluster compounds [114] and

the alkali fullerides [116,118,119,151], show superconductivity at low temper-

ature.

The first three features are direct consequences of frustration which promotes non-

coplanarity and short range correlation, in contrast to collinear long range order.

The last two are more generic to Mott physics. We will show that the single band

Hubbard model on the FCC lattice helps us understand the connection between

magnetism and transport in a subset of these materials [114, 115]. Based on our

solution of the Mott problem on the FCC lattice we establish the following.

1. In the ground state, increasing interaction leads, successively, to transition

from a paramagnetic metal (PM) to a spin glass metal (SGM), a spin glass
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‘insulator’ (SGI), and then an antiferromagnetic insulator (AFI). The spin glass

arises without the presence of any extrinsic disorder, consistent with several

frustrated materials. The AFI has flux like order (defined later) at weaker

coupling, and ‘C type’ order in the very strong coupling Heisenberg limit.

2. The Tc scales in the ordered phase, as well as the notional glass transition

temperature TSG, are a tiny fraction, ∼ a few percent, of the hopping scale due

to the frustration.

3. While the AFI phase has a clear gap and divergent resistivity as temperature

T → 0, the spin glass insulator has a pseudogap in the density of states,

non Drude optical response in the optical conductivity, and large but finite

resistivity at T = 0 with with negative temperature coefficient (dρ/dT < 0).

The results above, although obtained for the FCC lattice, have much in common

with observations on the pyrochlores.

We have found little theoretical work on the magnetic phases or the Mott tran-

sition in the FCC lattice. A very early calculation explored a restricted set of mean

field states [128] but, in contrast to 2D, there does not seem to be any cluster dy-

namical mean field theory (C-DMFT) result handling the combination of correlation

and frustration.

As before we study the following model at half filling:

H = −t
∑
〈ij〉σ

[
c†iσcjσ + h.c.

]
− µ

∑
i

ni + U
∑
i

ni↑ni↓ (5.1)

The 〈...〉 denote nearest neighbours on the FCC lattice. We set t = 1 as the reference

energy scale. µ controls the electron density, which we maintain at half filling n = 1.

U > 0 is the Hubbard repulsion. Using the Hubbard-Stratonovich (HS) approach

used in the last chapter, we get the following effective Hamiltonian Heff which

describes electrons moving in the spatially fluctuating background of classical mi

fields (where µ̃ = µ− U
2

)

Heff = −t
∑
〈ij〉σ

[
c†iσcjσ + h.c.

]
− µ̃N − U

2

∑
i

mi · ~σi +
U

4

∑
i

m2
i (5.2)

We can write this as sum of electronic and classical part Heff = Hel{mi}+Hcl{mi},
where Hcl{mi} = U

4

∑
i m

2
i . The {mi} configurations follow the distribution

131



P{mi} ∝ Trcc†e
−β(Hel+Hcl) (5.3)

Retaining the spatial fluctuations of mi allows us to estimate Tc scales, and access

the crucial thermal effects on transport. Within the static HS approximation Heff

and P{mi} define a coupled fermion-local moment problem. This is similar to the

‘double exchange’ problem, with the crucial difference that the moments are self

generated (and drive the Mott transition) and are not fixed in size.

As before we use a Monte Carlo technique, now on lattices upto N = 12×12×12

in size, with clusters of size Nc = 4 × 4 × 4. For characterizing the magnetic state

we calculate the thermally averaged structure factor S(q) at each temperature. The

onset of rapid growth in S(q) at some q = Q, say, with lowering T , indicates a

magnetic transition. Electronic properties like density of states, optical conductivity

etc, are calculated by diagonalizing Hel on the full lattice for equilibrium {mi}
configurations. Since the MC ground state can be affected by annealing protocol,

wherever possible we have tested it against variational choices of {mi}.
In the next section 5.2, we discuss the ground state. In section 5.3, we take up the

finite temperature physics in detail, including the behaviour of the auxiliary fields,

the density of states across the Mott transition, and transport and optical properties.

This is followed by a section comparing our results with recent measurements on the

FCC based Ga cluster compounds. We then conclude the chapter.

5.2 Ground state

At T = 0, the Monte-Carlo based sampling becomes the minimization process

δ

δmi

〈Heff{mi}〉 = 0

Please note that mi need not be periodic. We observe the following with growing

U/t in the ground state.

1. At low U the minimization leads to a state with vanishing moments mi =

|mi| = 0. This holds for U < Uc1 ∼ 4t.

2. There is a weakly discontinuous transition to a state with non-zero mi at Uc1.

For Uc1 < U < Uc2, where Uc2 ∼ 6.7t, the ground state involves finite mi, with

a finite width distribution P (m,U) (see later) but no long range order. The

system behaves like a spin glass (SG) with short range ‘flux like’ correlations.
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Figure 5.1: Two dimensional cross sections of the structure factor data S(q) at low
temperature, T = 0.01 for: top row: U = 5 in the spin-glass region, middle row:
U = 7 for flux like order, and bottom: U = 20 for C type order. Each row has color
plots of S(q) in the qx, qy with selected qz = 0, π, π

2
, π, 3π

2
..

3. Beyond Uc2 the ground state has long range flux like order till U ∼ 20t, beyond

which the virtual hopping generated exchange is effectively nearest neighbour

and we obtain ‘C type’ order, as expected [165] for the AF Heisenberg model

on the FCC lattice.

Fig.5.1 shows the structure factor that emerges from annealing the system to low

temperature at three values of U . For U/t = 5, top row, the pattern does not show

any signature of long range order but does have moments as Fig.5.2 reveals. At

U/t = 7 the structure factor (middle row) shows flux like order, with a fairly large

moment, while at U/t = 20 the magnetic order is C type.

At U/t = 5 the density of states, Fig.5.2 right panel, is almost featureless. The

system is a metal, to be cross checked later via actual resistivity calculation. At the

two larger values of U there is a clear gap in the spectrum and the system is an

insulator. The DOS plots reveal that between the simple metal and the hard gap

insulator there is a pseudogap phase. That turns out to have insulating resistivity

as we will see later.

We now move to a quick analysis of the weak coupling and strong coupling phases

using the same tools that we used for the triangular lattice.
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Figure 5.2: Low temperature behaviour: The left panel shows the distribution P (m)
of the magnitude of the moments. Right: the electronic DOS in the corresponding
backgrounds. Notice the broad distribution with a small mean that arises at inter-
mediate U , and the much sharper (ideally δ function) P (m) at larger values of U .
The DOS shows a pseudogap in the glassy phase.

