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Notations

N The set of natural numbers.

Z The set of integers.

Q The set of rational numbers.

R The set of real numbers.

C The set of complex numbers.

R Commutative ring with identity.

R× The multiplicative group of units of R.

M(n,R) The set of all n× n matrices over the ring R.

GL(n,R) The set of all invertible matrices in M(n,R).

SL(n,R) The set of all matrices in GL(n,R) with determinant 1.

SO(n) Special orthogonal group of degrre n.

SU(n) Special unitary group of degree 2.

In×n The n× n identity matrix.

detA The determinant of the matrix A.

OK The ring of integers of K.

m An integral ideal of K.

DK The di�erent ideal of K .

D The discriminant of K.

iii
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ζK The Dedekind zeta function of K.

h The narrow class number of K.

RK The regulator of K.

N(x) Norm of x ∈ K over Q.

Tr(x) Trace of x ∈ K over Q.

x� 0 x is totally positive element this means σi(x) > 0 for all i.

X+ Collection of totally positive elements of a set X ⊂ K.

K℘ ℘-adic completion of K.

O℘ The ring of integers of K℘.

m℘ The maximal ideal of O℘.

We also utilize the following notations frequently.

(1) Let f, g : R → C be functions such that g(x) > 0 for all x ∈ R. We

write f(x) = O(g(x)) (read �f(x) is big oh of g(x)�) to mean that the

quotient f(x)
g(x)

is bounded; that is there exists a constant C > 0 such that

|f(x)| ≤ Cg(x) for all x. Moreover if there exsit constants C1, C2 > 0 such

that

C1g(x) ≤ |f(x)| ≤ C2g(x),

then we write f � g.

(2) By f(x) ∼ g(x) and f(x) = o(g(x)), we mean that

lim
x→+∞

f(x)

g(x)
= 1 and lim

x→+∞

f(x)

g(x)
= 0,

respective.



Summary

This thesis contains four chapters that deal with some problems in the theory

of Hilbert modular forms. The thesis begins with a brief introduction to the

theory of Hilbert modular forms (Chapter 1).

Chapter 2 is concerned with the determination of modular forms, for ex-

ample, �multiplicity one theorem�, and a result of Dinakar Ramakrishnan. We

determine a Hilbert modular form by the Fourier coe�cients indexed by the

square-free integral ideals. To prove our result, we use newform theory and a

method of Balog and Ono.

Chapter 3 discusses the sign changes in the Fourier coe�cients indexed by

the square-free integral ideals and the integral ideals in an arithmetic progres-

sion. We use the adelic correspondence due to Shimura between classical Hilbert

modular forms and adelic Hilbert modular forms to study the sign changes.

The last chapter is devoted to the study of the Lambert series associated

with an adelic Hilbert cusp form. We establish an asymptotic relation between

the Lambert series and the non-trivial zeros of the Dedekind zeta function. Such

an asymptotic relation for Ramanujan τ -function was conjectured by Zagier and

proved by Hafner and Stopple.





CHAPTER1
Hilbert modular forms-a brief

introdution

This chapter aims to collect some basic de�nitions and results that will be of

importance to the rest of thesis but are also relevant in their own right. We do

not give the proofs of statements as the proofs are easily available in the referred

literature. In the �rst section, we develop a signi�cant theory of classical Hilbert

modular forms (HMF). In the second section, we talk about the association of

classical HMF to adelic forms. The third section is devoted to de�ning various

linear operators on the space of HMF. Then we brie�y review the theory of

newforms for HMF. At the end of this chapter, we focus on the Rankin-Selberg

of HMF. Here we mainly follow [1717], [1818], [4444] and [4747].

1



2 �1.1. Classical Hilbert Modular forms

1.1 Classical Hilbert Modular forms

Let K be a totally real number �eld of degree d over Q. We denote the set

of all real embeddings of K into R by S∞ = {σ1, . . . , σd}. Naturally by these

embeddings, K can be embedded inside Rd via the map x→ (σ1(x), . . . , σd(x)).

Let us de�ne some multindex notations that helps us to simplify longer state-

ments to shorter ones, and these notations will be used throughout the thesis.

For α = (α1, . . . , αd) ∈ Cd,k = (k1, . . . , kd) ∈ Zd and x ∈ C, we de�ne

αk :=
d∏

n=1

αknn , {α} :=
d∑

n=1

αn, xα := x
∑d
n=1 αn ,

k0 = max{k1, k2, . . . , kd}, eK(α) := e({α}) = exp

(
2πi

d∑
n=1

αn

)
.

1.1.1 Hilbert Modular Group

Let us begin with de�ning the group GL+(2,R),

GL+(2,R) :=


a b

c d

 ∣∣∣ a, b, c, d ∈ R, ad− bc > 0

 .

The group GL+(2,R) acts on the Poincaré upper half-plane H = {x+ iy | x, y ∈

R and y > 0} via the fractional linear transformation. Let γ =

a b

c d

 ∈
GL+(2,R) and z be in upper half-plane,

γ(z) :=

a b

c d

 (z) =
az + b

cz + d
.

Following the above action of GL+(2,R) on H, we have an induced action
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of GL+(2,R)d on Hd, which is de�ned component-wise. More precisely for γ =

(γ1, . . . , γd) ∈ GL+(2,R)d and z = (z1, . . . , zd) ∈ Hd

γ(z1, . . . , zd) := (γ1(z1), . . . , γd(zd)).

For a �xed choice of an embedding of K into Rd, we obtain an embedding of

GL(2, K) into GL(2,R)d via the following map

a b

c d

→

σj(a) σj(b)

σj(c) σj(d)



d

j=1

. (1.1)

We now de�ne the following two subgroups of GL(2, K);

GL+(2, K) =


a b

c d

 ∈ GL(2, K)
∣∣∣ ad− bc� 0

 ,

and

GL+(2,OK) =


a b

c d

 ∈ GL(2,OK)
∣∣∣ ad− bc� 0

 .

Then the so de�ned embedding (1.11.1) gives an action of GL+(2, K) on Hd. Let

γ be an element of GL+(2, K) and z ∈ Hd,

γ(z) :=

(
σj(a)zj + σj(b)

σj(c)zj + σj(d)

)d
j=1

,

where γ =

a b

c d

. The group GL+(2,OK) is known as the full Hilbert

modular group (attached to the �eld K).
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1.1.2 Congruence Subgroup

De�nition 1.1.1 Let N be a positive integer. We de�ne

ΓN = {γ ∈ SL(2,OK) | γ − I2 ∈ N ·M(2,OK)} .

ΓN is called the �principal congruence subgroup� of level N .

De�nition 1.1.2 Let G and H be two groups. We say that the groups G and

H are commensurable if G ∩H has �nite index in both the groups.

De�nition 1.1.3 Let Γ be a subgroup of GL+(2, K). We say that Γ is a congru-

ence subgroup if it contains ΓN for some N ∈ N, and Γ/(Γ∩K) is commensurable

with SL(2,OK)/ < ±I2 >.

1.1.3 Class number and Cusps

The cusps of GL+(2, K) are the points (σ1(α), . . . , σd(α)) ∈ Rd ⊂ ∂Hd for

α ∈ K, together with the point i∞= (i∞, . . . , i∞). Let Γ be a congruence

subgroup of GL+(2, K), we say that two cusps s1 and s2 are Γ-inequivalent if

their orbits under Γ are disjoint, that is Γs1 and Γs2 are disjoint. Now we state

a theorem that relates the number of cusps and the class number of K.

Theorem 1.1.4 ([1818]) Let SL(2,OK) ⊂ Γ ⊂ GL+(2,OK). Let h(K) be the ab-

solute class number of K. Then there are exactly h(K) number of Γ-inequivalent

cusps.
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1.1.4 Classical Hilbert Modular Forms

Let f be a function de�ned from Hd to C. For γ = (γ1, . . . , γd) ∈ GL(2,R)d and

k = (k1, . . . , kd) ∈ Zd, we de�ne stroke operator on f as f |kγ on Hd

(f |kγ)(z) := (detγ)
k
2

d∏
j=1

(cjzj + dj)
−kjf(γz),

where γj =

aj bj

cj dj

 and detγ = (det γ1, . . . , det γd).

De�nition 1.1.5 Let Γ be a congruence subgroup of GL+(2, K). Let Mk(Γ)

be the space of all holomorphic functions f on Hd such that

(1) (f |kγ)(z) = f(z) for all γ ∈ Γ and z ∈ Hd.

(2) f is holomorphic at cusps of Γ.

The elements of Mk(Γ) are called Hilbert modular forms of weight k on

Γ. We de�ne Mk = Mk

∞⋃
N=1

(ΓN). Similar to the elliptic modular forms, the

Hilbert modular forms also admit Fourier expansion as follows.

Proposition 1.1.6 ([1818], [4444]) Let f be an element ofMk(Γ). Then the Fourier

expansion of f is given by,

f(z) = cf (0) +
∑
ξ�0

cf (ξ)eK(ξz), z ∈ Hd,

where c(ξ) are complex numbers, ξ runs over totally positive elements of a lattice,

and

ξz = (σ1(ξ)z1, . . . , σd(ξ)zd).

The complex numbers cf (ξ) are known as Fourier coe�cients of f .
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De�nition 1.1.7 An element ofMk(Γ) is said to be a cusp form if the constant

term of the Fourier expansion of f |kγ is zero for all γ ∈ GL+(2, K). We denote

the space of cusp forms by Sk(Γ).

Proposition 1.1.8 ([1717], [1818]) Let Γ be a congruence subgroup. Then the

space Sk(Γ) is a �nite dimensional vector space over C.

Koecher's Principle

We know that there are non-trivial conditions imposed upon the Fourier

coe�cients to attain holomorphicity at cusps. According to Koecher's principle,

if d > 1, the second condition in De�nition 1.1.51.1.5 is redundant (stated explicitly

in Proposition 1.1.91.1.9 below). Thus holomorphicity at cusps in the case of Hilbert

modular forms is automatic (d > 1), while it is not trivial in the case of elliptic

modular forms.

Proposition 1.1.9 ([1717], [1818]) Assume that [K : Q] > 1. Let f be a complex

valued function which satis�es the �rst condition in De�nition 1.1.51.1.5. Then f is

holomorphic at cusps.

Proposition 1.1.10 ([4444]) The spaceMk(Γ) is non-trivial only if k1 = · · · =

kd ≥ 0 or all kj are positive. Moreover the space Mk(Γ) = Sk(Γ) unless k1 =

· · · = kd.

1.1.5 The space Mkkk(n, ψ, θ)

Let n be an integral and I be a fractional ideal in K. Consider the following

congruence subgroup Γ(I, n), de�ned by

Γ(I, n) :=


a b

c d

 ∈ GL+(2, K)
∣∣∣ a,d∈OK , b∈I−1D−1

K

c∈InDK , ad−bc∈O×K

 .
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Let ψ be a �nite character of
(
OK/n

)×
, known as numerical character modulo

n. For a �nite order character θ of O×,+K , the group of totally positive units of

OK , de�ne a character χ of Γ(I, n) as follows

χ

(a b

c d

) := ψ(a)θ(ad− bc).

Let

Mk(Γ(I, n), χ) :=
{
f ∈Mk

∣∣ f |kγ = χ(γ)f
∀ γ∈ Γ(I,n)

}
.

Here we remark that the space Mk(Γ(I, n), χ) is trivial unless ψ(β)θ(β2) = sgn

(β)k for all β ∈ O×K . Therefore, we always assume this parity condition. Note

that there exists a m ∈ Rd such that θ(ε) = εim for all ε ∈ O×,+K . Though m is

not unique, we �x this m throughout the thesis. For a set of representative of

narrow class ideal of K say {I1, . . . ,Ih}, Γλ(n) = Γ(Iλ, n), we de�ne the space

Mk(n, ψ, θ) as

Mk(n, ψ, θ) :=
h∏
λ=1

Mk(Γλ(n), ψ, θ).

1.2 Adelic Hilbert Modular Forms

In this section, we describe a lift of an h-tuple of classical Hilbert modular forms

to an adelic form. Since the Hecke operators do not preserve the space of classical

Hilbert modular forms, we need this lifting. We begin this section by de�ning

the adeles and ideles of a number �eld.

Adeles and Ideles

Let F be a number �eld. We denote by S the set of the equivalence class of

absolute values of F . We call an element v (or ℘) of S, a place of F . By
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Ostrowski's theorem there are exactly three categories of inequivalent places.

The �rst one corresponds to each prime ideal ℘ of OF , known as �nite place

(non-archimedean), the second one corresponds to real embeddings of F into C,

and the third one corresponds to complex embeddings of F into C. The latter

type of places is known as in�nite places (archimedean place). Let v be a place

of F , the completion of F at v is denoted by Fv and

Fv =


F℘ v = ℘ is a prime ideal

R v is real embedding

C v is complex embedding

,

where F℘ is the ℘-adic completion of F . For a �nite place ℘, O℘ and m℘ denote

the ring of integers of F℘ and the unique maximal ideal of O℘, respectively. The

maximal ideal m℘ is generated by a single element. A generator w℘ (or π℘) of

m℘ is called as uniformizer of F℘.

De�nition 1.2.1 The adele ring AF of a number �eld F is a restricted prod-

uct of F℘ with respect to O℘, where addition and multiplication are de�ned

component-wise.

AF =

{
(a℘) ∈

∏
℘∈S

F℘

∣∣∣ a℘ ∈ O℘ for all but �nitely many ℘

}
.

AF assumes the structure of a topological ring. Note that F is embedded inside

AF diagonally. Thus AF becomes a topological vector space over F .

Proposition 1.2.2 ([1212], [1515]) For a number �eld F . The ring AF is locally

compact and Hausdor�. The �eld F sits inside AF as a discrete subgroup, and

the quotient topological group AF/F is compact.
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De�nition 1.2.3 The idele group IF of F is the group A×F , the unit elements

of the ring AF .

Theorem 1.2.4 ([1212], [1515]) Let IF be the set of all fractional ideals of F . Then

there exists a surjective homomorphism between IF and IF , which is de�ned as

α = (α℘) 7→
∏
℘<∞

℘v℘(α).

Thus, the above result allows us to consider any idele as a fractional ideal of F .

Also, we use the same notation for an idele and its associated fractional ideal.

Remark 1.2.5 Here IK has a topology such that the inclusion map i : IF → A2
F ,

given by x→ (x, x−1), is continuous.

1.2.1 The Group GL(2,AF )

The group GL(2,AF ) makes sense as an abstract group. Since A×F = IF , there-

fore GL(2,AF ) is a set of 2× 2 matrices over AF with determinant in IF .

Set,

Wv =


GL(2,O℘) v = ℘ is a prime ideal,

SO(2) v is a real embedding,

SU(2) v is a complex embedding.

It is not di�cult to see that

GL(2,AF ) =

{
(. . . , g℘, . . .) ∈

∏
℘∈S

GL(2,W℘)
∣∣ for all but �nitely many g℘ ∈ W℘

}
.
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Various subgroups

Let K be a totally real number �eld. For an integral ideal n of K, we de�ne

two subsets W0(n) and Y (n) of GL(2,AK). For a �nite place ℘, de�ne subsets

Y℘(n) and W℘(n) of GL(2, K℘) as

Y℘(n) :=


a b

c d

 ∣∣∣∣∣ a,d∈O℘, c∈ nDKO℘
b∈D−1

K O℘, (aO℘,nO℘) = 1

ad−bc∈K×℘

 ,

W℘(n) :=
{
γ ∈ Y℘(n) | detγ ∈ O×℘

}
.

Put

W0(n) = GL+(2,R)d ×
∏
℘<∞

W℘(n),

Y (n) = GL(2,AK) ∩
(
GL+(2,R)d ×

∏
℘<∞

Y℘(n)
)
.

Remark 1.2.1 It is worth to note that W℘(n) and W0(n) are in fact subgroups

of GL(2, K℘) and GL(2,AK), respectively, however Y℘(n) and Y (n) merely semi-

groups.

Decomposition of GL(2,AK)

Let {tλ}hλ=1 be h elements of IK such that at each in�nite place tλ has value 1

and the set {t1OK , . . . , thOK} forms a set of representatives for the narrow class

group of K. Put

xλ =

1 0

0 tλ

 , x−invλ =

t−1
λ 0

0 1

 ,
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where inv denotes the involution on the set of 2×2 matrices. Now by strong ap-

proximation of GL(2,AK), we see that GL(2,AK) can be expressed as a disjoint

union

GL(2,AK) =
h⋃
λ=1

GL(2, K)xλW0(n) =
h⋃
λ=1

GL(2, K)x−invλ W0(n).

Association of classical forms to adelic forms

To overcome the problem which arises in the case when the class number

h > 1, Shimura associates an h-tuple of classical Hilbert modular forms as a

function on GL(2,AK). For x ∈ AK , we de�ne x�n(respectively x∞) to be an

element of AK by putting 1 at each in�nite (respectively �nite) place in x, thus

x = x�n ·x∞. In a similar manner for each integral ideal n we de�ne xn the n-part

of x by putting 1 at each place v whenever v - n. Given a numerical character

ψ of
(
O/n

)×
, following [4444] we de�ne a character of Y (n) by

ψY

(x ∗
∗ ∗

) = ψ(xn mod (n)).

Now we describe how to associate an h-tuple (f1, . . . , fh) of Mk(n, ψ, θ) to a

function f on GL(2,AK). By the decomposition of GL(2,AK), the function f is

given as follows

f(γx−invλ w) = ψY (winv) det (w∞)im(fλ|kw∞)(i),

where w ∈ W0(n), i = (i, . . . , i), and

fλ
∣∣
a b

c d

 (z) = (ad− bc)
k
2 (cz + d)−kfλ

(az + b

cz + d

)
.
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Following Shimura [4444], [4545], one can identify the space Mk(n, ψ, θ) with a set of

complex valued functions f on GL(2,AK) which satisfy the following properties,

(1) f(γxw) = ψY (winv)f(x) for all γ ∈ GL(2, K), x ∈ GL(2,AK), and w ∈

W0(n) and w∞ = 1.

(2) Corresponding to each λ there exists fλ ∈Mk such that

f(x−invλ γ) = det(γ)im(fλ|γ)(i),

for all γ ∈ GL+(2,R)d.

Hereafter, the space of functions on GL(2,AK) satisfying property (1) and (2)

will be denoted byMk(n, ψ,m) with �xedm ∈ Rd such that θ(ε) = εim for all to-

tally positive units in OK . We denote the subspace of cusp forms ofMk(n, ψ,m)

by Sk(n, ψ,m).

1.2.2 The space Mkkk(n,Ψ)

In this thesis, we mainly deal with the problems related to the space Mk(n,Ψ),

which will be de�ned in this section. Now we have collected almost all ingredients

to de�ne the space Mk(n,Ψ). We begin with the de�nition of Hecke character.

De�nition 1.2.6 A Hecke character Ψ is a continuous homomorphism from IK

to C× such that Ψ is trivial on K×.

Action of IK on Mkkk(n, ψ,m)

For any s ∈ IK , one can think of s as an endomorphism of Mk(n, ψ,m) given

by f(x) → f(sx). This action induces an unitary representation of IK in
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Mk(n, ψ,m). Since IK is an abelian group, by Schur's lemma this represen-

tation decomposes into a direct sum of irreducible representations of dimension

1. Let Ψ be a character (not necessarily Hecke character) of IK . Now we de�ne

the space Mk(n,Ψ) as

Mk(n,Ψ) :=
{
f ∈Mk(n, ψ,m)

∣∣ f(sx) = Ψ(s)f(x)
}
,

for all s ∈ IK and x ∈ GL(2,AK). Note that by de�nition, f(sx) = f(x) for all

s ∈ K×. This forces Mk(n,Ψ) to be non trivial only when Ψ is trivial on K×,

consequently Ψ is a Hecke character. Let Sk(n,Ψ) denotes the space of cusp

forms of Mk(n,Ψ). Letm be as above, we de�ne a homomorphism ψ∞ from IK

to C× by ψ∞(a) = sgn (a∞)k|a∞|2im.

Remark 1.2.7 In the view of the above de�nitions of the spaces Mk(n, ψ,m)

and Mk(n,Ψ), we have Ψ(a) = ψ(an)ψ∞(a) for all a ∈ (R×)n ×
∏

℘<∞O×℘ see [

equation 9.22 of [4545]].

We say that a Hecke character Ψ is an extension of ψψ∞ if Ψ(a) = ψ(an)ψ∞(a)

for all a ∈ (R×)n ×
∏

℘<∞O×℘ . Then one gets that there are only �nitely many

such Hecke characters.

Ideal character

Let n∞ be the product of all in�nite places. For a character ψ of (O/n)×, the

conductor of a Hecke character extending ψψ∞ is a divisor of nn∞. Following

Shimura, we de�ne an ideal character Ψ∗ modulo nn∞ as follows. For a prime

ideal ℘ of K

Ψ∗(℘) :=


Ψ(π℘) ℘ - n and πO = ℘

0 ℘ | n
.
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Note that for an integral ideal a such that (a, n) 6= 1, we have Ψ∗(a) = 0

independent of whether Ψ is trivial character or not.

1.2.3 Fourier Coe�cients of adelic Hilbert modular forms

Let f be an element of Mk(n, ψ,m), by the correspondence described earlier

there is an h-tuple (f1, . . . , fh) of classical Hilbert modular forms where each fi

has the following Fourier series expansion,

fλ(z) = aλ(0) +
∑

0�ξ∈Iλ

aλ(ξ) exp(2πiTr(ξz)).

Now following [4444], the Fourier coe�cients of f which are indexed by integral

ideals of K is given by

C(f ,m) =


N(m)

1
2aλ(ξ)ξ

−k
2 if m = ξI−1

λ ⊂ OK

0 otherwise

, (1.2)

where m is an integral ideal of K and k0 is the maximum of {k1, . . . , kd}.

Petersson Inner Product

Let f = (f1, . . . , fh) and g = (g1, . . . , gh) be two elements of Mk(n,Ψ). The

Petersson inner product of f and g is given by

〈f ,g〉 :=
h∑

v=1

〈fv, gv〉n =
h∑

v=1

1

µ(Γv(n)\Hd)

∫
Γv(n)\Hd

fv(z)gv(z)ykdµ(z),

where dµ(z) =
∏d

j=1 y
−2
j dxjdyj. The inner product is well-de�ned if fvgv is cusp

form for all 1 ≤ v ≤ h.
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1.3 Hecke operators

In this section we introduce some linear operators on the space Mk(n,Ψ) called

as Hecke operators. These operators are indexed by integral ideals. The family

{Tl}l forms a commutative ring of normal operators on the space Mk(n,Ψ).

Some of the properties of these operators are stated in the following theorem.

Theorem 1.3.1 ([4444], [4747]) Let f be an element of Mk(n,Ψ). Then the fol-

lowing statements hold.

(1) Tl maps Mk(n,Ψ) to Mk(n,Ψ), cusp forms to cusp forms, and is indepen-

dent of whether (n, l) = 1 or not.

(2) The e�ect of Tl on the Fourier coe�cients of f is given by

C(Tlf ,m) =
∑

m+l⊂a

Ψ∗(a)N(a)k0−1C(f , a−2lm).

(3) If f is an eigenfunction for all Hecke operators Tl with C(f ,OK) = 1, then

C(f ,mm′) = C(f ,m)C(f ,m′) if (m,m′) = 1,

C(f , ℘r) = C(f , ℘)C(f , ℘r−1)−Ψ(℘)N(℘)k0−1C(f , ℘r−2),

(1.3)

where ℘ is a prime ideal and r ≥ 2.

(4) The Hecke operators are Ψ hermitian in the sense that

Ψ∗(l)〈Tlf ,g〉 = 〈f , Tlg〉,

for all integral ideals l with (n, l) = 1.
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(5) The shift operator Bl is de�ned by

C(f |Bl,m) = C

(
f ,
m

l

)
.

(6) The shift operator Bl maps Mk(n,Ψ) to Mk(ln,Ψ) and cusp forms to cusp

forms.

1.3.1 Newforms in Skkk(n,Ψ)

The aim of this section is to brie�y discuss the newform theory for the space

Sk(n,Ψ) developed by Shemanske and Walling in the context of Hilbert modular

forms [4747]. First, we de�ne S−k (n,Ψ), a subspace of Sk(n,Ψ), generated by the

forms g|Bl, where g ∈ Sk(n′,Ψ) with n 6= n′, n′ | n and l |
(

n
n′

)
. The signi�cant

property of the space S−k (n,Ψ) is that it remains invariant under the action of

all Hecke operators Tl for (n, l) = 1. Let S+
k (n,Ψ) be the orthogonal complement

of S−k (n,Ψ) in Sk(n,Ψ) with respect to the Petersson inner product. Note that

for each integral ideal l such that (n, l) = 1, the operator Tl maps S+
k (n,Ψ) to

itself, which is a consequence of the fact that Tl is a hermitian operator and

maps S−k (n,Ψ) to S−k (n,Ψ).

De�nition 1.3.2 A form f ∈ Sk(n,Ψ) is said to be a new form if f ∈ S+
k (n,Ψ)

and f is an eigenfunction for all Hecke operators T℘, where ℘ is a prime ideal

not dividing n. We say that f is a normalized newform (or a primitive form) if

C(OK , f) = 1.

Proposition 1.3.3 ([4747]) For the space Sk(n,Ψ) the following statements hold.

(1) Sk(n,Ψ) = S−k (n,Ψ)⊕ S+
k (n,Ψ).



�1.3. Hecke operators 17

(2) The spaces S−k (n,Ψ) and S+
k (n,Ψ) are stable under the action of Tl with

(l, n) = 1.

(3) The spaces S−k (n,Ψ) and S+
k (n,Ψ) have an orthogonal basis which is formed

by the eigenforms of all the Hecke operators Tl with (n, l) = 1.

(4) We have

Sk(n,Ψ) = ⊕n0| nn′
⊕q| n

n′
S+
k (n′,Ψ)|B(q), (1.4)

where n0 is conductor of Ψ and B(q) is the shift operator.

Remark 1.3.4 The spaces S−k (n,Ψ) and S+
k (n,Ψ) are known as the space of

oldforms and the space of newforms, respectively. Note that not every form

in S+
k (n,Ψ) is a newform but only those that are eigenfunction of the Tl with

(l, n) = 1.

L-function

In 2006, Blasius proved the Ramanujan-Petersson conjecture for Hilbert modular

forms [1111]. For a primitive form f in Sk(n,Ψ) and for any ε > 0, we have

C(f ,m)�ε N(m)ε. (1.5)

The L-series associated with f is given by

L(s, f) =
∑
m

C(f ,m)

N(m)s
.

By the Ramanujan bound L(s, f) is absolutely convergent for Re(s) > 1.

Theorem 1.3.5 ([4444]) Let f be a primitive form in Sk(n,Ψ). Then
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(1) L(s, f) has the following Euler product which is

L(s, f) =
∏
℘|n

(1−C(f , ℘)N(℘)−s)−1
∏
℘-n

(1−C(f , ℘)N(℘)−s+Ψ∗(℘)N(℘)−2s)−1.