5.2.1 Weak Coupling

In the 2D triangular lattice we could get some insight about the low U magnetic

state by examining the RPA susceptibility based on χ0(q). In that problem the

peak location of χ0 provided a hint about possible magnetic order.

We tried the same calculation in the FCC case but visualization of the data is

now more difficult. Instead of attempting to show a 3D plot of χ0 we have shown

cross sections of χ0(q) in the qx, qy plane for various choices of qz. The two rows in

Fig.5.3 show data for the FCC (top row) and the simple cubic lattice (bottom row).

The simple cubic case has a clear peak at (π, π, π) while the the FCC result shows a

featureless χ0 with the value ranging from 0.1− 0.2 as one moves over the Brillouin

zone.

Remembering that at weak coupling we can use an effective model of the form

Heff (m) ∼
∑
ij

(−χ0
ijmi.mj +

|mi|2
U

δij) =
∑
q

(−χ0(q) +
1

U
)|~mq|2

to locate the instability, the χ0 result suggests that a simple ordered state may not

be the optimal solution. What we discover instead is that for U beyond a threshold

Uc1 the system generates a small moment which freezes into a glassy state (with

short range flux like correlations), see Fig.5.1.

The moment is not large enough, near Uc1, to kill the metallic state, but it gener-

ates a residual resistivity. With growing U the density of states shows a pseudogap,
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Figure 5.3: 2D cross sections of tight binding susceptibility χ0(q) for (Top) the
FCC lattice and (Bottom) the simple cubic lattice. The figures are in qx, qy planes,
for selected qz values shown in the figures in the range [0, 2π].

and increasingly larger resistivity and for U > Uc2 the spectrum shows a hard gap.

Within our resolution that is also where the moments order into a long range flux

like pattern.

5.2.2 Strong coupling

At very strong coupling, deep into the Mott phase, the leading order virtual hopping

process generates the effective model

Heff (m) =
∑
ij

t2ij
U

mi.mj

For nearest neighbour tij this is the classical antiferromagnetic Heisenberg model on

the FCC lattice. Had we retained the quantum dynamics of the mi we would have

obtained the S = 1/2 quantum Heisenberg model. The classical

The classical model has been well studied [135–138], and extensive Monte Carlo

results suggest the occurrence of ‘C type’ order, see Fig.5.4, right. The nearest

neighbour model has large degeneracy in J(q) [135], however the thermal effects,

and a small next nearest neighbour coupling, select collinear configuration.

Our results in the large U limit confirm this, and also generate the correct Tc

scale ∼ 0.6t2/U . At weaker coupling but still in the Mott state we obtain a flux

like configuration, Fig.5.4 left, as the ground state, probably because longer range

hopping processes generate multi-spin couplings favouring non coplanar order.
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Figure 5.4: The mi configuration in the flux state (left) and the C-type state
(right). The FCC lattice points Xi are shown by green spheres, and the mi fields by
red arrows.

5.3 Finite temperature properties

5.3.1 Phase diagram

The ground state, as we have discussed, involves the sequence PM→ SGM→ SGI→
AFI (flux and then C type) with increasing interaction. The main issues of interest

in characterizing the finite T phases are:

� The Tc, and glass transition scale Tg.

� The single particle DOS in terms of gap or pseudogap.

� The transport character, i.e, dρ/dT > 0 or dρ/dT < 0.

The nature of magnetic order and Tc is established from the structure factor peak.

In the absence of a ordering peak in the structure factor the ‘relaxation time’ yields

an estimate of freezing temperature. These are discussed in the next section.

Overall, the phase diagram Fig.5.5 indicates that Tc deep in the Mott phase

follows the Heisenberg result, but is already significantly different by the time U/t =

10. For U . 9t the size of the local moment itself diminishes rapidly, due to increase

in itinerancy, and the Tc falls sharply.

Below Uc2 ∼ 6.7t we have a glassy phase where, the mi field seem to freeze at low

temperature. We make a crude estimate of the ‘freezing temperature’ from the MC

based local relaxation time [163], τav(T, U) (discussed in the next section 5.3.2). If

the system undergoes an ordering transition, on lowering T , there is a rapid growth
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Figure 5.5: The U − T phase diagram. In ground state, upon increasing U/t,
the system goes from PM (with no local moments) to successively, spin glass SGM,
SGI (with disordered local moments), then to ordered AFI. At finite temperature
the system also has a paramagnetic (Mott) insulating (PI) phase. The magnetic
transition temperature Tc, and the spin glass freezing temperature TSG (see text), are
indicated. We show the extrapolation of the Tc ∼ 0.6 t

2

U
asymptote, that describes the

U/t� 1 transition, to highlight the large deviation from the short range Heisenberg
result. The PG region involves a pseudogap in the density of states.

in τav accompanied by a growth in the structure factor S(q) at the q’s associated

with long range order (LRO).

For a glass transition, one observes similar growth in τav, without any signatures

in S(q). For U > Uc2 we observe LRO as well as a rapid increase in τav at a

single temperature Tc(U). For the window Uc1 < U < Uc2, however, τav rises, at

a temperature we call TSG(U), without associated LRO. We have also ‘heated’ the

system up from T = 0 and discovered that any assumed ordered state is quickly

destabilized, while the mi moments themselves survive. TSG varies in the manner

shown in Fig.5.5, vanishing for U < Uc1 where there are no local moments. The

freezing scale monotonically increases from U/t ∼ 4 and matches the Tc of the flux

phase at U/t & 7.

The large U/t regime is obviously gapped due to the presence of large moments,

which prevent double occupancy, and the small U/t regime has a density of states

that is weakly renormalized with respect to the band result. At intermediate U ,

where the moments are small and disordered the electron spectrum only shows a

suppression of weight at the Fermi level and not a full gap. This window is marked

as PG in the phase diagram. Any mean field treatment of the magnetic problem
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Figure 5.6: U dependence of the P (m) distribution at (a) T=0.03t showing weak m̄,
and broad distribution around it in the correlated metal to, progressively stronger
m̄, and sharper distribution in the AFI with increasing U . (b) The same for T=0.2t,
where all the U have progressively become broader and with higher m̄, as compared
to those in (a).

would have yielded a ‘band structure’ for the electrons. The novelty in the present

case, with respect to the triangular lattice situation, is that the PG window survives

down to T = 0 due to the presence of disordered local moments. The DOS will be

shown in detail in a later subsection.