(2) For a trivial character Ψ, we have L(s, f) has an analytic continuation to

the entire complex plane. Set

Λ(s, f) = N(nD2
K)(2π)−ds

d∏
j=1

Γ

(
s+

kj − 1

2

)
L(s, f).

Then

Λ(s, f) = wfΛ(1− s, f),

where wf is a root of unity.

Twist of a newform

For a Hecke character Φ with conductor l0 and f ∈ Sk(n,Ψ), the twist f |Φ of f

with respect to Φ is given by

C(f |Φ,m) = Φ∗(m)C(f ,m).

It is well known that f |Φ ∈ Sk(l′,ΨΦ2), where l′ = lcm(n, l0n0, l
2
0) and n0 the

conductor of Ψ. The following theorem tells us that when a twist of a newform

is a newform.

Theorem 1.3.6 ([4747]) Let Φ be a Hecke character with conductor l. For a nor-

malized form f ∈ Sk(n,Ψ), the twist f |Φ is a normalized newform in Sk(nl2,ΨΦ2)

whenever (l, n) = 1.
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1.3.2 The Rankin-Selberg Method

Given two primitive forms f and g in Sk(n), let α1(℘), α2(℘) and β1(℘), β2(℘) be

the roots of the quadratic polynomials x2−C(f , ℘)x+Ψ(℘) and x2−C(g, ℘)x+

Ψ(℘), where Ψ(℘) is either 0 or 1 accordingly as prime ideal ℘ divides n or not.

The Rankin-Selberg convolution L(s, f ⊗ g) of f and g is de�ned as

L(s, f ⊗ g) :=
∏
℘

2∏
i,j=1

(
1− αi(℘)βj(℘)

N(℘)s

)−1

. (1.6)

Due to the multiplicative nature of Fourier coe�cients of primitive forms, the

following equality holds

L(s, f ⊗ g) = ζnK(2s)
∑

m⊂OK
m6={0}

C(f ,m)C(g,m)

N(m)s
= ζnK(2s)L1(s, f ⊗ g), (1.7)

where

ζnK(2s) = ζK(2s)
∏
l|n

(1−N(l)−2s), L1(s, f ⊗ g) =
∑

m⊂OK
m6={0}

C(f ,m)C(g,m)

N(m)s
.

Let

L∞(s, f ⊗ g) =
d∏
j=1

(2π)−2s−kjΓ(s)Γ(s− 1 + kj),

and let

Λ(s, f ⊗ g) = N(O2
Kn)sL∞(s, f ⊗ g)L(s, f ⊗ g). (1.8)

Then Λ(s, f⊗g) has a meromorphic continuation to the whole of C, and satis�es

the following functional equation

Λ(s, f ⊗ g) = Λ(1− s, f ⊗ g). (1.9)
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We end this chapter with the following theorem due to Shimura [4444].

Theorem 1.3.7 ([4444]) The function Λ(s, f ⊗ g) has an analytic continuation

to the whole of C if f 6= g, otherwise it has a meromorphic continuation to the

whole plane, with possible simple poles at s = 1 and s = 0. The residue of

L(s, f ⊗ f) at s = 1 is

2d−1(4π)kζnK(2)Γ(k)−1RK [O×K
+

: O×K
2
]−1〈f , f〉n.



CHAPTER2
Sturm-like bound for square-free

Fourier coe�cients

This chapter investigates the problem of determining a Hilbert modular form

by its Fourier coe�cients indexed by square-free integral ideals. We obtain an

upper bound (say B) that depends only on the level and weight such that if the

Fourier coe�cients of a Hilbert modular form indexed by square-free integral

ideals having norm less or equal to B are zero, then the form is identically zero.

The main theorem of this chapter is a generalization of the result obtained by S.

Das and P. Anamby [44] and [55] in the context of elliptic modular forms. The

results of this chapter have been published in [22].

2.1 Introduction

Let k and N be two positive integers, let Mk(Γ0(N)) be the space of elliptic

modular forms of weight k on Γ0(N). It is well known that any element f of

21
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Mk(Γ0(N)) has a Fourier expansion

f(z) =
∞∑
n=0

af (n)qn, (2.1)

where z ∈ H and q = exp(2πiz). The Fourier coe�cients of a modular form

completely determine the modular form in the sense that two modular forms

are equal if and only if they have the same Fourier coe�cients. One can ask the

following natural questions.

(1) Can one determine modular forms by a proper subset of all Fourier coe�-

cients?

(2) If yes, then what is its size, is it �nite or in�nite?

(3) If it is �nite then what is its cardinality?

It is not always possible to obtain the exact cardinality of a set using analytical

techniques, and hence one naturally looks for an upper or lower bound of car-

dinality in terms of some known parameters of the set. The well known bound

for Mk(Γ0(N)) is the �Sturm's bound� that was obtained by E. Hecke. Sturm's

bound tells us that if all the Fourier coe�cients of f up to k
12

[SL(2,Z) : Γ0(N)]

are zero then the form f is identically zero [2323]. There are many such results in

the literature, for example, �the multiplicity one theorem� which asserts that if

two normalized Hecke eigenforms have the same eigenvalues at Hecke operators

Tp for all but �nitely many primes p then both forms are equal. D. Ramakr-

ishnan [4242] strengthened the result by replacing the need for all most all primes

with only those set of primes whose Dirichlet density is greater than 7
8
, and a

similar result for Siegel modular forms was proved by Siegel himself. Regard-

less our main focus is to determine modular forms by their Fourier coe�cients

indexed by square-free positive integers.
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2.2 Overview of previous work

The question of determining a modular form by its Fourier coe�cients indexed

by square-free positive integers was �rst raised by S. Das and P. Anmby [44], [55].

More concretely they asked the following question. Let k and N be two positive

integers and χ be a Dirichlet character modulo N . Let Sk(N,χ) be the space of

cusp forms of weight k on Γ0(N) with nebentypus χ of conductor N0.

Question Let f ∈ Sk(N,χ) have a Fourier expansion as in (2.12.1). If N
N0

is square-free, does there exists a positive real number A depending only on k

and N such that if af (m) = 0 for all square-free positive integers m ≤ A, then

f = 0?

Anamby et al. answered the above question a�rmatively using the prime

number theorem for L-function associated to a newform and applying an argu-

ment of Balog and Ono [88]. Before, we state their result, we de�ne the following.

Let Af (k,N) to be the smallest positive integer such that if f ∈Mk(Γ0(N)),

N
N0

is square-free, and af (m) = 0 for all square-free positive integers m ≤

Af (k,N), then f = 0. More precisely, they proved the following theorem.

Theorem 2.2.1 ([44]) Let N be a positive square-free integer and k ≥ 2. Then

Af (k,N) ≤ A02
r(r−1)

2 N exp(4r log2(7k2N)),

where r = k−1
2
N and A0 ∈ R+ is an absolute constant.

Note that the above bound is exponential in k and N . Later Anamby et al.

[55] improved the above result by replacing the prime number theorem with the

Rankin-Selberg method and then invoking newform theory. We now state the

improved result of Anamby et al.
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Theorem 2.2.2 ([55]) Let k and N be two positive integers and χ be a Dirichlet

character modulo N with conductor N0 such that N
N0

is square-free. Assume that

f is a non-zero element of Sk(Γ0(n), χ). Then for any ε > 0, there exists a

square-free positive integer m� k3+εN
7
2

+ε such that af (m) 6= 0, and the implied

constant depends only on ε.

Here, we would like to remark that the upper bound obtained in Theorem 2.2.22.2.2

is a signi�cant improvement of the bound in Theorem 2.2.12.2.1.

We use the notation as in Chapter 1. Throughout this chapter, K is a totally

real �eld of degree d over Q. We now state the main result of this chapter.

2.3 Main Result

Theorem 2.3.1 ([22]) Let n be a square-free integral ideal of K. Let f ∈ Sk(n)

be a non-zero adelic Hilbert modular form with Fourier coe�cients C(f ,m).

Then there exists a square-free integral ideal m with N(m) � k3d+ε
0 N(n)

6d2+1
2

+ε

such that C(f ,m) 6= 0. The implied constant depends only on ε and K.

Note that the above Theorem 2.3.12.3.1 is a generalization of the Theorem 2.2.22.2.2 in

the context of Hilbert modular forms.

2.4 Preliminaries

In this section, we collect all the ingredients that we need to prove our main

Theorem 2.3.12.3.1.
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2.4.1 Some Dirichlet series

We recall the theory of L-function attached to a normalized newform. Let

f ∈ Sk(n) be a normalized newform having Fourier coe�cients C(f ,m) and ℘ be

a prime ideal of OK . The L-function associated to f is given by

L(s, f) =
∑

m⊂OK
m 6={0}

C(f ,m)

N(m)s
.

We also assume that Fourier coe�cients C(f ,m) are normalized in the sense that

L(s, f) is absolutely convergent for Re(s) > 1. Let f and g be two normalized

newforms in Sk(n). Let L(s, f ⊗ g) be the Rankin-Selberg of f and g,

L(s, f ⊗ g) :=
∏
℘

2∏
i,j=1

(1− αi(℘)βj(℘)N(℘)−s)−1, (2.2)

where α1(℘), α2(℘) and β1(℘), β2(℘) are the roots of the following quadratic

polynomials

x2 − C(f , ℘)x+ Ψ∗(℘) and x2 − C(g, ℘)x+ Ψ∗(℘),

respectively, with

Ψ∗(℘) =


1 ℘ - n,

0 ℘ | n.

Using the multiplicative property of Fourier coe�cients, we can write L(s, f⊗g)

as follows

L(s, f ⊗ g) = ζnK(2s)
∑

m⊂OK
m6={0}

C(f ,m)C(g,m)

N(m)s
= ζnK(2s)L1(s, f ⊗ g), (2.3)
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where

ζnK(2s) = ζK(2s)
∏
℘|n

(1−N(℘)−2s), L1(s, f ⊗ g) =
∑

m⊂OK
m6={0}

C(f ,m)C(g,m)

N(m)s
.

De�ne

Ln(s, f ⊗ g) :=
∏
℘-n

(
1−N(℘)−2s

) 2∏
i,j=1

(
1− αi(℘)βj(℘)N(℘)−s

)−1
, (2.4)

and

L#(s, f ⊗ g) =
∏
℘-n

(
1 +

C(f , ℘)C(g, ℘)

N(℘)s

)
=
∑#

m⊂OK
(m,n)=OK

C(f ,m)C(g,m)

N(m)s
, (2.5)

where # indicates that the sum is over the square-free integral ideals of K.

We now relate L(s, f⊗g) and Ln(s, f⊗g) by multiplying and dividing Ln(s, f⊗g)

by
∏

℘|n
∏2

i,j=1(1− αi(℘)βj(℘)N(℘)−s)−1

Ln(s, f ⊗ g) =

(∏
℘

2∏
i,j=1

(1− αi(℘)βj(℘)N(℘)−s)−1

)(∏
℘-n

(1−N(℘)−2s

)
(∏

℘|n

2∏
i,j=1

(1− αi(℘)βj(℘)N(℘)−s)

)
= L(s, f ⊗ g)F (s),

(2.6)

where F (s) is the following absolutely convergent Dirichlet series for Re(s) > 1
2

F (s) =

(∏
℘-n

(1−N(℘)−2s)

)(∏
℘|n

2∏
i,j=1

(
1− αi(℘)βj(℘)N(℘)−s

))
.
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Analytic conductor

Let us de�ne the analytic conductor of L(s, f ⊗ g). Following [2626], the analytic

conductor q(s, f ⊗ g) of L(s, f ⊗ g) is given by

q(s, f ⊗ g) = q(f ⊗ g)q∞(s),

where q(f ⊗ g) = N(nO2
K)2 and

q∞(s) =
d∏
j=1

(|s|+ 3)(|s+ 1|+ 3)(|s+ kj − 1|+ 3)(|s+ kj|+ 3).

We also de�ne

q(f ⊗ g) = q(0, f ⊗ g) = q(f ⊗ g)
d∏
j=1

(3)(|1|+ 3)(|kj − 1|+ 3)(|kj|+ 3),

q(f ⊗ g) � 42dN(nO2
K)2(

d∏
j=1

(kj))
2.

Now by [2626] we have,

q(s, f ⊗ g) ≤ N(nO2
K)242d(

d∏
j=1

(kj))
2(|s|+ 3)4d

≤ N(nO2
K)242dk2d

0 (|s|+ 3)4d.

(2.7)

Smooth cut o� function

Let g be a positive and smooth function supported on [1
2
, 1]. The Mellin trans-

form M(g)(s) of g is given by,

M(g)(s) =

∫ ∞
0

g(y)ys−1dy.
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Note thatM(g) converges for any s ∈ C, thusM(g)(s) de�nes an entire function

and satis�es

M(g)(s)� |s|−A−1,

for any A > 0 (for instance, see [55]). As g is a smooth and compactly supported

function, the Mellin inversion formula holds. Moreover one can recover g from

M(g)(s) via the inversion formula given by,

g(y) =
1

2πi

∫
(σ)

M(g)(s)y−sds, (2.8)

where (σ) denotes that the integration is taken over the vertical line Re(s) = σ.

For more details we refer [2626].

2.4.2 Few lemmas

Let us recall a result of Harcos [2222] (see also Qu [4141]). It is well known that

L(s, f ⊗ g) is automorphic [4343]. We now state a lemma that talks about the

growth of L(s, f ⊗ g) in a vertical strip.

Lemma 2.4.1 ([2222]) If s = σ + it and 0 < σ < 1, then for any ε > 0 we have,

L(s, f ⊗ g)�ε,K (q(s, f ⊗ g))
1−σ
2

+ε.

Lemma 2.4.2 Let Ln(s, f⊗g) and L#(s, f⊗g) be as de�ned in (2.42.4) and (2.52.5),

respectively. Then

L#(s, f ⊗ g) = Ln(s, f ⊗ g)H(s),

where H(s) is an absolutely convergent Dirichlet series for Re(s) > 1
2
.

Proof. It su�ces to prove the above result for prime factors ℘. The ℘-factor of
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L#(s, f ⊗ g)
(
Ln(s, f ⊗ g)

)−1
is given by,

L#
℘ (s, f ⊗ g)

Ln,℘(s, f ⊗ g)
=
(
1 + C(f , ℘)C(g, ℘)N(℘)−s

)(
1−N(℘)−2s

)−1

×
2∏

i,j=1

(
1− αi(℘)βj(℘)N(℘)−s

)
=
(
1−N(℘)−2s

)−1(
1 + C(f , ℘)C(g, ℘)N(℘)−s

)
×
((

1− C(f , ℘)C(g, ℘)N(℘)−s
)

+O
(
N(℘)−2s

))
=
(
1−N(℘)−2s

)−1
(1 +O

(
N(℘)−2s)

)
= H℘(s).

It is easy to see that
∏

℘-nH℘(s) = H(s) is absolutely convergent for Re(s) > 1
2
.

�

Lemma 2.4.3 Let ε be any positive real number. Then

Ress=1L(s, f ⊗ g)�ε,K (k0N(n))−ε.

Proof. Note that L(s, f ⊗g) does not have any real zero in in the interval (0, 1),

the proof now can easily be completed from [2424]. �

Lemma 2.4.4 Let m be an integral ideal. Let d(m) be the number of integral

ideal dividing m. Then for any ε > 0,

d(m)�ε (N(m))ε.

Proof. To prove the assertion, we follow [3838]. Let m be an integral ideal,

m = ℘e11 ℘
e2
2 · · ·℘err ,
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where ℘j's are distinct prime ideals. Since the divisor function and the norm

map are completely multiplicative function, we have

d(m)

N(m)ε
=

r∏
j=1

er + 1

N(℘j)erε
.

Next, we decompose the above product into two parts; �rst N(℘j) < 2
1
ε and

then N(℘j) ≥ 2
1
ε . For the primes with N(℘j) ≥ 2

1
ε , we have N(℘j)

erε ≥ 2er ,

and hence
er + 1

N(℘j)erε
≤ er + 1

2er
≤ 1,

in the above equality. We now consider the primes satisfying N(℘j) < 2
1
ε . Since

N(℘j) ≥ 2, we have erε log2 ≤ 2erε ≤ N(℘j)
erε, and hence

er + 1

N(℘j)erε
≤ 1 +

er
N(℘j)erε

≤
(

1 +
1

ε log2

)
.

From the above arguments, we get d(m)�ε (N(m))ε. �

Remark 2.4.5 Let v(m) be the number of distinct prime ideals dividing the

integral ideal m. Since v(m) ≤ d(m), we have v(m)�ε (N(m))ε, .

2.4.3 The fundamental result

The following proposition reveals something speci�c about the normalized new-

forms of the space Sk(n), which we shall later exploit to say about any form in

Sk(n).

Proposition 2.4.6 (Fundamental result) Let f ,g ∈ Sk(n) be two normal-

ized newforms. Then for every 1
2
< a < 1 and for any ε > 0, we have
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(i) If f = g, then there exists a constant A(f , g) > 0 such that,

∑#

m⊂OK
(m,n)=OK

|C(f ,m)|2g
(N(m)

x

)
= A(f , g)x+O

(
xak

d(1−a)+ε
0 N(n)2( 1−a

2
+ε)
)
.

(ii) If f 6= g, then

∑#

m⊂OK
(m,n)=OK

C(f ,m)C(g,m)g
(N(m)

x

)
= O

(
xak

d(1−a)+ε
0 N(n)2( 1−a

2
+ε)
)
.

The implied constant depends only on ε and K. Also, A(f , g)�ε,K (k0N(n))−ε.

Proof. Let I be the integral I :=
1

2πi

∫
(2)

L#(s, f ⊗ g)xsM(g)(s)ds, where (2)

indicates that the integration is taken over the vertical line Re(s) = 2. On

substituting L#(s, f ⊗ g) (from (2.52.5)) in I, we get

I =
1

2πi

∫
(2)

∑#

m⊂OK
(m,n)=OK

C(f ,m)C(g,m)N(m)−sxsM(g)(s)ds

=
∑#

m⊂OK
(m,n)=OK

C(f ,m)C(g,m)
1

2πi

∫
(2)

( x

N(m)

)s
M(g)(s)ds

=
∑#

m⊂OK
(m,n)=OK

C(f ,m)C(g,m)g
(N(m)

x

)
.

In above equality we used (2.82.8), the fact that the Dirichlet series L#(s, f ⊗ g) is

absolutely convergent for Re(s) > 1. Now by Lemma 2.4.22.4.2 and (2.62.6), I becomes

I =
1

2πi

∫
(2)

L(s, f ⊗ g)F (s)H(s)xsM(g)(s)ds,

where H(s) and F (s) are absolutely convergent for Re(s) > 1
2
. Our main goal



32 �2.4. Preliminaries

is to compute

I =
1

2πi

∫
(2)

L(s, f ⊗ g)F (s)H(s)xsM(g)(s)ds.

In order to compute I, we consider a contour C oriented in counter clock-wise,

having line segments [2 − iT, 2 + iT ], [2 + iT, a + iT ], [a + iT, a − iT ] and [a −

iT, 2 − iT ], where a is a real number with 1
2
< a < 1 and T a large enough

positive real number. We now consider the following contour integral

1

2πi

∫
C

L(s, f ⊗ g)F (s)H(s)xsM(g)(s)ds. (2.9)

To compute (2.92.9), we divide the above integral into the following four parts:

∫
C

ds =

∫ 2+iT

2−iT
ds+

∫ a+iT

2+iT

ds+

∫ a−iT

a+iT

ds+

∫ 2−iT

a−iT
ds. (2.10)

Put

I1 =
1

2πi

∫ a+iT

2+iT

L(s, f ⊗ g)F (s)H(s)xsM(g)(s)ds,

I2 =
1

2πi

∫ 2−iT

a−iT
L(s, f ⊗ g)F (s)H(s)xsM(g)(s)ds,

I3 =
1

2πi

∫ a−iT

a+iT

L(s, f ⊗ g)F (s)H(s)xsM(g)(s)ds.

Taking T →∞ in (2.102.10), we get

1

2πi

∫ 2+i∞

2−i∞
L(s, f ⊗ g)F (s)H(s)xsM(g)(s)ds

= − lim
T→∞

(
I1 + I2 + I3 −

1

2πi

∫
C

L(s, f ⊗ g)F (s)H(s)xsM(g)(s)ds

)
.

(2.11)
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Now we make use of Theorem 1.3.71.3.7 and the well known Cauchy's integral formula

in (2.92.9), to get

1

2πi

∫
C

L(s, f ⊗ g)F (s)H(s)xsM(g)(s)ds = δ(f ,g)Ress=1

(
L(s, f ⊗ g)F (s)H(s)

× xsM(g)(s)
)
.

Since the function L(s, f ⊗ g) is polynomially bounded on vertical strips and

M(g)(s) has rapid decay (see also in [2626]). Thus as T → ∞, the horizontal

integrals I1, I2 will vanish. Therefore (2.112.11) reduces to

1

2πi

∫ 2+i∞

2−i∞
L(s, f ⊗ g)F (s)H(s)xsM(g)(s)ds

= δ(f ,g)Ress=1

(
L(s, f ⊗ g)F (s)×H(s)xsM(g)(s)

)
+

1

2πi

∫ a+i∞

a−i∞
L(s, f ⊗ g)F (s)H(s)xsM(g)(s)ds

= δ(f ,g)xRess=1

(
L(s, f ⊗ g)F (s)×H(s)M(g)(s)

)
+G(s),

where G(s) = 1
2πi

∫ a+i∞
a−i∞ L(s, f ⊗ g)F (s)H(s)xsM(g)(s)ds. Let us now compute

G(s). By the combined application of Lemma 2.4.12.4.1, (2.72.7) and the fact that

F (s), H(s) are absolutely convergent for Re(s) > 1
2
. We get,

∣∣∣G(s)
∣∣∣�ε,K

∣∣∣ xa
2πi

∣∣∣ ∫ ∞
−∞

∣∣∣q(a+ it, f ⊗ g)
1−(a+it)

2
+ε
∣∣∣|a+ it|−A−1|F (a+ it)||H(a+ it)|dt,

�ε,K xa
∫ ∞
−∞

(
N(nD2

K)242dk2d
0 (1 + |t|)4d

) 1−a
2

+ε

(1 + |t|)−A−1dt,

= O
(
xak

d(1−a)+ε
0 N(n)1−a+ε

∫ ∞
0

(1 + |t|)2d(1−a)−A−1+εdt
)
.

The choice A = 2(d(1−a)+ ε) > 0 makes the integral
∫∞

0
(1+ |t|)2d(1−a)−A−1+εdt
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absolutely convergent. Consequently with this choice of A, we get

G(s) = O
(
xak

d(1−a)+ε
0 N(n)1−a+ε

)
,

where the implied constant depend on ε and K only.

Next we compute A(f , g) = Ress=1

(
L(s, f ⊗ g)F (s)H(s)M(g)(s)

)
. Note that

1 � H(1) (from Lemma 2.4.22.4.2) and depending constant is absolute. Further

from (2.62.6) we see that,

F (1) =
∏
℘-n

(1−N(℘)−2)
(∏
℘|n

2∏
i,j=1

(1− αi(℘)βj(℘)N(℘)−1)
)

F (1)�
∏
℘|n

(
1− 1

N(℘)

)4

� 2−4v(n).

By Lemma 2.4.42.4.4, v(n)�ε (N(n))ε, and on applying Lemma 2.4.32.4.3 we get,

Ress=1

(
L(s, f ⊗ g)F (s)H(s)M(g)(s)

)
= F (1)H(1)M(f)(1)Ress=1(L(s, f ⊗ g)

�ε,K (k0N(n))−ε.

2.5 Proof of the Theorem 2.3.12.3.1

In order to prove the main theorem, we invoke newform theory for Hilbert Mod-

ular forms. By Proposition 1.3.31.3.3 there exists a basis {f1, f2, . . . , fl} of Sk(n)

consisting of newforms of weight k and level dividing n. Let f be a non-zero

form in Sk(n). Then by newform theory

f =
l∑

i=1

∑
q|n

ai,qfi|Bq, (2.12)
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where ai,q is zero whenever fi is not a newform of level n
q
. Let q0 be an integral

ideal such that q0 | n, N(q0) ≤ N(q′) for any ideal q′( 6= q0) dividing the level n,

and ai,q0 6= 0 for some i. Now using Theorem 1.3.11.3.1, and comparing the Fourier

coe�cients indexed by q0m in (2.122.12), we get

C(f , q0m) =
l∑

i=1

∑
q|n

ai,qC
(
fi,

q0m

q

)
, (2.13)

where m is a square-free integral ideal and co-prime to the level n. Note that

if N(q) < N(q0), then ai,q = 0 (by our choice of q0) and also if q 6= q0, then

Cfi

(
mq0
q

)
= 0 (see equation (1.21.2)). Thus for some positive integer m ≤ l, (2.132.13)

becomes

C(f , q0m) =
m∑
i=1

ai,q0C(fi,m).

We now consider the following sum,

∑#

m⊂OK
(m,n)=OK

|C(f , q0m)|2g
(N(m)

x

)
=
∑#

m⊂OK
(m,n)=OK

( m∑
i=1

ai,q0C(fi,m) ·
m∑
i=1

ai,q0C(fi,m)
)

× g
(N(m)

x

)
(2.14)

=
∑#

m⊂OK
(m,n)=OK

m∑
i=1

|ai,q0|2|C(fi,m)|2g
(N(m)

x

)

+
∑#

m⊂OK
(m,n)=OK

m∑
i,j=1
i 6=j

ai,q0 · aj,q0C(fi,m)C(fj,m)× g
(N(m)

x

)
.

Let us Interchange the summation in (2.142.14) �rst and then apply Proposition

2.4.62.4.6, we get

∑#

m⊂OK
(m,n)=OK

|C(f , q0m)|2g
(N(m)

x

)
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=
m∑
i=1

|ai,q0|2
(
A(fi, g)x+O

(
xak

d(1−a)+ε
0 N

(
n

q0

)2( 1−a
2

+ε)))
+

m∑
i,j=1
i 6=j

ai,q0 · aj,q0
(
O
(
xak

d(1−a)+ε
0 N

(
n

q0

)2( 1−a
2

+ε)))

≥
m∑
i=1

|ai,q0 |2
(
A(fi, g)x+O

(
xak

d(1−a)+ε
0 N

(
n

q0

)2( 1−a
2

+ε)))
−

m∑
i,j=1
i 6=j

|ai,q0 · aj,q0|
(
O
(
xak

d(1−a)+ε
0 N

(
n

q0

)2( 1−a
2

+ε)))

≥
m∑
i=1

|ai,q0 |2A(fi, g)x+
( m∑
i=1

|ai,q0|2 −
m∑

i,j=1
i 6=j

|ai,q0 · aj,q0|
)
.

(
O
(
xak

d(1−a)+ε
0 N

(
n

q0

)2( 1−a
2

+ε)))
≥

m∑
i=1

|ai,q0 |2A(fi, g)x−
( m∑
i=1

|ai,q0|2 +
m∑

i,j=1
i 6=j

|ai,q0 · aj,q0|
)
.