The ‘metallic’ and ‘insulating’ characterization is done by examining the temper-

ature derivative dρ/dT . We will see the detailed resistivity later. For the moment

notice that in addition to the obvious crossover from insulating to metallic behaviour

with decreasing interaction we can have an I-M crossover (in a narrow U/t window)

by increasing temperature as well.

5.3.2 Auxiliary fields

We first consider the magnitude distribution of the auxiliary field. In Fig.5.6 and

Fig.5.7 we have shown the evolution of P (m) of the auxiliary fields mi. Fig.5.6(a)

and 5.6(b) show the U dependence, respectively, at low temperature, T = 0.03,

and high temperature, T = 0.2. Fig.5.7(a)-(c) shows the temperature evolution at

three representative values of U , (a) U = 5.2t when the system is a SG metal, (b)

U=6.2t, and (c) U=6.7t when in SG insulator. The trends in the broadening of the

distribution with increasing temperature and interaction strength are qualitatively

same as in two dimensions.
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Figure 5.7: Temperature dependence of the P (m) distribution at three fixed U in
the SG window. (a) U = 5.2t, (b) U=6.2t and (c) U=6.7t.

We calculate the structure factor S(q)

S(q) =
1

N2

∑
ij

〈mi ·mj〉eiq·(ri−rj)

for the angular spatial correlation, and the average relaxation time τav to get the

correlation in the ‘MC’ time.

τav(T, U) =
1

N

∑
i

∫ tmax

0

dt〈mi(0).mi(t)〉 (5.4)

In Fig.5.8 we have shown the temperature dependence of the structure factor

and the relaxation time. The onset of rapid growth in S(q) at some q, defines

onset of long range order, while the particular sets of qs define the precise nature

of the order. The onset of rapid growth in τav, shows the tendency of ‘freezing’ of

the auxiliary fields mi in the ‘MC’ time. The freezing temperatures, TSG and the

magnetic transition temperature Tc are marked in the figure as onset of growing S(q)

and τavg respectively. Beyond Uc2, till U . 20, we get a ‘flux’, phase, after which we

get the ‘C type’ antiferromagnetic phase, which have the growing set of q mentioned

in the table 5.2. The nature of these states is shown in Fig.5.4.

Phase q
Flux (π,π,0),(0,0,π),(π,0,π),(0,π,0),(0,π,π),(π,0,0)
C type (π,π,0),(0,0,π)

Table 5.2: The qs for the flux and C type
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around T ∼ 0.03. (b)-(d) for U = 7, 8, 9 respectively, where S(q) and τav both grow
at the same temperature (Tc = TSG).

5.3.3 Density of states

While in the insulating phase (U > Uc2) the system would have a gapped density of

states (DOS), and in the metallic (U < Uc1) case is likely to have a featureless DOS,

the glassy window in between may have unusual spectral features. Fig.5.9.(a)-(b)

shows the DOS for varying U/t at T = 0.03t and T = 0.20t, respectively. For lack

of space in the figure, the colour codes for U/t are marked in panel (b) only. In

panel (a), for U . Uc1 the DOS is featureless, but for 5.4 < U/t < 7.5 it displays

a pseudogap (PG), and for higher U/t there is a clear gap. The large U/t phase is

magnetically ordered at this temperature. At the higher temperature in panel (b),

where there is no trace of magnetic order, the PG feature extends over a much larger

U/t window. The weaker U ‘metals’ in (b) have a deeper PG compared to panel (a),

while the weak gap insulators now have a PG feature rather than a hard gap. Panel

(b) essentially illustrates the paramagnetic Mott transition on the FCC lattice.

Panels 5.10.(a)-(c) show the T dependence of the DOS for three typical U/t in

the glassy window, where the ground state has frozen local moments. They all

share the feature of thermally induced loss of low frequency weight which shows up

at ω ∼ U . There is markedly less change with T on the negative frequency side,

particularly in panels (b) and (c), compared to positive frequencies. This is due to

the large asymmetry in the tight binding DOS of the FCC lattice. There is a subtle
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Figure 5.10: Temperature dependence of density of states N(ω) at three fixed U in
the SG window. See the thermally induced PG at weak U = 5.2t (a), the presence
of the PG at T = 0 itself for (b) U=6.2t and (c) U=6.7t.

low energy difference between panels (a)-(b) and panel (c). In (a)-(b) the loss in low

frequency weight, within ω ∼ ±t is monotonic with T . In panel (c), however, which

neighbours the AFI, the low frequency weight first increases with T , upto T ∼ 0.1t,

and then again diminishes at higher temperature. Modest change of temperature,

T ∼ 0.1t, leads to large asymmetric shift of spectral weight from ω ∼ 0 to ω ∼ U .

5.3.4 Transport and optics

Fig.5.11 shows the resistivity ρ(T, U). For U < Uc1 the resistivity is metallic (ρ(T =

0) = 0) and and increases with temperature (dρ/dT > 0). For U > Uc2 the system

is gapped at T = 0, hence zero temperature resistivity diverges (ρ(T = 0) → ∞),

with negative temperature coefficient (dρ/dT < 0). These are the obvious metallic

141



★
★

★★
★

★
★

★

★
★

★

★

★

★

✦
✦✦✦

✦

✦

✦

✦

✦

✦

✦

✦

✥✥✥
✥

✥

✥

✥

✥

✥

0 0.05 0.1 0.15 0.2

T/t

10

100

ρ
(Τ

)/
ρ

0

4 5 6 7 8

U/t

10
1

10
2

10
3

10
4

ρ
(0

)/
ρ

0

4 5 6 7 8

U/t

0.0

0.2

0.4

0.6

0.8

1.0

|m
|

(a) (b)

(c)

4.0

5.0
5.4

5.8

6.0

6.1 6.2

6.3

6.4
6.5

6.6

6.7

6.8

Figure 5.11: (a) T and U dependence of the resistivity, calculated in units of ρ0= ~a0
πe2

,

a0 being the lattice spacing (for a0 ∼ 3Å, ρ0 ∼ 60µΩcm). The PM window (U<Uc1)
is metallic and the T=0 resistivity ρ(0) vanishes. In the SGM phase (Uc1<U<Uc) is
metallic, but ρ(0) is finite. In the SGI phase (Uc<U<Uc2) ρ(0) is finite, insulating
and rapidly grows with U . For U>Uc2 the ground state has ‘flux’ order and a
gapped spectrum (insulating), ρ(0) is infinite. For the weakly insulating ground
states ((U −Uc)/Uc � 1) increasing T leads to a crossover to metallic state. (b) The
variation of the ρ(0) with U/t. (c) The same for average moment m at T = 0.

and insulating behaviour that one expects across a correlation driven transition.