(
O
(
xak

d(1−a)+ε
0 N

(
n

q0

)2( 1−a
2

+ε)))
≥

m∑
i=1

|ai,q0 |2A(fi, g)x− |
m∑
i=1

ai,q0|2
(
O
(
xak

d(1−a)+ε
0

×N
(

n

q0

)2( 1−a
2

+ε)))
.

Using the bound A(fi, g)�ε,K

(
k0N

(
n
q0

))−ε
(by Lemma 2.4.32.4.3), and by applying

the Cauchy-Schwarz inequality in the second term |
∑m

i=1 ai,q0|2, we get

∑#

m⊂OK
(m,n)=OK

|C(f , q0m)|2g
(N(m)

x

)
≥

m∑
i=1

|ai,q0|2
((

k0N

(
n

q0

))−ε
x−

m
(
O
(
xak

d(1−a)+ε
0 N

(
n

q0

)2( 1−a
2

+ε))))
. (2.15)



�2.5. Proof of the Theorem 2.3.12.3.1 37

Now we make use of an upper bound for r � kd0N
(

n
q0

)3d2
[Corollary 15, [4848]].

Therefore (2.152.15) becomes

∑#

m⊂OK
(m,n)=OK

|C(f , q0m)|2g
(N(m)

x

)
�

m∑
i=1

|ai,q0 |2
((

k0N

(
n

q0

))−ε
x

−
(
kd0N

( n
q0

)3d2(
xak

d(1−a)+ε
0 N

( n
q0

)2( 1−a
2

+ε))))
.

(2.16)

Note that (2.162.16) is independent of the choice of the weight function g, and hence

one can choose 0 ≤ g ≤ 1 such that the following holds

∑#

m⊂OK
(m,n)=OK

|C(f , q0m)|2g
(N(m)

x

)
≤

∑#

x
2
<N(m)<x

(m,n)=OK

|C(f , q0m)|2. (2.17)

Now (2.162.16) and (2.172.17) together imply

∑#

x
2
<N(m)<x

(m,n)=OK

|C(f , q0m)|2 �
m∑
i=1

|ai,q0|2
((

k0N

(
n

q0

))−ε
x−

(
kd0N

(
n

q0

)3d2(
xak

d(1−a)+ε
0 N

(
n

q0

)2( 1−a
2

+ε))))
.

We see that in the above inequality the RHS is positive whenever

x ≥ k
d(3−2ε)+4ε
0 N

(
n
q0

) 6d2+1+4ε
2 with a = 1

2
+ ε. This completes the proof. �
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CHAPTER3
Sign changes in restricted

coe�cients of Hilbert modular

forms

In this chapter, we study the sign changes in the Fourier coe�cients of f

when restricted to square-free integral ideals and integral ideals in an �arithmetic

progression�. In both cases, we obtain qualitative results, and in the former case,

we obtain a quantitative result as well. These results are general in the sense

that we do not impose any restriction on the number �eld K, the weight k or

the level n. The results of this chapter are in [33].

3.1 Introduction and overview of previous work

In the last chapter, we have seen that the Fourier coe�cients completely de-

termine the modular form. The Fourier coe�cients have great importance as

39
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they encoded many arithmetic and algebraic properties. Indian mathematician

Srinivasan Ramanujan was the �rst who observed some of the important facts

about the coe�cients of the well known Ramanujan delta function ∆, latter

proved by Mordell and Deligne [1616]. In recent years, the study of sign change

of Fourier coe�cients has been considered by many mathematicians in various

aspects. In the literature, the problem was �rst initiated by Ram Murty [3737]

for integral weight modular forms, where he proved the sign change among the

Fourier coe�cients indexed by prime numbers. In particular, he proved the fol-

lowing theorem. Let k,N be two positive integers, Sk(N) denotes the space of

cusp forms of weight k on Γ0(N).

Theorem 3.1.1 ([3737]) Let f be a non-zero element of Sk(N) having Fourier

expansion,

f(z) =
∞∑
n=1

af (n)qn.

Then either {Re(af (p))}p or {Im(af (p))}p changes sign in�nitely many often,

where p is prime number. Moreover there exists a small positive real number δ

such that the number of sign change for p ≤ X is at least αXδ for some positive

real number α.

It is also interesting to �nd out when the �rst sign change will occur. In 2006,

Sengupta et al. [3131] addressed this problem and proved the following result.

Theorem 3.1.2 ([3131]) Let f be a normalized newform with real Fourier coef-

�cients af (n). Assume that N is square-free positive integer. Then there exists

n ∈ N with

n ≤ α1KN logAN exp
(
α2

√
log(N + 1)

log log(N + 2)

)
, (n,N) = 1
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such that af (n) < 0, for some real number A > 26, α1 is a constant depending

only on A, and α2 is an absolute constant.

Similar result for half integral weight modular form can be found in [99], [1919],

[2525], [3434] and [3535].

In the context of Hilbert modular forms, Meher et al. [3636] proved the following

result.

Theorem 3.1.3 ([3636]) Let f be a non-zero adelic Hilbert cusp form of weight

k = (k1, k2, . . . , kd) and level n. Let C(f ,m) be the Fourier coe�cients at each

integral ideal m. If {C(f ,m)}m are all real numbers, then there are in�nitely

many sign change in the sequence {C(f ,m)}m.

In the same paper [3636], Meher and Tanabe also considered the problem of �rst

sign change and proved the following theorem.

Theorem 3.1.4 ([3636]) Let f be a primitive cusp form in Sk(n). Let Qf be the

analytic conductor of f . Then there exists an integral ideal m with

N(m)�d,ε Q
1+ε
f ,

such that C(f ,m) < 0.

In [4040], Ritwik Pal improved the upper bound obtained in the above theorem.

More precisely he proved the following theorem.

Theorem 3.1.5 ([4040]) Let f be a primitive cusp form of weight k = (k1, k2, . . . , kd)

and full level. Then for any arbitrary ε > 0,

(1) when k1, k2, . . . , kd are all even, we have C(f ,m) < 0 for some ideal m with

N(m)�d,ε Q
9
20

+ε

f ;
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(2) otherwise we have C(f ,m) < 0 for some ideal m with N(m)�d,ε Q
1
2

+ε

f .

More results on sign change in the context of Hilbert modular forms can be

found in [2929].

3.2 Main results

The �rst result of this chapter is the study of sign changes in the Fourier coef-

�cients of a primitive Hilbert cusp form indexed by square-free integral ideals.

More precisely, we prove the following theorem.

Theorem 3.2.1 ([33]) Let f be a primitive adelic Hilbert cusp form of weight

k = (k1, k2, . . . , kd) and level n with trivial Hecke character Ψ modulo n. Then

the sequence {C(f ,m)}m has in�nitely many sign changes where m runs through

the square-free integral ideals of K. Furthermore the number of sign changes in

C(f ,m) with N(m) ≤ X is � X1/2 for all large enough X.

The next result talks about the sign changes in arithmetic progressions. Let m

be an integral ideal co-prime to n. Let R+
K,m be the strict ray class group modulo

mm∞ where m∞ is a formal product of all real embeddings of K into C. We

now state the second result of this chapter.

Theorem 3.2.2 ([33]) Let f be a primitive adelic Hilbert cusp form of weight

k = (k1, k2, . . . , kd) and level n with trivial Hecke character Ψ modulo n. Then

for any given m (as above) co-prime to the level n and for any ideal class [a]

in R+
K,m, the sequence {C(f , l)}l has in�nitely many sign changes where l runs

through the integral ideals lying in the class [a].
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3.3 Preliminaries

This section is devoted to collecting all the preliminary results which will be

needed to prove the aforementioned theorems. Let us begin this section by

de�ning generalized Möbius function µ (we use same notation) as a function on

all the integral ideals of OK as follows

µ(m) =


(−1)n if m =

∏n
i=1 ℘i and ℘i 6= ℘j,

0 otherwise.

Note that we have the following identity for the generalized Möbius function

∑
r2|m

µ(r) =


1 m is square-free,

0 otherwise.

(3.1)

The proof of the above identity follows in the same line as the classical Möbius

function de�ned on natural numbers (see for a proof [3838]). Let f ∈ Sk(n,Ψ) be

a normalized newform with Fourier coe�cients {C(f ,m)}m. The L-function

associated to f is given by

L(s, f) =
∑

m⊂OK
m6={0}

C(f ,m)

N(m)s
. (3.2)

From Theorem 1.3.51.3.5, L(s, f) has the following Euler product expansion

L(s, f) =
∏
℘|n

(1− C(f , ℘)N(℘)−s)−1
∏
℘-n

(1− C(f , ℘)N(℘)−s + Ψ∗(℘)N(℘)−2s)−1

=
∏
℘

(
1− C(f, ℘)N(℘)−s + Ψ∗(℘)N(℘)−2s

)−1
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=
∏
℘

(
1 +

C(f, ℘)

N(℘)s
+
C(f, ℘2)

N(℘2)s
+ . . .

)
,

where Ψ∗(℘) = 0 whenever ℘ | n. De�ne

Sq(s) =
∑#

m⊂OK
m6={0}

C(f,m)

N(m)s
=
∏
℘ prime

(
1 +

C(f, ℘)

N(℘)s

)
,

where # indicates that the sum runs over the square-free integral ideals. Using

the Ramanujan bound, the Dirichlet series Sq(s) is absolutely convergent for

Re(s) > 1. Due to the requirement of some reasonable computations, we present

a slightly di�erent but a longer proof of this fact.

3.3.1 Analytic continuation and some estimations

Lemma 3.3.1 The above Dirichlet series Sq(s) is absolutely convergent for

Re(s) > 1.

Proof. From (3.13.1) it is clear that,

Sq(s) =
∑#

m⊂OK
m6={0}

C(f,m)

N(m)s
=
∑

m⊂OK
m6={0}

C(f,m)

N(m)s

∑
r2|m

µ(r)

 =
∑
r

µ(r)Dr2(s),

where we have set

Dr(s) :=
∑
r|m

C(f,m)

N(m)s
=
∑

m⊂OK
m6={0}

C(f, rm)

N(rm)s
(3.3)

for an integral ideal r. By the Ramanujan bound,

C(f ,m)�ε N(m)ε,
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we deduce that,

|Dr(1 + ε+ it)| �
∑
m

∣∣∣∣ C(f, rm)

N(rm)1+ε+it

∣∣∣∣� 1

N(r)1+ε

∑
m

∣∣∣∣ C(f, rm)

N(m)1+ε+it

∣∣∣∣ .
The right most summation in the previous inequality is �ε N(r)ε. Therefore,

for every ε > 0, we get

|Dr(1 + ε+ it)| �ε
1

N(r)1+ε
. (3.4)

In particular, we have

|Dr2(1 + ε+ it)| �ε
1

N(r)2+ε
. (3.5)

Thus from (3.53.5) we can see that Sq(s) is absolutely convergent for Re(s) > 1.

�

Next we show that Sq(s) has an analytic continuation to Re(s) > 1
2
.

Lemma 3.3.2 Let ℘ be a prime ideal of OK and s ∈ C, we de�ne

S℘(s) :=

(
−C(f , ℘)2

N(℘)2s
+ Ψ∗(℘)N(℘)−2s

(
C(f , ℘)

N(℘)s
+ 1

))
.

Then we have

Sq(s) = L(s, f)
∏
℘

(1 + S℘(s)) ,

where product runs over all prime ideals ℘ of OK. In particular, Sq(s) can be

analytically continued to the half plane Re(s) > 1
2
.

Proof. Let f be a normalized newform in Sk(n,Ψ) and let L℘(s) denote the
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℘-factor of L(s, f). Then

L℘(s) =

(
1 +

C(f , ℘)

N(℘)s
+
C(f , ℘2)

N(℘2)s
+ . . .

)
=

1

(1− C(f , ℘)N(℘)−s + Ψ∗(℘)N(℘)−2s)
. (3.6)

Let r be a non-negative integer, we de�ne L(r)
℘ (s) to be the r tail of Lp,

L(r)
℘ (s) =

∞∑
n=r

C(f , ℘n)

N(℘n)s
. (3.7)

Note that L(0)
℘ (s) = L℘(s) by de�nition.

Let r =
∏
℘

℘e℘ , where e℘ = 0 for all but �nitely many ℘. Using the fact

that C(f ,m) are multiplicative and any ideal has unique factorization into prime

ideals. We have

Dr(s) =
∏
℘

∞∑
r=e℘

C(f , ℘r)

N(℘r)s

=
∏
℘

L(e℘)
℘ (s)

= L(s, f)/L(s, f)
∏
℘

L(e℘)
℘ (s)

= L(s, f)
∏
℘

L
(e℘)
℘ (s)

L℘(s)

= L(s, f)
∏
℘|r

L
(e℘)
℘ (s)

L℘(s)

∏
℘-r

L
(e℘)
℘ (s)

L℘(s)
.

If r is a square-free ideal, then

Dr2(s) = L(s, f)
∏
℘|r

L
(2)
℘ (s)

L℘(s)
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= L(s, f)
∏
℘|r

(
1− 1

L℘(s)
− C(f , ℘)

N(℘)sL℘(s)

)

= L(s, f)
∏
℘|r

(
1−

(
1− C(f , ℘)N(℘)−s + Ψ∗(℘)N(℘)−2s

)
−

C(f , ℘)

N(℘)s

(
1− C(f, ℘)N(℘)−s + Ψ∗(℘)N(℘)−2s

))

= L(s, f)
∏
℘|r

(
C(f, ℘)2

N(℘)2s
−Ψ∗(℘)N(℘)−2s

(
C(f, ℘)

N(℘)s
+ 1

))
.

In above equality, we make use of the fact that e℘ = 2 and e℘ = 0 whenever

℘ | r and ℘ - r, respectively. We also utilize the fact that L(0)
℘ (s) = L℘(s) and

(3.63.6), (3.73.7). Since µ(r) =
∏
℘|r

µ(℘), we have

µ(r)Dr2(s) = L(s, f)
∏
℘|r

µ(℘)

(
C(f, ℘)2

N(℘)2s
−Ψ∗(℘)N(℘)−2s

(
C(f, ℘)

N(℘)s
+ 1

))

= L(s, f)
∏
℘|r

(
−C(f, ℘)2

N(℘)2s
+ Ψ∗(℘)N(℘)−2s

(
C(f, ℘)

N(℘)s
+ 1

))
.

Now recall that

Sq(s) =
∑
r

µ(r)Dr2(s)

=
∑#

r

L(s, f)
∏
℘|r

(
−C(f, ℘)2

N(℘)2s
+ Ψ∗(℘)N(℘)−2s

(
C(f, ℘)

N(℘)s
+ 1

))
=
∑#

r

L(s, f)
∏
℘|r

S℘(s) = L(s, f)
∏
℘

(1 + S℘(s)) . (3.8)

In the last line, we have put
∏
℘|r

Sp(s) = 1 for r = OK . The product on the right

hand side of (3.83.8) is absolutely convergent for Re(s) > 1/2. Therefore we have

an analytic continuation for Sq(s) to the plane Re(s) > 1/2. �
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Lemma 3.3.3 Let f be a primitive form. Then,

∑#

m
N(m)≤X

C(f ,m)�ε X
1/2+ε. (3.9)

Proof. From [2626] we know that L(s, f) has polynomial growth in Im(s) for the

vertical strip 1
2
< Re(s) < 1. Therefore by Lemma 3.3.23.3.2 we conclude that Sq(s)

has polynomial growth in the same strip. Consider the following integral I

I =
1

2πi

∫
(1+ε)

Sq(s)XsΓ(s)ds

=
1

2πi

∫
(1+ε)

∑#

m⊂OK
m6={0}

C(f,m)

N(m)s
Xs

∫ ∞
0

e−tts
dt

t
dtds

=
∑#

m⊂OK
m6={0}

C(f,m)
1

2πi

∫
(1+ε)

(
N(m)

X

)−s ∫ ∞
0

e−tts
dt

t
dtds.

Let us apply the well known inverse Mellin transform, we see that

1

2πi

∫ 1+ε+i∞

1+ε−i∞
Sq(s)Γ(s)Xsds =

∑#

m⊂OK
m6={0}

C(f,m)e−N(m)/X . (3.10)

By setting B(n, f) :=
∑#

m
N(m)=n

C(f ,m), then (3.103.10) becomes

I =
∞∑
n=1

B(n, f)e−n/X .

We now shift the line of integration in (3.103.10) to Re(s) = 1/2 + ε. Since Sq(s)

has at most polynomial growth in Im(s) inside the critical strip, this growth is

taken care of by the exponential decay of the Γ-function. Furthermore, since the

integrand is analytic inside the vertical strip 1
2
< Re(s) < 1, we do not encounter
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with any pole. Thus, we have

∞∑
n=1

B(n, f)e−n/X �ε X
1/2+ε. (3.11)

Since B(n, f) �ε n
ε for every ε > 0, we can see that

∑
n≥X

B(n, f)e−n/X = O(1),

for large enough X. Finally this gives us
∑#

m
N(m)≤X

C(f ,m)�ε X
1/2+ε. �

Lemma 3.3.4 Let f be as above in Lemma 3.3.33.3.3. Then

X �ε,K

∑#

N(m)≤X

C2(f ,m).

Proof. From the Proposition 2.4.62.4.6

∑#

m⊂OK
(m,n)=OK

|C(f ,m)|2g
(N(m)

X

)
= A(f , g)X +O

(
Xak

d(1−a)+ε
0 N(n)2( 1−a

2
+ε)
)
.

Note that g is a positive smooth compactly supported function on [1/2, 1].

Therefore we get that

X �ε,K

∑#

N(m)≤X

C2(f ,m).

�

3.3.2 Proof of the Theorem 3.2.13.2.1

In order to prove the theorem we �rst state a result of Murty et al. [3434] regarding

sign changes in a sequence of real numbers.

Theorem 3.3.5 (Meher-Murty [3434]) Let {C(n)}(n≥1) be a sequence of real
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numbers satisfying C(n) = O(nα) such that

∑
n≤X

C(n)� Xβ

and ∑
n≤X

C(n)2 = cX +O(Xγ)

where α, β, γ and c are non-negative constants. If α + β < 1, then for any r

satisfying max{α + β, γ} < r < 1, the sequence C(n)(n≥1) has at least one sign

change for n ∈ (X,X + Xr]. In particular, the sequence C(n) has in�nitely

many sign changes and the number of sign changes for n ≤ X is � X1−r for

su�ciently large X.

Since the Fourier coe�cients are not indexed by natural numbers, we can-

not apply Theorem 3.3.53.3.5 directly. Nevertheless, we can modify the proof of

Theorem 3.3.53.3.5 for our purposes.

Without loss of generality assume the contrary that �nitely many of C(f,m)

are negative. Therefore, for large enough X, we have C(f,m) > 0 whenever

N(m) ∈ (X,X +Xr] for some 1 > r > 1/2. Therefore we have

∑
N(m)∈(X,X+Xr]

C2(f,m)� Xε
∑

N(m)∈(X,X+Xr]

C(f,m)� X1/2+ε. (3.12)

The �rst inequality follows from the Ramanujan bound and the second inequality

follows from (3.93.9).

On the other hand, since r > 1/2 we have

Xr �
∑

N(m)∈(X,X+Xr]

C2(f,m) (3.13)
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from Lemma 3.3.43.3.4. Then (3.123.12) contradicts to (3.133.13). Therefore we have in-

�nitely many sign changes in the sequence {C(f ,m)}m. The quantitative asser-

tion of Theorem 3.2.13.2.1 follows easily from Theorem 3.3.53.3.5. �

3.4 Sign changes in arithmetic progression

In 1837, using the properties of L-function, Dirichlet proved a result on arith-

metic progressions that states �there are in�nitely many primes of the form

{a + jm | j ∈ N} whenever (a,m) = 1�. In order to generalize Dirichlet's re-

sult to a number �eld F , one must de�ne the term �arithmetic progression�

and �modulus�. So one can ask what is an arithmetic progression for a number

�eld F? Perhaps one could interpret it as a question about ideal class in the

class group, but by this interpretation we miss the term �modulus�. If we follow

Dirichlet, we must replace m by an integral ideal m of OF , and we must consider

congruences modulo m. This naturally leads us to de�ne a generalized ideal class

group, called the ray class group.

Let IF be the group of fractional ideals of F . Let m be an integral ideal of OF .

We de�ne

IF (m) := {a ∈ IF
∣∣ (a,m) = 1},

and

P+
F (m) :=

{(
α

β

)
| α, β ∈ OF prime to m;α ≡ β (mod m)

}
.

The strict ray class group of F with modulus mm∞ is

R+
F,m := IF (m)/P+

F (m),
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where m∞ is the formal product of all the real embeddings of F into C. It is

well known that R+
F,m is a �nite abelian group. Let hm = |R+

F,m|, the cardinality

of the ray class group modulo m. We now de�ne the notion of an arithmetic

progression. Let a and b be two ideals in OF , we say that a and b are in

arithmetic progression modulo m if a and b lie in same class in the ray class

group for m, we shall denote this by a ≡ b (mod m).

Let a be an integral ideal of F and [a] denotes its class in R+
F,m. We de�ne an

indicator function δa on the group IF (m) as follows

δa(b) =


1 a ≡ b (mod m),

0 otherwise.

(3.14)

Note that in a �nite abelian group orthogonality of characters holds, and hence

we get

δa(b) =
1

|R+
F,m|

∑
Φ

Φ([a])Φ([b]), (3.15)

where the sum runs over all the Hecke characters Φ of R+
F,m. Let f ∈ Sk(n,Ψ)

be a primitive form and Φ be a Hecke character of conductor m coprime to level

n. Then f |Φ is a primitive form in the space Sk(nm2,ΨΦ2) [see Theorem(1.3.61.3.6)].

Also, the relation between the Fourier coe�cients f and f |Φ is given by

C(f |Φ, l) = Φ∗(l)C(f , l),
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where Φ∗(l) = 0, whenever (l,m) 6= 1, and Φ∗ is de�ned as

Φ∗(a) =


Φ([a]) (a,m) = 1,

0 otherwise.

Put ga =
∑

Φ

Φ([a])f |Φ, now by (3.143.14) and (3.153.15), it is clear that the Fourier

coe�cients of ga has the following property

C(ga, l) =


C(f , l) [l] = [a] inside R+

K,m

0 otherwise

,

for all integral ideals l of OK . Consider the L-function associated to ga, we see

that

L(s,ga) =
∑

Φ

Φ([a])L(s, f |Φ).

Initially the above inequality holds for some half-plane, and by analytic contin-

uation equality holds for the entire complex plane.

3.4.1 Two lemmas

To obtain the sign changes in arithmetic progression, we need the following two

lemmas.

Lemma 3.4.1 The function L(s,ga) has an analytic continuation to the whole

complex plane.

Proof. By Theorem 1.3.61.3.6, the function L(s, f |Φ) has an analytic continuation to

the whole complex plane for all Hecke characters Φ whenever f is a primitive

cusp form, and hence the �nite sum. �
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Next lemma claims that even L(s,ga) has an analytic continuation to the whole

complex plane, but its abscissa of convergence is �nite.

Lemma 3.4.2 If ga 6= 0, then L(s,ga) has �nite abscissa of convergence.

Proof. Let {t1, t2, . . . , thm} be a subset of IK such that the set {t1OK , t2OK , . . . ,

thmOK} forms a set of representative for the ray class group R+
K,m. By abuse

of notation we write tλ for tλOK . Since our main goal is to study the sign

changes in the class [a], without loss of generality we assume that [t1] = [a]. The

L-function associated to ga is given by

L(s,ga) =
∑
l∈[a]
l⊂OK

C(f , l)

N(l)s
.

To show that L(s,ga) has �nite abscissa of convergence we will prove that∑
l∈[a]
l⊂OK

|C(f , l)| is not �nite. Thereafter we argue that the sum is not �nite. We

now consider [t1] as an equivalence class in strict class group. From section

1.2.31.2.3 we note that if f |Φ ∈ Sk(nm2,ΨΦ2), then by the adelic correspondence due

to Shimura, we have an h-tuple ((f |Φ)1, (f |Φ)2, . . . , (f |Φ)h) of classical Hilbert

modular forms such that

C(f |Φ, l) =


N(l)

1
2aλ(ξ)ξ

−k
2 if l = ξI−1

λ ⊂ OK

0 otherwise

, (3.16)

and

(f |Φ)λ(z) =
∑

0�ξ∈Iλ

aλ(ξ) exp(2πi Tr(ξz)) ∈ Sk(Γ(Iλ, nm
2), ψφ2) ⊂Mk(ΓN(nm2)).

(3.17)
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Let us consider the sum
∑

Φ

Φ[a](f |Φ)1 which is a classical Hilbert modular form

in the space Mk(ΓN(nm2)). Now using (3.163.16) and (3.173.17), we have

∑
Φ

Φ[a](f |Φ)1 =
∑

Φ

Φ[a]
∑

0�ξ∈t1

aλ(ξ) exp(2πi Tr(ξz))

=
∑

Φ

Φ[a]
∑
ξ∈t1

l=ξt−1
1 ⊂OK

C(f |Φ, l)N(l)
−1
2 ξ

k
2 exp(2πi Tr(ξz))

=
∑

Φ

Φ[a]
∑
ξ∈t1

l=ξt−1
1 ⊂OK

Φ∗(l)C(f , l)N(l)
−1
2 ξ

k
2 exp(2πi Tr(ξz))

=
∑
ξ∈t1

l=ξt−1
1 ⊂OK

C(f , l)N(l)
−1
2 ξ

k
2 exp(2πi Tr(ξz))

∑
Φ

Φ[a]Φ([l])

=
∑
ξ∈t1

l=ξt−1
1 ⊂OK

(l,m)=1

C(f , l)N(l)
−1
2 ξ

k
2 exp(2πi Tr(ξz))

=
∑

l∈[a]∈R+
K,m

l⊂OK

C(f , l)N(ξt−1
1 )

−1
2 ξ

k
2 exp(2πi Tr(ξz)).

In the last three equalities we have used the following facts, C(f , l) = 0 whenever

l * OK and

∑
Φ

Φ([a])Φ([l]) =


1 l ≡ a (mod m) and (l,m) = 1,

0 otherwise.

Note that N(ξt−1
1 )

−1
2 ξ

k
2 = N(t−1

1 )
1
2 ξ

(k−1)
2 , where 1 = (1, 1, . . . , 1). Therefore the

sum

∑
l∈[a]∈R+

K,m

l⊂OK

∣∣∣∣C(f , l)N(ξt−1
1 )

−1
2 ξ

k
2

∣∣∣∣ =
∑

l∈[a]∈R+
K,m

l⊂OK

∣∣∣∣C(f , l)N(t−1
1 )

1
2 ξ

(k−1)
2

∣∣∣∣
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≤ N(t−1
1 )

1
2

∑
l∈[a]∈R+

K,m

l⊂OK

∣∣C(f , l)
∣∣.