For Uc1 < U < Uc2, however, the T = 0 resistivity is finite, with positive slope

(dρ/dT > 0) for Uc1 < U < Uc, where Uc ≈ 5.8t, and with negative slope (dρ/dT < 0)

for Uc < U < Uc2. This behaviour would usually not be expected in a translation

invariant system, and arises because of the scattering of electrons from the ‘frozen’

local moments in the SG phase. The growth of m(U), the mean magnitude of mi,

leads to the enhanced scattering with increasing U and finally the divergence of ρ(0)

due to the opening of a gap. The variation of ρ(0) and m with U/t are shown in

panels (b) and (c) respectively. We characterize the system as metallic, at a given

T and U , when the slope dρ/dT > 0, and insulating when dρ/dT < 0. With this

convention, an ‘insulator’ may have finite spectral weight at ω = 0 in the optical

conductivity σ(ω).

Fig.5.12, and 5.13 show the optics for the same parameter choice as the DOS fig-

ure. Panels (a)-(b) show the evolution of σ(ω) across the metal-insulator transition,

between the PM and AFI at T = 0.03t, and between the PM and PI at T = 0.20t.

There is a clear window of non Drude response at low T , roughly corresponding
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Figure 5.12: Optical conductivity σ(ω) in units of σ0= 1
ρ0

, on the same U ,T set as

Fig.5.9(a)-(b). On increasing U/t, at low T (a) the response evolves from a Drude
metal to the Mott AFI through a non Drude regime, and at large T (b) it shows
similar evolution from the PM to a PI, where no Drude peak is visible down to
U = 5t. The peak locations have moved to higher ω, and overall scales of σ(ω) are
halved.
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Figure 5.13: Temperature dependence of the Optical conductivity σ(ω) at the same
U set as Fig.5.9(a)-(c) in the SG window. The weak moment system (a) shows
essentially broadening of Drude response with increasing T . The larger moment
system (b) shows a non Drude response with low ω weight suppressed with T . Panel
(c) shows an SG with large ρ(0). The very low ω weight (on the scale of the PG)
increases with T , while the weight at ω ∼ U reduces with increasing T .

to the PG regime in Fig.5.9.(a). In 5.12.(b) the non Drude window in U/t has in-

creased as in Fig.5.9.(b) with a general suppression in the magnitude of σ(ω). The

Fig.5.13(a)-(c) show the suppression of low frequency optical weight, with some of it

appearing at ω & U . Unlike the single particle DOS, the total optical weight is not

conserved and varies with the kinetic energy. At U/t = 6.7, the very low frequency

optical response is non monotonic in T , showing a quick increase and then a gradual

suppression. This directly relates to the behaviour of ρ(T ) in Fig.5.11.(a).
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5.3.5 Discussion

We have highlighted a host of magnetic, transport and spectral features associated

with Mott phenomena on the FCC lattice. However, like all many body methods,

our approach too is approximate. We touch upon the possible shortcomings before

attempting to relate our results to experiments.

Ground state: The ground state that we access through MC is equivalent to the

unrestricted Hartree-Fock (UHF) result, but with no assumptions about translational

symmetry. It is easy to see some of the qualitative effects of dynamical fluctuations

in mi and φi, that we have neglected, at T = 0. These would have the following

consequences:

1. They would convert the U < Uc1 band metal to a correlated metal.

2. They would introduce quantum spin fluctuations in the large U antiferromag-

netic phases.

3. They would possibly shift Uc1 to a larger value, since the correlated metal

competes better with the local moment phase, and would survive to larger U .

4. The intermediate window ‘spin glass’ that appears within the static approxi-

mation might be converted to a spin liquid with slowly fluctuating moments.

A recent calculation on the triangular lattice demonstrates how longer range

and multi-spin interactions arise on a frustrated Mott insulator and can lead

to a spin liquid ground state [167].

We have tried various Monte Carlo protocols, and they all seem to lead to a spin

glass state at intermediate coupling. However, it would be useful to check the size

dependence in more detail, and also possible metastability of this state.

Thermal effects: Our approach captures the correct thermal fluctuations of the

mi, without any assumption about long range order in the background. This in turn

allows us to capture a Tc that has the qualitatively correct U dependence. With

growing temperature, but staying at T � U , these classical thermal fluctuations

should reasonably describe the magnetic background, and its effect on the electrons.

Our results suggest the organization of a broad class of experiments.

1. We find that a non-coplanar spin configuration dominates the Mott phase, and

pressure induced metalization leads to a weak moment ‘spin frozen’ state with
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short range non-coplanar correlations. This is consistent [113, 116, 119] with

observations on GaTa4Se8, FCC A3C60, and double perovskite materials.

2. Beyond the pressure driven IMT the materials exhibit [114,122, 124, 125] very

high ρ(0), and dρ/dT < 0. Our results show how this can arise from the pres-

ence of disordered local moments strongly coupled to the itinerant electrons,

leading to large scattering. In the Ga cluster materials these local moments

emerge from correlation effects, while in the pyrochlores [122] they are already

present as localized a1g electrons.

3. The very recent optical measurement [115] in GaTa4Se8 shows pronounced non

Drude character in the metal near the IMT. This is consistent with our optics

results for the PM to PI transition.

The correspondence above allows us to make two broad predictions about Mott

transition in these frustrated systems: (i) There should be a wide PG regime beyond

the insulator-metal transition, persisting to T = 0. This should be visible in tunnel-

ing and photo-emission spectra, and (ii) the thermally induced shift of single particle

spectral weight would be extremely asymmetric. Weight at low positive frequencies

is shifted to the scale of ω ∼ U , while the negative frequency spectrum remains

almost unaffected. We have not probed the anomalous Hall response due to flux like

correlations or possible superconductivity.

Let us now move to a quantitative comparison of our results with data available

on the FCC based Gallium cluster compounds.

5.4 Comparison with experiments

5.4.1 Parameter estimation

The recent optical experiments on the cluster compound GaTa4Se8 [115] show con-

firmation of a pressure driven Mott transition, consistent with earlier resistivity

results [114], and suggest the appropriateness of a single band description. They

also allow an estimate of the interaction strength, through optical conductivity data.