To show that the sum
∑

l∈[a]∈R+
K,m

l⊂OK

∣∣C(f , l)
∣∣ is not �nite it is enough to show that

left hand side of the above inequality is not �nite. Note that
∑

Φ

Φ[a](f |Φ)1 is a

classical Hilbert modular form and C(f , l)N(ξt−1
1 )

−1
2 ξ

k
2 are its Fourier coe�cients

where ξ ∈ t1. The next Proposition guarantees that the following sum

∑
l∈[a]∈R+

K,m

l⊂OK

∣∣∣∣C(f , l)N(ξt−1
1 )

−1
2 ξ

k
2

∣∣∣∣
is not �nite. �

Proposition 3.4.1 Let g(6= 0) ∈ Mk(ΓN(nm2)) be a classical Hilbert modular

form with the Fourier expansion

g(z) = a(0) +
∑
ξ�0

a(ξ) exp(2πiTr(ξz)).

Then the sum
∑
ξ�0
ξ=0

|a(ξ)| is not �nite.

Proof. We prove the proposition by the method of contradiction. If possible, let

∑
ξ�0
ξ=0

|a(ξ)| <∞.

Then there exist a natural number M such that

|g(z)| ≤M <∞, (3.18)
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for all z ∈ Hn. Let κZ = nm2∩Z. We observe that for every n, γn =

 1 0

nκ 1

 ∈
ΓN(nm2), and

g(γn(z)) = (nκz + 1)kg(z).

Now observing (3.183.18) we see that

|g(z)| = |nκz + 1|−k|g(γ(z))| ≤M |nκz + 1|−k.

If we let n → ∞, we see that g ≡ 0. This contradicts our assumption that g is

non-zero. Therefore ∑
ξ�0
ξ=0

|a(ξ)| → ∞.

This completes the proof. �

3.4.2 Proof of the Theorem 3.2.23.2.2

In order to prove Theorem 3.2.23.2.2 we �rst state the following well-known result

due to Landau (see [3838]).

Theorem 3.4.3 (Landau [3838]) Let f(s) =
∑
n∈N

ann
−s be an absolutely conver-

gent Dirichlet series on some half plane and suppose that an ≥ 0 for all but

�nitely many n. Then either f(s) is absolutely convergent everywhere or f(s)

has a singularity at its abscissa of convergence.

We make use of the Theorem 3.4.33.4.3 for the Dirichlet series L(s,ga). From

Lemma 3.4.13.4.1, L(s,ga) is entire and from Lemma 3.4.23.4.2, L(s,ga) is not absolutely

convergent everywhere. Therefore L(s,ga) must not satisfy the hypothesis of

the theorem. In other words, we conclude that B′(n1) < 0 and B′(n2) > 0 for
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in�nitely many choices of n1, n2 ∈ N, where we have de�ned B′(κ) as

B′(κ) =
∑

[b]=[a]
N(b)=κ

C(b,ga).

This completes the proof of Theorem 3.2.23.2.2. �



CHAPTER4
Lambert series associated to

Hilbert modular forms

In 1981, Zagier studied the Lambert series associated with the weight 12

cusp form ∆ and conjectured that this Lambert series should have an asymptotic

expansion in terms of the non-trivial zeros of the zeta function [5050]. This con-

jecture was proven by Hafner and Stopple [2020]. In 2017 and 2019, Chakraborty

et al. [1010], [1313] and [1414] established an asymptotic relation between Lambert

series associated to any primitive cusp form (for the full modular group, con-

gruence subgroup and also in the case of Maass forms) and the non-trivial zeros

of the zeta function. This chapter investigates the Lambert series associated

with primitive adelic Hilbert modular cusp form and establishes a similar kind

of asymptotic expansion. The content of this chapter has been published in [11].

59
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4.1 Introduction

Let ∆(z) be the unique cusp form of weight 12 on the full modular group

SL(2,Z). This cusp form has the following Fourier expansion

∆(z) =
∞∑
n=1

τ(n)qn,

where q = exp(2πiz), z belongs to upper half-plane H, and τ is the well known

Ramanujan τ -function. In 1981, Zagier [5050] studied the Lambert series

x12

∞∑
n=1

τ 2(n) exp(−nx) associated to ∆(z), where x is a positive real number and

conjectured that x12

∞∑
n=1

τ 2(n) exp(−nx) should have an asymptotic expansion in

terms of the non-trivial zeros of ζ(s), the Riemann zeta function. In 2000, Hafner

and Stopple [2020] proved Zagier's conjecture assuming the Riemann hypothesis.

In particular they proved.

Theorem 4.1.1 (Hafner and Stopple [2020]) If all the non-trivial zeros of ζ(s)

are simple, then we have,

∞∑
n=1

τ 2(n) exp(−ny) = 12Γ(11)y−12 + y−11− 1
4

∑
ρ

y
1
4
− ρ

2 Γ

(
ρ

2
+ 11

)
ζ(ρ/2)

ζ ′(ρ)
L(ρ/2)

+O(y−11+ 1
2 ),

as y → 0+.

Note that, if the Riemann hypothesis is true, then the term y
1
4
− ρ

2 is purely

oscillatory in nature and hence the above result veri�es Zagier's conjecture.

It is natural to investigate whether Zagier's conjecture holds only for the ∆

function, or one can extend it to any arbitrary normalized Hecke eigenforms on

the full modular group. This was considered by Chakraborty et al. in a series of
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papers [1313] and [1414] where they extended the result of Hafner and Stopple to any

arbitrary normalized Hecke eigenform for SL(2,Z) and its congruence subgroups

too. In the case of congruence subgroups, they established the following result.

Theorem 4.1.2 (Chakraborty et al. [1414]) Let N and k be positive integers

and χ be a primitive Dirichlet character modulo N . Let g ∈ Sk(Γ0(N), χ) be a

normalized Hecke eigenform with Fourier expansion

g =
∞∑
n=1

ag(n)qn.

Assume the Riemann hypothesis holds and all the non-trivial zeros of ζ(s) are

simple. Then for any positive real number α→ 0+

∞∑
n=1

|ag(n)2| exp(−nα) = R1 + P(α) + (α−k+1+ε),

where

R1 =


Γ(k)φ(N)D(k)

NL(2,χ2
0)αk

if χ = χ0

0 if χ 6= χ0

,

and

P(α) =
∑
ρ

Γ(ρ/2 + k − 1)L(ρ/2, χ)D(ρ/2 + k − 1)

L′(ρ, χ2)αρ/2+k−1
,

where ρ = x + iy is running through all the non-trivial zeros of L(s, χ2). This

sum involves bracketing the terms so that the terms for which

|y1 − y2| < exp

(
− A y1

log y1

)
+ exp

(
− A y2

log y2

)
,

where A is suitable positive constant, are included in the same bracket.

In 2019, Banerjee and Chakraborty [1010] further studied Lambert series associ-
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ated to a Maass cusp form and proved the following theorem.

Theorem 4.1.3 (Banerjee and Chakraborty [1010]) Let f and g be Maass

cusp forms which are normalized Hecke eigen forms over the full modular group

with Fourier coe�cients λf (n) and λg(n), respectively. Assume the Riemann

hypothesis holds and all the non-trivial zeros of ζ(s) are simple. Then for any

positive real number α,

∞∑
n=1

λf (n)λg(n) exp(−nα) =


R1 + P(α) +O(αε) if f = g

P(α) +O(αε) if f 6= g

,

and the residual terms are

R1 =
24

π2α
sin(π/2(1 + 2ir))〈f, f〉,

and

P(α) =
∑
ρ

Γ(ρ/2)L(ρ/2, f ⊗ g)

ζ ′(ρ)yρ/2
,

where ρ = x + iy is running through the non-trivial zeros of the zeta function.

This sum is decomposed into pieces so that the terms for which

|y1 − y2| < exp

(
− A y1

log y1

)
+ exp

(
− A y2

log y2

)
,

where A is suitable positive constant, are included in the same piece.

Some recent work on Lambert series is due to Maji et al. and can be found in

[2727], [2828] in that they study Lambert series associated to the Möbius function

and symmetric square L-function.
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4.2 Main results

In this chapter our main goal is to prove the following theorem which can

be thought of as a generalization of Theorem 4.1.24.1.2 and the analouge of The-

orem 4.1.34.1.3 in the context of Hilbert modular forms on the full modular group.

Theorem 4.2.1 ([11]) Let f and g ∈ Sk(OK) be two primitive adelic Hilbert

cusp forms. Let ζK(s) be the Dedekind zeta function associated to the totally

real number �eld K of degree d over Q. Suppose that all the non-trivial zeros of

ζK(s) are simple. Then for positive real number x→ 0,

∑
m⊂OK
m6={0}

C(f ,m)C(g,m)e−N(m)x =


C2 +B(x) +O(xε) if f = g,

B(x) +O(xε) if f 6= g,

where

C2 =
2d−1(4π)kΓ(k)−1RK [O×K

+
: O×K

2
]−1〈f , f〉

x

and

B(x) =
∑
ρ

Γ

(
ρ

2

)
L(ρ

2
, f ⊗ g)

2ζ ′K(ρ)x
ρ
2

where ρ = σ + it is running through all the non-trivial zeros of ζK(s).

An immediate corollary of the above theorem is as follows.

Corollary 4.2.2 ([11]) Let f ,g and ζK(s) as in above Theorem 4.2.14.2.1. Assume

the GRH and that all the non-trivial zeros of ζK(s) are simple. Then for positive

real number x→ 0,

∑
m⊂OK
m6={0}

C(f ,m)C(g,m)e−N(m)x =


C2 +B(x) +O(xε) if f = g,

B(x) +O(xε) if f 6= g,
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where

C2 =
2d−1(4π)kΓ(k)−1RK [O×K

+
: O×K

2
]−1〈f , f〉

x

and

B(x) = 2x−
1
4

∑
ρ= 1

2
+itn

tn>0

rn cos(θn −
tn
2

log(x)),

with rne
iθn = Γ(ρn

2
)
L( ρn

2
,f⊗g)

2ζ′F (ρn)
, and ρn = 1

2
+ itn is the n-th non-trivial zero of the

Dedekind zeta function ζK(s).

4.3 Preliminaries

4.3.1 Dedekind zeta function ζF (s)

Let F be a �nite extension of Q of degree n. Let r1, r2 be the number of real and

complex embeddings of F into C, respectively and r1 + 2r2 = n. The Dedekind

zeta function associated with the number �eld F is de�ned as follows

ζF (s) =
∑

m⊂OF
m6={0}

1

N(m)s
,

where the sum runs over all the integral ideals m of OF . Then ζF (s) converges

absolutely for Re(s) > 1 and has a meromorphic continuation to the whole

complex plane except for a simple pole at s = 1. Set

γF (s) :=

(
|DF |

22r2πn

) s
2

Γ
(s

2

)r1
Γ(s)r2 , (4.1)

where DF denotes the discriminant of F over Q. De�ne the completed
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Dedekind zeta function ΛF (s) by

ΛF (s) = γF (s)ζF (s). (4.2)

We have the following theorem, which establishes the meromorphic continuation

by yielding a functional equation for the completed Dedekind zeta function [3939].

Theorem 4.3.1 ([3939]) The completed Dedekind zeta function ΛF (s) has an an-

alytic continuation to the whole complex plane as a meromorphic function and

satis�es the following functional equation

ΛF (s) = ΛF (1− s).

It has two poles one at s = 0 and the other at s = 1, both of which are simple.

Residue of ΛF (s) at s = 1 is

2r1RF |ClF |
wF

,

where RF , |ClF | and wF denote the regulator of F , cardinality of the class group

of F and the number of roots of unity in F , respectively.

4.3.2 Bound on ζF (s)

Lemma 4.3.2 In the vertical strip −1 ≤ σ ≤ 2, we have

1

|ζF (σ + iT )|
< eA2T , (4.3)

for some positive constant A2.

Proof. The function s → s(s − 1)ΛF (s) is holomorphic on the whole complex

plane and its zeros are the non-trivial zeros ρ of the Dedekind zeta function ζF (s).
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Therefore by Weierstrass-Hadamard product formula, ΛF can be expanded as,

s(s−1)Γ
(s

2

)r1
Γ(s)r2

(
|DF |

22r2πn

) s
2

ζF (s) = exp(a+bs)
∏
ρ

(
1− s

ρ

)
exp

(s
ρ

)
, (4.4)

where a, b are constant. Now taking the logarithmic derivative of (4.44.4), we get

1

s
+

1

s− 1
+ r1

Γ′
(
s
2

)
Γ
(
s
2

) + r2
Γ′(s)

Γ(s)
+ log(CF ) +

ζ ′F (s)

ζF (s)
= b+

∑
ρ

−1
ρ

1− s
ρ

+
1

ρ
,

and hence

ζ ′F (s)

ζF (s)
+

2s− 1

s(s− 1)
+ r1

Γ′
(
s
2

)
Γ
(
s
2

) + r2
Γ′(s)

Γ(s)
+ log(CF ) = b+

∑
ρ

( 1

s− ρ
+

1

ρ

)
ζ ′F (s)

ζF (s)
=
∑
ρ

( 1

s− ρ
+

1

ρ

)
+O(log t).

(4.5)

Last equality follows from property of Γ-function. Let NF (T ) be the number of

zeros ρ = β+ iγ of ζF (s) in the critical strip 0 ≤ β ≤ 1 with |γ| ≤ T . For T ≥ 2,

from [2626] we have,

NF (T ) =
T

π
log
|DF |T n

(2πe)n
+O(log |DF |T n). (4.6)

From (4.64.6) we see that

NF (T + 1)−NF (T ) = O(log T ). (4.7)

Now using (4.54.5), (4.74.7) and following a similar method as in [page 217, [4949]] we
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get

log |ζF (s)| ≥
∑
|T−γ|≤1

log |T − γ|+O(log T ).

Now let us take a sequence of positive real numbers T →∞ such that |T −γ| >

exp(−A1γ
log γ

) for every ordinate γ of a zero of ζF (s), where A1 is some positive

constant. Then

log |ζF (σ + iT )| ≥ −
∑
|T−γ|≤1

log |T − γ|+O(log T ) > A2T,

where A2 <
π
4
if A1 is small enough and T large enough. This completes the

proof. �

The next lemma is about the growth of the Γ-function in a vertical strip.

Lemma 4.3.3 (Stirling's formula [2626]) In a vertical strip a1 ≤ σ ≤ a2,

|Γ(σ + iT )| =
√

2π|T |σ−
1
2 e

−1
2π|T |

(
1 +O

(
1

|T |

))

as |T | → ∞.

Lemma 4.3.4 The function L(s, f⊗g) is polynomially bounded in vertical strips

s = σ + it with a1 ≤ σ ≤ a2, |t| ≥ 1. More precisely, given any ε > 0 and for

large enough T there exists a positive constant A(σ) such that

|L(σ + iT, f ⊗ g)| � |T |A(σ)+ε.

Proof. We refer [2626] for proof. �
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4.4 Proof of the Theorem 4.2.14.2.1

From the inverse Mellin transform of the Γ-function, we have the following iden-

tity

1

2πi

∫ α+i∞

α−i∞
Γ(s)x−sds =


e−x α > 0,

e−x − 1 −1 < α < 0.

(4.8)

Let

L1(s, f ⊗ g) =
∑

m⊂OK
m6={0}

C(f ,m)C(g,m)

N(m)s
. (4.9)

Take α > 1 and consider the following integral

1

2πi

∫ α+i∞

α−i∞
Γ(s)x−sL1(s, f ⊗ g)ds =

1

2πi

∫ α+i∞

α−i∞
Γ(s)x−s

∑
m⊂OK
m6={0}

C(f ,m)C(g,m)

N(m)s
ds

=
∑

m⊂OK
m6={0}

C(f ,m)C(g,m)

2πi

∫ α+i∞

α−i∞
Γ(s)(xN(m))−sds

=
∑

m⊂OK
m 6={0}

C(f ,m)C(g,m)e−N(m)x

By using (1.71.7), we get,

∑
m⊂OK
m6={0}

C(f ,m)C(g,m)e−N(m)x =
1

2πi

∫ α+i∞

α−i∞
Γ(s)

L(s, f ⊗ g)

ζK(2s)
x−sds. (4.10)

Now our aim is to compute the integral 1
2πi

∫ a+i∞
a−i∞ Γ(s)L(s,f⊗g)

ζK(2s)
x−sds. In order to

do this, we consider a contour C oriented anti clock-wise, whose line segments

are [α − iT, α + iT ], [α + iT, β + iT ], [β + iT, β − iT ] and [β − iT, α − iT ] for

the real numbers β < 0, α > 1 and for large enough positive real number T .
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Consider the following integral I

I :=
1

2πi

∫
C

Γ(s)
L(s, f ⊗ g)

ζK(2s)
x−sds. (4.11)

We break the proof into two cases namely f 6= g and f = g.

Case 1. f 6= g

It is well known that all the non-trivial zeros of ζK(s) lie inside the vertical

strip 0 ≤ Re(s) ≤ 1. Consequently the integrand in (4.114.11) has in�nitely many

poles as (T →∞) with an additional pole at s = 0, since ζK(0) = 0. Therefore

by Cauchy residue Theorem equation (4.114.11) will become

1

2πi

∫
C

Γ(s)
L(s, f ⊗ g)

ζK(2s)
x−sds = C1 +B(x), (4.12)

where C1 = Ress=0

(
Γ(s)L(s,f⊗g)

ζK(2s)
x−s
)
, and B(x) is the residual function consist-

ing of in�nitely many terms contributed by the non-trivial zeros of ζK(2s) as

T →∞. As

∫
C

ds =

∫ α+iT

α−iT
ds+

∫ β+iT

α+iT

ds+

∫ β−iT

β+iT

ds+

∫ α−iT

β−iT
ds. (4.13)

Put

I1 =
1

2πi

∫ β+iT

α+iT

Γ(s)
L(s, f ⊗ g)

ζK(2s)
x−sds,

I2 =
1

2πi

∫ α−iT

β−iT
Γ(s)

L(s, f ⊗ g)

ζK(2s)
x−sds,

I3 =
1

2πi

∫ β−iT

β+iT

Γ(s)
L(s, f ⊗ g)

ζK(2s)
x−sds.



70 �4.4. Proof of the Theorem 4.2.14.2.1

Letting T →∞ in (4.134.13), we get

1

2πi

∫ α+i∞

α−i∞
Γ(s)

L(s, f ⊗ g)

ζK(2s)
x−sds = − lim

T→∞

(
I1 + I2 + I3+

1

2πi

∫
C

Γ(s)
L(s, f ⊗ g)

ζK(2s)
x−sds

)
.

(4.14)

Using (4.124.12), the above equation (4.144.14) becomes,

1

2πi

∫ α+i∞

α−i∞
Γ(s)

L(s, f ⊗ g)

ζK(2s)
x−sds = − lim

T→∞

(
I1 + I2 + I3 + C1 +B(x)

)
.

(4.15)

Now we compute each term of the right hand side of (4.154.15). We claim that |I1|

and |I2| → 0 as T →∞. Note that

I1 =
1

2πi

∫ β+iT

α+iT

Γ(s)
L(s, f ⊗ g)

ζK(2s)
x−sds =

1

2πi

∫ β

α

Γ(σ+it)
L(σ + iT, f ⊗ g)

ζK(2(σ + iT ))
x−(σ+iT )dσ

Using Lemma 4.3.24.3.2, 4.3.34.3.3 and 4.3.44.3.4, above equality becomes

|I1| � |T |A exp

(
A2T −

1

2
π|T |

)
, (4.16)

where A is constant. From Lemma 4.3.24.3.2, we set A2 <
π
4
. Thus |I1| → 0 as

T →∞. Similarly |I2| → 0 as T →∞. Let us compute I3. To compute I3, we

will use the functional equation. Recall from (1.81.8) and (1.91.9),

Λ(s, f ⊗ g) = Λ(1− s, f ⊗ g),

N(O2
K)sL∞(s, f ⊗ g)L(s, f ⊗ g) = N(O2

K)1−sL∞(1− s, f ⊗ g)L(1− s, f ⊗ g).

(4.17)
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Since the γ-factor of the L(s, f ⊗ g) is given by

L∞(s, f ⊗ g) =
d∏
j=1

(2π)−2s−kjΓ(s)Γ(s− 1 + kj),

(4.174.17) reduces to the following identity,

L(s, f ⊗ g) =
N(O2

K)1−2s
∏d

j=1(2π)−2(1−2s)
∏d

j=1

(
Γ(1− s)Γ(−s+ kj)

)
∏d

j=1

(
Γ(s)Γ(s− 1 + kj)

) L(1− s, f ⊗ g).

(4.18)

The completed Dedekind zeta function for a totally real �eld K is given by (4.24.2)

ΛK = |DK |
s
2π
−sd
2 Γ
(s

2

)d
ζK(s).

On applying the functional equation from Theorem 4.3.14.3.1, we have the following

functional equation for the Dedekind zeta function ζK(s)

ζK(2s) = |DK |
1−4s

2 π
4sd−d

2

Γ
(

1−2s
2

)d
Γ(s)d

ζK(1− 2s). (4.19)

Now by a combined application of (4.184.18) and (4.194.19), we have

Γ(s)L(s, f ⊗ g)

ζK(2s)
x−s = N(O2

K)1−2s2−2d(1−2s)π
4sd−3d

2 |DK |
4s−1

2 Bγ(s)
L(1− s, f ⊗ g)

ζK(1− 2s)
x−s,

(4.20)

where

Bγ(s) =
Γ(s)Γ(1− s)d

∏d
j=1(Γ(−s+ kj))

Γ
(

1−2s
2

)d∏d
j=1(Γ(s− 1 + kj))

.
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Now we compute |I3|

|I3| =

∣∣∣∣∣−1

2πi

∫ β+iT

β−iT
Γ(s)

L(s, f ⊗ g)

ζK(2s)
x−sds

∣∣∣∣∣
�
∫ β+iT

β−iT

∣∣∣∣∣Bγ(s)
L(1− s, f ⊗ g)

ζK(1− 2s)
x−sds

∣∣∣∣∣
�
∫ β+iT

β−iT

∣∣∣∣∣Bγ(s)ζK(2− 2s)
L(1− s, f ⊗ g)

ζK(2− 2s)ζK(1− 2s)
x−sds

∣∣∣∣∣.
Note that L(s, f ⊗ g) = ζK(2s)L1(s, f ⊗ g) [see eq.(1.71.7)], and hence the above

inequality reduces to

|I3| �
∫ β+iT

β−iT

∣∣∣∣∣Bγ(s)ζK(2− 2s)
L1(1− s, f ⊗ g)

ζK(1− 2s)
x−sds

∣∣∣∣∣
�
∫ β+iT

β−iT

∣∣∣∣∣Bγ(s)x
−sds

∣∣∣∣∣.
To obtain the last inequality we use the fact that ζK(s) and L1(s, f ⊗ g) are

absolutely convergent for Re(s) > 1. Let ω = 1− s. Since Re(s) < 0, so we see

that Re(ω) > 1. Thus

|I3| �
∫ 1−β+iT

1−β−iT

∣∣∣Bγ(1− ω)xω−1dω
∣∣∣� ∫ T

−T

∣∣∣Bγ(1− 1 + β − it)x1−β+it−1
∣∣∣dt

�
∫ T

−T

∣∣∣Bγ(β − it)xβ+it
∣∣∣dt.

Now by Lemma 4.3.34.3.3 and letting T →∞, the above inequality becomes

lim
T→∞

|I3| � lim
T→∞

∫ T

−T
|t|1−βe−

1
2
π|t|x−βdt� Γ(2− β)x−β.

Thus limT→∞ |I3| = O(xε) because we can take β to be an arbitrary small

negative real number.
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Now we calculate the quantities C1 and B(x).

From (4.124.12), we recall that C1 = Ress=0

(
Γ(s)L(s,f⊗g)

ζK(2s)
x−s
)
. It is not di�cult

to see that C1 � (log(x))r � xε, where r is the order of pole of
(

Γ(s)L(s,f⊗g)
ζK(2s)

x−s
)

at s = 0.

Let ρ be any arbitrary non-trivial zero of ζK(s) inside the verticle strip 0 ≤

Re(s) ≤ 1. If we assume the grand simplicity hypothesis for the non-trivial

zeros of ζK(s), we get

B(x) =
∑
ρ

Ress= ρ
2
Γ(s)

L(s, f ⊗ g)

ζK(2s)
x−s =

∑
ρ

lim
s→ ρ

2

(
s− ρ

2

)
Γ(s)

L(s, f ⊗ g)

ζK(2s)
x−s

=
∑
ρ

Γ

(
ρ

2

)
L(ρ

2
, f ⊗ g)

2ζ ′K(ρ)x
ρ
2

where sum runs over all the non-trivial zeros ρ = σ+ it of ζK(s), and the above

sum over ρ is to be taken in the sense of lim
T→∞

∑
|t|≤T

.

Case 2. f = g

If f = g, then the integrand in (4.114.11) has a simple pole at s = 1 contributed

by L(s, f ⊗ g). Due to the presence of the pole at s = 1 we have an extra term

C2 in (4.124.12). Therefore

1

2πi

∫
C

Γ(s)
L(s, f ⊗ g)

ζK(2s)
x−sds = C1 + C2 +B(x) (4.21)

where

C2 = Ress=1

(
Γ(s)

L(s, f ⊗ g)

ζK(2s)
x−s
)

= lim
s→1

(
(s− 1)Γ(s)

L(s, f ⊗ g)

ζK(2s)
x−s
)
.
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Then by Theorem 1.3.71.3.7, we have,

C2 =
2d−1(4π)kζK(2)Γ(k)−1RK [O×K

+
: O×K

2
]−1〈f , f〉

ζK(2)x

=
2d−1(4π)kΓ(k)−1RK [O×K

+
: O×K

2
]−1〈f , f〉

x
.

(4.22)

This completes the proof. �

4.5 Proof of the Corollary 4.2.24.2.2

If we assume GRH, then all the non-trivial zeros of Dedekind zeta function ζK(s)

lie on the verticle line Re(s) = 1
2
. From the functional equation for ζK(s), we

notice that if ρn = 1
2

+ itn is n-th non-trivial zero of ζK(s), then 1
2
− itn is also

a zero of ζK(s). Thus B(x) will become

B(x) =
∑

ρ= 1
2

+itn
tn>0

2Re
(

Γ

(
ρ

2

)
L(ρ

2
, f ⊗ g)

2ζ ′K(ρ)x
ρ
2

)
.

Let rneiθn be the polar representation of the complex number Γ(ρn
2

)
L( ρn

2
,f⊗g)

2ζ′K(ρn)
.

Then

B(x) =
∑

ρ= 1
2

+itn
tn>0

2Re(rne
iθnx−

1
4
−i tn

2 ) = 2x−
1
4

∑
ρ= 1

2
+itn

tn>0

Re
(
rne

iθne−i
tn
2
log(x)

)

= 2x−
1
4

∑
ρ= 1

2
+itn

tn>0

rn cos

(
θn −

tn
2
log(x)

)
.

This completes the proof of the corollary. �
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