The electronically active Ta4 clusters live on a face centered cubic (FCC) motif, pro-

viding a clean example of an IMT in a three dimensional frustrated structure in,

apparently, a single band context.

GaTa4Se8 had recently attracted attention due to electric field induced insulator

to metal switching. Much, however, remains unknown about these materials, except
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(i) the unusual low temperature transport feature, near the IMT [114], of very large

residual resistivity with a negative temperature coefficient, and (ii) the possibility

of a non-coplanar (‘all in all out’) order at T ∼ 30K in GaNb4Se8. Neither of these

are commonplace for materials near a Mott transition, and, we argue, arise from the

interplay of frustration and correlation effects.

In this section, we use the single band Hubbard description for these materials,

and ‘calibrate’ the pressure (P ) dependence of electronic parameters (see later) based

on the optical conductivity data.

The band structure calculations that accompany the recent optical measurement

suggest that despite the complex chemistry only one band, arising primarily from

Ta 5d levels, is adequate to describe the tight binding electronic structure. That

does not necessarily mean that nearest neighbour (NN) hopping will describe the

electronic structure in detail, but for simplicity we assume that only NN hopping

provides an adequate starting point. The next task is to obtain a pressure dependent

calibration, t(P ), for the hopping and estimate the interaction strength U .

The experimental optical conductivity, σexp(ω, P ), shows a peak at ωp ≈ 550meV

when P = 0. The peak frequency reduces slowly as P increases to 10 GPa. For

the insulating P = 0 sample σexp(ω) basically probes the inter Hubbard band tran-

sitions, prompting the authors to infer that U ≈ 550meV. In principle U could be

pressure dependent but apparently the Ta4 clusters, from which the U arises, do not

significantly compress with P . In that case the P driven Mott transition would arise

from changing bandwidth. The authors indeed provide GGA based results for the

bandwidth and interpret their results for σexp(ω) in terms of single site dynamical

mean field theory (DMFT).

We proceed slightly differently. We treat U as a pressure independent constant,

close to but not necessarily 550meV. We treat t as a P dependent parameter so

that the key features, i.e, (i) the peak location ωp, and (ii) the magnitude at the

peak, σ(ωp), match between σexp(ω) and the theory result σth(ω). Specifically, we

want ωp(P )|expt ≈ ωp(t(P ), U)|th and σexp(ωp, P ) ≈ σth(ωp, t(P ), U), at T = 300K.

The quality of the match, for our choice of t(P ) is shown in Fig.5.14 and discussed

further on. We find that U = 500meV, and t(P ) ranging from 50meV at P = 0

to 70meV at P = 10 GPa leads to a reasonable match. We use the estimated U

and t(P ) to fix a temperature independent calibration for electronic parameters in

terms of P . From now on we phrase the theory results directly in terms of absolute

temperature (Kelvin) and pressure (GPa) without always referring to U/t.

Fig.5.14 shows the optical conductivity comparison. The left panel shows the

146



✱

✱

✱

✱✱

✱
✱

✱

✱

✱✱
✱✱ ✱

✱✱
✱

✱

✱
✱

✱ ✱
✱

✱
✱✱✱

✱
✱

✱
✱
✱✱

✱
✱✱

✱

✱

✱
✱ ✱

✱
✱

0 2000 4000 6000 8000

ω [cm
-1

]

0

200

400

600

σ
ex

p(ω
) 

[Ω
cm

]-1

0.0 GPa

5.2 GPa

8.9 GPa

10.7GPa

✱
✱✱

✱

✱

✱

✱

✱

✱

✱

✱

✱

✱

✱

✱
✱

✱✱
✱

✱

✱

✱

✱

✱

✱

✱

✱

✱

✱

✱

✱

✱
✱

✱
✱

✱
✱✱✱✱✱✱

0 2000 4000 6000 8000

ω [cm
-1

]

σ
th

(ω
) 

[Ω
cm

]-1

t=52 meV

t=61 meV

t=68 meV

t=72 meV✱ ✱

0 5 10 15 20

P (GPa)

50

70

90

t 
(m

eV
)

0 5 10
P (GPa)

0

200

400

600

σ
p
[Ωcm]

-1

0 5 10
P (GPa)

0 

2 k

4 k

ω
p
[cm]

-1 th
exp

T=300K

T=300K

U=500 meV

(a) (b)

(i) (ii)

Figure 5.14: Comparison of the optical conductivity for calibrating the electronic pa-
rameters. (a) Experimental result σexp(ω) measured in GaTa4Se8 at various pressures
and T = 300K. The data is obtained by subtracting out the inter-band contribution
as quantified in the experimental paper. (b) Our result σth(ω) for U = 500meV and
hopping parameters t chosen to mimic the pressure dependence in the experiments.
Insets to panel (a), (i): comparison of the mid infrared peak height in σ(ωp) between
theory and experiment, (ii): comparison of the peak location ωp. Inset to (b): our
choice of hopping parameter t as function of pressure.

measured value σexp(ω, P ), where we have subtracted a pressure independent high

frequency contribution as quantified by the experimenters. This was suggested by

them so that the result could be analyzed within a ‘one band’ scenario, removing

Ta-5d to Se-4p transitions. The right panel shows our σth(ω, t(P )), where t(P ) has

been chosen as in the inset to panel (b), and U = 500meV and T = 300K. The t(P )

calibration has been chosen to get a reasonable fit to the peak location, inset (ii) in

panel (a), and the peak height, inset (i) in panel (a). We had varied the choice of U

to optimize the overall fit. Although the peak features match, note that σexp(ω, P )

has a slower fall at high frequency, compared to the theory result. This possibly

arises from the background subtraction process mentioned earlier and highlights the

difficulty of separating intra-band and inter-band effects at high frequency. Having

determined the electronic parameters by fitting σ(ω) at high temperature we now

test the usefulness of the FCC Hubbard description by comparing the temperature

dependence of the d.c resistivity between experiment and theory.
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Figure 5.15: (a). The resistivity ρ(T ) in GaTa4Se8, normalized to its value at 300K,
for different pressures. Notice the intermediate pressure window where ρ(T ) is headed
for a finite value at T = 0 with dρ/dT < 0. (b). The ‘pressure’ and temperature
dependence of the theoretically estimated resistivity, using the calibration shown in
Fig.1. The pressures that correspond to experiment are marked, and we also show
data for intermediate pressure values in the anomalous regime. The inset to panel
(b) shows the absolute value of the model resistivity at T = 0 and T = 300K. Note
that we have no phonon contribution or impurity scattering in the theory.

5.4.2 Comparing the resistivity

Fig.5.15 shows the resistivity, the left panel shows the experimental result ρexp(T, P ),

normalized to ρexp(300K,P ), while the right panel shows the theoretical result

ρth(T, P ) similarly normalized. Note that our fit to the high frequency feature in

σ(ω) in no way constrains the d.c resistivity. First the obvious features: (i) At low

pressure, P = 4.8 GPa, both ρexp and ρth diverge as T → 0. The experimental charge

gap is estimated at 100meV, our estimate at low temperature is about 105meV (it

weakens slowly with T ). (ii) For P & 15 GPa both ρexp and ρth show usual metal-

lic behaviour with dρ/dT > 0. The experimental result has a higher T → 0 value

probably due to the presence of impurity scattering.

Over an intermediate pressure window, 8 GPa . P . 14.0 GPa, however, ρexp

shows a large T → 0 value, with dρ/dT < 0. It seems some scattering or localization

mechanism survives in the system even after the charge gap is destroyed by pressure.

Our result ρth has a similar window, over a slightly different pressure range, 11.6 GPa

. P . 16.0 GPa. While the numerical values for ρth and ρexp at a given pressure

differ, the match in the qualitative trend is remarkable. The inset to panel (b) shows

the absolute value of ρth at T = 0 and T = 300K. The high T resistivity decreases
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Figure 5.16: The pressure-temperature phase diagram of GaTa4Se8 based on our
result. The predicted ground state is a non-coplanar (flux) state for 0 < P <
11.5 GPa, and disordered local moment phase (spin glass) for 11.5 < P < 20 GPa.
The spin glass would have insulating character for P < 16GPa and metallic for
P > 16 GPa. At P = 0 the flux phase has transition temperature TAF ≈ 23K.
The TAF slightly increases with P and beyond P ∼ 10 GPa is replaced by a spin
glass temperature TSG. At high temperature the P . 4 GPa phase would be a
paramagnetic insulator (PI), the P & 20 GPa phase would be a paramagnetic metal,
while the wide window in between would be pseudo-gapped (PG) with metallic or
insulating character as shown. Available data from experiments is marked in red:
(i) the slightly lower bandwidth material GaNb4Se8 is believed to have flux like
order with TAF ≈ 30K, (ii) the critical pressures Pc1 and Pc2 for change in transport
character are indicated, (iii) The superconducting transition TSC ∼ 6−8K is marked.

smoothly with increasing P , i.e, decreasing U/t. The low T resistivity varies more

dramatically, with a metal-insulator transition at P ∼ 11.5 GPa and a ‘bad metal’ (or

weak insulator) phase for 11.5 < P < 16 GPa. We feel the correspondence between

ρexp and ρth is a strong test of the model. There is no way that just a fit to the

high temperature σexp(ω) would automatically reproduce the complicated pressure

and temperature dependence of ρexp. ‘Impurity’ and electron-phonon scattering are

not included in our model.

5.4.3 Predicted magnetic phases

Fig.5.16 shows our prediction for the P − T phase diagram of GaTa4Se8 based on

our solution of the FCC Mott problem and the t(P ) calibration. We also superpose

experimental data where available. Let us first comment on the ground state: (i) We
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Figure 5.17: Predicting the temperature dependence of the optical conductivity
(top row) and the single particle density of states (bottom) in the vicinity of the
insulator-metal transition. 5GPa is in the Mott phase and 18 GPa is in the metal.

suggest an antiferromagnetic insulating (AFI) state with non-coplanar ‘flux’ order

for P . Pc1 ∼ 11.5 GPa. (ii) Beyond Pc1 and upto P ∼ 20 GPa (beyond which

we do not want to push t(P )) we see a disordered local moment (spin glass) phase.

The magnitude of the moments decreases with increasing P . The spin glass would

be insulating (SGI) for Pc1 < P < Pc2, where Pc2 ∼ 16 GPa, with an electronic

pseudogap and dρ/dT < 0. Beyond Pc2 there should be a spin glass metal (SGM)

with a featureless density of states and dρ/dT > 0. Experimentally, the transport

inferred Pc1 ∼ 8 GPa, while Pc2 ∼ 15 GPa. These are quite comparable to our

Pc1 ∼ 11.5 GPa and Pc2 ∼ 16 GPa.

The transition temperature TAF at P = 0 is ≈ 23K, rises slightly with P , and

beyond P ∼ 10 GPa is replaced by a spin glass transition temperature TSG. While

we do not know of measurements on the magnetic state in GaTa4Se8 the slightly

smaller bandwidth GaNb4Se8 ‘orders’ at T ∼ 30K at P = 0, into, apparently, a flux

like state. This point is marked at P = 0, as suggestive of what one could examine

in GaTa4Se8.
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5.4.4 Predicted spectral features

Fig.5.17 shows the temperature dependence of the optical conductivity and the DOS

at three pressures. The three pressures we choose are (a) P = 18 GPa, corresponding

to a metallic ground state, (b) P = 13 GPa, corresponding to a spin glass ‘insulating’

ground state, and (c) P = 5 GPa where the ground state should be AFI. Note

that the available optical data only shows the P dependence at T = 300K, so the

results for σ(ω) in Fig.5.17.(a)-(c) are detailed predictions for what to expect in the

temperature dependence. The temperature legend, common to all panels, is shown

in panel (f).

Panel (c) shows the behaviour of σ(ω) at P = 18 GPa as T increases from 20K

to 200K. The low T response is Drude like, with a peak at ω = 0, but for T ≥ 50K

there is the hint of the peak shifting to finite ω and the non Drude character is quite

prominent at T = 200K.

5.5 Conclusions

We have provided a comprehensive study of the Mott transition on the geometrically

frustrated FCC lattice. Our results indicate that magnetic frustration can lead to a

translation symmetry broken ‘two fluid’ state of itinerant electrons and disordered

local moments between the paramagnetic metal and the antiferromagnetic insulator.

The disordered phase involves an anomalously large residual resistivity, non Drude

optical response, and a single particle pseudogap. The results establish a conceptual

scheme for approaching 3D frustrated materials. We have made a quantitative de-

scription of the pressure driven Mott transition, in the cluster compounds AM4X8,

based on the recent optical conductivity data, by calibrating the pressure in terms

of the bandwidth of the materials.
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APPENDIXA
DISPERSION FOR ORDERED PHASES

Here we show how to calculate dispersion for selected ordered phases, which have

relatively small unit cells. We define the unit cell for each phase, and go to k−space

where the Hamiltonian becomes block diagonal.

A.1 Spectrum for collinear phases

The Hamiltonian can be diagonalized by Fourier transformation. We write the

Hamiltonian H as H = H0 +HJ , where, H0 is given by,

H0 =
∑
~Xσ

[ε1f
†
~X,σ
f ~X,σ + ε2m

†
~X+ ~a1,σ

m†~X+ ~a1,σ
]− t

∑
~X,σ,~δ∈NN

(f †~X,σm ~X+~δ,σ + h.c.)

−t′
∑

~X,σ,~δ∈NNN

(m†~X+ ~a1,σ
m ~X+ ~a1+~δ,σ + h.c.) (A.1)

and HJ is given by

HJ = J
∑
~X

~S( ~X) · ~σα,βf †~X,αf ~X,β (A.2)

The lattice vector ~X is defined as ~X = n1
~A1 + n2

~A2 + n3
~A3 with Ai, i = 1, 2, 3

as the primitive lattice vectors (A1 = (2, 0, 0), A2 = (1, 1, 0), A3 = (0, 1, 1)), defining

the periodicity of lattice with the 2 site unit cell. With this periodicity, the unit cell

has one ‘f ’ and one ‘m’ site at (0, 0, 0) and (1, 0, 0) respectively. Now doing a Fourier

transform on ‘f ’ operators (similarly for ‘m’s)

f †~X,σ =
1√
N

∑
~k

f †~k,σ exp(i~k · ~X) (A.3)
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This simplifies the non-magnetic part H0 as follows,

H0 =
∑
~k,σ

[
(ε2 + A′~k)m

†
~k,σ
m~k,σ + ε1f

†
~k,σ
f~k,σ + (A~kf

†
~k,σ
m~k,σ + h.c.)

]

=
∑
~k,σ

(
f †~k,σm

†
~k,σ

)( ε1 A~k
A~k ε2 + A

′

~k

)(
f~k,σ
m~k,σ

)
(A.4)

Which is reduced to 2× 2 block. the amplitudes A~k = −2t(cos kx + cos ky + cos kz)

and A′~k = −4t′(cos kx cos ky + cos ky cos kz + cos kz cos kx) are just the cubic and FCC

dispersions.

Next, we have to simplify the HJ part. For the collinear phases, ~S( ~X) can

be expressed as ~S( ~X) = (0, 0, ei~q·
~X). For FM, ~q is trivially (0, 0, 0). For A-type,

~q = (π
2
,−π

2
, π

2
), while for C-type ~q = (0, π,−π). Now, plugging this value of ~S( ~X) in

HJ and doing the Fourier transform for the HJ , we get,

HJ = J
∑
~x

σf †~k,σf~k+~q,σ ;σ = ±1 (A.5)

Now ~q = 0 for FM, so HJ becomes diagonal. Thus total Hamiltonian H still

remains 2 × 2 block, and the eigenvalues for the FM are solutions of the following

2× 2 block

H2X2(~k, σ) =

(
ε1 + Jσ A~k
A~k ε2 + A′~k

)
(A.6)

For A-type and C-type phases, we get matrix elements connecting |~k, σ〉 → |~k +

~q, σ〉 → |~k, σ〉 , so that now we get to solve following 4× 4 block

H4×4(~k, σ) =


ε1 Jσ A~k 0

Jσ ε1 0 A~k+~q

A~k 0 ε2 + A′~k 0

0 A~k+~q 0 ε2 + A′~k

 (A.7)

From these we obtain the spectrum for F,A,C phases on large (∼ 1003 − 5003)

lattices, which can be used to calculate the density of states, phase diagram, phase

separation windows etc.
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A.2 Spectrum for the ‘flux’ phase

The unit cell for the ‘flux’ phase has 4B, and 4B′ atoms lying on the corners of the

cube. The primitive lattice vectors become Ai = {(2, 0, 0), (0, 2, 0), (0, 0, 2)} At finite

J , the same procedure (as for collinear phases) will reduce the Hamiltonian into

16× 16 block. To make life a bit simple, we use the J→∞ limit on the Hamiltonian

for the ‘flux’ phase, which is same as used in [63] except its the 3D version.

Figure A.1: Unit cell structure for the Flux phase

This gives us 4 spin-less fi levels and 8 mi,σ levels in the unit cell, which upon

simplification reduces to 12 × 12 block. With the basis
(
fi(k) mi↑(k)

)
i∈{1,2,3,4}

The Hamiltonian breaks into 12× 12 block given as follows

H =



∆ 0 0 0 t1↑a1 t1↓a1 t1↑a2 t1↓a2 0 0 t1↑a3 t1↓a3

0 ∆ 0 0 t2↑a2 t2↓a2 t2↑a1 t2↓a1 t2↑a3 t2↓a3 0 0

0 0 ∆ 0 t3↑a3 t3↓a3 0 0 t3↑a2 t3↓a2 t3↑a1 t3↓a1

0 0 0 ∆ 0 0 t4↑a3 t4↓a3 t4↑a1 t4↓a1 t4↑a2 t4↓a2

t∗1↑a1 t∗2↑a2 t∗3↑a3 0 0 0 t12 0 t23 0 t13 0

t∗1↓a1 t∗2↓a2 t∗3↓a3 0 0 0 0 t12 0 t23 0 t13

t∗1↑a2 t∗2↑a1 0 t∗4↑a3 t12 0 0 0 t13 0 t23 0

t∗1↓a2 t∗2↓a1 0 t∗4↓a3 0 t12 0 0 0 t13 0 t23

0 t∗2↑a3 t∗3↑a2 t∗4↑a1 t23 0 t13 0 0 0 t12 0

0 t∗2↓a3 t∗3↓a2 t∗4↓a1 0 t23 0 t13 0 0 0 t12

t∗1↑a3 0 t∗3↑a1 t∗4↑a2 t13 0 t23 0 t12 0 0 0

t∗1↓a3 0 t∗3↓a1 t∗4↓a2 0 t13 0 t23 0 t12 0 0


(A.8)
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Where the symbols in the above are defined as

α =

√√
3 + 1

2
√

3
; β =

√√
3− 1

2
√

3
; z =

1− i√
2

; a1 = 2 cos k1; a2 = 2 cos k2; a3 = 2 cos k3

t12 = −4t′ cos k1 cos k2; t23 = −4t′ cos k2 cos k3; t13 = −4t′ cos k1 cos k3;

t1↑ = t2↑ = −tα; t3↑ = t4↑ = −tβ; t1↓ = −t2↓ = tzβ; t3↓ = −t4↓ = −tz∗α

This gives us H(k)12×12, which is very difficult to diagonalize analytically, but still

saves us from diagonalizing full real-space matrix of O(N ) size, and reduces the

problem to O(N ) number of diagonalizations of 12 sized matrix.

The comparison of energies using the εk obtained for F,A,C and flux phases, one

can draw the magnetic phase diagram for large lattice size (N ∼ 4003). The fig-

ure A.2, shows the phase diagram, which can be compared to that obtained through

real space calculations done on 203 size.
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Figure A.2: Colour online: Phase diagram based on k space based diagonalisation
for t′ = 0, 0.3,−0.3. System size N = 1603. Here we can only use F, A, C and
‘flux’ phase as candidate states but some of the complexity of more elaborate phase
diagrams, Fig.2, are already present.
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APPENDIXB
FCC LATTICE SETUP

On the FCC lattice, the primitive lattice translation vectors are

~A1 = (0, 1, 1), ~A2 = (1, 0, 1), ~A3 = (1, 1, 0) (B.1)

All the points on FCC lattice are expressed in integer units of these, i.e., ~X =

n1
~A1 + n2

~A2 + n3
~A3 = (n2 + n3, n3 + n1, n1 + n2) = ~X(n1, n2, n3). Each site has 12

neighbours X + δ, where

δ = ( 1, 1, 0), (−1,−1, 0),

( 1, 0, 1), (−1, 0,−1),

( 0, 1, 1), ( 0,−1,−1)

( 1,−1, 0), (−1, 1, 0),

( 1, 0,−1), (−1, 0, 1),

( 0, 1,−1), ( 0,−1, 1)

Now let us see how the neighbours are labeled

N1 = X(n1, n2, n3) + (1, 1, 0) = (n2 + n3, n3 + n1, n1 + n2) + (1, 1, 0)

= (n2 + (n3 + 1), (n3 + 1) + n1, n1 + n2) = X(n1, n2, n3 + 1)

Or,

N1 = X(n1, n2, n3) + (1, 1, 0) = X(n1, n2, n3 + 1)

157



Similarly, one gets the other five as

N2 = X(n1, n2, n3) + (−1,−1, 0) = X(n1, n2, n3 − 1)

N3 = X(n1, n2, n3) + (1, 0, 1) = X(n1, n2 + 1, n3)

N4 = X(n1, n2, n3) + (−1, 0,−1) = X(n1, n2 − 1, n3)

N5 = X(n1, n2, n3) + (0, 1, 1) = X(n1 + 1, n2, n3)

N6 = X(n1, n2, n3) + (0,−1,−1) = X(n1 − 1, n2, n3)

Next, we have,

N7 = X(n1, n2, n3) + (1,−1, 0) = (n2 + n3, n3 + n1, n1 + n2) + (1,−1, 0)

= ((n2 + 1) + n3, n3 + (n1 − 1), (n1 − 1) + (n2 + 1)) = X(n1 − 1, n2 + 1, n3)

Or,

N7 = X(n1, n2, n3) + (1,−1, 0) = X(n1 − 1, n2 + 1, n3)

Similarly the other neighbours are labeled as

N8 = X(n1, n2, n3) + (−1, 1, 0) = X(n1 + 1, n2 − 1, n3)

N9 = X(n1, n2, n3) + (1, 0,−1) = X(n1 − 1, n2, n3 + 1)

N10 = X(n1, n2, n3) + (−1, 0, 1) = X(n1 + 1, n2, n3 − 1)

N11 = X(n1, n2, n3) + (0, 1,−1) = X(n1, n2 − 1, n3 + 1)

N12 = X(n1, n2, n3) + (0,−1, 1) = X(n1, n2 + 1, n3 − 1)

Thus if we label the sites (n1, n2, n3), the first six neighbours have labels, (n1 ±
1, n2, n3),(n1, n2 ± 1, n3), and (n1, n2, n3 ± 1), and the second six neighbours have

labels (n1 ± 1, n2 ∓ 1, n3),(n1 ± 1, n2, n3 ∓ 1), and (n1, n2 ± 1, n3 ∓ 1).

Thus, the 12 neighbours of the FCC lattice correspond to 12 ‘neighbours’ in the

‘label’ lattice, first six of which are nearest neighbours, and second six of which

are 6 selected next-nearest neighbours. So, though we need to define actual spin

configurations on the FCC lattice, the corresponding Hamiltonian of FCC lattice is

equivalent to that defined on the ‘label’ lattice.
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NN
δ δ′ Jx Jy Jz
( 1, 1, 0) ( 0, 0, 1) -t -t 0
(-1,-1, 0) ( 0, 0,-1) t t 0
( 1, 0, 1) ( 0, 1, 0) -t 0 -t
(-1, 0,-1) ( 0,-1, 0) t 0 t
( 0, 1, 1) ( 1, 0, 0) 0 -t -t
( 0,-1,-1) (-1, 0, 0) 0 t t
( 1,-1, 0) (-1, 1, 0) -t t 0
(-1, 1, 0) ( 1,-1, 0) t -t 0
( 1, 0,-1) (-1, 0, 1) -t 0 t
(-1, 0, 1) ( 1, 0,-1) t 0 -t
( 0, 1,-1) ( 0,-1, 1) 0 -t t
( 0,-1, 1) ( 0, 1,-1) 0 t -t

NNN
δ δ′ Jx Jy Jz
( 2, 0, 0) (-1, 1, 1) -t′ 0 0
(-2, 0, 0) ( 1,-1,-1) t′ 0 0
( 0, 2, 0) ( 1,-1, 1) 0 -t′ 0
( 0,-2, 0) (-1, 1,-1) 0 t′ 0
( 0, 0, 2) ( 1, 1,-1) 0 0 -t′

( 0, 0,-2) (-1,-1, 1) 0 0 t′

Table B.1: The neighbours on fcc lattice
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